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ABSTRACT The impacts of global climate change on dryland fungi have been
understudied even though fungi are extremely sensitive to changes in the environ-
ment. Considering that many fungi are pathogens of plants and animals, including
humans, their responses to anthropogenic change could have important implications
for public health and food security. In this study, we investigated the potential physiolog-
ical responses (i.e., metatranscriptomics) of pathogenicity and stress in dryland fungi
exposed to global change drivers, drought, and the physical disturbance associated
with land use. Specifically, we wanted to assess if there was an increase in the transcrip-
tion of genes associated to pathogenicity and stress in response to global change
drivers. In addition, we wanted to investigate which pathogenicity and stress genes were
consistently differentially expressed under the different global change conditions across
the heterogeneous landscape (i.e., microsite) of the Chihuahuan desert. We observed
increased transcription of pathogenicity and stress genes, with specific genes being
most upregulated in response to global change drivers. Additionally, climatic conditions
linked to different microsites, such as those found under patches of vegetation, may play
a significant role. We provide evidence supporting the idea that environmental stress
caused by global change could contribute to an increase of pathogenicity as global
climate changes. Specifically, increases in the transcription of stress and virulence genes,
coupled with variations in gene expression, could lead to the onset of pathogenicity. Our
work underscores the importance of studying dryland fungi exposed to global climate
change and increases in existing fungal pathogens, as well as the emergence of new
fungal pathogens, and consequences to public health and food security.

IMPORTANCE The effects of global climate change on dryland fungi and consequen-
ces to our society have been understudied despite evidence showing that pathogenic
fungi increase in abundance under global climate change. Moreover, there is a grow-
ing concern that global climate change will contribute to the emergence of new
fungal pathogens. Yet, we do not understand what mechanisms might be driving
this increase in virulence and the onset of pathogenicity. In this study, we investigate
how fungi respond to global change drivers, physical disturbance, and drought, in a
dryland ecosystem in terms of pathogenicity and stress. We find that indeed, under
global change drivers, there is an increase in the transcription and expression of genes
associated to pathogenicity and stress, but that microclimatic conditions matter. Our
study shows the importance of investigating dryland fungi exposed to global climate
change and impacts on our society, which may include threats to public health and food
security.

KEYWORDS fungi, pathogenicity, stress, global change, physical disturbance, drought,
dryland
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he Intergovernmental Panel on Climate Change has emphasized that the collision

of global change drivers, such as physical disturbance (referred simply as disturb-
ance here onward) and drought, in the next two decades will often breach tolerance
thresholds for biological systems, with repercussions for public health (1). For example,
as climate change intensifies droughts, soil dries out, which facilitates soil dispersion
through wind force, consequently increasing land erosion, which is a type of disturbance
(2, 3). One potentially critical but understudied impact of global change is its effect on
the physiology of soil fungi (4). Many soil fungi are causal agents of infectious diseases
of high prevalence and public health impact (5, 6); in fact, the direct medical cost
associated with fungal diseases in the USA alone is more than $7.2 billion (6). Moreover,
fungal diseases impact food security (7, 8); the cost associated with crop losses by
fungal diseases is $100-$200 billion every year (9). Because global climate change is
happening faster than anticipated (1), it is especially important to investigate soil fungal
responses to global change drivers, as fungi are extremely sensitive to changes in the
environment, and their responses could have important implications for public health
and food security (4).

Fungal responses under global change drivers have been studied mostly from a
community-based perspective, that is, assessments of changes in the fungal community
in terms of the relative abundance of different taxonomical groups and/or functional
groups (10-16). Although responses vary by global change driver and ecosystem type,
a consistent finding has been the increase of pathogenic fungal taxa and/or functional
groups (17, 18). Large-scale research supports this observation as fungal pathogenic
outbreaks have been increasingly documented in the last decade and are predicted to
continue to increase (19-22). The mechanisms behind the increases of pathogenic fungi
under global change drivers remain unknown.

An interesting hypothesis regarding the rise of fungal pathogens due to global
climate change suggests that increased stress resilience in fungi may enhance their
virulence, leading to a higher prevalence of pathogenicity under global climate change
(5). In fact, the novel fungal pathogen Candida auris, which was first identified in 2009
from an ear infection (23), is thought to have emerged due to exposure to chronic stress
in its natural environment imposed by global climate change (24-26). Prior to becoming
pathogenic, C. auris was likely a saprotrophic fungus. These ideas are supported by the
fact that its closest phylogenetic relatives have been isolated from aquatic environments
(26), and C. auris can tolerate high-stress environments such as hypersalinity and higher
temperatures compared to other pathogenic Candida species (27, 28).

Aside from human health, food systems are also at risk of fungal pathogens under
global climate change. Agroecosystems, especially those growing global commodity
crops, such as banana, coffee, tomato, cotton, etc., are threatened by emerging fungal
pathogens. For example, Fusarium oxysporum f. sp. cubense, causal agent of banana
wilt, was responsible for the eradication of the Gros Michel banana in the 1960s (8). A
new banana cultivar, Cavendish, is now popular, but it is currently threatened because
of a recently emerged variant of F. oxysporum f. sp. cubense, also known as tropical
race 4 (TR4). The cause of the emergence of this variant is unknown (although likely
due to management practices), and its spread may be exacerbated by global climate
change (29). The emergence of plant pathogens and their impact on food security
remain a subject of ongoing research. For instance, the devastation of banana crops by
TR4 forced Colombia, a leading banana exporter, to declare a state of emergency (30).
To fully understand the threat, it is essential to investigate how pathogens respond to
global change drivers and their evolutionary capacity to withstand environmental stress.
Regardless, the resilience of agricultural systems and the subsequent impacts on food
security will be challenged by climate change, as pathogens are likely to follow hosts as
they disperse globally and evolve to overcome environmental stresses (8).

Regardless of the type of fungal pathogen (human or plant), the connection between
the ability to withstand stress and increases in virulence which can result in the onset of
pathogenicity is clear; the inside of a host is often a stressful environment. Depending
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on the host, there might be limited carbon sources, elevated temperature, and an active
immune system. Pathogenic fungi, both obligate and facultative, have evolved strategies
to withstand these conditions and facilitate host invasion. For example, to establish
infection, Candida albicans activates a stress response pathway that results in changes
in the structure, biophysical properties, and architecture of the cell wall (31). Moreover,
enzymes, such as multicopper oxidases and metalloproteases, are produced by many
fungi, and their role is very broad and includes participating in the degradation of
carbon, as well as functioning as a virulence factor (32, 33).

Although the connections between virulence and stress tolerance in fungi seem
to be clear, these studies have been done mostly in model species under controlled
laboratory conditions (32, 34-38). To our knowledge, these connections have not been
investigated in fungal communities in natural soil environments experiencing global
change. Therefore, in this study, we answer the following questions: (i) is there an
increase in the transcription of genes associated to pathogenicity and stress in response
to global change drivers? (i) Is the expression of pathogenicity and stress genes higher
under global change drivers? (iii) Which pathogenicity and stress genes are consistently
differentially expressed under global change drivers? Finally, (iv) how does the gene
expression of the fungal community respond to individual and overlapping global
change drivers?

To address these questions, we conducted research at the Jornada Basin LTER
(long-term ecological research) in the northern extent of the Chihuahuan Desert (i.e.,
dryland ecosystem) in a manipulative field experiment using disturbance and drought as
global change drivers imposed in a full-factorial design. This site has been experiencing
land degradation for the last century due to global climate change and other anthropo-
genic activities (39, 40). These impacts have helped create a heterogeneous landscape
(39, 41, 42) with patches of vegetation separated by interspace areas of open soil
(Fig. 1). This “patchiness” makes the landscape susceptible to further land degradation,
such as erosion, that can contribute to additional disturbance of the desert floor due
to dust storms (43). But this heterogeneous landscape also offers the opportunity to
study the responses of the fungal community to global change drivers under different
microclimatic conditions, such as the presence or absence of vegetation. Altogether, this

mSphere

FIG 1 View of the heterogeneous landscape of shrubs separated by interspace areas of open soil in our field experiment in the northern extent of the

Chihuahuan Desert at the Jornada Basin LTER (Photo credit: Scott Ferrenberg).
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will allow us to better understand how these conditions may influence how the fungal
community responds to global climate change and identify potential implications for
public health and food security.

MATERIALS AND METHODS

Our study was located at the Jornada Basin LTER site (32° 30" N, 106° 47° W, 1,188 m.
a. s. l.), in the drylands of the northern extent of the Chihuahuan Desert in southern
New Mexico, USA. This site has a mean annual precipitation of 230 mm with a marked
monsoon season from July to October. Average maximum temperature is 36°C usually
occurring in early summer, while the average minimum temperature is 13°C usually
occurring in early winter. The dominant vegetation consists of shrubs such as honey
mesquite (Prosopis glandulosa), creosote bush (Larrea tridentata), and tarbush (Flourensia
cernua), which have been increasing in abundance for the last few decades (i.e., shrub
encroachment) (44, 45).

In a honey mesquite-dominated area of approximately 600 x 400 m, 40 field plots
measuring 2.5 X 5 m were installed in 2019 and randomly assigned to four experimental
treatments. We selected the plot size to capture the ecological dynamics of the dominant
shrub species in this study as well as the interspace immediately surrounding the shrubs.
Spacing among plots was irregular since dryland vegetation is heterogeneous in space,
and plots were centered on individual shrubs so that vegetation was similar across all
plots prior to treatment; selected shrubs were typical of each site in size, number of
stems, and canopy vigor.

Of these 40 plots, 10 were physically disturbed at the start of the experiment with
multiple passes with a spiked drum aerator pulled with an all-terrain vehicle that
damaged plant and soil communities. The purpose of the disturbance treatment was
to impose soil surface disturbances such as those caused by anthropogenic land use,
like vehicle traffic. Ten plots were droughted using rainout shelters that impose a 70%
reduction of incoming precipitation (46), which, according to the long-term data at the
Jornada, represents an extreme, 1-in-100-year drought event for the area. Ten plots were
both disturbed and droughted (D x D), and 10 plots were left untouched to serve as
control.

We collected soil samples from each plot 2 years after the onset of the global
change experiment. In each plot, we collected soil samples from two different microsites,
(i) under vegetation, which are areas below plant patches where there is significant
accumulation of organic matter and nutrients, also known as “resource islands” and
which are major drivers of dryland ecosystem functioning (45, 47-49); (ii) from interspa-
ces which are adjacent open areas of soil (i.e., open soil with or without biological soil
crusts; total of 80 soil samples). We collected approximately 1 g of soil from the top 5 cm
where microbial activity is often greatest and immediately soaked it in 5 mL of LifeGuard
Soil Preservation Solution (Qiagen Group), where RNAse activity is prevented, and RNA
microbial community profiles are maintained and stabilized (50). Samples were kept in a
cooler for a few hours and then transferred to a —80°C freezer upon arrival at the lab and
processed within 2 months of collection.

We thawed samples on ice and centrifuged at 2,500 x g for 5 minutes to remove
the LifeGuard Soil Preservation Solution and proceeded to extract RNA using the RNA
PowerSoil following the manufacturer’s instructions with some modifications (51). We
cleaned and concentrated samples using the RNA clean and concentrator-25 kit (Zymo
Research Corporation) and treated the samples with Turbo-DNA free kit (Life Technolo-
gies). We checked RNA for quality via electrophoresis, and those samples with enough
RNA concentration and of good quality were shipped to the Center for Genomics and
Bioinformatics at Indiana State University (Bloomington, IN, USA) for sequencing. Here,
polyA-selected mRNA libraries were prepared by lllumina TruSeq Stranded mRNA Library
Preparation Kit protocol and analyzed by Agilent 4200 TapeStation. The libraries were
pooled and loaded on a NextSeq 500/550 High Output (v 2.5; 300 cycle) flow cell to
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generate paired-end reads which were then demultiplexed using lllumina’s bcl2fastq (v
2.20.0).

We selected two metatranscriptomes [minimum number of metatranscriptomes
needed to be able to successfully conduct differential expression analyses (52)] for
control and each treatment (total of 16) based on comparable number of reads (Table
S1) and analyzed following Romero-Olivares and collaborators (53). Briefly, we removed
adapters with Trimmomatic (v 0.39) using ILLUMINA TruSeq3-PE adapters with sliding
window 4:15 and dropping reads below 25 bases long (54). We checked the quality of
trimmed samples with FastQC (v 0.11.9) (55). We removed 5, 5.8, 16, 18, and 23 s rRNA
sequences with sortmeRNA (56) and the SILVA database (57). We assembled a de novo
reference metatranscriptome with Trinity (v 2.13.2) (58) and used bowtie2 (v 2.4.5) to
map reads (59) and samtools (v 1.15) for sorting and indexing (60). We annotated our
metatranscriptome using the Pfam (v 36.0) protein family database which is used for
classifying protein sequences into families and domains (61). We used Transdecoder (v
5.5.0) (62) to find coding regions, Trinotate for annotations (v 3.2.2) (63), and hmmer (v
3.3.2) (64) to search for sequence homologs. We ran this pipeline two times based on
microsite (i.e., interspace samples and under vegetation samples) due to computational
demands associated to the size of our files which, in most cases, exceeded one terabyte.
Once we had an annotated metatranscriptome for each microsite, we used Salmon (v
1.10.2) (65) to quantify transcripts and create a gene-level count matrix.

To filter transcripts of genes associated with proteins involved in pathogenicity and
stress, we conducted a literature review to identify proteins that are known for playing
a role in the pathogenicity of microorganisms and/or stress response. For the former, we
selected transcripts that codify for genes associated to adhesins (66), agglutinins (67-69),
flocculins (70-72), melanin biosynthesis (73, 74), metalloproteins (34, 75-77), toxin (78,
79), and multicopper oxidase (32, 35, 36) (Table 1; Tables S2 and S3). For the latter (i.e.,
stress response), we selected transcripts that codify for genes associated to $—1,3 glucan
synthase (80-82), heat shock protein (HSP) (82, 83), melanin biosynthesis (84, 85), RNA

TABLE 1 Proteins included in this study known for playing a role in the pathogenicity and stress response of microorganisms

mSphere

Protein name Pathogenicity Stress response

Adhesins Used by pathogens to establish infection by facilitating interactions with the
external environment, including the host (72, 91).

Agglutinins Participate in adhesion of the cell wall to host and to environmental abiotic
surfaces (67).

Flocculins A type of adhesin found in the cell wall; it mediates cell-to-cell aggregation and
is crucial for biofilm formation during infection (37, 70).

Melanin biosynthesis  Cell wall polymer that can act as a virulence factor and increases resistance of ~ Cell wall polymer that ameliorates environmental

cells to the immune system (e.g., resistant to phagocytosis) (73).

Metalloproteins Essential for pathogens as a virulence factor to acquire and control metal
utilization during infection to survive in their hosts (75, 93).

Toxins Virulence factors that alters the host cell functions to facilitate infection (79, 94).

Multicopper oxidases A copper-containing protein that acts as virulence factor by helping evade the
toxic high-metal environment generated by the host immune system (35, 95).

temperature (92).

stress such as UV radiation, osmotic stress, and high

B—1,3 glucan synthase

HSP

RNA helicase

Trehalose

A cell wall carbohydrate that provides strength,
resistance, and integrity to the cell (87).

Have a crucial role in protein folding and stability,
as well as in homeostasis under stressful biotic and
abiotic conditions (83, 96).

Molecular motors that rearrange RNA secondary
structure and are associated with response to
temperature stress (87, 97).

A sugar that acts as protectant against abiotic stress
by stabilizing proteins from desiccation (87, 98).
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helicase (82, 86, 87), and trehalose (87, 88) (Table 1; Tables S4 and S5). In addition, we
conducted an extensive analysis of our Pfam outputs using the Pfam/InterPro database
(89) and read the description of each protein. We selected transcripts that codify proteins
with the term “pathogenicity,” “virulence,” or “stress” in either its name and/or description
(i.e., target name and description of target, Tables S2 to S5). We used count matrices
for the transcripts of interest, that is, pathogenicity and stress, and ran DESeq2 package
(v 1.42.0) within Bioconductor (v 3.18) (52) in R (90) to conduct differential analysis of
transcript count data. For plots and statistical analyses, we used the output of DESeq2
[i.e,, differentially expressed gene (DEG) data] which provides log2fold change data that
show the increased expression of a specific gene in control compared to treatment by
a multiplicative factor of 2. We used the output of Salmon (i.e., gene level count matrix)
which provides the total number of transcripts for specific genes.

We conducted nested one-way ANOVAs with microsite nested within treatment as
independent variable and transcript counts (with log-transformed data) or differential
expression (i.e., log2fold change) as dependent variable and conducted Tukey honest
significant differences as post hoc test. In all cases, we used P values equal or smaller
to 0.05 as significant. The full pipeline, raw data on pathogenicity and stress DEGs, gene
level count matrix, as well as statistical scripts were deposited at https://github.com/
adriluromero/adriluromero-Jornada_DxD_RNAseq (99).

RESULTS

Is there an increase in the transcription of genes associated to pathogenicity
and stress in response to global change drivers?

We found that there is a higher number of pathogenicity and stress transcripts in
response to global change drivers, but only under vegetation and only for specific
treatments. For pathogenicity genes, the fungal community in under vegetation and
interspaces had comparable number of transcripts between control and treatments
(treatment:microsite F4 33788 = 1.17, P = 0.318; Fig. 2). However, a post hoc test revealed
significantly higher pathogenicity transcript counts in D x D compared to control (P =
0.011, Fig. 2) in under vegetation. For stress genes, there were significant differences
in the number of transcript counts between control and treatments in the different
microsites (treatment:microsite F4 47952 = 12.31, P < 0.001; Fig. 2). Post hoc test showed
that there were significantly higher number of stress transcripts under drought (P <
0.001) and D x D (P < 0.001) under vegetation compared to control.

Is the expression of pathogenicity and stress genes higher under global
change drivers?

The expression of pathogenicity and stress genes in interspace and under vegetation
was high in response to global change drivers, especially under D x D compared
to disturbance and drought alone (pathogenicity treatment:microsite F3 453 = 5.78, P
< 0.001; stress treatment:microsite F31776 = 9.16, P < 0.001; Fig. 3). The expression
of pathogenicity genes was comparable between disturbance and drought alone in
interspace (P = 0.999) and under vegetation (P = 0.375). Similarly, the expression of stress
genes was comparable between disturbance and drought alone in under vegetation (P
= 0.611) but significantly lower in disturbance compared to drought in interspace (P <
0.001).

Which pathogenicity and stress genes are consistently differentially
expressed under global change drivers?

Calcineurin-like phosphoesterase, clp amino terminal domain pathogenicity island
component, and phage-encoded virulence factor where pathogenicity genes are
consistently differentially regulated in response to global change drivers in both
microsites. However, its regulation varied; phage-encoded virulence factor was consis-
tently downregulated, while genes encoding calcineurin-like phosphoesterase and clp
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FIG 2 Transcript counts for pathogenicity and stress genes in control and treatments from the different microsites [interspace among plants (i.e., interspace)
or under the canopy of the shrub, honey mesquite (i.e., under)] at the Jornada LTER global change experiment. Experimental treatments were control, physical
disturbance, drought, and physical disturbance plus drought (D x D). Box and whisker plots show the distribution of the data, the mean, and lower and upper
quartiles. Each point represents the transcript count of a specific gene. Counts are based on the sum of two metatranscriptomes for control and treatment plots
(n = 2). Asterisks denote significance at P < 0.05 between control and treatments by microsite for pathogenicity and stress genes.

amino terminal domain pathogenicity island component were up and downregulated.
Interestingly, there were no pathogenicity genes that were consistently upregulated
in under vegetation in response to global change drivers (Fig. 4). Contrastingly, in
interspaces, iron-zinc purple acid phosphatase-like protein C, metallo-peptidase family M12,
and putative peptidase family were consistently upregulated under global change drivers.
HSP 20/alpha crystallin family, HSP 9/12, HSP 70, HSP 90, and stress-induced bacterial
acidophilic repeat motif were stress genes that were consistently expressed under global
change drivers in both microsites, although its regulation varied. Viral (superfamily) RNA
helicase was consistently downregulated under global change drivers in both microsites.
Contrastingly, stress upregulated nod 19 and universal stress protein family were consis-
tently upregulated in under vegetation and interspace, respectively (Fig. 4).

How does the gene expression of the fungal community respond to individ-
ual and overlapping global change drivers?

We saw more similarities in the expression of pathogenicity genes by microsite
compared to treatments (Fig. 5). Microsites, for example, responded similarly in
downregulation of pathogenicity genes. In interspaces, phage-encoded virulence factor
(PAGK) consistently showed the most downregulation across all treatments, while under
vegetation, hypervirulence-associated protein TUDOR domain (Hval TUDOR) consistently
exhibited the most downregulation in response to all treatments (Fig. 5). In interspa-
ces, in disturbance alone, clp amino terminal domain pathogenicity island component
(clp N) was the most upregulated gene, whereas in drought alone, it was calcineurin-
like phosphoesterase (metallophosphatase). However, when disturbance and drought
interacted (i.e.,, D x D), multicopper oxidase (Cu-oxidase) was the most upregulated. In
the case of under vegetation, the most upregulated gene was the same in disturbance
and drought alone, metallo-beta-lactamase superfamily protein (lactamase B). But under
D x D, the highest upregulated gene was clp amino terminal domain pathogenicity island
component (clp N; Fig. 5).
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FIG 3 DEGs for pathogenicity and stress genes in treatments in comparison to control from the different microsites [interspace among plants (i.e., interspace)

or under the canopy of the shrub, honey mesquite (i.e., under)] at the Jornada LTER global change experiment. Experimental treatments were control, physical

disturbance, drought, and physical disturbance plus drought (D x D). Box and whisker plots show the distribution of the data, the mean, and lower and upper

quartiles. Each point represents the fold change expression of a gene in treatment compared to control. Differential expression is based on the data of two

metatranscriptomes for control and treatment plots (n = 2). Different letters denote significance at P < 0.05 by microsite for pathogenicity and stress genes.

For stress genes, we saw the same genes differentially expressed in the different
microsites and treatments (Fig. 6). In other words, we did not find high variation in genes
or gene expression by treatment or microsite. In interspaces, viral (superfamily 1) RNA
helicase was the most downregulated gene across all treatments, while under vegetation,
genes varied; in disturbance alone, HSP 90 was the most downregulated, in drought
alone, it was viral (superfamily 1) RNA helicase, and in D x D, it was HSP 20 crystallin family
(Fig. 6). In interspaces, HSP 20/alpha crystallin family was the most upregulated gene in
disturbance alone and D x D, whereas for drought alone, the most upregulated gene was
HSP 70. For under vegetation, the most upregulated gene in disturbance alone was HSP
90, whereas drought alone and D x D had the same most upregulated gene, which was
HSP 20/alpha crystallin family (Fig. 6).

DISCUSSION

Transcript counts of pathogenicity and stress genes were consistent in interspaces
between control and treatments (Fig. 2), suggesting that disturbance, drought, and the
combination of both (i.e., D x D) did not affect the transcription of stress or pathogenicity
genes of the fungal community. Contrastingly, under vegetation, we saw a significantly
higher number of transcripts for both pathogenicity and stress genes in D x D compared
to control (Fig. 2). Similarly, stress transcript counts for stress genes were also significantly
higher under drought compared to control. Disturbance alone did not have a strong
impact on the transcription of stress genes. Therefore, it is likely that the response we
saw in D x D is driven mostly by the effect of drought (Fig. 2). Indeed, some fungi, such as
black microcolonial fungi, are known to withstand high levels of drought as they inhabit
bare rock surfaces in hot and cold deserts (100). They can withstand chronic desiccation
by producing small HSPs and chaperon proteins which allow them to have a very quick
response to increased water availability and for being able to function metabolically
under low cellular water content (100). It is possible that fungi, in our study, were
expressing HSPs in order to withstand stress, such as that imposed by our treatments
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agreement OE274MO1 x 9.

under vegetation, particularly our drought treatments in drought alone and D x D.
Higher transcription of pathogenicity and stress genes under D x D in under vegetation
suggests that fungal access to resources, such as those found concentrated in fertile
islands under vegetation, may be important in determining fungal responses to global
change. For example, microsites under vegetation are probably a more competitive
environment compared to interspaces and therefore, more stressful, leading to greater
evolutionary selection pressures on fungal phenotypes.

Fold change expression of both pathogenicity and stress genes was significantly
higher under D x D compared to disturbance and drought alone, in both interspace and
under vegetation (Fig. 3). These findings provide evidence that could support the
hypothesis that increased stress could lead to increases in virulence and consequently
the onset of pathogenicity (5, 24). That is, under the added stress of disturbance and
drought, the fungal community is expressing and regulating stress and pathogenicity
genes at higher fold change compared to control and disturbance and drought alone
(Fig. 3).

Previous work identified HSP 70 and 90 as consistently upregulated in response to
warming and drying in two fungal species in natural soil environments (101). These
proteins are known for having a role in heat stress and pH stress (83). Our study found
that these stress-related genes were consistently up- or downregulated across all
treatments (Fig. 4). In contrast, the expression of pathogenicity genes varied more.
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FIG 5 Volcano plots show significantly differentially expressed pathogenicity genes (i.e., P < 0.05) in treatments in comparison to control from the different
microsites [interspace among plants (i.e., interspace) or under the canopy of the shrub, honey mesquite (i.e, under)] at the Jornada LTER global change
experiment. Experimental treatments were control, physical disturbance, drought, and physical disturbance plus drought (D x D). Blue shows significantly
differentially downregulated genes, red shows significantly differentially upregulated genes, and black shows genes that were not significantly up- or
downregulated. Differential expression is based on the data of two metatranscriptomes for control and treatment plots (n = 2).

Nonetheless, some genes, such as calcineurin-like phosphoesterase, were consistently up-
or downregulated in response to nearly all treatments (Fig. 4). This protein is crucial for
the virulence of fungal pathogens, facilitating key morphological changes like dimorphic
transitions in animal pathogenic yeasts and appressorium formation in plant pathogens
(102); in both cases, these changes are necessary for the onset of infection. The observed
simultaneous up- and downregulation of some pathogenicity and stress genes suggests
differential responses within the fungal community, where some members upregulate
one gene, while others downregulate the same gene. This finding is significant because
genes that exhibit consistent regulation in response to global change drivers may be
subject to evolutionary selection pressures (103).

The regulation of HSPs varied widely under the different treatments and microsites; in
some cases, the same HSP was the most down- and upregulated protein, such as in the
case of HSP 20/alpha crystallin family in D x D soils under vegetation (Fig. 6). This gene is a
conserved domain in HSPs that play an important role in many cellular processes.
Therefore, the up- and downregulation of this gene, in addition to the reasons men-
tioned previously (i.e,, differential responses within the fungal community), could also be
indicating differential expression of different HSPs containing this domain. For instance,
HSP 20, HSP 30a, and HSP 20b all have the HSP 20/alpha crystallin family domain gene
(104). This domain is conserved across kingdoms and present in every fungal species
(83). Thus, it is not unexpected to see such a broad presence of transcripts for this gene in
our data set at varied degrees of regulation.

Pathogenicity DEGs varied more compared to stress genes. For pathogenicity, we saw
more similarities in DEG between microsites than within treatments, whereas for stress
genes, we saw more consistency on the genes that were differentially regulated in
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FIG 6 Volcano plots show significantly differentially expressed stress genes (i.e., P < 0.05) in treatments in comparison to control from the different microsites
[interspace among plants (i.e., interspace) or under the canopy of the shrub, honey mesquite (i.e., under)] at the Jornada LTER global change experiment.
Experimental treatments were control, physical disturbance, drought, and physical disturbance plus drought (D x D). Blue shows significantly differentially
downregulated genes, red shows significantly differentially upregulated genes, and black shows genes that were not significantly up- or downregulated.
Differential expression is based on the data of two metatranscriptomes for control and treatment plots (n = 2).

microsites and treatments (Fig. 5). This shows that the expression of pathogenicity genes
is likely more specific compared to that of stress. This is expected; all fungi have path-
ways for stress response, and not all fungi have pathways for pathogenicity since not all
fungi are obligate or facultative pathogens (105). Therefore, the DEGs we saw for
pathogenicity might be associated with specific members of the community inhabiting
specific treatments and microsites. For example, previous work from our group identified
high heterogeneity in the taxonomical composition of the fungal community in control
and treatments plots, where some unique taxa were only present under specific
microclimates and in specific treatments (106).

In some cases, the genes that were the most up- or downregulated varied by
treatment and microsite. In other cases, the same genes were consistently the most
down- or upregulated in specific treatments and microsite. For example, the pathoge-
nicity gene PAGK was the most downregulated gene in all treatments in interspaces
(Fig. 5). This gene is responsible for producing exotoxins in microbes. It is possible
that this gene was downregulated in interspaces because toxin production is energeti-
cally costly (94). Under harsh environmental conditions typical of interspaces (i.e., high
temperatures, low nutrient availability, and the absence of a host), microbes may not
be able to afford the energetic expense of toxin production. Pathogenic genes for
metalloproteins were consistently regulated to the highest degree in most treatments
and microsites (Fig. 5). However, the level of upregulation, in most cases, was smaller
than the degree of downregulation for the most downregulated proteins (e.g., PAGK).
Metalloproteins, such as copper, iron, and zinc-binding proteins, are important for the
virulence of pathogenic fungi (75). However, an excess in the uptake of metals can lead
to metal-induced cell toxicity (107). Thus, microbes require careful balance between
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upregulation of metalloproteins for the uptake of metals while avoiding cell toxicity. It
is possible that this is one of the main reasons why the upregulation of metalloproteins
was moderate in our sites (Fig. 5). The stress gene that was the most downregulated
consistently under all treatments in interspaces was Viral (Superfamily I) RNA helicase (Fig.
6). As conditions are harsh in interspaces, as mentioned previously, it is likely that many
microbes were investing resources in efficiently arranging transcripts for expression (97).

Our results, although broad and complex, offer a glimpse of the potential pathogenic
and stress physiology of the fungal community under global change drivers in a dryland
ecosystem. However, findings are the result of a single sampling effort conducted in early
summer throughout a few hours in the morning in a mesquite-dominated site. Therefore,
the transcriptomic profiles we see might be unique to that day, time, and landscape. To
better understand if the transcription profiles observed in our study remain consistent
over time and space, ongoing surveillance of our site and neighboring sites with diverse
vegetation is essential. This should include regular soil sampling—daily, weekly, and
seasonally—since studies have demonstrated that microbial communities are highly
dynamic and vary with season and landscape characteristics (108-110).

Our bioinformatics pipeline relies on available databases such as Pfam within InterPro
(89) and is based on Markov models which predict the best gene alignment based on
multiple transcript sequence alignments (61). Because of this, the gene identities we
got might, in some cases, not be fungal specific (e.g., phage-encoded virulence factor
or Neisseria toxin MafB). These results indicate that the transcript alignment was most
closely matched to available gene or genome annotations, which, in many cases, were
not specific to fungi. Since we conducted polyA selection, we assume that all, or most,
of our transcripts belong to Eukaryotes. However, it is possible that some non-poly A
mRNA might have escaped poly A selection; consequently, some of the transcripts might
not be Eukaryotic in nature. It is also possible that some of the transcripts are not of
fungal origin and might belong to other Eukaryotic microorganisms such as protists;
the size of our sample is very small (~1 g) and from the top 5 cm of soil, therefore
unlikely that plant or animal material such as leaves, roots, or insects are present
abundantly. Indeed, previous studies from our group at the Jornada have identified zero
non-fungal Eukaryotic biomass in soil samples (111). Finally, the nature and function of
many pathogenic and stress proteins overlap. Although, in this study, we only included
melanin biosynthesis as having both a role in pathogenicity and stress (73, 92), there
might be other genes that have this dual role that we did not account for. Mapping our
metatranscriptomes to obligate or facultative pathogenic fungi of interest in the area
such as Coccidioides spp., coupled with laboratory studies, would allow us to see how
these fungi might be responding to different global change drivers (101). This would also
allow us to see if exposure to stress increases the transcription of virulence, pathogenic-
ity, and stress genes at the species level and provide a comprehensive understanding
of the response of fungal pathogens to global climate change. Moreover, it would help
us to better understand how global change drivers are impacting the stress response,
virulence, and onset of pathogenicity of pathogenic fungi and determine consequences
to public health and food security.

In our study, we provide evidence that global change drivers increase the number
of transcripts and the expression of pathogenicity and stress genes under specific
microclimatic conditions, such as those found beneath vegetation in the dryland
ecosystem of the Chihuahuan Desert. In addition, we identified pathogenicity and stress
genes that are consistently differentially expressed under global change drivers and
which could be under evolutionary selection. Altogether, our study found evidence
that supports the idea that increases in environmental stress caused by global change
drivers could contribute to increases in stress tolerance and pathogenicity in the fungal
community of dryland ecosystems.
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