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1 Introduction

In this paper we construct asymptotically-AdSd+1 Euclidean wormholes with k discon-
nected conformal boundaries, sourced by matter going through the wormhole. The struc-
ture is illustrated in figure 1. These are multiboundary solutions of Einstein gravity with
negative cosmological constant. They appear generically in any theory of gravity, although
the allowed range of k depends on the details, and in some cases only ‘fractional’ wormholes
with non-integer k exist as gravitational saddles. We will focus on two cases: thin shell
wormholes, where the matter is a shell of pressureless perfect fluid, and B-states, where
the matter is an end-of-the-world (EOW) brane on which the spacetime terminates. Thin
shell wormholes exist for integer k, while B-states admit only fractional wormholes.

Euclidean solutions with disconnected boundaries are puzzling from the point of view
of the AdS/CFT correspondence, because the duality predicts that they ultimately cannot
contribute to the gravitational path integral with the standard boundary conditions [1, 2].
On the other hand, these solutions should not just be ignored, because in some cases,
Euclidean wormholes are known to calculate ensemble-averaged quantities in the dual
quantum theory [3, 4] (see also [5–8]). This is known as the factorization puzzle. Similar
Euclidean wormholes also play a role in calculating the entropy of Hawking radiation [5, 9].

There is a CFT interpretation for the wormholes described above which does not
require ensemble averaging: these wormholes compute the inner products of states with a
GHZ-like pattern of entanglement in the UV. Consider a Euclidean wormhole in (d + 1)
bulk dimensions with k disjoint boundaries, like that in figure 1. This wormhole calculates

Zwormhole ≈ 〈Ψk|Ψk〉 , (1.1)
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Figure 1. An on-shell Euclidean AdSd+1 wormhole with six disconnected boundaries. Each bound-
ary (shown in black) is Rd with the flat metric or Sd with the round metric. The red lines are matter
sources with planar or spherical symmetry. We consider examples where these matter sources are
thin shells of pressureless fluid. There are similar wormholes sourced by end-of-world branes; in
that case the spacetime ends at the red lines, and only replica-symmetric ‘fractional’ wormholes
with k < 2 are on shell. The im’s label the particular matter configuration, or the flavor of the
EOW brane.

where

|Ψk〉 =
∑

n

V i1ψi1
n |n〉V i2ψi2

n |n〉 · · · V ikψik
n |n〉 . (1.2)

In this relation, Zwormhole ≈ e−Iwormhole is the gravitational path integral on this topology,
which we treat to leading order in the semiclassical approximation. The relation (1.1) is
approximate because there may be other topologies that contribute to this overlap, but
we will study examples in which the wormhole is the leading term. The state |Ψk〉 lives
in k copies of the CFT Hilbert space, and comes with a specific normalization so that its
norm is a meaningful physical quantity. The sum is over black hole microstates |n〉 in a
single copy of the CFT, in the energy basis. The numerical coefficients ψi

n are UV data
that can be studied statistically, but not exactly, in the low-energy theory. The V i are
special CFT operators, built from single traces, that we call semiclassical isometries; a
semiclassical isometry is an invertible map from the CFT Hilbert space around energy E

to the CFT Hilbert space around energy E′, with E′ > E, and in (1.2) it corresponds to
adding massive particles that do not go through the wormhole.

A GHZ state in a finite-dimensional quantum system is a state with diagonal, k-party
entanglement, |GHZ〉 =


n |n〉⊗k [10]. The state in (1.2) has GHZ-like entanglement

among the UV microstates |n〉, but because of the dressing by the operators V i, the IR
entanglement can be more general. At this point the reader may object that it is a well
known fact that holographic states cannot have GHZ entanglement, because GHZ states
violate the entropy inequalities demanded by the Ryu-Takayanagi formula [11–14]. How-
ever, this logic only applies to CFT states defined on spatial slices in the boundary that can
be extended into smooth Cauchy slices in the bulk. In fact, it is possible to study GHZ-like
states holographically by exploiting this loophole. The Euclidean bulk region associated
to |Ψk〉 is the non-smooth ‘windmill’ geometry illustrated in figure 2. The intuition for the
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|Ψk〉 =

Figure 2. The Euclidean spacetime associated to the GHZ-like quantum state |Ψk〉 is a ‘windmill’
geometry. In the CFT, |Ψk〉 is defined on the t = 0 slice of k copies of the CFT, which is an
(Sd−1)k that cannot be extended smoothly into a bulk Cauchy slice. States of this type are not
required to satisfy holographic entanglement inequalities. Any pair of boundaries can be connected
by a spatial slice, so the quantum states on all k boundaries are correlated by the gravitational
constraints. Gluing this to another windmill for 〈Ψk| produces the wormhole geometry in figure 1.

ansatz (1.2) is that when the boundaries are glued together at the central vertex in this
diagram, the Hamiltonian constraint in the bulk enforces a projection onto states that are
correlated on all k boundaries.

This interpretation does not require that the wormholes contribute to the gravita-
tional path integral for ordinary k-copy observables, (Zcft[J ])k, so there is no tension with
factorization.

Although there is no ensemble average, there is a close connection to coarse graining.
As a matter of terminology, the distinction is that a ‘coarse-grained’ observable is defined
in a particular CFT, whereas an ‘ensemble average’ is defined by averaging over CFTs (or
CFT data, such as matrix elements) with respect to some measure. The notion of coarse
graining in CFT is neither unique nor well understood, so one goal of the paper will be to
propose a definition of coarse graining and to develop a replica formalism to calculate the
coarse-grained entropy. The conclusion is that the wormholes above, when taken to be Zk

symmetric, are the replica wormholes for coarse-grained entropy, and furthermore can be
used to find the coarse-grained density matrix associated to a bulk region outside a time-
symmetric apparent horizon (up to ambiguities that must be fixed by calculating additional
observables). On the CFT side, the replica method for coarse-grained entropy involves a
projection onto states with GHZ-like entanglement. The projection is implemented in the
bulk by a topological constraint that glues the manifold together into a wormhole.

Similar wormholes have been discussed in 2D gravity [5, 15] (the ‘West Coast’ model)
and in 3D gravity [8] (the large-c ensemble), where they were interpreted in terms of
ensemble averaging. The current paper provides an alternative interpretation in terms of
coarse graining in a single CFT. These two different points of view are entirely compatible
— the same wormholes can compute coarse-grained observables in a single theory as well
as ensemble averages. We will show that the higher-dimensional wormholes can also be
ascribed an ensemble interpretation, if we make the assumption that they are the dominant
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contributions to the gravitational path integral. Under this assumption the results are
parallel to those in [5], including Page-like behavior when the black hole is entangled with
an external reservoir.

Our conclusions including (1.1) apply to a variety of different wormholes, including
those involving thin shells, EOW branes, and massive probe matter in AdSd+1, as well as
wormholes in 3D gravity created by heavy local operators. All of these cases are special in
that the metric is locally identical to an eternal black hole, or an eternal black with a small
perturbation, away from localized matter sources. For this special class of black holes we
will also find the explicit coarse-graining map in the dual CFT.

The matter content we consider is generic — massive particles coupled to Einstein
gravity — so the results appear to be readily embedded into top-down theories, with two
important caveats. First, we will not study the question of stability. Instabilities can affect
the interpretation, as in the case of the Schwarzschild black hole in flat spacetime [16],
or even remove the wormhole contributions entirely, depending on the UV completion.
See [1, 2, 17] for other types of Euclidean wormholes in AdS and related discussion of
instabilities. Second, we will assume that certain replica-symmetric saddlepoints dominate
the gravitational path integral.

The remainder of this introduction is a summary of how wormholes are used to find
the coarse-grained density matrix of a pure-state black hole.

1.1 Coarse graining and apparent horizons

Consider a black hole pure-state |Ψ1〉, prepared by a Euclidean path integral, with a time-
symmetric apparent horizon. The Euclidean geometry of |Ψ1〉 is the saddlepoint that
computes the norm of this state, schematically

〈Ψ1|Ψ1〉 = . (1.3)

The diagram represents a Euclidean gravitational path integral that prepares the state
|Ψ1〉 on the dashed line, t = 0. The black line is the Sd boundary and the red line is a
matter source. Specifically, we consider EOW-brane solutions found in [18], thin shells of
pressureless fluid similar to the solutions studied in [19, 20], and perturbations of these.
Assuming the existence of a time-symmetric apparent horizon, the geometry on the t = 0
slice looks like this:

matter γ

, (1.4)

possibly with additional matter outside the black hole. The minimal surface γ is the
apparent horizon, which has vanishing inward and outward-pointing null expansions and is
therefore also extremal. The corresponding Lorentzian geometry is shown in the Penrose
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Figure 3. Penrose diagram of a black hole with a time-symmetric apparent horizon, γ, at t = 0
(which is also extremal). The corresponding Euclidean geometry is shown in eq. (1.3) and the t = 0
spatial slice is in eq. (1.4). For thin shells and B-states, the apparent horizon coincides with the
event horizon (gray), but sending in additional matter from the boundary leads to the figure shown.

diagram in figure 3. The extremal surface is homotopically trivial, so it is subdominant
in the sense of the Ryu-Takayanagi-formula [21, 22], and indeed, the state ρ = |Ψ1〉〈Ψ1| is
pure so it has vanishing von Neumann entropy.

Although it has zero fine-grained entropy, from the bulk point of view, |Ψ1〉 is naturally
assigned a coarse-grained entropy equal to one quarter the area of γ [23]. We will show that
the wormholes described above, taken to have a Zk symmetry permuting the boundaries,
are the gravitational replica manifolds that compute this coarse-grained entropy. They are
found by inserting a 2π

k conical defect at the apparent horizon and allowing it to backreact.
We can therefore use (1.1) to find the coarse-grained density matrix of |Ψ1〉 corresponding
to the region outside the apparent horizon, as follows. The k → 1 limit of (1.2) gives a
decomposition of the microstate in the form

|Ψ1〉 = V
∑

n

ψn|n〉 , (1.5)

where V is a semiclassical isometry. This decomposition of the quantum state is interpreted
geometrically as

|Ψ1〉 ⇔


n ψn|n〉 V

, (1.6)

in the spirit of a holographic tensor network [24–26] or quantum error-correcting code [27,
28]. The expansion coefficients ψn define a particular black hole microstate, and the isom-
etry V is associated to the region outside the apparent horizon. This is a CFT realization
of a holographic code [29]. Interestingly, the operator V — which will be found explicitly
as a CFT operator in some examples — is approximately isometric, up to normalization,
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if the CFT satisfies eigenstate thermalization (ETH). This draws a direct connection be-
tween ETH in the dual CFT and the success of random tensor networks [26] in reproducing
aspects of holographic duality.

Using the decomposition (1.5) we can now define the coarse-graining map. Given the
pure state

ρ = |Ψ1〉〈Ψ1| =
∑

m,n

ψmψ∗
nV |m〉〈n|V † , (1.7)

define the coarse-grained density matrix

ρ̄ :=
∑

n

|ψn|2V |n〉〈n|V † . (1.8)

The general result (1.1), specialized to have Zk symmetry, can be restated as

Zwormhole = Tr ρ̄k . (1.9)

This takes the form of a replica partition function. Therefore, ρ̄ is interpreted as the
coarse-grained density matrix, and applying the gravitational replica method [30], we have
derived a CFT formula for the area of the apparent horizon,

S(ρ̄) = 1
4G

Area(γ) , (1.10)

where S(ρ̄) is the von Neumann entropy (for a normalized state, S(σ) := −Tr σ log σ).
In other words, wormholes provide the answer to the question: What CFT quantity

does the area of a subdominant extremal surface calculate? Given a particular black hole, to
answer this question, the recipe is to construct the corresponding k-boundary wormholes,
calculate their action, read off V and |ψn|2 from (1.1)–(1.2), and then define ρ̄ by (1.8).
We will do this in several examples and find explicit formulae for ρ̄. This calculation of
ρ̄ leaves an ambiguity under unitary transformations that do not affect its spectrum. To
fix these ambiguities would require matching to other observables. In some cases we will
calculate certain correlation functions and show that they are compatible with (1.8).

From the CFT point of view, it is very natural to define the coarse-grained density
matrix of a pure state by (1.8). Consider the case in which V = 1; this holds for pure
states in which the geometry outside the horizon is exactly that of the eternal black hole,
including spherically symmetric B-states and thin shell geometries with all the matter
behind the horizon. Then ρ̄ defined in (1.8) is the diagonal projection of ρ in the energy
basis, and the coarse-grained entropy reduces to

S(ρ̄) = Sdiag(ρ) := −
∑

n

(ρ)nn log(ρ)nn . (1.11)

The right-hand side is a quantity known as the diagonal entropy, introduced by Barankov
and Polkovnikov [31], and it is a common definition of coarse-grained entropy used to
study pure states in chaotic quantum many-body systems out of equilibrium. In simple
quantum mechanical models, the diagonal entropy has several nice properties: it agrees
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with the von Neumann entropy in stationary states, it increases under stochastic evolu-
tion, and in chaotic systems obeying the eigenstate thermalization hypothesis, it obeys a
thermodynamic first law [31, 32].1

More generally, when V is a nontrivial operator, the coarse-grained density matrix de-
fined by (1.8) is not diagonal. The coarse graining map decoheres the black hole microstates
while retaining the infrared quantum correlations associated to certain single-trace excita-
tions, or in bulk language, matter outside the apparent horizon. This is a natural notion
of coarse graining for a low-energy observer at the boundary.

We have described a gravity procedure to find the coarse-grained density matrix ρ̄, but
we have not defined it purely in CFT terms. Without using wormholes, or any other input
from the gravity side, what is the definition of ρ̄? We suggest, tentatively, that large-N
holographic CFTs are naturally equipped with a quantum channel C such that ρ̄ = C(ρ).
In the examples that we will discuss, the coarse-graining map does act like a quantum
channel, but there is no general argument for this; see the discussion section.

1.2 Comments on the literature

Engelhardt and Wall proposed [23, 42] that the coarse-grained entropy associated to an
apparent horizon is the ‘simple entropy’, defined by maximizing over density matrices
subject to holding fixed a class of simple observables (i.e., one-point functions with time-
ordered sources). There is convincing evidence for this proposal under the assumption that
the optimal density matrix is achieved by a classical Lorentzian geometry [23, 42, 43]. Our
definition of coarse graining is different, but there is no conflict. We will find the explicit
coarse-grained density matrix ρ̄ in the CFT (up to the ambiguities mentioned above), as
opposed to defining it implicitly by a maximization procedure. On the other hand, our
method in its current form is limited to certain black holes.

This also connects to recent discussions of complexity and the ‘python’s lunch’ [43, 44].
The spatial slice depicted in (1.4) is an example of a python, and the region enclosed by the
extremal surface γ is the ‘lunch’. Pythons are related to regions of the bulk that are very
complex to reconstruct from the boundary, and the area of the extremal surface quantifies
this complexity [43, 44]. Therefore our results can also be interpreted as a way to define
and calculate the complexity of reconstruction. Other than this qualitative similarity, we
will not make a direct connection to the information-theoretic results in [43–45], but it
would be very interesting to explore this further.

Other perspectives on the relation between black hole interiors and coarse graining
appear in the recent papers [46–48]. Our approach has some similarities, in particular to
the idea in [47, 48] that black hole interiors can be removed by classical measurements on
a pointer system that cause the microstates to decohere. In the simplest examples, with
V = 1, the coarse-graining map discussed in section 3 is the completely dephasing channel,
i.e., total decoherence in the energy basis.

1That there are similarities between gravity and a ‘diagonal approximation’ is already well known; see
especially [3], as well as [4, 5, 8, 33–41].
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1.3 Plan

In section 2 we describe the wormhole solutions on the gravity side. The construction
starts with single-boundary, pure-state black holes, and proceeds by adding conical defects
and backreacting the geometry to produce Zk-symmetric multiboundary wormholes. We
also discuss how the k → 1 limit matches onto the replica geometries of Lewkowycz and
Maldacena [30] so that the thermodynamics of the wormholes is related to the apparent
horizon entropy of the single-boundary black holes.

In section 3 we develop a replica formalism for coarse-grained density matrices and the
calculation of coarse-grained entropy. This is phrased in CFT language but for the most
part can be applied to any quantum mechanical system.

In section 4 we find the CFT dual of the wormholes. This is used to infer the coarse-
grained density matrix, ρ̄, associated to the region outside the horizon of a single-boundary
pure-state black hole.

Up to this point we have assumed spherically symmetric, unperturbed black holes,
which have V = 1. In section 5 we add massive particles to linear order. This introduces a
new conceptual ingredient: the coarse-graining map is no longer a diagonal projection, but
a more intricate operation, with V = 1. Again there is a match between gravity and CFT.

In section 6, we discuss the ensemble interpretation of the wormholes. This is the
only section that makes use of an ensemble average. The analysis is quite similar to the
ensemble interpretation of EOW branes in JT gravity in [5], except that we discuss only
the classical solutions rather than doing an off-shell path integral.

In the discussion section, we summarize the 3-step process used to infer the coarse-
grained density matrix of a region outside an extremal surface, and discuss open questions
and limitations of this approach.

The four appendices have details of the gravity calculations and a toy model for holo-
graphic coarse graining with a quantum channel.

3D gravity. The coarse graining procedure can also be applied to a wide class of states
in AdS3/CFT2, including many of the solutions studied in [8] which motivated this work.
The 3D thin shells that we will discuss can be viewed as n-point correlation functions,
like those studied in [8], in the regime where n is of order the central charge. The CFT
techniques in d = 2 are more powerful due to Virasoro symmetry, but also rather technical,
so this application will be described in a separate paper.

Readers’ guide. For a first read through this paper we recommend the following path:
see figure 6 to understand how the wormhole solutions are constructed; peruse section 3
for the information-theoretic basis for coarse graining; browse the introductory parts of
sections 4, 5, and 6 for a summary of the CFT calculations; and, lastly, read the summary
in the discussion section.

2 Wormhole solutions

We will consider two examples of k-boundary wormholes: B-states, which are supported
by EOW branes, and thin shells. We work in AdSd+1 with the canonical metric (flat or
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τ

τ0

−τ0

Figure 4. Euclidean B-state black hole. The physical region, to the right in the figure, is a
portion of the eternal black hole bounded by the asymptotic AdS boundary (black) and the EOW
brane (red). Positive tension branes lead to solutions that cover at most half the thermal circle at
the boundary.

round) on the boundaries. We assume spherical symmetry, so outside the thin shell, or
away from the EOW brane, these solutions are locally identical to eternal black holes.
(Extra matter in the bulk will be added in section 5.) The metric of the eternal black hole
is AdS-Schwarzschild,

ds2
BH = f(r)dτ2 + dr2

f(r) + r2dΩ2
d−1 (2.1)

f(r) = 1 + r2 −


rH

r

d−2
(1 + r2

H) , (2.2)

where τ ∼ τ + β with the inverse temperature

β = 4πrH

dr2
H + d − 2 . (2.3)

2.1 Black hole pure states

Let us start with the single-boundary solutions, k = 1. These are black hole pure states
with matter behind the horizon. The matter, which is either a thin shell of pressureless
fluid or an EOW brane, is spherically symmetric and follows a trajectory τ = u(r). The
main difference between B-state black holes and thin shell black holes is the equation of
motion for u(r). We will consider each of these in turn.

2.1.1 B-state black holes

For our purposes, an EOW brane is just a particular type of matter. Quantum states in the
boundary CFT will be defined on slices that avoid the branes, so despite the boundary in
Euclidean signature, the Lorentzian theory is not a BCFT — the brane defines an excited
state in an ordinary CFT.

Bulk solutions with an EOW brane have been studied extensively [18, 49–62]. We will
consider the black hole solution found in [18] (see also [54] for a discussion of the tensionless
case). The geometry, shown in figure 4, is a portion of the eternal AdS black hole that
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terminates on the EOW brane. The gravitational action, including the brane, is

S = − 1
16πG

∫

bulk
dd+1x

√
g(R − 2Λ) − 1

8πG

∫

brane
ddy

√
h(K − (d − 1)T ) − 1

8πG

∫

bdry
ddy

√
hK

(2.4)

(plus counterterms). We set Λ = −d(d−1)
2 . The brane tension T > 0 is a free parameter that

controls how far the brane is behind the horizon; positive tension branes are never outside
the horizon at t = 0. Assuming the geometry away from the brane is AdS-Schwarzschild,
this action leads to an equation of motion that describes how the brane is embedded into
the eternal black hole. Denote the brane trajectory by τ = ±uB(r); we take τ ∈ (−β

2 , β
2 ),

and the physical region is |τ | ≤ τB(r). The solution to the equation of motion, reviewed in
appendix A along with various other details of the B-state geometries, is [18]

uB(r′) = β

2 −
∫ r′

r0

dr

f

T r
f − T 2r2 , (2.5)

where r0 is the brane turning point, which is determined by f(r0) = T 2r2
0 and has been

placed at τ = β
2 . The brane meets the AdS boundary at τ = ±τ0, with

τ0 = uB(∞) . (2.6)

τ0 is a complicated function of the temperature and brane tension, but it is easily plotted
numerically. The allowed range for the tension is T ∈ [0, Tmax) where the upper bound
depends on d, and comes from requiring the brane to hit the boundary before intersecting
with itself. With the tension in the allowed range, the EOW brane endpoint is found
to satisfy

0 < τ0 ≤ β

4 , (2.7)

with the upper bound saturated when T = 0. Thus the asymptotic boundary of the B-state
geometry, τ ∈ (−τ0, τ0), covers at most half of the thermal circle of the eternal black hole,
as in figure 4.

Although we have phrased the calculation as fixing β and computing τ0(β), it is really τ0
that should be viewed as the independent parameter that defines the quantum state, since
τ0 labels the boundary condition in the Euclidean path integral. The relation τ0 = uB(∞) is
then an equation for the temperature β(τ0) of the black hole produced by the backreaction
of a brane inserted at Euclidean time τ0.

2.1.2 Thin shell black holes

Thin shell black holes are constructed by gluing a patch of vacuum AdS to a patch of the
eternal black hole across a codimension-1 shell of matter. For simplicity we take the matter
to be a pressureless perfect fluid, but we expect similar wormholes to exist for other types
of matter. Thin shell solutions in Lorentzian signature, with matter outside the horizon at
t = 0, were studied in [19]. We are interested in Euclidean geometries where the matter
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Figure 5. Euclidean thin-shell black hole, obtained by gluing a piece of global AdS (left) to a piece
of the eternal black hole (right) across a thin shell (red). Each point on the diagram is Sd−1, except
for the dashed line, which is the center of Euclidean global AdS.

is behind the horizon at t = 0 so the solutions are a bit different, but we will follow the
method in [19] closely. Details of the gravity calculation are in appendix B.

To construct the spherical thin shell black hole, we glue the region |τ | < uS(r) of the
Schwarzschild-AdS solution (2.1) to a portion of global AdS. The Israel junction conditions
lead to an equation of motion for the shell trajectory, uS(r). The solution to this equation
of motion is given in (B.21).

From this description it is clear that thin shells and B-states are quite similar, but
with different trajectories for the matter. There is one important difference. For B-states,
we found that the brane hits the boundary at τ0 ≤ β

4 . For thin shells, there is no such
restriction — the shell endpoint,

τ0 = uS(∞) , (2.8)

can land anywhere on the thermal circle for some choice of the parameters β, r0 that define
the shell.

2.2 k-boundary wormholes

We now seek k-boundary wormholes with cyclic symmetry, treating B-states and thin shells
simultaneously. An example of a thin shell solution with k = 6 is shown in the introduction
in figure 1. The geometry is (d+1)-dimensional and spherically symmetric; the figure shows
the (r, τ) directions. The boundary condition is that on each asymptotic boundary, the
matter (thin shell or EOW brane) is offset into Euclidean time by ±τ0, where τ0 is the
landing point found in (2.6) for branes and (2.8) for thin shells. This boundary condition
is chosen to match k copies of the boundary condition of the k = 1 solution.

These wormholes are constructed by assuming a Zk cyclic symmetry, taking the Zk

quotient, and then allowing k to be non-integer. This means looking for solutions with a
single boundary, with matter sources separated by Euclidean time 2τ0, and a spherically
symmetric conical defect in the interior with angle 2π

k . The solutions with these properties
are shown in figure 6. They are obtained by starting with a single-boundary black hole (a
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4π

τ0τ0k

θk
2π
k

(a) (b)

Figure 6. Wormholes constructed from (a) B-states, and (b) thin shells. Each diagram shows a
single sheet of the wormhole, i.e., a quotient geometry Mk/Zk where Mk is the smooth wormhole.
The metric is that of the eternal black hole at temperature βk. In (a) the red curve is an EOW
brane and this is a fractional wormhole, with k = 1.5 boundaries. In (b) the red curve is a thin
shell where the spacetime is glued to global AdS, and this is a wormhole with k = 3 boundaries.
The full 3-boundary solution for (b) is obtained by cutting the diagram along the horizontal line
from the center to the shell and gluing together 3 copies across this cut.

B-state or thin shell geometry described in the previous section) at a different temperature,
βk, with matter endpoint τ0k. Then excise the wedge τ ∈ (−βk

θk
4π , βk

θk
4π ) with θk = 2π(1− 1

k )
by gluing its edges together. The remaining boundary has length 2(τ0k −βk

θk
4π ), and setting

this equal to 2τ0 requires

τ0k = τ0 + βk

2


1 − 1

k


. (2.9)

Let us write the matter endpoint as a function of temperature τ0 = G(β). G also depends
implicitly on whether the matter is an EOW brane or thin shell, and its tension or mass.
Then the boundary condition (2.9) is

G(βk) = G(β) + βk

2


1 − 1

k


. (2.10)

This should be read as an implicit equation for βk — it tells us the temperature βk of the
black hole that can be used to construct a k-fold replica of the pure-state black hole at
temperature β.

The construction only makes sense for θk
4π βk < τ0k, because otherwise the excised

wedge would hit the matter. This places an upper bound on k for a given τ0. For example,
consider the tensionless EOW brane, which has τ0 = β

4 and τ0k = βk
4 . Then θk

2π < 1
4 requires

k < 2 (tensionless B-state) . (2.11)

Turning on a positive tension leads to τ0k
βk

< 1
4 , since the B-state never covers more than half

of the boundary of the eternal black hole. Therefore, in general, B-state wormholes have

k < kmax(d, T ), kmax(d, T ) ≤ 2 (B-state with tension) . (2.12)
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When k is non-integer, we refer to these solutions as ‘fractional wormholes.’ Conical excesses
with k ∈ (0, 1) also make sense as fractional wormholes.

Thin shells, unlike B-states, can have τ0 > β
4 . This allows for on-shell wormholes

with integer k ≥ 2. For any given matter shell, there is still an upper bound kmax on the
number of boundaries, but shells exist with arbitrarily large kmax. In particular, the k = 6
wormhole in figure 1 is an actual solution to the equations of motion.

Since there are on-shell geometries with multiple boundaries, it is also possible to study
thin shell wormholes without a cyclic symmetry, for example by choosing different τ0’s on
each boundary, or several different shell masses.

It is an important question whether the wormholes are stable, as this can affect their in-
terpretation. We will not answer this question here, but remark that similar multiboundary
wormholes in AdS are often unstable perturbatively and/or under brane nucleation [1, 17].
These instabilities tend to be more severe for larger k and could influence the value of kmax.
For k near 1, our wormholes are very similar to those in [30] which are usually assumed to
be legitimate contributions to the path integral.

2.3 Action

Denote the on-shell action of the eternal black hole by I0(β), so that by the usual AdS/CFT
dictionary we have

I0(β) = − log Z(β) (2.13)

with Z the thermal partition function (if the temperature is above the Hawking-Page
transition). Let τ = u(r) be the matter trajectory, found in (2.5) for the EOW brane
and (B.21) for the thin shell, and τ0 = u(∞). Denote the action of the single-boundary,
pure-state black hole by I(β) and let us separate this into two parts,

I(β) = 2τ0
β

I0(β) + IL(β) . (2.14)

The first term is the contribution from |τ | < τ0, and IL is the action of the remaining
portion |τ | ≥ τ0, including the matter. (An explicit formula for IL in B-states is derived
in appendix A.) Then it follows immediately from the quotient construction in section 2.2
that the action of a k-boundary wormhole is

Ik(β) = 2τ0
βk

kI0(βk) + kIL(βk) . (2.15)

In this equation, βk is defined implicitly as the solution to the boundary condition (2.10)
with τ0 = G(β). Using (2.10) we can also write the action of a single sheet as

Ik(β)/k = I1(βk) +
 1

k
− 1


I0(βk) . (2.16)

Another useful relation is

I ′
0(βk) = E(βk) = 1

2k
∂τ0Ik(β) . (2.17)
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Here E is the ADM mass of a single boundary, so the first equality is the usual thermo-
dynamic relation for the eternal black hole. The second equality is the Hamilton-Jacobi
equation for the wormhole, i.e., the statement that the Hamiltonian is the generator of time
translations; moving the matter insertion point is equivalent to evolving in Euclidean time,
and the factor of 1

2 is because ∂τ0 affects both endpoints of the matter. For B-states, we
have also checked (2.17) by explicit calculation of the regulated on-shell action as described
in appendix A, but this is quite involved.

2.4 Apparent horizon entropy

Let

S0(β) = (−1 + β∂β)I0(β) (2.18)

be the entropy of the eternal black hole. This is clearly equal to one quarter the area of
the apparent horizon of the B-state or thin shell black hole,

S0(β) = 1
4Area(γ) , (2.19)

where γ is the time-symmetric apparent horizon at t = 0.2 This follows from the fact that
these solutions are locally identical to the eternal black hole and the matter is behind the
horizon. From the quotient construction of the wormhole, shown in figure 6, we see that the
apparent horizon of the single-boundary black hole is the fixed point of the Zk symmetry
of the wormhole as k → 1. Therefore, by the gravitational replica method of Lewkowycz
and Maldacena [30], the apparent horizon entropy can also be calculated by the formula

S0(β) = ∂k


Ik(β)

k

∣∣∣∣
k=1

. (2.20)

In the context of the Ryu-Takayanagi formula and its usual (fine-grained) generaliza-
tions, this equation would be interpreted microscopically as a von Neumann entropy,
S = −Tr ρ̂ log ρ̂ with Tr (ρk) = e−Ik and ρ̂ = ρ/Tr ρ. In the present context, this can-
not be the correct interpretation, because the B-state and thin shell black holes are pure
states — the von Neumann entropy vanishes, and indeed, there is a trivial extremal sur-
face (the empty set) that satisfies the homology condition and gives zero von Neumann
entropy. We will return to the interpretation below, but for now, we will make use of (2.20)
as a purely gravitational statement to derive a useful identity. By plugging the wormhole
action (2.15) into (2.20) and comparing to (2.18), we find

I ′
L(β) = 1

∂kβk|k=1
S0(β) − 2τ0

β2 S0(β) . (2.21)

2For the unperturbed black holes discussed in this section, the t = 0 apparent horizon also happens to
be the bifurcation point of the event horizon. However it is the apparent horizon, not the event horizon,
that is important — this is clear from the application of the gravitational replica method, which requires
an extremal surface, and when we add a massive particle outside the black hole in section 5 the apparent
horizon and event horizon no longer coincide.
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The boundary condition (2.10) implies ∂kβk|k=1 = β
2τ ′

0(β) and this gives the relation

I ′
L(β) = 2S0(β)∂β(τ0

β
) . (2.22)

This identity, which applies to both B-state black holes and thin shells, is in fact equivalent
to (2.17). This is straightforward to check by acting with the τ0-derivative and using the
boundary condition. (2.22) is useful for the explicit calculation of the action, IL, as discussed
in appendix A. In the planar limit, τ0 ∝ β and therefore (2.22) implies I ′

L = 0.
In the introduction, we claimed that k-boundary wormholes of the type studied in

this paper are generic in any theory of gravity. We can now explain this remark. For
k = 1 + , with   1, our wormholes are simply the gravitational replicas of Lewkowycz
and Maldacena, for the case of a time-symmetric apparent horizon. These are always
solutions to the equations of motion, because we can add a conical deficit at the apparent
horizon and follow the logic of [30]. As k is increased above one, we may reach a point
kmax where the solution no longer exists, depending on the details of the black hole under
consideration. This is exactly what we have seen in the examples above.3

2.5 Special cases

The general expressions above are sufficient for the comparison to CFT, but it is worth
mentioning some special cases where the action can be written in closed form.

The planar limit. In the planar limit, rH → ∞, β → 0, the black hole becomes a black
brane, with a flat metric on the boundary Rd. This leads to two nice simplifications. First,
the temperature scales out of the metric, so that the brane or shell endpoint is proportional
to β, and we may write it as

τ0 = β

2 (1 − α) (2.23)

where α depends only on the brane tension or shell energy density. An explicit formula
for α in B-states is given in (A.26). The boundary condition (2.10) may now be solved
explicitly to find

βk = 2kτ0
1 − kα

. (2.24)

The upper bound on the number of boundaries is kmax = 1
α . For tensionless EOW branes,

α(T ) = 1
2 , so βk = β

2
k

−1 = 4kτ0
2−k and kmax = 2.

The second simplification is that B-states in the planar limit have IL = 0; see ap-
pendix A. The contribution from the EOW brane exactly cancels the bulk action from

3It is an interesting question whether the breakdown of the replica method at large enough k is generic,
and whether it has physical consequences. Strictly speaking, the analytic continuation in k is ambiguous if
we cannot control the behavior of Ik at large k. Similar comments apply to the Ryu-Takayanagi formula.
We will ignore this issue and dene Ik by the ‘obvious’ analytic continuation.
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the left wedge, |τ | > τ0. Therefore the action of the k-boundary planar B-state wormhole
is simply

Ik = 2τ0
βk

kI0(βk) (2.25)

with I0 the action of the eternal black hole and βk given by (2.24).
For planar thin shells, the identity (2.22) implies I ′

L(β) = 0, so the final result is similar:

Ik = k

2τ0
βk

I0(βk) + const.


(2.26)

We have not calculated the constant for a thin shell, but in any case it can be set to zero
by a choice of normalization for the dual operator.

B-states in 3D gravity. For spherical or planar B-states in d = 2, the action simplifies,
since the endpoint is always τ0 = β

4 , the boundary condition (2.10) implies βk = β
2
k

−1 , and
as shown in appendix A, IL = 0. Therefore, using the eternal BTZ action quoted in (A.15),
the action of the d = 2 B-state wormhole is

Ik = −k

 2
k

− 1
2 cπ2

24τ0
. (2.27)

3 Replica formalism for coarse-grained entropy

In this section we discuss the general formalism for the replica calculation of coarse-grained
entropy. This leads to a definition of coarse graining for holographic CFTs that we will
later match to wormholes.

3.1 Warm-up: diagonal and block-diagonal entropy

We begin by working through a quantum-mechanical toy model where the coarse graining
map is a projection onto diagonal or block-diagonal density matrices in the energy eigen-
basis. The holographic coarse graining map is generally not of this form, but it is for states
where the metric is that of the eternal black hole outside the apparent horizon, including
B-states and thin shells.

Diagonal projection. Let us first consider the diagonal projection. Define a coarse
graining map D by

ρ̄ = D(ρ) :=
∑

n

PnρPn , (3.1)

where Pn = |n〉〈n| is the projector onto energy eigenstate |n〉. In quantum information
theory, D is referred to as the completely dephasing channel. The associated coarse-grained
entropy is the diagonal entropy [31],

Sdiag(ρ) = S(ρ̄) = −
∑

n

(ρ)nn log(ρ)nn , (3.2)
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where S(ρ̄) = −Tr ρ̄ log ρ̄ is the von Neumann entropy. The coarse-grained entropy is
bounded below by the fine-grained entropy, S(ρ). There is a standard proof of this fact
using the positivity of relative entropy:

0 ≤ S(ρ|D(ρ)) = Tr ρ log ρ − Tr ρ log D(ρ) (3.3)
= Tr ρ log ρ − Tr D(ρ) log D(ρ)
= −S(ρ) + S(D(ρ)) .

Physically this makes sense because the diagonal projection can be implemented by per-
forming a projective measurement and discarding the result; this cannot decrease
the entropy.

To apply the replica method, define the replica partition function

Z(k) := Tr (ρ̄k) =
∑

n

〈n|ρ|n〉k . (3.4)

The coarse-grained entropy is

S(ρ̄) = − ∂k log


Z(k)
Z(1)k

∣∣∣∣
k=1

. (3.5)

Now suppose the original state is pure,

ρψ = |ψ〉〈ψ|, |ψ〉 =
∑

n

ψn|n〉,
∑

n

|ψn|2 = 1 . (3.6)

Then we define the replica state

|ψk〉 =
∑

n

(ψn)k|n〉⊗k , (3.7)

which lives in k copies of the Hilbert space. We refer to such states as ‘GHZ-like’ because
they have a diagonal pattern of entanglement. The replica partition function for ρψ is the
norm of this state,

Z(k) = 〈ψk|ψk〉 =
∑

n

|ψn|2k , (3.8)

and the diagonal entropy is

S(ρ̄) = −
∑

n

|ψn|2 log |ψn|2 . (3.9)

Block-diagonal projection. These results are easily generalized to a coarse-graining
map defined by a projection onto block-diagonal matrices in some basis. Given a collection
of projectors Pi, satisfying P 2

i = Pi and


i Pi = 1, define a coarse-graining map N by

ρ̄ = N (ρ) :=
∑

i

PiρPi . (3.10)

This takes the form of a Choi-Kraus decomposition and is therefore a quantum channel
— a completely positive trace-preserving linear map. It is sometimes called a pinching
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channel. We assume the Pi commute with the Hamiltonian so that ρ̄ is block-diagonal in
the energy basis, with blocks labeled by i.

Once again, the coarse-grained entropy S(ρ̄) is greater than or equal to the fine-grained
entropy, S(ρ). The proof is identical to (3.3), using the fact that log N (ρ) is also block-
diagonal, and the same physical intuition applies here: a block-diagonal projection can
be implemented by performing a measurement and throwing away the result, so it cannot
decrease the entropy.

The replica partition functions are

Z(k) =
∑

i

Tr (PiρPi)k . (3.11)

In the block of states corresponding to projector Pi, call the lowest-energy eigenstate |i〉.
For a pure state, we can decompose the density matrix |ψ〉〈ψ| into blocks as

ρψ =
∑

i,j

Ai|i〉〈j|A†
j , (3.12)

where Ai is an operator that acts within block i and


i Tr (A†
i Ai) = 1. The action of the

coarse-graining map is

ρ̄ψ = N (ρψ) =
∑

i

Ai|i〉〈i|A†
i . (3.13)

Therefore we can rewrite the replica partition functions as

Z(k) =
∑

i

〈i|A†
i Ai|i〉k . (3.14)

We now apply (3.5) to calculate the entropy. The conclusion is that under a block-diagonal
coarse graining channel, the coarse-grained entropy of a pure state |ψ〉 =


i Ai|i〉 is

S(ρ̄ψ) = −
∑

i

〈i|A†
i Ai|i〉 log〈i|A†

i Ai|i〉 . (3.15)

3.2 Holographic coarse graining

As described in the introduction, we will see that the k-boundary wormholes described in
section 2 calculate a CFT quantity of the form

Zwormhole =
∑

n

|ψn|2k〈n|V †V |n〉k , (3.16)

where V is built from single-trace operators.4 (Actually, the unperturbed black holes in
section 2 have V = 1. But when we add matter outside the horizon in section 5 below, V

becomes nontrivial, so we will include it in the present discussion.)
4We use the symbol V to evoke an isometric map, which is standard notation in quantum information.

V does turn out to be approximately isometric, however it is not normalized, so V †V = 1.
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Our goal now is to reintepret the wormhole result (3.16) as a coarse-grained replica
partition function, i.e. to write it as

Zwormhole = Tr ρ̄k . (3.17)

There is already a very close resemblance to the block-diagonal coarse graining map; com-
pare (3.16) to (3.14). However, the similarity is imperfect, because we do not know how to
decompose the CFT Hilbert space into blocks to make these two expressions identical. We
will therefore define a new, holographic coarse-graining map to reproduce the wormhole
answer. Given a state expressed in the form

ρ = V
∑

m,n

amn|m〉〈n|Ṽ † , (3.18)

where m, n label energy eigenstates, we define the coarse-graining map C by projecting
onto the energy-basis diagonal inside the sum,

ρ̄ = C(ρ) := V
∑

n

ann|n〉〈n|Ṽ † . (3.19)

Suppose we have a pure state decomposed into the form

ρψ = |ψ〉〈ψ|, |ψ〉 = V
∑

n

ψn|n〉 . (3.20)

Then the coarse-grained density matrix is

ρ̄ψ = C(ρ) = V
∑

n

|ψn|2|n〉〈n|V † , (3.21)

and the wormhole partition function agrees with (3.17).
It is now guaranteed that the von Neumann entropy of ρ̄ψ agrees with the area of the

apparent horizon in the semiclassical limit:

S(ρ̄ψ) = 1
4Area(γ) . (3.22)

We therefore interpret ρ̄ψ as the coarse grained density matrix for the region outside the
apparent horizon.

An important point is that unlike the diagonal projection D and the block-diagonal
projection N , it is not clear that the holographic coarse-graining map C is a quantum
channel. A quantum channel is defined on density matrices, whereas the definition of C
involves a decomposition of the state ρ into the form (3.18), and it is not clear that every
density matrix in a CFT can be unambiguously expressed in this form. For our purposes,
the map defined as in (3.21) is sufficient, whether or not there is a corresponding quantum
channel. A toy model for C that is formulated explicitly as a quantum channel is discussed
in appendix D.

The coarse graining map C has the following physical interpretation. The expansion
coefficients ψn encode the UV details of a particular black hole microstate. These coef-
ficients can be studied statistically using the low-energy theory — for example, we will
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calculate |ψn|2 averaged over a small energy window — but the precise values of individual
coefficients are UV-sensitive. The coarse-graining procedure eliminates all of the phase
information in ψn by decohering the UV microstates, like the diagonal coarse-graining
discussed above. However, unlike the diagonal coarse-graining, C retains the quantum cor-
relations in the IR corresponding to the operators V . This is very natural, since these
are low-energy operators, obtained by acting with single traces to create matter outside
the apparent horizon. Thus an experimenter with access to ρ̄ψ can study superpositions
of matter outside the horizon, but cannot form delicate superpositions of UV microstates
that are indistinguishable from the outside.

3.3 Coarse graining in 2D CFT

In 2D CFT, the holographic coarse-graining map can be found explicitly for a much wider
class of states by taking advantage of the infinite-dimensional conformal symmetry. The
details will be reported elsewhere but here is a brief summary. In a 2D CFT, energy
eigenstates are organized into lowest-weight representations of two copies of the Virasoro
algebra. The lowest weight vectors are primary states, |p〉. Define a quantum channel V
that projects onto matrix elements connecting two states in the same representation,

V(ρ) =
∑

p

PpρPp , (3.23)

where the sum is over primaries, and Pp projects onto the representation with lowest weight
|p〉. This is an example of a block-diagonal projection as discussed above.

Now consider a theory of 3D gravity in which all nontrivial primaries have ∆  1.
Let |ψ〉 be a state created by operator insertions in Euclidean time which has a nontrivial
apparent horizon at t = 0, with no matter outside the horizon (other than boundary
gravitons). Such states were considered recently in [8] and used to construct multiboundary
wormholes — an example is the state OH(−τ2)OH(−τ1)|0〉 where OH is a scalar primary
of scaling dimension ∆H > c

16 , with c the central charge. Let us act on |ψ〉 with local
operators O having 1  ∆  c, which add particles outside the horizon,

|Ψ1〉 = O(x1)O(x2) · · · |ψ〉 . (3.24)

Then the holographic coarse-graining map is

C(|Ψ1〉〈Ψ1|) = O(x1)O(x2) · · · V (|ψ〉〈ψ|) · · · O(x2)†O(x1)† . (3.25)

Unlike in higher dimensions, we have not assumed that the metric outside the horizon is
spherically symmetric — in particular, this map can be applied to black holes created by
heavy local operator insertions as in [8]. The spherically symmetric thin shell black hole
can be obtained by a limit of the black holes studied in [8] by inserting a large number n

of operators with scaling dimensions ∆ ∼ c
n and taking n → ∞ [20].

4 CFT dual of EOW branes and thin shells

EOW brane geometries are dual to CFT states created by Euclidean evolution on a strip
of Euclidean time, with a boundary condition at τ = −τ0. Denote the CFT state on
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Sd−1 exactly at the EOW boundary by |B〉. This state is non-normalizable. Evolving by
Euclidean time τ0 prepares a normalizable state,

|Ψ1〉 = e−τ0H |B〉 . (4.1)

Pictorially, the path integral preparation of the CFT state is

τ

|B〉

e−τ0H |B〉

(4.2)

The state |Ψ1〉 is dual to an EOW brane geometry in which the brane hits the boundary
at τ = ±τ0. The bulk saddle computes the norm

〈Ψ1|Ψ1〉 = (4.3)

with this diagram representing the geometry found in section 2.1.1.
The CFT description of thin shell black holes was explored in [20] and it can be phrased

in a way that is similar to the B-state. Denote the state at the shell by |S〉. This state,
assuming the matter is a pressureless perfect fluid, is created either by adding a source J

to the action or by acting on the vacuum with a large number of single-trace operators O,
with 1  ∆O  N2, uniformly over the transverse space. In the latter case, each operator
insertion creates a ‘dust’ particle in the bulk, and the state can be obtained by taking a
continuum limit of the expression [20]

|S〉 ∼

∏

j

O(τ = 0, xj
⊥)


 |0〉 . (4.4)

The details of this limit will not be important. The state defined at the shell is not normal-
izable, but once again we can prepare a normalizable state by evolving in Euclidean time,

|Ψ1〉 = e−τ0H |S〉 . (4.5)

The bulk saddle found in section 2.1.2 computes the norm of this state,

〈Ψ1|Ψ1〉 = . (4.6)

Given the similarities, it is convenient to discuss B-states and thin shells simultane-
ously. Denote the state at the matter insertion by |A〉, so |A〉 = |B〉 or |A〉 = |S〉 for
B-states and thin shells, respectively. The state at t = 0 is

|Ψ1〉 = e−τ0H |A〉 . (4.7)
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Expand in energy eigenstates,

|Ψ1〉 =
∑

n

e−τ0Enan|n〉 . (4.8)

The density matrix for this pure state is

ρ = |Ψ1〉〈Ψ1| =
∑

m,n

e−τ0(En+Em)ama∗
n|m〉〈n| . (4.9)

We now define a coarse-grained density matrix by projecting onto the diagonal in the
energy basis,

ρ̄ =
∑

n

e−2τ0En |an|2|n〉〈n| . (4.10)

In the terminology of section 3, we have chosen the coarse-graining map to be the completely
dephasing channel D, with ρ̄ = D(ρ). This is equivalent to the holographic coarse-graining
map C defined in (3.21) in the special case V = 1.

In this section we will demonstrate the following by a CFT calculation. Choose

an = ew(En)cn , (4.11)

where w(E) is a smooth function of energy determined by matching to the k = 1 black
hole, and cn is a UV-sensitive coefficient that will not be determined but satisfies |cn|2 ≈ 1
when averaged over a small energy window. Then

Zwormhole ≈ e−Ik ≈ Tr ρ̄k , (4.12)

where Ik is the classical action of the k-boundary wormhole. The conclusion is that the bulk
theory coarse-grains these black holes by the action of the completely dephasing channel.

Equivalently, define a state in k copies of the CFT with a GHZ-like, diagonal pattern
of entanglement,

|Ψk〉 =
∑

n


e−τ0Enan

k
|n〉⊗k . (4.13)

Then

Zwormhole ≈ 〈Ψk|Ψk〉 . (4.14)

It follows from the general discussion in section 3 that the entropy of the apparent horizon
in the geometry dual to |Ψ1〉 is the von Neumann entropy of ρ̄,

1
4G

Area(γ) = S(ρ̄) (4.15)

= −
∑

n

e−2τ0En+2w(En)

〈Ψ1|Ψ1〉 log e−2τ0En+2w(En)

〈Ψ1|Ψ1〉 . (4.16)

The logic that we will follow is to use the single-boundary black hole to determine the
weighting function w(E) (which depends on whether this is a B-state or thin shell, and on
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the brane tension or shell mass), and then match to the k-boundary wormholes, without
any further input from the gravity side. The match (4.12) is nontrivial because it is not
obvious that this CFT procedure should lead to the correct k dependence.

There is an added complication for B-states: there is a second gravitational saddle,
with a single boundary and two disconnected EOW branes, that contributes to 〈Ψ1|Ψ1〉. We
will ignore this for now and add in the effects of the disconnected phase in subsection 4.3.5

4.1 Planar black holes

We shall first illustrate the strategy outlined above for the planar black holes. As discussed
in section 2.5, this case is simpler than spherical black holes because τ0 ∝ β. The norm of
the black hole state defined in (4.8), (4.11) can be expressed as an integral over energy,

〈Ψ1|Ψ1〉 ≈
∫

dE exp (S(E) − 2τ0E + 2w(E)) , (4.17)

with S(E) the thermodynamic entropy. To determine the function w(E), we set this equal
to the gravitational action of the black hole, 〈Ψ1|Ψ1〉 = e−I1 . The solution of the resulting
saddlepoint equations is

w(E) = −1
2(I1(τ0(E)) + S(E)) + τ0(E)E (4.18)

E = 1
2∂τ0I1(τ0) , (4.19)

where the second equation defines τ0(E). The planar wormhole action (2.25) is

I1(τ0) = 2τ0
β1

I0(β1), β1 = 2τ0
1 − α

, (4.20)

where I0 is the action of the eternal black hole. This can be used to show that (4.19) agrees
with the ordinary thermodynamic energy-temperature relation, E = I ′

0(β1). Therefore
S(E) = −I0(β1) + β1E, and (4.18) simplifies to

w(E) = −α

2 S(E) . (4.21)

Thus we have shown that in the planar limit, B-states and thin shells have the following
expansion in the energy basis:

|A〉 =
∑

n

e− α
2 S(En)cn|n〉 , (4.22)

with α determined by the relation τ0 = β
2 (1−α) and |cn|2 ≈ 1 (when averaged over a small

energy window).6 For EOW branes in d = 2, we have α = 1
2 independent of tension, so the

weighting factor in (4.22) is e−S/4.
5B-states are also special in that they have anomalously large one-point functions for light operators,

which decay in time as the coecients randomize [54]. This has consequences for the cn’s that we will not
explore here; see [55] for a 0+1D analogue.

6The norm of the state in (4.22) is 〈A|A〉 ∼


dEeS(E)(1−α) =


dEe2τ0S(E)/β , which diverges, so the
state is indeed non-normalizable at the matter insertion. It becomes normalizable upon evolution by e−τ0H .
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Now we turn to the wormholes. The coarse-grained replica partition function in the
CFT is

Tr ρ̄k = 〈Ψk|Ψk〉 ≈
∫

dE exp (S(E) − 2kτ0E + 2kw(E)) (4.23)

≈
∫

dE exp (S(E)(1 − kα) − 2kτ0E) (4.24)

Evaluating this integral at the saddlepoint gives

〈Ψk|Ψk〉 ≈ e−(1−kα)I0
 2kτ0

1−kα


. (4.25)

Comparing to the gravity calculation (2.25) there is a perfect match to leading order,

〈Ψk|Ψk〉 ≈ e−Ik . (4.26)

In particular, the CFT saddle disappears for k ≥ kmax, with the same value of kmax found
in the bulk. Therefore the fact that B-states only admit fractional wormhole saddles is in
agreement with the dual CFT.

4.2 Spherical black holes

For spherical black holes, the logic is the same: we use the k = 1 black hole to determine
w(E), then check that the CFT reproduces the k-boundary wormhole, Tr ρ̄k ≈ e−Ik . It is
a bit simpler to do both steps at once, as follows. Set the CFT and gravity answers equal:

∫
dE exp (S(E) − 2kτ0E + 2kw(E)) = e−Ik (4.27)

with Ik given by (2.15). This is viewed as an equation for w(E). The saddlepoint analysis
gives a result for w(E) that a priori depends on k; but if w(E) is actually independent of
k, then we have a successful match, because in that case w(E) is entirely determined by
the k = 1 black hole.

The solution to (4.27) in the saddlepoint approximation is

w(E) = − 1
2k

(Ik(τ0(E)) + S(E)) + τ0(E)E , (4.28)

where τ0(E) is defined by

E = 1
2k

∂τ0Ik(τ0) . (4.29)

We need to show that the function of E on the right-hand side of (4.28) has no k depen-
dence. Using (2.15) and (2.10) it can be rewritten as

w(E) = −1
2

2τ0
βk

I0(βk) + IL(βk)


− 1
2k

S(E) + τ0(E)E (4.30)

=
1

2 − τ0k

βk


(I0(βk) − βkE) − 1

2IL(βk) − 1
2k

[I0(βk) + S(E) − βkE] (4.31)
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where βk = βk(τ0(E)) is the inverse temperature of the wormhole determined implicitly by
the boundary condition (2.10), and τ0k is the corresponding endpoint, τ0(βk). As discussed
around (2.17), 1

2k ∂τ0Ik(τ0) = I ′
0(βk), so E is in fact the ordinary thermodynamic energy

at inverse temperature βk. Therefore we can invoke the relation I0(βk) = βkE − S(E)
and find

w(E) =


τ0k

βk
− 1

2


S(E) − 1

2IL(βk) , E = I ′
0(βk) . (4.32)

The explicitly k-dependent term in (4.31), proportional to 1/k, has dropped out. The
variable βk in (4.32) is now just a dummy variable so it can be renamed βk → β. Thus

w(E) = −α(E)
2 S(E) − 1

2IL(β(E)) (4.33)

where E = I ′
0(β) and we have defined α(E) by the relation

α = 1 − 2τ0
β

. (4.34)

The final answer (4.33) is manifestly independent of k. In the planar limit, IL = 0 and α

is a constant, so we recover the results of the previous subsection.
In this form, it is clear that the only gravity input used to determine w(E), and

therefore the CFT state, is the action of the k = 1 black hole. The action of the k-boundary
wormhole, as a function of k, is the nontrivial agreement between gravity and CFT.

4.3 The cylinder phase

For B-states, there is a second bulk geometry that contributes to the overlap 〈Ψ1|Ψ1〉,
in addition to the black hole [18]. It is a portion of global AdS bounded by a pair of
disconnected EOW branes:

2τ0

(4.35)

The cylinder is filled in, and the caps are the EOW branes. Thus the total overlap for a
B-state is schematically

〈Ψ1|Ψ1〉 ≈ + , (4.36)

where the first diagram represents the black hole and the second diagram represents the
cylinder solution. There is a phase transition analogous to the Hawking-Page transition as
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we tune τ0, with the tension T held fixed [18]. The black hole phase dominates at small
τ0. The cylinder phase is accounted for in the dual CFT by writing the state as

|Ψ1〉 = e−Icyl/2|0〉 +
∑

n=0
e−τ0En+w(En)cn|n〉 , (4.37)

where Icyl is the gravitational action of the saddle in (4.35), and the second term is the
contribution from the black hole. There are also other, non-vacuum contributions from the
cylinder phase, but the semiclassical saddlepoint never lands on them (unless additional
operators are inserted), so they are invisible to this leading-order analysis. The cylinder
action, calculated in appendix C, takes the form

Icyl = 2τ0Evac + IG, (4.38)

where Evac is the vacuum energy, and IG is a contribution from the branes that is indepen-
dent of τ0. Thus the first term in (4.37) is e−IG/2−τ0H |0〉. In the tensionless limit, for any
d, IG vanishes, and in AdS3, as a function of the tension it is IG = − c

3 tanh−1(T ) [18, 58].
For thin shells, whether there is a similar, disconnected phase depends on the details

of how the shell is constructed. Let us assume that the shell consists of a large number
of dust particles, carrying a flavor charge; then there is no way for the dust worldlines to
terminate without hitting a conjugate shell insertion, so there is no disconnected phase.

5 Adding a massive particle

We will now add a massive particle to the EOW-brane or thin-shell black hole, and consider
its effect on the coarse-grained density matrix. The coarse-graining map relies on the
decomposition of a quantum state into the form

|Ψ〉 = V
∑

n

ψn|n〉 . (5.1)

We will show that particles added behind the horizon change the microstate coefficients ψn

while particles added outside the horizon become part of V . Thus there is a sharp distinc-
tion between particles added inside or outside the extremal surface — particles behind the
apparent horizon are effectively hidden by the coarse-graining map, while particles outside
are not. This is very natural from the bulk, but nontrivial in CFT.

5.1 Setup on the gravity side

The mass of the particle is taken to satisfy −1
AdS  m  Mplanck, so that it travels on a

geodesic but its backreaction is small. We will work to first order in the backreaction (it
cannot be neglected).

In the Euclidean path integral, the particle is added to the black hole by inserting the
dual operator O at τ = ±τ1. The resulting saddlepoint has a black hole, plus a particle
on a geodesic. In the case of a thin shell black hole, the particle travels on a connected
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geodesic, so the two options, corresponding to whether the particle is inside or outside the
apparent horizon at t = 0, are:

inside:

τ0
τ1

outside:

τ0
τ1

(5.2)

The blue line is the massive particle, created by CFT operator insertions O(−τ1)O(τ1).7
These are local operators inserted at a point in the transverse space, which may be different
for the two operators. For B-states, since τ0 < β

4 , there are no connected geodesics that go
behind the horizon. However, the geodesic can end on the EOW brane, so the dominant
contribution may look like this:

τ0 τ1

(5.3)

and in this case we consider the particle to be ‘behind the horizon’ at t = 0.

5.2 Particle inside the apparent horizon

Consider a (possibly fractional) wormhole with k boundaries corresponding to a replica of
the B-state or thin-shell geometry with a massive particle behind the horizon. By adding
a massive particle to the solution in section 2.2, we see that if the particle is behind the
horizon at t = 0 then it goes through the wormhole.8 This is clearest for a thin shell
wormhole, say for k = 6, where the geodesics are connected:

shell

particle
(5.4)

7In the ‘inside’ case, the worldline of the particle can also cross the shell into the vacuum region. This
doesn’t aect the ensuing calculation.

8We have assumed that after turning on the conical defect, the particle still goes behind the horizon;
this is certainly true for k − 1  1, where the backreaction of the defect is small, but at large enough k

there may be a transition where the particle crosses to the outside. We restrict to the range of k where this
does not occur.
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To analyze this situation from the dual CFT, we will simply treat the massive particle
as part of the initial matter insertion; then the entire calculation carries through almost
unchanged, so we will be brief. Insert the operator O at ±τ1 and place the EOW brane or
thin shell endpoint at ±τ0, with

τ0 = τ1 + ∆τ . (5.5)

Fix ∆τ to a constant, and consider the state to be parameterized by τ1. Now τ1 will play
the role that was played by τ0 in the calculations in sections 2 and 4. Divide the bulk
action into

Ik = k

2τ1
βk

I0(βk) + ÎL(βk)


, (5.6)

where the first term is the contribution from |τ | < τ1, and ÎL is the contribution from the
region |τ | ≥ τ1, including the massive particle — so ÎL includes a term m(βk) with (βk)
the length of the probe geodesic in the wormhole background. Now we repeat exactly the
steps of section 4.2, with the replacement τ0 → τ1 and IL → ÎL. Every step is identical,
after these replacements, so we reach the following conclusion. The quantum state in the
CFT at τ = 0 is

|Ψ̂1〉 = O(−τ1)|Ψ1〉 , (5.7)

where |Ψ1〉 is the state analyzed in section 4, i.e. without the extra particle. This state has
an expansion in the energy basis of the form

|Ψ̂1〉 =
∑

n

e−τ1En+ŵ(En)ĉn|n〉 , (5.8)

with |ĉn|2 ≈ 1 when averaged over a small energy window. The weight function is given
by (4.33) but with τ0 → τ1 and IL → ÎL. The coarse-grained density matrix is the diagonal
projection in the energy basis,

ρ̄ = D(ρ) =
∑

n

e−2τ1En+2ŵ(En)|ĉn|2|n〉〈n| . (5.9)

The replica partition function reproduces the wormhole action,

Zwormhole = Tr ρ̄k , (5.10)

and the von Neumann entropy S(ρ̄) matches the area of the apparent horizon, including
the O(m) contribution from backreaction after adding the extra particle.

It is clear from this calculation that it works for any linearized deformation of the thin
shell or B-state geometry in which the extra matter is entirely behind the horizon at t = 0.
The step in the calculation where we assumed the matter was behind the horizon was in
using the relation 1

2∂τ1Ik = I ′
0(βk) (see below (4.31)). It is always true that the ADM mass

of the solution including the contribution of the particle is EADM = 1
2∂τ1Ik, since this is the

statement that EADM is the Hamiltonian (and this is the Hamilton-Jacobi equation), but
the relation EADM = I ′

0(βk) is only applicable when there is no matter outside the horizon.
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5.3 Particle outside the apparent horizon

Let us now suppose the particle is outside the horizon at t = 0. The k = 1 solution
is in the right-hand diagram of (5.2). In the corresponding k-boundary solution (for k

sufficiently close to 1 to avoid a phase transition) the massive particle does not go through
the wormhole. For example:

shell

particle
(5.11)

From a bulk point of view, we now expect the coarse graining procedure to preserve the
quantum correlations associated to the particle. Let |Ψ1〉 be the undeformed black hole
state studied in section 4, and

|Ψ̂1〉 = O(−τ1)|Ψ1〉 . (5.12)

Expand in the energy basis,

|Ψ̂1〉 = O(−τ1)
∑

n

cne−τ0En+w(En)|n〉 , (5.13)

with w(E) derived in section 4. The pure-state density matrix ρ = |Ψ̂1〉〈Ψ̂1| is

ρ = O(−τ1)
∑

m,n

cmc∗
ne−τ0(Em+En)+w(En)+w(Em)|m〉〈n|O(τ1) . (5.14)

This takes the form of (3.18) with V = Ṽ = O(−τ1). Note that in this step, we are
choosing V = O(−τ1) as part of the definition of the coarse-graining map; this is an ansatz
that will be matched to the bulk. Thus we define the coarse-grained density matrix

ρ̄ = C(ρ) = O(−τ1)
∑

n

|cn|2e−2τ0En+2w(En)|n〉〈n|O(τ1) , (5.15)

and the replica partition function in the CFT is

Tr ρ̄k =
∑

n

|cn|2ke−2τ0kEn+2kw(En)〈n|O(τ1)O(−τ1)|n〉k
. (5.16)

This can also be expressed as 〈Ψ̂k|Ψ̂k〉, with the k-copy entangled state defined by

|Ψ̂k〉 =
∑

n


cne−τ0En+w(En)O(−τ1)|n〉

⊗k
. (5.17)

To simplify (5.16) we need to make a further assumption about the matrix elements of the
CFT operator O. We will assume that it satisfies the eigenstate thermalization hypothe-
sis [32, 63, 64], so that the 2-point function in the eigenstate |n〉 is well approximated by
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the thermal 2-point function at the temperature corresponding to energy En. Denote the
thermal 2-point function by

G(2τ1; β) = 1
Z(β)Tr e−βHO(τ1)O(−τ1) . (5.18)

Applying this to (5.16) and converting the sum to an integral using |cn|2 ≈ 1, we have

Tr ρ̄k ≈
∫

dEeS(E)−2kτ0E+2kw(E)G(2τ1; β(E))k . (5.19)

Without the extra particle, we saw in section 4 that the saddlepoint reproduces the un-
perturbed wormhole action e−Ik , and that the saddlepoint lands at same energy as the
wormhole, E = 1

2k ∂τ0Ik(β) = I ′
0(βk). The particle contribution can now be evaluated at

the saddle to obtain

Tr ρ̄k ≈ e−IkG(2τ1; βk)k . (5.20)

This CFT result manifestly agrees with the bulk calculation from a wormhole with a non-
traversing geodesic on each boundary, like the one shown for k = 6 in (5.11). Of course,
we need the bulk to calculate the thermal 2-point function G, but this is done at k = 1
and then the CFT reproduces the k-boundary wormholes with no further input from the
gravity side.

The entropy calculated from (5.20) is

S(ρ̄) = ∂k


Ik(β)

k
− log G(2τ1, βk)



k=1
. (5.21)

The first term is one quarter the area of the unperturbed apparent horizon. The second
term is the correction δ(Area)/4 from the first order backreaction. To see this, use the
fact that the perturbed black hole mass is the ADM energy evaluated on the Euclidean
radial slice τ = −τ0; therefore EBH = 1

2∂τ0Itotal, with Itotal = I1 − log G(2τ1; β) and this
∂τ0 derivative is taken at fixed τ1. Thus δEBH = −1

2∂τ0 log G and using the gravitational
first law,

δ
Area

4 = βδEBH = −β

2 ∂τ0 log G(2τ1; βk) = −∂k log G(2τ1; βk)|k=1 (5.22)

where the last equality uses (2.10). Thus S(ρ̄) = 1
4Area, including the first order

backreaction.

5.4 Semiclassical isometries and random tensor networks

A natural question is how the CFT distinguishes between operators that add particles
inside the horizon vs. outside the horizon. This will be explored in detail in a separate
paper [29] (see also [65]). The key point is that an operator O that adds matter outside
the horizon acts around the semiclassical saddle as a random map from the CFT Hilbert
space near energy E to the CFT Hilbert space near energy E′, with E′ > E. This is
a random map from a large Hilbert space to a much larger Hilbert space, and it is a
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general property of such maps that O†O is proportional to the identity matrix, as an
operator [26]. We therefore refer to O as a ‘semiclassical isometry’. By contrast, adding
matter behind the apparent horizon acts around the semiclassical saddle as a random map
downward in energy in the CFT Hilbert space. It is therefore conjugate to an approximate
isometry, up to normalization. These features of the CFT operator algebra agree with
the expectation from information-theoretic arguments [26, 43, 44, 66] and can be used to
construct a holographic tensor network directly in the dual CFT that is exactly dual to
Einstein gravity with the standard boundary conditions.

6 Ensemble interpretation

So far, all of the results of this paper have been about individual CFTs such as N = 4
Super Yang-Mills (with the caveat of possible instabilities). We will now step slightly
outside these bounds and ask whether the wormholes found in section 2 have an ensemble
interpretation, along the lines of the West Coast EOW-brane model in [5]. The answer is
yes, in a limited sense. The sum over known gravitational saddles — i.e., the black holes,
wormholes, and cylinder phase — is consistent with a Gaussian average over the coefficients
cn that were left undetermined in the CFT analysis of section 4. This does not mean gravity
is an ensemble average; this is an effective field theory calculation in the bulk and should be
interpreted as such in the dual CFT. It ignores the (very likely) possibility of additional,
UV-sensitive contributions to the path integral of the same magnitude, so it cannot be
used it to make any firm conclusions about string theory examples like N = 4 SYM.

We expect there to be additional saddles that lead to non-gaussian statistics [67].9
The observation that a Gaussian average is sufficient to account for the wormhole saddles
is therefore only a starting point for a more complete analysis.

Consider Nf flavors of B-states or thin shells. The non-normalizable state at the
matter insertion, |Ai〉, now has an additional flavour index i = 1 . . . Nf . Let us assume
the tension parameter for B-states or mass parameter for thin shells is the same for all
flavours, and expand the flavoured matter states in the energy basis,

|Ai〉 =
∑

n

ew(En)ci
n|n〉 , (6.1)

where w(E) is the smooth function found in section 4 and the UV-sensitive coefficients ci
n

satisfy |ci
n|2 ≈ 1 when averaged over a small energy window of nearby eigenstates. The

flavoured black hole microstates |Ψi〉 are defined by a Euclidean evolution over time τ0 of
the flavoured matter states,

|Ψi〉 = e−τ0H |Ai〉 . (6.2)

9Furthermore, B-states have large 1-point functions for probe operators, and this requires the cn’s to be
correlated with the matrix elements of local operators. For this reason we will not consider matter probes
in this section.
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6.1 Overlaps

The overlap of two flavoured black hole microstates 〈Ψi|Ψj〉 is calculated, in principle, by
a gravitational path integral with the boundary condition that matter with flavour j hits
the boundary at τ = −τ0, and matter with flavour i hits the boundary at τ = τ0. For thin
shells, the only gravitational solution satisfying these boundary conditions is the black hole
if the flavours at the two end-points match, and there is no solution for different flavours at
the end-points. For the EOW brane, the dominant phase is the black hole when the flavours
match (as we are always assuming τ0 is chosen so that this phase dominates). However,
there is a classical solution even when the B-states have two different flavours: the cylinder
phase bounded by disconnected EOW branes at the two endpoints; see section 4.3. Thus
in the effective gravitational theory we find

shell: 〈Ψi |Ψj〉saddles =
j

i

= e−IBH δij

brane: 〈Ψi |Ψj〉saddles =
j

i

+

j

i

= e−IBH δij + e−Icyl

(6.3)

where IBH := I1 is the action of the black hole (2.14). The subscript ‘saddles’ is to remind
us that this is the sum over known saddles but there may be other important contributions.
Let us compare to the Gaussian average in CFT. Using (6.2), and separating out a vacuum
state contribution (which is zero for thin shells),

〈Ψi|Ψj〉 = 〈Ψi|0〉〈0|Ψj〉 +
∑

n=0
e−2τ0En+2w(En)ci∗

n cj
n (6.4)

Define the ensemble average over ci
n by treating them as Gaussian random variables with

zero mean and unit variance,

ci∗
n cj

m := δmnδij , (6.5)

with higher moments calculated by Wick contractions. Then the average of (6.4) is

〈Ψi|Ψj〉 ≈ 〈Ψi|0〉〈0|Ψj〉 +
∑

n=0
e−2τ0En+2w(En)δij . (6.6)

This agrees with the bulk results in (6.3).
It is clear that this agreement continues for higher powers of the overlap, which are

calculated by multiboundary wormholes. Gaussian contractions simply pair the boundaries
and project onto the terms with matching energy eigenstates, and these are exactly the
terms calculated by wormholes.

As a multiboundary example consider the modulus squared of the overlap, |〈Ψi |Ψj〉 |2.
The boundary condition for computing |〈Ψi |Ψj〉 |2 is that we have two boundaries, each

– 32 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
0

with a matter insertion i, j at τ = ±τ0. For EOW branes, there is no wormhole saddle with
k = 2 boundaries, because for any value of the tension, kmax ≤ 2. Therefore in this case

|〈Ψi |Ψj〉 |2saddles =

〈Ψi|Ψj〉saddles

2
=


e−IBH δij + e−Icyl

2
. (6.7)

For thin shells, assuming kmax > 2, the wormhole is on shell, so we find — summing over
known saddles — the overlap

|〈Ψi |Ψj〉 |2saddles =
j

i

j

i

+
j

i

j

i

= e−2IBH δij + e−I2 (6.8)

It is straightforward to check that these equations agree with the Gaussian averages calcu-
lated in CFT.

For B-states, the k = 2 results (6.3) and (6.7) were obtained earlier in [58], and a notion
of coarse-grained states similar to our Gaussian average is discussed in [40]. However the
overlaps that we obtain for non-integer k, |〈Ψi|Ψj〉|k, have an extra term from on-shell
fractional wormholes when k < kmax, and the wormhole contributions will be important
for the calculation of the Page curve.

6.2 Page-like behavior
We now consider a toy model for an evaporating black hole, analogous to that described
in [5]. To this end, we introduce an auxiliary system R which plays the role of a non-
gravitational reservoir to collect the outgoing Hawking radiation, and interpret the flavoured
matter states |Ai〉 as representing the interior partners of the Hawking modes. Let the
Hilbert space of R denoted HR be spanned by an orthonormal basis {|i〉R} of radiation
states with dim(HR) = Nf equal to the number of flavours. Consider a state |ψ〉 (unnor-
malised) of the black hole entangled with the radiation system R,

|ψ〉 =
Nf∑

i=1
|Ψi〉 |i〉R (6.9)

where |i〉R represents the state of the radiation corresponding to the flavoured matter state,
|Ai〉, of the EOW brane or the thin shell. The reduced density matrix ρR (unnormalised)
for the radiation is obtained by tracing out the black hole degrees of freedom,

ρR = TrBH(|ψ〉 〈ψ|) =
Nf∑

i,j=1
〈Ψj |Ψi〉 |i〉 〈j| , (6.10)

so the matrix elements of the radiation state are given by the overlaps between black hole
microstates,

(ρR)ij = 〈Ψj |Ψi〉 . (6.11)
We use the gravitational path integral to compute the Renyi entropies of the radiation
state, which are given by

Sk = 1
1 − k

log Tr(ρ̂k
R) (6.12)

where ρ̂R is the normalised density matrix, ρ̂R = ρR
TrρR

associated with the radiation state.
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6.2.1 Purity of the radiation state
We start by computing the purity, S2 = Tr(ρ̂2

R) of the state of radiation obtained by the
evaporation of a thin-shell black hole with kmax > 2. Using (6.10), we have

Tr(ρ2
R) =

Nf∑

i,j=1
|〈Ψj |Ψi〉 |2 (6.13)

Thus the purity of the radiation state is closely related to the square of the overlap between
black hole microstates in (6.7), (6.8). Denoting the contraction of flavour indices by a dotted
line, the gravitational saddles contributing to the purity are

Tr(ρ2
R)saddles = +

= Nf e−2IBH + N2
f e−I2 (6.14)

Each flavour loop comes with a factor of Nf . As shown in the figure, the disconnected
phase has one index loop while the connected wormhole phase has two index loops. Using
Tr(ρR) = Z1 = Nf e−IBH to normalise the density matrix ρR, the purity of the radiation
state is given by

Tr(ρ̂2
R)saddles = 1

Nf
+ e−(I2−2IBH) . (6.15)

The first term is the contribution from the disconnected phase and the second term is the
contribution from the connected phase. As we vary Nf , the saddles exchange dominance,
with the connected phase dominating at large Nf . At log Nf = I2 − 2IBH , there is a phase
transition and the connected phase begins to dominate and the purity assumes a constant
value independent of Nf .

Let us now turn to the purity of the radiation state for the B-state black hole. In this
case the saddles are

Tr(ρ2
R)saddles = +

= Nf e−2IBH + N2
f e−2Icyl (6.16)

Unlike the thin-shell case, there is no on-shell 2-boundary wormhole. However, there is
another disconnected phase consisting of two copies of the cylinder. It also seems likely
(based on an uncontrolled analytic continuation from k < kmax) that there is an off-shell
contribution from the wormhole topology, which would add a second term ∼ N2

f that we
cannot calculate in the effective theory. On normalising the density matrix, the expression
for purity is

Tr(ρ̂2
R)saddles = 1

Nf
+ e−2(Icyl−IBH) . (6.17)
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An off-shell wormhole, if it exists, could add a term ∼ e2IBH , so we should bear this
mind when considering whether to trust (6.17). For a small number of flavours, the black
hole phase dominates and the purity decreases with the increase in number of flavours.
At log Nf = 2(Icyl − IBH), there is a phase transition and the cylinder phase begins to
dominate and the purity takes a constant value independent of Nf . In 3d, the location of
the phase transition point can be calculated analytically in terms of the parameters τ0 and
T using the results presented in appendix A and appendix C:

log Nf = cπ2

12τ0
− c

3(τ0 + 2 tanh−1(T )) . (6.18)

In higher dimensions, the phase transition point can be determined numerically.

6.2.2 Page curve for the thin-shell black hole

We will now compute the entanglement entropy of the radiation,

SvN = −Tr(ρ̂R log ρ̂R) . (6.19)

The von Neumann entropy is calculated using the replica trick,

SvN = −∂k log
(

Zk

Zk
1

) ∣∣∣∣
k=1

(6.20)

where Zk is the gravitational partition function computing Tr(ρk
R). Let us first discuss the

thin-shell black hole case. The geometries which have the correct boundary conditions to
contribute to Tr (ρk

R) for this case are

Tr(ρk
R)saddles = + · · · + (6.21)

= Nf e−kIBH + · · · + (Nf )ke−Ik (6.22)

where the diagrams have k = 6 and the dots are partially connected wormholes that are
subleading away from the Page transition. The disconnected phase has a contribution to
the von Neumann entropy given by Sdisc

vN = log Nf which shows that the radiation is in a
maximally mixed state for small Nf . The contribution of the connected Zk symmetric phase
to the von Neumann entropy can be determined using the gravitational replica method of
Lewkowycz and Maldacena [30] which relates it to the entropy of the apparent horizon
which is the fixed point of the Zk replica symmetry,

Sconn
vN = ∂k(Ik − kI1)

∣∣
k=1 = S0(β) (6.23)
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where S0 is one quarter the area of the apparent horizon at inverse temperature β de-
termined in terms of the parameters τ0 and m using (2.8). Therefore, the entropy of
radiation is

SvN = min{log Nf , S0(β)} . (6.24)

This result is analogous to the Page curve with the number of flavours playing the role
of time. The saddles exchange dominance at the ‘Page time’, log NPage

f = S0(β) with the
disconnected phase dominating at early times and the connected phase dominating at late
times. This is consistent with the prediction of the island rule [68, 69] and we can thus
view (6.24) as a derivation of the island rule in this simple model for evaporation of a black
hole with a time-symmetric apparent horizon formed from thin-shell collapse, as in [5, 9].
For thin shells our toy model is nearly identical to the JT toy model described in [5] (except
that we are limited to an on-shell analysis).

6.2.3 Page curve for the B-state black hole

For B-states, there are three gravitational phases contributing to the replica partition
function,

Tr(ρk
R)saddles = + + + · · ·

(6.25)
= Nf e−kIBH + (Nf )ke−kIcyl + (Nf )ke−Ik + · · · (6.26)

where the dots are partially-connected wormholes and mixed phases. The middle term is
the cylinder phase. The diagram shows k = 6, but the last term — the wormhole — is
only on-shell for k < kmax ≤ 2. It is always on-shell for k → 1 and therefore contributes to
the von Neumann entropy. The cylinder phase never dominates for k → 1, so adding the
three terms, we see that the entropy of radiation is given by

SvN = min{log Nf , S0(β)} . (6.27)

Again there is Page-like behavior with the transition at log NPage
f = S0(β).

7 Discussion

Summary. We have considered pure-state black holes prepared by a Euclidean path
integral that have a subdominant extremal surface at t = 0, i.e., a time-symmetric apparent
horizon. These black holes have two salient features in the Euclidean regime:
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• They are naturally assigned a coarse-grained entropy equal to one quarter the area
of the extremal surface;

• There is a sharp distinction, discernible to a local bulk observer, between the regions
inside and outside the extremal surface.

What is the coarse-grained entropy in the dual CFT? To answer this question we followed
a 3-step process:

1. Find the replica wormholes that come from branching around the extremal surface.

2. Calculate their gravitational action, Ik, and interpret it in the dual CFT as a replica
partition function

e−Ik = Tr ρ̄k . (7.1)

3. Read off from (7.1) the coarse-grained density matrix ρ̄, and the coarse-graining
map C such that ρ̄ = C(ρ). By design, this density matrix reproduces the apparent
horizon entropy,

S(ρ̄) = Area(γ)
4 . (7.2)

This is like the derivation of the Ryu-Takayanagi formula by Lewkowycz and Malda-
cena [30], but in reverse. In that case, one starts with the left-hand side of the area-entropy
relation — it is the von Neumann entropy S(ρ), where ρ is a given CFT state — and uses
the AdS/CFT dictionary to calculate it in the bulk. This leads to the Ryu-Takayanagi
formula [21, 30] and its fine-grained generalizations [5, 9, 22, 68–71]. In the present case,
we started out knowing the right-hand side of (7.2), and our goal was to determine what
ρ̄ appears on the left-hand side. So we followed the replica wormhole derivation in reverse.
Along the way we showed that wormholes are related to CFT states with GHZ-like entan-
glement, and derived statistical properties of the CFT microstates dual to thin shells and
EOW branes.

The way we derived the relationship between wormholes and GHZ-like states was some-
what indirect — we calculated each side of the equation (1.1), and found they are equal.
There should be a more systematic derivation that starts from the standard AdS/CFT
dictionary, applied to the CFT quantity 〈Ψk|Ψk〉. This would require a more detailed un-
derstanding of the gravitational path integral on a windmill; see figure 2. This would also
be interesting for the purpose of studying more elaborate types of k-party entanglement
holographically, beyond the standard Ryu-Takayanagi formula which cannot be applied to
this state (at least not directly).

The entire analysis has two significant limitations. First, the solutions were Euclidean.
This may not be as severe a restriction as it sounds. Subdominant extremal surfaces in
time-dependent, Lorentzian situations can probably be analyzed by analytically continuing
the Euclidean wormholes to Lorentzian signature. Another interesting target for future
study is the coarse-grained entropy of an apparent horizon that is not extremal. There is
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a gravitational procedure to turn any apparent horizon into an extremal surface [23, 42]
(see also [72, 73]), so Euclidean methods might be applicable to this situation, as well.

The second limitation is that we have only studied black holes where the geometry
is locally identical to an eternal black hole plus perturbations. The strategy sketched in
steps (1), (2), and (3) and followed in this paper could be applied more generally but
seems difficult to carry out in practice. For more general black holes it may be necessary
to introduce an auxiliary code Hilbert space to define the coarse-graining procedure. For
example, if we turn on a massless matter field (including gravitational excitations above
the eternal black hole) then generally it cannot be assigned to either ‘inside’ or ‘outside’
the horizon, so our coarse-graining method does not apply.

This raises an important question: is holographic coarse graining a quantum channel?
A quantum channel NA→B is a linear map from density matrices on HA to density matrices
on HB. The holographic coarse-graining map C defined in section 3 requires a decomposi-
tion of the state into the form ρ = V ρ̃Ṽ †, and without input from wormhole calculations
on the gravity side, it is unclear how to define this decomposition uniquely. Therefore it is
not clear whether C can be defined unambiguously on density matrices to formulate it as a
quantum channel. Clearly it acts like a quantum channel in some situations — including
all of the examples studied in this paper — but the question is whether it is well defined
on any density matrix as input. In appendix D we consider a simple toy model where there
is a quantum channel C similar to the holographic coarse-graining map.
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A Details of EOW brane geometries

In this appendix we provide additional details about the B-state geometries discussed in
section 2.1.1. The analysis of the brane equation of motion closely follows [18, 53]. The
action for gravity coupled to an EOW brane is given in (2.4). The dynamical variables are
the bulk metric gµν and the metric induced on the brane hij . Upon varying the action, we
get the respective equations of motion,

Rµν − 1
2gµνR + Λgµν = 0

Kij = T hij

(A.1)

The first equation is the Einstein equation for the bulk metric. The second equation can
be thought of as a Neumann boundary condition which fixes the normal derivative of the

– 38 –



J
H
E
P
1
0
(
2
0
2
3
)
0
3
0

bulk metric at the brane. We shall use this equation to determine the trajectory of the
EOW brane through the bulk.

A.1 The spherical boundary case

A.1.1 Brane trajectory

We look for Euclidean AdS-Schwarzschild black hole solutions obtained by back-reaction of
the brane. As described in section 2.1.1, these are portions of the eternal black hole (2.1)
cutoff at the brane trajectory, τ = u(r). (In this appendix, u(r) means the EOW brane
trajectory, called uB(r) in the main text.)

For a spherically symmetric brane in the eternal black hole geometry, the Neumann
condition is KΩΩ = T hΩΩ where Ω represents any of the tranverse Sd−1 directions. This
reduces to

fu′


fu′2 + 1
f

= ±T r. (A.2)

We thus have a first-order equation of motion for the brane trajectory,

u′ = ± T r

f


f − (T r)2 (A.3)

The turning point for the brane where u′ → ∞ occurs at r = r0 determined by the solution
to f(r0) = T 2r2

0. We choose the endpoints of the brane to be at ±τ0 and the turning point
to be behind the horizon, so u(r0) = β

2 . Integrating (A.2) between the brane turning point
and infinity, we have

τ0 = β

2 −
∫ ∞

r0

dr

f

T r
f − (T r)2 (A.4)

This relation should be regarded as an implicit relation to determine the temperature of
the black hole in terms of the brane tension T and the brane end-point τ0. By numerically
evaluating the integral

 ∞
r0

dr
f

T r√
f−(T r)2 , we can check that for any choice of the parameters,

τ0, T > 0, it is larger than β
4 which means the brane always goes behind the horizon. The

analysis simplifies considerably in 3d where the black holes in question are static BTZ black
holes, with

f(r) = r2 − r2
H , β = 2π

rH
. (A.5)

In this case, τ0 = β
4 for any value of the brane tension, because

∫ ∞

r0

dr

f

T r
f − (T r)2 = π

2rH
= β

4 , (A.6)

where r0 = rH√
1−T 2 . This means that the temperature of the black hole formed by the

back-reaction of the brane depends on the brane end-point, but it is independent of the
tension. This is a feature of the brane dynamics in 3d and does not carry over to higher
dimensions.
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A.2 On-shell action

The action in (2.4) requires counterterms to render it finite. There are counterterms
associated to the brane that we will not find explicitly, but we will use a trick to calculate
the regulated action.

After plugging in the brane equation of motion K = T d, the contribution to the
on-shell action at the brane is

Ibrane = − T

8πG

∫

brane
ddy

√
h . (A.7)

Write the full action as I = Igrav + Ibrane, where Igrav is the usual gravitational action,
including the standard counterterm and GHY term at the asymptotic boundary. We can
split the gravitational action into two parts,

Igrav = Iin + Iout (A.8)

where Iin is the contribution to the bulk action from the region bounded by the brane
and the angular slices τ = ±τ0, and Iout is the contribution from the outside wedge. The
Einstein equations set R = −d(d + 1). Let us evaluate each of the three pieces in the
total action,

I = Igrav + Ibrane = Iin + Iout + Ibrane (A.9)

By definition, Iout corresponds to a portion of the eternal black hole,

Iout = 2τ0
β

I0(β) (A.10)

where I0 is the renormalised action for the eternal black hole. The bulk action for the
interior region is

Iin = −1
16πG

2Ωd

∫ β
2

τ0
dτ

∫ u−1(τ)

rH

drrd−1(−2d)

= Ωd

4πG

∫ ∞

r0
dr|u′(r)|(rd − rd

H)
(A.11)

where Ωd = 2π
d
2

Γ( d
2 ) is the area of the unit transverse sphere. The brane term evaluates to give

Ibrane = − 1
8πG

2Ωd

∫ ∞

r0
drrd−1

√
1
f

+ f(u′)2 T

= − Ωd

4πG

∫ ∞

r0
drrd−2f |u′|

= − Ωd

4πG

∫ ∞

r0
dr|u′(r)|

[
(rd − rd

H) + (rd−2 − rd−2
H )

]

(A.12)

where we used the brane equation of motion (A.2). Observe that the contribution from
the left wedge, including both the bulk and brane terms, is

ĨL := Iin + Ibrane = − Ωd

4πG

∫ ∞

r0
dr|u′(r)|(rd−2 − rd−2

H ) (A.13)
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Both Iin and Ibrane are divergent, so we should first regulate the divergence. We shall
come back to the issue of renormalisation later on in this section. The total action, before
renormalising, is

I = 2τ0
β

I0(β) + ĨL(β) . (A.14)

In 3D gravity, d = 2, we see that IL = 0; the brane term cancels with the gravitational
contribution from the left wedge, so there is no need to renormalise. In 3D we also have
τ0 = β

4 , so the total action is

I(d=2) = 2τ0
β

IBTZ(β) = − cπ2

24τ0
, (A.15)

independent of the brane tension. This calculation was also done in [18, 53].

Renormalisation. ĨL defined in (A.13) is divergent for d > 2 due to the behaviour of the
integrand as r → ∞. In terms of a large r = R cutoff, ĨL ∼ − Ωd

4πG
T√

1−T 2 Rd−3 so it diverges
logarithmically in d = 3 and as a power law in d > 3. This term has to be renormalised.
To this end, we use the identity10

I ′
L(β) = −2S0(β)(1 − β∂β)τ0(β) (A.16)

derived in section 2.4, where S0(β) = −(1−β∂β)I0(β) is the entropy of the eternal black hole
at inverse temperature β, and IL is the renormalised version of ĨL. Using the result (A.29)
for the planar boundary case derived in the next section as a boundary condition, we have
IL(β) → 0 as β → 0. Therefore, we can express the renormalised action as

IL(β) = −2
∫ β

0
dxS0(x)(1 − x∂x)τ0(x) . (A.17)

Thus, the renormalised on-shell action for spherical brane geometries is

I = 2τ0
β

I0(β) + IL(β) (A.18)

with β determined from (A.4). This is the equation for the action used in the main text,
see (2.14).

10This equation also tells us how to regulate Ĩ ′
L(β). If Ĩ ′

L(β) is calculated directly by taking the derivative
of (A.13), it is nite, but its value depends on a prescription to calculate the derivative, since we are
manipulating innite quantities in the intermediate steps. After a long calculation, we nd that the correct
prescription to reproduce (A.16) is to dene the derivative of the innite quantity in (A.13) by the identity
∂β

 ∞
r0

H(r) ≡ lim→0

[
−(∂βr0)H(r0 + ) +

 ∞
r0+

∂βH(r)
]
, which is obvious for nite integrals but here it

acts as a choice of regulator. The resulting expression for Ĩ ′
L(β) is nite and unambiguous, and we have

checked analytically in d = 3 and numerically in higher dimensions that it satises (A.16).
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A.3 The planar boundary case

We will now take the planar limit rH → ∞ of the results of the previous section. This corre-
sponds to studying black brane solutions obtained by back-reaction of the EOW brane. In
this limit, the analysis simplifies considerably and some of the results can also be expressed
in closed form in d > 2. It is convenient to work with coordinates where the dependence
on rH of the black hole metric from the previous section,

ds2 = f(r)dτ̃2 + dr2

f(r) + r2dΩ2
d−1 (A.19)

has been scaled out. To this end, we define rescaled coordinates, (ρ, τ, x) related to the
black hole coordinates by,


cosh


dρ

2

 2
d

= rH

r

τ = βd

4π
rH τ̃

x = βd

4π
rHφ

(A.20)

where x and φ collectively represent the planar and spherical transverse directions respec-
tively. The planar horizon is at ρ = 0 in these coordinates. Now, τ ∼ τ + β so β should
be regarded as an inverse temperature parameter for the black brane geometry. In these
coordinates, the metric for the black brane takes the form,

ds2 = dρ2 + g̃2(ρ)dτ2 + h̃2(ρ)dx2
d−1 (A.21)

where the coefficient functions are

h̃(ρ) = 4π

βd


cosh


dρ

2

 2
d

g̃(ρ) = h̃(ρ) tanh


dρ

2

 (A.22)

A.3.1 The brane trajectory

We parametrise the EOW brane trajectory by τ = u(ρ). The Neumann boundary condition
gives the brane equation of motion,

u′ = ±1
g̃

A√
1 − A2 (A.23)

where A(ρ) = T coth(dρ
2 ). The turning point of the brane trajectory occurs at, A(ρ0) = 1

and has a simple expression, ρ0 = 2
d coth−1( 1

T ). On integrating (A.23), we can express the
temperature in terms the brane end point τ0 and brane tension T ,

τ0 = β

2 −
∫ ∞

ρ0

dρ

g̃

A√
1 − A2 (A.24)
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In what follows, we shall not need the explicit form of the integral. However, it is important
to note that the dependence on β factors out and we express the above result as

τ0 = β

2 (1 − α(T )) (A.25)

where
α(T ) = 1

π

∫ ∞

ρ0

dρ

g

A√
1 − A2 (A.26)

with g(ρ) = β
2π g̃(ρ), so α(T ) has no temperature dependence. In the tensionless limit,

α(T ) → 1
2 and numerically we can verify that for any non-zero value of the brane tension

below the critical value, α(T ) > 1
2 . In 3d, α(T ) = 1

2 .

A.3.2 On-shell action

We split the action into three terms,

I = Iin + Iout + Ibrane (A.27)

with each term defined in a way similar to that in the spherical boundary case. We have
the following expressions for each term,

Iout = 2τ0
β

I0(β)

Iin = −Ibrane = V⊥
8πG

2
d

d ∫ ρmax

ρ0
dρ|u′(ρ)|(cosh(dρ) − 1)

(A.28)

Here, ρmax is a large cutoff introduced to regulate the divergence and V⊥ is the area of
the tranverse Rd−1. I0(β) is the renormalised action for the eternal black brane and by
a simple scaling argument, it must take the form, I0(β) = −bV⊥β1−d where b is a known
positive constant. Thus, we see that upon regulating the divergence,

IL = Iin + Ibrane = 0 (A.29)

So, the renormalised on-shell action for this geometry is

I(τ0, T ) = 2τ0
β

I0(β) = −bV⊥(2τ0)1−d(α(T ))d (A.30)

B Details of thin shell solutions

In this appendix we solve the equations for the Euclidean thin-shell black holes described
in section 2.1.2; see figure 5. The method is similar to [19] but there are some sign dif-
ferences coming from the fact that we assume the shell is behind the horizon and work in
Euclidean signature.

Consider a spherically symmetric thin shell of pressureless perfect fluid (i.e. ‘dust’)
separating region M− which is a portion of global AdS from region M+ which is a por-
tion of the AdS-Schwarzschild black hole. The two sides S± of the thin shell are at the
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boundaries of the two regions ∂M± respectively. We choose coordinate systems covering
the two regions,

M+ : xµ
+ = (τ+, r+, Ω)

M− : xµ
− = (τ−, r−, Ω)

(B.1)

where the metrics take the form

ds2
± = f±(r±)dτ2

± + dr2
±

f±(r±) + r2
±dΩ2 (B.2)

with τ+ ∼ τ+ + β and τ− ∈ R where β is the inverse temperature of the black hole. Since
the geometry is spherically symmetric, we may choose the same set of angular coordinates
denoted collectively by Ω for both regions. The functions f± are given by

f+(r) = 1 + r2 − M

rd−2

f−(r) = 1 + r2
(B.3)

where M = rd−2
H (1 + r2

H) is the ADM mass of the black hole. We will glue a region of
the form r− < rmax

− (τ−) to a region r+ < rmax
+ (τ+). The signs of these inequalities are

appropriate to a shell created by an operator acting on the vacuum state (this selects
r− < rmax

− (τ−) as the physical region) which is behind the horizon at t = 0 (this selects
r+ < rmax

+ (τ+)); see figure 5. The equation of motion for the shell is derived from the Israel
junction conditions. It is most convenient to formulate the junction conditions in terms of
coordinates intrinsic to the shell (covering S±) which we choose to be,

S : ya = (, Ω) (B.4)

where  is the proper distance on the shell, as measured along a curve of fixed Ω. We
parametrise the trajectory of the shell by (τ±(), r±()) respectively in the two coordinate
systems (B.1). By the definition of , we have,

f±(r±())τ̇2
± + ṙ2

±
f±(r±()) = 1 (B.5)

where dots are derivatives with respect to . The metrics induced on the two sides of the
shell are

hab(S±) = (eµ
aeν

b gµν)± (B.6)

where (eµ
a)± = ∂xµ

±
∂ya are the respective Jacobians. Explicitly, the induced metrics take

the forma
ds2(S±) = d2 + r2

±()dΩ2 (B.7)

The first junction condition requires that the metric is continuous across the shell,

hab(S+) = hab(S−) (B.8)
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which using (B.7) implies r+() = r−() which we shall call r() henceforth. Using (B.5),
we have

τ̇+() = − 1
f+(r)


f+(r) − ṙ2

τ̇−() = 1
f−(r)


f−(r) − ṙ2

(B.9)

We shall only consider the case where the turning point of the trajectory is on the τ+ =
β
2 slice in the black hole coordinates, so that the shell is behind the horizon at t = 0.
Furthermore, we choose to work with the branch of the trajectory where τ+() < β

2 . In
this branch, dτ+

d < 0 and dτ−
d > 0 which explains the signs in (B.9). We can obtain a

differential equation for the shell trajectory by solving the second junction condition,

∆Kab − ∆Khab = −Sab (B.10)

where ∆Kab ≡ Kab(S+) − Kab(S−) with Kab(S±) being the extrinsic curvatures of S±
respectively. Sab is the surface stress tensor for the shell. Since we assume that the shell is
made of a pressureless perfect fluid, we can parametrise the surface stress tensor as

Sab = −σ()UaUb (B.11)

with U = ∂ being the normalised velocity field (UaUa = 1) for the shell and σ() > 0 is
a measure of the rest mass density of the shell. We can compute the extrinsic curvatures
using,

Kab = eµ
aeν

b ∇µnν (B.12)

The unit normals to S± are chosen to point away from the region M−. They can be
computed using nµeµ

a = 0 and nµnµ = 1 and are given by

n+
µ dxµ

+ = −ṙdτ+ + τ̇+dr+

n−
µ dxµ

− = −ṙdτ− + τ̇−dr− .
(B.13)

The non-vanishing components of the extrinsic curvature can then be calculated to be

K(S±) = ∓Ḣ±
ṙ

KΩΩ(S±) = ∓H±
r

hΩΩ

(B.14)

where H±() =


f±(r) − ṙ2 and Ω collectively represents the angular directions. Contract-
ing the junction condition, (B.10) with hab, we have ∆K = −σ()

d−1 . The two independent
equations of (B.10) using (B.14) read,

H+ + H−
r

= σ()
d − 1

Ḣ+ + Ḣ−
ṙ

= −σ()d − 2
d − 1

(B.15)
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4τ0
β

λ
Figure 7. Landing point τ0 of the thin shell, in units of β

4 , as a function of r0 = rHeλ. From
bottom to top, rH = 0.1, 0.2, 0.5, 1, 10.

The two equations can be solved to give H++H−
r = cr2−d where c is a constant. We shall

choose the constant such that,
σ() = (d − 1) m

rd−1 (B.16)

so that m can be interpreted as a rest mass for the shell. Thus, we have,


f− − ṙ2 +


f+ − ṙ2 = m

rd−2 (B.17)

The turning point (ṙ = 0) for the shell trajectory denoted r0 satisfies,

rd−2
0 = m

f−(r0) +


f+(r0)
(B.18)

(B.17) can be solved for ṙ which is chosen to be non-negative to obtain

ṙ2 = 1 + r2 − r2(d−2)

4m2

(
m2

r2(d−2) + M

rd−2

)2

≡ B(r) (B.19)

Using (B.9), we can write down a first order differential equation for the shell trajectory
in the black hole coordinates,

dτ+
dr

= − 1
f+(r)

√
f+(r)
B(r) − 1 (B.20)

In the notation of section 2, f+ = f and τ+ = uS , so the solution is

uS(r′) = β

2 −
∫ r′

r0

dr

f(r)

√
f(r)
B(r) − 1 . (B.21)

The shell hits the boundary at τ0 = uS(∞). This should be viewed as an implicit equation
to determine the ADM mass M or equivalently the inverse temperature β of the black hole
in terms of the parameters τ0, m.

For numerical purposes it is convenient to parameterize solutions by rH and r0. By
calculating the integral numerically for various parameters we find the following behavior.
For any rH , if we take r0  rH , then the shell stays in the region |τ | > β

4 , and for very large
r0 the endpoint τ0 approaches β

2 . Therefore, in this limit the allowed number of boundaries
kmax in the on-shell wormhole formed by taking a quotient becomes large. Figure 7 shows
the behavior for other parameters.
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C Details of the EOW brane cylinder phase

C.1 Brane trajectory

In this appendix, we analyse the disconnected phase for the EOW brane which consists of
a pair of EOW branes embedded in vacuum global AdS, which has the metric

ds2 = f(r)dτ2 + dr2

f(r) + r2dΩ2
d−1 (C.1)

where τ ∈ R and f(r) = 1 + r2. The EOW brane trajectory τ = u(r) obeys a first order
differential equation similar to that for the BH case,

dτ

dr
= ± T r

f


f − (T r)2 (C.2)

with the dτ
dr < 0 branch corresponding to the brane in the τ > 0 region and the dτ

dr > 0
branch corresponds to the brane in the τ < 0 region. The choice of sign is dictated by the
Neumann boundary condition, K = T d, which implies that the outward-pointing normal
has positive expansion. The equation (C.2) can be integrated analytically to obtain the
trajectory of the brane at τ > 0,

u(r) = τ0 + tanh−1
(

T
T 2 + (1 − T 2)(1 + r2)2

)
(C.3)

The turning point dτ
dr = 0 for the brane trajectory occurs at r = 0 which using (C.3)

lands at
τmax = τ0 + tanh−1(T ) (C.4)

which can also be written as
T = tanh(τmax − τ0) . (C.5)

C.2 On-shell action

We split the action into three terms,

I = Iin + Iout + Ibrane (C.6)

where Iout is the bulk action (EH+GHY+AdS counter-terms) evaluated in the cylindrical
region between τ = ±τ0 and the AdS boundary. Iin is the bulk action (EH term) evaluated
in the dome region bounded by the brane and the τ = τ0 slice, including its time-reversed
partner. Ibrane is the brane action which includes the brane GHY term and the brane area
term. Thus

Iout = IAdS(2τ0) (C.7)

where IAdS(2τ0) is the renormalised action for thermal AdS at β = 2τ0. The bulk action
for the interior region of both the domes added together is

Iin = −1
16πG

2Ωd

∫ τmax

τ0
dτ

∫ u−1(τ)

0
drrd−1(−2d)

= Ωd

4πG

∫ ∞

0
dr|u′(r)|rd

(C.8)
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The brane term evaluates to give,

Ibrane = − 1
8πG

2Ωd

∫ ∞

0
drrd−1

√
1
f

+ f(u′)2 T

= − Ωd

4πG

∫ ∞

0
drrd−2f |u′|

= − Ωd

4πG

∫ ∞

0
dr|u′(r)|


rd−2 + rd



(C.9)

Observe that,
Iin + Ibrane = − Ωd

4πG

∫ ∞

0
dr|u′(r)|rd−2 (C.10)

So the total action is given by

I(τ0, T ) = IAdS(2τ0) − Ωd

4πG

∫ ∞

0
dr|u′(r)|rd−2 (C.11)

The second term is divergent for d > 2 due to the behaviour of the integrand as r → ∞, so
the action has to be renormalised for d > 2. For d = 2, the total action can be evaluated
analytically and is given by

I(τ0, T ) = IAdS(2τ0) − 1
2G

tanh−1(T )

= − c

6

τ0 + 2 tanh−1(T )

 (C.12)

Renormalisation for d > 2. As in appendix A, we will renormalise the action by a trick
that does not require finding the explicit counterterms. We have already renormalised the
action of the black hole phase, so the idea is to renormalise the cylinder phase by defining
the action relative to the black hole. Let us define the divergent term in (C.11) regulated
using a large cutoff at r = R̂,

ĨG(T ) := − Ωd

4πG

∫ R̂

0
dr|u′(r)|rd−2 (C.13)

In terms of the cutoff, ĨG(T ) ∼ − Ωd
4πG

T√
1−T 2 R̂d−3 at leading order. We define a renormalised

version of the term (C.13) by
IG := ĨG − ĨL + IL (C.14)

To show that IG is finite, we need to show that ĨG − ĨL is finite. However, since ĨG and ĨL

are evaluated using different cutoffs R̂ and R respectively, we need to first find a relation
between the two cutoffs. To this end, we relate the cutoffs to a common cutoff at z =  in
the Fefferman-Graham coordinates using

dz

z
= − dr

f(r)
(C.15)

Upon integrating this equation at large r using the condition that r = 1
z for large r to fix

the integration constant, we get

R̂ = 1


− 

4

R = 1


− 

4 + rd−2
H (1 + r2

H)
2d

d−1 + O(d)
(C.16)
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The difference between the integrands in ĨG and ĨL is O( 1
r2 ) for large r, so the possible

divergence in ĨG − ĨL comes from

ĨG − ĨL ⊃ − Ωd

4πG

∫ R̂

R
|u′(r)|rd−2 (C.17)

The integrand in this term is O(rd−4) for large r. So, using (C.16), we can check that
the term in (C.17) is O( 1

R3 ) so vanishes in the limit R → ∞. Thus, we have shown that
ĨG − ĨL is finite which means that IG in (C.14) is also finite. However, to check that the
renormalisation scheme in (C.14) is consistent, we need to show that IG is independent of
rH . This is not obvious since the r.h.s. of (C.14) involves expressions which depend on rH .
Treating the cutoff, R̂ = R̂(R, rH), consider

∂rH IG = ∂rH ĨG − ∂rH ĨL + ∂rH IL (C.18)

with the partial derivatives taken with T held fixed. A prescription to evaluate ∂rH ĨL

was discussed in footnote 10 following which it was observed that ∂rH IL = ∂rH ĨL. Now,
consider the remaining term in (C.18),

∂rH ĨG = − Ωd

4πG

∂R̂

∂rH
(|u′(r)|rd−2)

∣∣
r=R̂

(C.19)

Using (C.16) to evaluate ∂R̂
∂rH

, we see that ∂rH ĨG = 0 as the cutoff, R → ∞. Thus, we have
also shown that ∂rH IG = 0 so that IG = IG(T ) and is independent of τ0. Therefore the
renormalised action for the cylinder phase is

Icyl(τ0, T ) = IAdS(2τ0) + IG(T ) . (C.20)

The action of thermal AdS can also be expressed in terms of the Casimir energy as
IAdS(β) = βEvac.

D Coarse graining with a quantum channel

In this appendix we define a simple toy model for coarse graining by a quantum channel that
is similar, but not identical, to the holographic coarse graining map C defined in section 3.
The goal is to construct a channel that strips off an isometric ‘dressing’ operator, then
completely dephases.

Consider a finite-dimensional quantum system with Hilbert space H = HA ⊕ HB,
equipped with an isometry

V : HA → HB . (D.1)

For any state |a〉 ∈ HA, we refer to V |a〉 ∈ HB as a ‘dressed’ state. In the analogy to
large-N CFT, we view the subspace HA as the states around energy E and the subspace
HB as the states around energy E′, with E′ > E. The isometry V corresponds to dressing
a heavy state by single-trace operators, or in bulk language, dressing a black hole by adding
matter outside the apparent horizon.
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Define the projectors

PV = V V †, P̃V = 1B − PV , (D.2)

which satisfy P 2 = P and

P̃V V = V †P̃V = 0 . (D.3)

Denote the completely dephasing channels on HA and HB in the energy basis by DA and
DB. In terms of projectors onto energy eigenstates,

DA(ρ) =
∑

p∈A

PpρPp, DB(ρ) =
∑

n∈B

PnρPn (D.4)

where the notation p ∈ A indicates a sum over an orthonormal basis of energy eigenstates
in HA, and similarly for n ∈ B.

In this toy model we define a coarse-graining map C : L(HB) → L(HB) by

C(ρ) = V DA(V †ρV )V † + DB(P̃V ρP̃V ) . (D.5)

Then we have

1. C is a quantum channel.

2. The von Neumann entropy is non-decreasing under C, S(C(ρ)) ≥ S(ρ).

Statement (1) follows from the Choi-Kraus representation

C(ρ) =
∑

p∈A

V PpV †ρV PρV † +
∑

n∈B

PnP̃V ρP̃V Pn , (D.6)

which is easily shown to satisfy


i A†
i Ai = 1B. Statement (2) follows from an argument

almost identical to (3.3) using (D.3). We could also extend C to act on the full system,
C′ : L(H) → L(H), by acting with the diagonal projection on L(HA), without changing
the following discussion in any essential way.

To understand what C does, let’s apply it to a pure state. Any pure state |ψ〉 ∈ HB

can be expressed as

|ψ〉 =
∑

p∈A

V ap|p〉 +
∑

n∈B

bnP̃V |n〉 . (D.7)

The coarse-graining map acts on ρψ = |ψ〉〈ψ| as

C(ρψ) =
∑

p∈A

|ap|2V |p〉〈p|V † +
∑

n∈B

|b′
n|2|n〉〈n| (D.8)

with b′
n =


m∈B〈n|P̃V |m〉bm.

We see that C acts on a dressed state |ψ〉 = V |ψ̃〉 by completely dephasing HA, and it
acts on an undressed state |ψ〉 = P̃V |ψ〉 by completely dephasing HB. If we think of V as
dressing a state by infrared degrees of freedom, then this matches the intuitive notion of
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coarse graining — the coarse-grained density matrix ρ̄ = C(ρ) in this toy model retains the
quantum correlations among the ‘IR’ degrees of freedom created by V while discarding the
off-diagonal matrix elements connecting the undressed, ‘UV’ microstates. This is similar
to the holographic coarse-graining map. In fact, it is identical if we restrict to the class of
states studied in this paper; however, we do not know whether it is possible to decompose
the full Hilbert space of a large-N CFT in a way similar to the toy model. The bulk
suggests that it should be possible.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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