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Abstract. In this paper, the authors study the behavior of the sheaf cohomology functors
R•indGB(−) where G is an algebraic group scheme corresponding to a simple classical Lie
superalgebra and B is a BBW parabolic subgroup as defined in [GGNW]. We provide a
systematic treatment that allows us to study the behavior of these cohomology groups
R•indGBLf(λ) where Lf(λ) is an irreducible representation for the detecting subalgebra f.
In particular, we prove an analog of Kempf’s vanishing theorem and the Bott–Borel–Weil
theorem for large weights.

1. Introduction

1.1.

Let G be a reductive algebraic group over an algebraically closed field k. If B is a
Borel subgroup of G then the sheaf cohomology groups

H•(λ) := H•(G/B,L(λ)) ∼= R•indGB λ

play a central role in the representation theory for G. It is well known that the
irreducible G-modules are indexed by dominant integral weights, X+, and can
be realized as the socles of H0(λ). More precisely, for any λ ∈ X+, one has
L(λ) = socGH

0(λ). Another result that holds over arbitrary k is Kempf’s vanishing
theorem which states that for λ ∈ X+, Hn(λ) = 0 for n > 0. When the field k is of
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characteristic zero, the rational representations of G are completely reducible, and
a description of H•(λ) is given via the classical Bott–Borel–Weil (BBW) theorem.
For fields of characteristic p > 0, the general vanishing behavior for H•(λ) is not
known, and it is not clear how to formulate an appropriate generalization of the
BBW theorem. Additional information in regards to vanishing behavior is due to
Andersen for n = 1 [And] where he described socGH

1(λ) for all weights λ.
Now consider the more general case when G is a supergroup scheme with

Lie G = g where g is a classical “simple” Lie superalgebra over C, and P is
a parabolic supergroup scheme of G. A central problem in super-representation
theory is to understand the behavior of the sheaf cohomology groups RiindGP (−).
Zubkov has published a general discussion on this topic [Zub1]. Specific calculations
of sheaf cohomology have been made for specific supergroups such as GL(m|n),
OSP(m|2n), and Q(n) with certain parabolic/Borel subgroups [Zub1], [GrS1],
[GrS2], [Pen2], [PS], [S1], [S2]. From these computations, it is not clear if there is
a general theory that can be applied for all classical simple Lie superalgebras like
the one for reductive algebraic groups where computations of sheaf cohomology
is related to the combinatorics of finite reflection groups. The existence of a
Bott–Borel–Weil theory for supergroups has been an open questions since the
1980s. Recently, Coulembier has developed a BBW theory for basic classical Lie
superalgebras [Col].

D. Grantcharov, N. Grantcharov, Nakano and Wu [GGNW] introduced a family
of parabolic subgroups for G called BBW parabolic subgroups. These parabolic
subgroups arise naturally when considering the detecting subalgebras as defined by
Boe, Kujawa and Nakano in the mid 2000s [BKN1]. In [GGNW], it was shown that
if B is a BBW parabolic, the polynomial pG,B(t) =

∑∞
i=0 dimRiindGBC ti is equal

to a Poincaré polynomial for a finite reflection group W1̄ specialized at a power
of t. The existence of the BBW parabolics was also used in [GGNW] to resolve
a 15-year-old conjecture posed in [BKN1] on the realization of the cohomological
support varieties for the pair (g, g0̄) as a rank variety over a detecting subalgebra.

1.2.

The main goal of this paper is to provide a systematic treatment of the higher
sheaf cohomology groups R•indGBLf(λ) where B is a BBW parabolic subgroup
and Lf(λ) is an irreducible representation for the detecting subalgebra f. For the
reader who is familiar with the setting for reductive algebraic groups, we provide a
treatment similar to the one presented in [Jan, Part II]. Many of the constructions
are analogous. However, for supergroups there are differences in the behavior of
Hn(λ) that will be indicated at various points in the paper.

The paper is organized as follows. In Section 2, we present the basic notion
and conventions that will be use throughout the paper. In particular, the BBW
parabolic subgroups and subalgebras from [GGNW] are reintroduced. In the follow-
ing section (Section 3), we construct an important spectral sequence that allows
us to compare the sheaf cohomology for a supergroup scheme G when restricted to
the even component G0̄ to the sheaf cohomology for G0̄. Applications are presented
that demonstrate how several of the key results from [GGNW] can be obtained
through this new approach.

In Section 4, it is shown that, as in the reductive group situation, the socles of
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the induced modules H0(λ) where G is a supergroup arising from a simple classical
Lie superalgebra and B is a BBW parabolic subgroup are either zero or a simple
G-module. This yields a classification of irreducible rational G-representations.
This standard approach has appeared earlier in the work of Shibata [Sh, Sect. 4.4].

The vanishing behavior of the higher sheaf cohomology modules Hn(λ) is exp-
lored in Section 5. In particular, we prove an analog of Kempf’s vanishing theorem
and the Bott–Borel–Weil Theorem in this context. It is important to note that our
version of the Bott–Borel–Weil Theorem (Theorem 5.3.1) involves the considera-
tion of the lengths of elements for the even Weyl group W0̄. Examples are provided
for Q(n), n = 2, 3.

Finally in Section 6, our results are applied to obtain results on H1(λ). In the
reductive group case the socles are either zero or irreducible for these modules. In
[GGNW], it was shown this need not be the case for supergroups G. We provide
a formula for calculating the socle of H1(λ) for G, and give a criterion for the
irreducibility of the socle of H1(λ). These ideas were inspired by the earlier work
of Andersen on H1(λ) for reductive groups. Our analysis is then applied to show
that for G = Q(n), H1(λ) has simple socle for all nondominant weights λ.

Acknowledgements. The authors acknowledge the many contributions James E.
Humphreys (“Jim”) made in the area of algebraic group representations. His books
and expository articles were instrumental in the development of the field, and he
also wrote several important papers on the structure of line bundle cohomology
[Hum1], [Hum2], [Hum3], [Hum4], [Hum5].

Jim was very supportive of younger mathematicians in representation theory.
When the second author first entered the field, Jim wrote an extensive Mathema-
tical Review (MR) on his Ph.D. thesis on Projective Modules over Lie Algebras of
Cartan Type in 1990. The second author appreciates Jim’s words of encouragement,
careful reading of his work and his guidance over the past 30 years.

The authors thank the referee for providing useful comments and additional
references for the paper.

2. Overview: key concepts

2.1. Notation

We will use and summarize the conventions developed in [BKN1], [BKN2], [BKN3],
[LNZ], [GGNW]. For more details we refer the reader to [BKN1, Sect. 2].

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra over the complex numbers C with
supercommutator [ , ] : g ⊗ g → g. At times, we will impose more conditions on
g. For instance, g is called classical if (i) there is a connected reductive algebraic
group G0̄ such that Lie(G0̄) = g0̄, and (ii) the action of G0̄ on g1̄ differentiates to
the adjoint action of g0̄ on g1̄. Furthermore, a Lie superalgebra g is basic classical
if it is classical with a nondegenerate invariant supersymmetric even bilinear form.

In this paper, the superanalogs for reductive groups will be supergroup schemes
that arise from classical “simple” Lie superalgebras. There have been some at-
tempts to develop a formal theory for reductive supergroup schemes. One notable
difference is that being geometrically reductive (see [KW]) for supergroups does not
coincide with the standard structural notions of reductivity. Investigations yielding
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interesting results along the latter lines can be found in the work of Griskov and
Zubkov [GriZ].

The classical “simple” Lie superalgebras are not always simple, but are close
enough to being simple. These Lie superalgebras have appeared frequently in the
literature and are of general interest:

• gl(m|n), sl(m|n), psl(n|n) [general and special linear Lie superalgebras],
• osp(m,n) [ortho-symplectic Lie superalgebras],
• D(2, 1, α), F(4), G(3) [exceptional Lie superalgebras],
• q(n), psq(n) [queer Lie superalgebras],
• p(n), p̃(n) [periplectic Lie superalgebras].

For the queer Lie superalgebras, q(n) will be the Lie superalgebra with even and
odd parts gln, while psq(n) is the corresponding simple subquotient of q(n) (cf.
[PS]). The periplectic Lie superalgebras include p(n) with even component sln and
its enlargement p̃(n) with even component gln.

Let U(g) be the universal enveloping superalgebra of g. Supermodules over Lie
superalgebras can be viewed as unital module for U(g). If M and N are g-modules,
one can employ the properties of U(g) as a super Hopf algebra to define a g-module
structure on the dual M∗ and the tensor product M ⊗N .

The cohomology theory of g-modules has a natural interpretation when one
uses relative cohomology. The projective objects are relatively projective U(g0̄)-
modules, and every U(g)-module admits a relatively projective U(g0̄)-resolution.
By using these facts, given g-modules M,N , one can define the relative extension
groups Extn(g,g0̄)(M,N) by taking a relatively projective U(g0̄)-resolution for M .
Furthermore,

Extn(g,g0̄)(M,N) ∼= Hn(g, g0̄;M∗ ⊗N)

where Hn(g, g0̄;M∗⊗N) denotes relative Lie superalgebra cohomology which can
be computed using an explicit complex (cf. [Kum, 3.1.8 Cor., 3.1.15 Rem.], [BKN1,
Sect. 2.3]).

2.2. Rational modules

Let G be a smooth affine supergroup scheme over C and Mod(G) be the category
of rational modules for G. Let H be a closed subgroup scheme of G and Rj indGH(−)
be the higher right derived functors of the induction functor indGH(−). For a general
overview about supergroup schemes and induction, the reader is referred to work of
Brundan and Kleshchev; see [BruKl, Sects. 2, 4, 5], [Bru1, Sect. 2]. We note that the
assumption of smoothness ensures that the quotient G/H is locally decomposable
[Zub2]. Other important properties needed for G/H were established by Masuoka
and Zubkov in [MZ].

In the case when g is a classical Lie superalgebra and g = Lie G, the category
Mod(G) is equivalent to locally finite integral modules for Dist(G) = U(g) (cf.
[BruKl, Cor. 5.7]). In particular, if g is a classical Lie superalgebra, then Mod(G)
is equivalent to C(g,g0̄) (i.e., the category of g-supermodules that are completely
reducible over g0̄). The projectives in the category C(g,g0̄) are relatively projective
U(g0̄)-modules. Therefore, if M and N are rational G-modules then

ExtnG(M,N) ∼= Extn(g,g0̄)(M,N)

for all n ≥ 0.
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2.3. Parabolic subalgebras

Let g be a classical simple Lie superalgebra, and t be a fixed maximal torus in g0̄.
One can use the action of t on g to obtain a set of roots Φ. We can now invoke the
ideas presented by Grantcharov and Yakimov in [GY] to define parabolic subsets
S that correspond to parabolic subalgebras p of g. For precise details, see [GY],
[GGNW, 3.1, 3.2]. Given a parabolic subalgebra p, one has a decomposition of
S = S0 tS− with p = l⊕ u where (i) l is the Levi subalgebra with roots in S0, and
(ii) u is the nilradical of p with roots in S−.

A parabolic subalgebra, b, is one that arises from taking a principal parabolic
subset given by S = S(H) = S0 t S−, where H is listed in [GGNW, Table 7.1.2].
In this case, b ∼= f ⊕ u where the Levi subalgebra is the detecting subalgebra f
that was first introduced in [BKN1]. The Lie subalgebras f (resp. u) are given in
[GGNW, Table 7.1.1] (resp. [GGNW, Table 7.1.3]).

The parabolic subalgebra b is a parabolic subalgebra and technically is not a
Borel subalgebra. In this paper, we will view b as analogous to a Borel subalgebra
for a simple Lie algebra arising from an algebraic group. The detecting subalgebra f
will be analogous to a maximal torus. There exists a natural triangular decomposi-
tion of g = u+ ⊕ f⊕ u where the roots in u+ (resp. u) coincide with −(S−) (resp.
S−). Note the BBW parabolic subalgebra identifies with b = f⊕ u, and the BBW
parabolic subalgebras are defined for classical simple Lie superalgebra that are not
of type P .

Example 2.3.1. Consider the case when G = GL(n|n) with g = gl(n|n) or G =
Q(n) with g = q(n). The BBW parabolic b can be realized in g as

b =

{[
A B
C D

]
∈ g : A, B, C, D ∈ Ln(C)

}
where Ln(C) is the set of n×n lower triangular matrices. There exists a supergroup
scheme B with Lie B = b that corresponds to Dist(B) = U(b).

In [GGNW, Thm. 4.10.1], the sheaf cohomology R•indGBC was completely de-
scribed as a G-module. Its Poincaré series was shown to be equal to the Poincaré
series of a finite reflection group specialized either at s = t for Q(n) or s = t2 for
GL(n|n).

3. Spectral sequence constructions

3.1. Spectral Sequence I

Let G be a supergroup scheme and H be a closed subgroup scheme in G. Given
an H-module, M , a natural question to ask is whether one can express R•indGHM

when considered as a G0̄-module in terms of R•ind
G0̄

H0̄
(−). In [Bru1, Cor. 2.8],

Brundan showed that this can be accomplished in the Grothendieck group of G0̄-
supermodules by looking at alternating sums via Euler characters. This presents
some difficulties when one wants to analyze RnindGHM for a fixed n. The following
theorem relates RnindGHM for a fixed n as a G0-module to certain cohomology

groups for R•ind
G0̄

H0̄
(−) via a spectral sequence. Our construction was inspired by

the result stated for the structure sheaf by Sam and Snowden (cf. [SamSno, Prop.
2.1]), and employs the work in [Bru1, Sect. 2].
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Theorem 3.1.1. Let G be a smooth affine supergroup scheme and H be a closed
subgroup scheme of G, with g = LieG and h = Lie h. If M is a H-module, then
there exists a spectral sequence

Ei,j1 = Ri+j ind
G0̄

H0̄
[M ⊗ Λj((g1̄/h1̄)∗)]⇒ [Ri+j indGHM ]|G0̄

.

Proof. We will apply the spectral sequence construction given in [Kum, E9 Thm.,
Appendix E]. In order to do so we need to construct a convergent cochain filtration,
F , bounded above on the cochain complex, C, whose cohomology is [R• indGHM ]|G0̄

.

This will yield a convergent spectral sequence where Ei,j1 = Hi+j(F iC/F i+1C).
Recall that R•indGHM = H•(H,M ⊗ k[G]) = Ext•H(k,M ⊗ k[G]) (cf. [FP, Sect.

1]). Let

0→M → I0 → I1 → · · · .

be an injective H-resolution of M . By tensoring by k[G] one has an injective H-
resolution for M ⊗ k[G]:

0→M ⊗ k[G]→ I0 ⊗ k[G]→ I1 ⊗ k[G]→ · · · .

Now one filters k[G] by powers of I = k[G]k[G]1̄. Note that I is a H-G0̄-bimodule.
This induces a filtration on Cn = H0(H, In ⊗ k[G]):

Cn ⊇ H0(H, In ⊗ I) ⊇ H0(H, In ⊗ I2) ⊇ · · · . (3.1.1)

Since In is injective, H1(H, In ⊗ Ik) = 0, thus

H0(H, In⊗Ik/Ik+1)∼=H0(H, In⊗Ik/In⊗Ik+1)∼=H0(H, In⊗Ik)/H0(H, In⊗Ik+1).

By applying the construction described in the first paragraph, there exists a
spectral sequence

Ei,j1 = Hi+j(H,M ⊗ Ii/Ii+1)⇒ Hi+j(H,M ⊗ k[G]).

The result now follows by applying the isomorphisms given in [Bru1, Thm. 2.7],

Hs(H,M ⊗ It/It+1) ∼= Hs(H0̄,M ⊗ Λt((g1̄/h1̄)∗)⊗ k[G0̄]). �

One of the immediate consequences of this spectral sequence is the following fact.
LetG be a supergroup scheme arising from a classical Lie superalgebra. In this case,
G0̄ is reductive. Let P be a parabolic subgroup scheme which implies that G0̄/P0̄

is a projective variety. Then Rnind
G0̄

P0̄
takes finite-dimensional rational P0̄-modules

to finite-dimensional rational G0̄-modules. It now follows from Theorem 3.1.1 and
the fact that Rnind

G0̄

P0̄
(−) = 0 for n > dimG0̄/P0̄ that if M is a finite-dimensional

rational P -module then RnindGPM is a finite-dimensional rational G-module for
all n ≥ 0.
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3.2. Applications

In this section, we demonstrate how several key results in [GGNW, Props. 4.1.1
and 4.1.2] can be streamlined with shorter and more efficient proofs by using the
spectral sequence in Theorem 3.1.11.

Corollary 3.2.1. Let g = LieG be a classical simple Lie superalgebra and P be a
parabolic subgroup with M a P -module.

(a) Assume that Rn ind
G0̄

P0̄
[M ⊗ Λi((g1̄/p1̄)∗)] = 0 when n 6= j. Then

(Rn indGP M)|G0̄
∼= Rn ind

G0̄

P0̄
[M ⊗ Λ•((g1̄/p1̄)∗)]

for n ≥ 0.
(b) Assume that M ∼= C and Rn ind

G0̄

P0̄
[Λi((g1̄/p1̄)∗)] = 0 for n 6= j. Then

(Rn indGP C)|G0̄
∼= Rn ind

G0̄

P0̄
[Λ•((g1̄/p1̄)∗)]

for n ≥ 0.

Proof. Observe that part (b) which is [GGNW, Prop. 4.1.1(b)] follows immediately
from part (a). Also, note that part (a) is a stronger version of [GGNW, Prop.
4.1.1(a)].

For part (a), set H = P0̄ and apply the spectral sequence given in Theorem 3.1.1.
Under the assumption, one has Ei,j1 = 0 when i + j 6= j or equivalently Ei,j1 = 0

unless i = 0. The spectral sequence lives on the vertical axis (i.e., E0,j
1 for j ≥ 0).

Using the fact that the bidgrees of dr are (r, 1− r) (cf. [Kum, E.9 Thm., proof]),
it follows that the spectral sequence collapses and yields the isomorphism. �

Corollary 3.2.2. Let g = LieG be a classical simple Lie superalgebra and P be a
parabolic subgroup with M a P -module. Assume that Rn ind

G0̄

P0̄
[M⊗Λ•((g1̄/p1̄)∗)] =

0 for n > 0. Then

(Rn indGP M)|G0̄
∼= Rn ind

G0̄

P0̄
[M ⊗ Λ•((g1̄/p1̄)∗)]

for n ≥ 0.

Proof. Set H = P0̄ and apply the spectral sequence given in Theorem 3.1.1. In this
case, one has Ei,j1 = 0 unless i+ j = 0 or j = −i. The spectral sequence collapses
because the bidegrees of dr are (r, 1− r) for r ≥ 1, and the result follows. �

3.3. Spectral sequence II

One can use the theorem in [Jan, I. 4.1 Prop.] to construct a spectral sequence
that relates the composition of two induction functors.

Theorem 3.3.1. Let G be a supergroup scheme with H ≤ K ≤ G an inclusion of
closed subgroup schemes contained in G. If N is a H-module then there exists a
first quadrant spectral sequence

Ei,j2 = Ri indGK [Rj indKH N ]⇒ Ri+j indGH N.

1In the original statement of [GGNW, Prop. 4.1.1], i is used instead of j. In
Corollary 3.2.1, we use j to facilitate a smoother transition between the notation used in
the spectral sequence given in Theorem 3.1.1.
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3.4. Spectral sequence III

The third spectral sequence below was constucted in [GGNW, Prop. 6.2.1] and
relates the relative Lie superalgebra cohomology with sheaf cohomology. The stan-
dard construction involves a composition of left exact functors. This spectral
sequence is a first quadrant spectral sequence and the differentials also have bideg-
ree (r, 1− r). This spectral sequence can be viewed analogously to the one relating
cohomology for algebraic groups and sheaf cohomology presented in [Jan, I.4.5
Prop.].

Theorem 3.4.1. Let G be a supergroup scheme where g is a classical simple Lie
superalgebra, and H be a closed subgroup scheme of G with h = LieH. If M1 is a
G-module and M2 is a H-module then there exists a first quadrant spectral sequence

Ei,j2 = Exti(g,g0̄)(M1, R
j indGHM2)⇒ Exti+j(h,h0̄)(M1,M2).

4. Irreducible representations via H0(λ)

4.1.

Throughout this section, we will assume that G is a classical simple algebraic
supergroup scheme and B is a BBW parabolic forG. In particular, we will be tacitly
assuming that G is not of type P . Recall that one has a triangular decomposition
g = u ⊕ f ⊕ u+ with corresponding supergroup schemes G, U , F and U+. The
supergroup schemes U and U+ are unipotent: that is, the only finite-dimensional
simple module for these subgroup schemes is C.

There exists a maximal torus T0̄ contained in the even part of F , and set X =
X(T0̄). For a given F , there exists a subset of weights XF ⊆ X that indexes the set
of irreducible representations for F . For λ ∈ XF , let Lf(λ) be the corresponding
simple F -module. One can then inflate this module to B = F n U , and consider
Hn(λ) = RnindGBLf(λ).

The goal of this section is to show how to classify finite-dimensional simple G-
module via G-socles of H0(λ). The proofs follows along the same lines are in [Jan,
II Chap. 2] [BruKl, Sect. 6], and generalize the results for Q(n) stated in [Bru2,
Thm. 4.4].

4.2. Simple F -modules

For the algebraic supergroup scheme F where Lie F = f is a detecting subalgebra,
one can determine the set XF .

Example 4.2.1. Let G = Q(n). In this case, F ∼= Q(1)×Q(1)× · · · ×Q(1), and
XF = X(T0̄). The irreducible representations are given by modules u(λ) [BruKl,
Lem. 6.4].

Example 4.2.2. Let G = GL(n|n). The subgroup F ∼= GL(1|1) × GL(1|1) ×
· · · × GL(1|1) and XF = X(T0̄). The irreducible representations are formed by
taking outer tensor products of simple GL(1|1)-representations which are either
one-dimensional or two-dimensional.
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Example 4.2.3. Let G = GL(m,n). Without loss of generality we may assume
that m ≤ n. In this case, F ∼= [GL(1|1)×GL(1|1)×· · ·×GL(1|1)]×GLn−m where
there are m copies of GL(1|1). Moreover, XF = X(T1) × X(T2)+ where T1 is a
maximal torus for GL(1|1)×GL(1|1)× · · · ×GL(1|1), and T2 is a maximal torus
for GLn−m. Note that one must take dominant weights on X(T2), and XF is a
proper subset of X.

4.3.

Let L be a finite-dimensional simple G-module. Then HomB(L,Lf(λ)) 6= 0 for
some λ ∈ XF . Therefore, by Frobenius reciprocity 0 6= HomG(L,H0(λ)), and
L ↪→ H0(λ) for some λ ∈ XF . Let XF,+ = {λ ∈ XF : H0(λ) 6= 0}.

Proposition 4.3.1. Let λ ∈ XF,+. Then H0(λ)U
+ ∼= Lf(λ).

Proof. We first consider a more general idea about induction. Let M be a rational
B-module and let εM : indGBM →M be the evaluation homomorphism. Using the

same proof in [Jan, II Prop. 2.2 and (1)], one can show that [indGBM ]U
+

↪→ M
under εM . This is a monomorphism of F -modules.

Now apply this to the case when M = Lf(λ). The statement of the proposition
now follows since Lf(λ) is simple as an F -module and the U+-fixed points H0(λ)
cannot be zero for λ ∈ XF,+. �

4.4.

We can now give a parametrization of simple G-modules.

Theorem 4.4.1. Let G be a classical simple algebraic subgroup scheme. Then
there is a 1-1 correspondence between simple G-modules and XF,+ given by L(λ) =
socGH

0(λ).

Proof. First we need to show that if λ ∈ XF,+ then socGH
0(λ) is simple. This

can easily be seen because if L1 and L2 are simple G-modules with L1 ⊕ L2 ↪→
H0(λ), then one can take U+-fixed points to get a monomorphism of F -modules:

LU
+

1 ⊕ LU+

2 ↪→ Lf(λ). Since U+-fixed points on Lj , j = 1, 2 are nontrivial and
Lf(λ) is a simple F -module, one obtains a contradiction.

Let L = socGH
0(λ). Then LU

+ ∼= Lf(λ). This shows that the socles of H0(λ)
and H0(µ) where λ, µ ∈ X+ are not isomorphic unless λ = µ. Therefore, for λ ∈
X+, one can set L(λ) = socGH

0(λ) to obtain the desired bijective correspondence.
�

4.5.

We will now indicate how one can parametrize the simple modules using this
setup for G = Q(n). Let M be a G-module and M =

⊕
µ∈XMµ be its weight

space decomposition. We have f = f0̄⊕ f1̄ with f0̄ ∼= t, and [f0̄, f1̄] = 0. This implies
that the weight space Mµ is an F -module.

Now let M be a simple Q(n)-module. Then for some λ ∈ XF ,

0 6= HomG(M, indGBLf(λ)) ∼= HomB(M,Lf(λ)).

1109



DAVID M. GALBAN, DANIEL K. NAKANO

It follows that Lf(λ) has to appear in the head of M as B-module and λ must be
the highest weight of M . The ordering is given by the roots

∆0̄ = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn}.

Furthermore,

0 6= HomB(M,Lf(λ)) ⊆ HomB0̄
(M,Lf(λ)) ∼= HomG0̄

(M, ind
G0̄

B0̄
Lf(λ)).

Now Lf(λ) as a B0̄-module is a direct sum of copies of the one-dimensional module
λ, so it follows that λ must be in (X0̄)+ (i.e., it is a dominant integral weight).
The upshot of this analysis is that L(λ) = socGH

0(λ) where λ ∈ (X0̄)+ and λ is
the highest weight of L(λ) (cf. [Bru2, Thm. 4.18]).

For G not of type Q the weight spaces no longer yield F -modules, so this analysis
will not work. An interesting problem would be to provide explicit parameteriza-
tions of simple modules involving weights for the other classical simple Lie superal-
gebras. Moreover, once one has an explicit parametrization, an interesting problem
would be to develop a theory of decomposition numbers (e.g., [H0(λ) : L(µ)] for
λ, µ ∈ XF,+).

5. Generic behavior for BBW parabolics

5.1. Redux: GGNW computations

Assume throughout this section that g is a classical simple Lie superalgebra not
of type P . Furthermore, let G be a supergroup scheme with g = Lie G, and B a
BBW parabolic subgroup of G. Set

pG,B(t) =

∞∑
i=0

dimRiindGBC ti.

For the detecting subalgebra f associated to b, there is an isomorphism of rings
given by the restriction map

S•(g∗1̄)G0̄ ∼= S•(f∗1̄)N .

where N is a reductive algebraic group. If N0 is the connected component of
the identity in N then W1̄ = N/N0 is a finite reflection group. Let pW1̄

(s) =∑
w∈W1̄

sl(w) be the Poincaré polynomial for W1̄.

A fundamental result in [GGNW, Sects. 4.2-4.9] was the calculation of the

modules R•ind
G0̄

B0̄
Λ•((g1̄/b1̄)∗). It was shown that

Rnind
G0̄

B0̄
Λj((g1̄/b1̄)∗) = 0 for n 6= j. (5.1.1)

Furthermore, in the case when n = j, Rnind
G0̄

B0̄
Λn((g1̄/b1̄)∗) is a direct sum of

trivial modules whose number is prescribed by pW1̄
(s). These results in conjunction

with Corollary 3.2.1 yield the calculation of R•indGBC which is summarized below
(cf. [GGNW, Thm. 4.10.1]).
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Theorem 5.1.1. Let g be a classical simple Lie superalgebra with g = LieG.
Assume that g is not isomorphic to P (n). Let B be the parabolic subgroup such
that b = LieB where b is a BBW parabolic subalgebra. Then

(a) R• indGB C is a direct sum of trivial modules.
(b) The number of trivial modules in Rn indGB C is given by the coefficient in

front of tn in
pG,B(t) = pW1̄

(s)

where s = t for G of type Q, and s = t2 otherwise.

5.2. An analog of Kempf’s vanishing theorem

Let T0̄ be a maximal torus in G0̄, X = X(T0̄) and (X0̄)+ the dominant integral
weights. The Weyl group of G0̄ is denoted by W0̄ with identity element 1 ∈W0̄.

Moreover, let V be a T0̄-module and V = ⊕γ∈XVγ be its weight space decompo-
sition. Set wt(V ) = {γ ∈ X : Vγ 6= 0} (i.e., the set of weights of V ). We start off
this section by stating a key definition.

Definition 5.2.1. Let λ ∈ X and w ∈W0̄.

(a) The weight λ is very dominant if µ + σ ∈ X+ for all µ ∈ wt(Lf(λ)) and
σ ∈ wt(Λ•((g/b)∗)).

(b) The set of very dominant weights will be denoted by X++.
(c) Set Γ(λ,w) = wt(Lf(λ)⊗w−1Λ•((g/b)∗)). For γ ∈ Γ(λ,w), let mγ,w be the

multiplicity of the weight γ in Lf(λ)⊗ w−1Λ•((g/b)∗).

As a consequence of Theorem 3.1.1, we can provide a criterion for the vanishing
of the higher sheaf cohomology groups for weights that are very dominant.

Theorem 5.2.2. Let λ ∈ X++, and 1 be the identity element in W0̄. Then

(a) Rn indGB Lf(λ) = 0 for n > 0.

(b) indGB Lf(λ)|G0̄
∼= ⊕γ∈Γ(λ,1)[ind

G0̄

B0̄
γ]⊕mγ,1 as a G0̄-module.

Proof. One can apply the spectral sequence in Theorem 3.1.1 with H = B and
M = Lf(λ). Under the condition that λ ∈ X++, one has Ei,j1 = 0 for i + j > 0.
Therefore, the spectral sequence degenerates and yields part (a). Part (b) follows

because under the assumption that λ ∈ X++, one has R1ind
G0̄

B0̄
γ = 0 for all

γ ∈ Γ(λ, 1). �

We can now illustrate how this theorem works for q(n).

Example 5.2.3. Let g = q(n), G = Q(n) and B be a BBW parabolic subgroup.
For λ ∈ X, Lf(λ) ∼= λ⊕ dimLf(λ) (direct sum of copies of λ) as a B0̄-module.

First observe that λ = 0 is not very dominant because 0 6= R1indGBC = R1indGBλ
by Theorem 5.1.1. Let λ ∈ X++. In this case, λ ∈ X++ if and only if λ+σ ∈ (X0)+

for all σ ∈ wt(Λ•((g/b)∗)). Since σ can be zero, one has X++ ⊆ (X0̄)+.
The weight σ is a sum of distinct roots from the set −Φ+

1̄
= {εi − εj : 1 ≤

i < j ≤ n}. Now the simple roots for G0̄ are given by ∆0̄ = {α1, . . . , αn} where
αi = εi − εi+1 where i = 1, 2, . . . , n − 1. The condition that λ + σ ∈ (X0)+ is
equivalent to 〈λ+ σ, α∨〉 ≥ 0 for α ∈ ∆0̄.

A direct calculation shows that −〈σ, α∨〉 ≥ n+ 1, and it follows that

{λ ∈ X : n+ 1 ≤ 〈λ, α∨〉 for all α ∈ ∆0̄} ⊆ X++ ⊆ (X0̄)+.
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5.3. An analog of the Bott–Borel–Weil theorem

For w ∈W0̄, recall that the dot action on X is given by w · λ = w(λ+ ρ)− ρ. Let
CZ for G0̄ be defined as in [Jan, II. 5.5].

For a given w ∈W0̄, set

Ω(w) = {λ ∈ X : µ+w−1σ ∈ CZ for all µ ∈ wt(Lf(λ)) and σ ∈ wt(Λ•((g1̄/b1̄)∗))}.

Observe that Ω(w) ⊆ CZ for all w ∈ W0̄ since 0 is a weight of Λ•((g1̄/b1̄)∗). We
say that a weight µ is a generic weight if and only if µ ∈

⋃
w∈W0̄

w · Ω(w) := Ω.
The set Ω will be called the set of generic weights.

We can now prove a version of the Bott–Borel–Weil Theorem for generic weights.
Note that this theorem encompasses Theorem 5.2.2 which coincides with how the
ordinary BBW Theorem encompasses the classical Kempf’s vanishing theorem (see
[Jan, II. Chaps. 4 and 5]).

Theorem 5.3.1. Let w ∈W0̄ and w ·λ is a generic weight where λ ∈ Ω(w). Then

(Rn indGB Lf(w · λ))|G0̄
∼=

{⊕
γ∈Γ(λ,w)[ind

G0̄

B0̄
γ]⊕mγ,w n = l(w),

0 n 6= l(w).

Proof. Let µ + w−1σ ∈ CZ where µ is a weight of Lf(w · λ) and σ a weight of
Λ•((g1̄/b1̄)∗). According to the ordinary BBW Theorem [Jan, II 5.5 Cor.], one has

Rnind
G0̄

B0̄
w · (µ+ w−1σ) ∼=

{
0 if n 6= l(w),

ind
G0̄

B0̄
µ+ w−1σ if n = l(w).

(5.3.1)

Now apply the spectral sequence in Theorem 3.1.1 with H = B and M = Lf(w ·λ).

From (5.3.1), it follows that Ei,j1 = 0 for i+ j 6= l(w). One can now apply the same
reasoning as in the proof of Theorem 5.2.2. The spectral sequence degenerates and
yields the desired result. �

5.4.

Let G = Q(n). Since wt(Lf(λ)) = {λ}, one has for a given w ∈W0̄,

Ω(w) = {λ ∈ X : λ+ w−1σ ∈ CZ for all σ ∈ wt(Λ•((g1̄/b1̄)∗))}.

We now show that Ω can be obtained by translating Ω(1) by the ordinary action
of the Weyl group W0̄.

Lemma 5.4.1. Let g be a semisimple Lie algebra and let σ be a sum of distinct
negative roots of g. Then for all w in the Weyl group W of g, w · σ is also a sum
of distinct negative roots.

Proof. Let Aw be the set of all roots α in Φ+ such that w(α) ∈ Φ−, and let Bw be
the set of all roots β in Φ+ such that w(β) ∈ Φ+. If σ is sum of distinct negative
roots, then it may be written as

σ = −α1 − · · · − αn − β1 − · · · − βm
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where αi ∈ Aw for all i and βj ∈ Bw for all j. Then

w · σ = w(σ) + w · 0 = −w(α1)− · · · − w(αn) + w(−β1) + · · ·+ w(−βm) + w · 0.

Notice that
w · 0 =

∑
α∈Aw

w(α),

and so
−w(α1)− · · · − w(αn) + w · 0

is a sum of distinct negative roots

−w(α1)− · · · − w(αn) + w · 0 = w(γ1) + · · ·+ w(γl),

where the γk are all in Aw. Moreover, since βj is in Bw, each w(−βj) is a negative
root, so this implies that w · σ is a sum of negative roots. Finally, since the γk
and −βj are all distinct roots, so too are the w(γk) and w(−βj), so σ is a sum of
distinct negative roots. �

Proposition 5.4.2. Let G = Q(n). The generic regions w · Ω(w) are conjugate
under the regular action of the Weyl group W0̄. Consequently, Ω =

⋃
w∈W0̄

w(Ω(1)).

Proof. It is enough to show that w ·Ω(w) is equal to w(Ω(1)). Let λ ∈ Ω(1). Then
for all positive roots α and all sums of distinct negative roots σ,

〈λ+ σ + ρ, α∨〉 ≥ 0.

By the above lemma, w−1 · σ is a sum of distinct negative roots, and so

〈λ+ w−1 · σ + ρ, α∨〉 ≥ 0.

Now
λ+ ρ+ w−1 · σ = [λ+ w−1ρ− ρ] + w−1σ + ρ.

Therefore, λ+w−1ρ−ρ is an element of Ω(w). This, however, is equal to w−1 ·(wλ),
and so wλ ∈ w · Ω(w). Thus, w(Ω(1)) ⊆ w · Ω(w). The other direction follows
similarly. �

5.5. Example: G = Q(2)

In this case G0̄
∼= GL2 and W0̄

∼= Σ2 = {1, sα}. Moreover, wt(Λ•((g1̄/b1̄)∗)) =
{0,−α}. Using the definition of Ω(w), one can directly show that

Ω(1) = {(λ1, λ2) : λ1 − λ2 ≥ 1},
Ω(sα) = {(λ1, λ2) : λ1 − λ2 ≥ −1}.

Therefore,

Ω =
⋃

w∈W0̄

w · Ω(w) = {µ = (µ1, µ2) : µ1 − µ2 6= 0}.

It follows that for µ ∈ Ω, Hn(µ)|G0̄
can be computed for all n by Theorem 5.3.1.

This agrees with the calculation for G = Q(2) given in [Bru1, Lem. 4.4].
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5.6. Example: G = Q(3)

One has G0̄
∼= GL3 and

W0̄
∼= Σ3 = {1, sα1 , sα2 , sα1sα2 , sα2sα1 , sα1sα2sα1}.

Moreover, the generic region Ω =
⋃
w∈W0̄

w · Ω(w) where

Ω(1) = {λ ∈ X : 〈λ, α∨1 〉 ≥ 2, 〈λ, α∨2 〉 ≥ 2},
Ω(sα1) = {λ ∈ X : 〈λ, α∨1 〉 ≥ 3, 〈λ, α∨2 〉 ≥ 0},
Ω(sα2) = {λ ∈ X : 〈λ, α∨1 〉 ≥ 0, 〈λ, α∨2 〉 ≥ 3},

Ω(sα1sα2) = {λ ∈ X : 〈λ, α∨1 〉 ≥ 3, 〈λ, α∨2 〉 ≥ −1},
Ω(sα2sα1) = {λ ∈ X : 〈λ, α∨1 〉 ≥ −1, 〈λ, α∨2 〉 ≥ 3},

Ω(sα1sα2sα1) = {λ ∈ X : 〈λ, α∨1 〉 ≥ 0, 〈λ, α∨2 〉 ≥ 0}.

Therefore, it can be shown that

Ω =
⋃

w∈W0̄

w{λ ∈ X : 〈λ, α∨1 〉 ≥ 2, 〈λ, α∨2 〉 ≥ 2},

i.e., the W0̄-conjugates of Ω(1) under the regular action. The generic region for
this case is given below via the shaded regions.

0

ω2

ω1

5.7. Comparison of cohomology for (g, g0̄) and (b, b0̄)

For reductive algebraic groups, one can use the induction functor to compare
cohomology for G to that for P where P is any parabolic subgroup [Jan, I. 4.5
Proposition]. Using Theorem 3.4.1 and 5.3.1, one can obtain a comparison theorem
for extensions between modules for (g, g0̄) and (b, b0̄).
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Theorem 5.7.1. Let G be a supergroup scheme where g is a classical simple Lie
superalgebra, and B be a BBW parabolic subgroup of G. Moreover, let λ ∈ X,
w ∈ W0̄, w · λ be a generic weight where λ ∈ Ω(w) and M be a G-module. Then
for i ≥ 0,

Exti(g,g0̄)(M,Rl(w) indGB Lf(w · λ)) ∼= Ext
i+l(w)
(b,b0̄) (M,Lf(w · λ)).

Proof. Consider the spectral sequence in Theorem 3.4.1 with H = B. Under the
condition that w · λ be a generic weight, Rj indGB Lf(w · λ) 6= 0 when j 6= l(w).

Therefore, the spectral sequence collapses, and E
i,l(w)
2

∼= Ext
i+l(w)
(b,b0̄) (M,Lf(w · λ))

for all i ≥ 0. �

5.8. Summary: characters of H•(λ)

The following fundamental (open) problems are of central importance in our theory
of sheaf cohomology with BBW parabolic subgroups.

Problem 5.8.1. Determine when Hn(λ) 6= 0.

Problem 5.8.2. Compute chHn(λ) for all λ ∈ X and n ≥ 0.

The problem is equivalent to determining the composition factors of chHn(λ)
as a G0̄-module. Some information especially for small weights can be obtained
via methods of Broer (cf. [Br, Lem. 2.10]). Brundan [Bru1, Cor. 2.8] proved that
the Euler characteristic is given by∑

n≥0

(−1)nch Hn(λ) =
∑
n≥0

(−1)nch Rnind
G0̄

B0̄
Lf(λ)⊗ Λ•((g1̄/b1̄)∗).

From our results in the previous sections:

(i) ch Hn(0) = ch RnindGBC is known by Theorem 5.1.1.
(ii) ch Hn(λ) is known for large weights λ given by the conditions in Theorems

5.2.2 and 5.3.1.

It remains to determine the behavior for ch Hn(λ) when λ is outside the “generic
region” Ω.

6. Results on H1(λ)

6.1.

For the moment, assume that G is a reductive algebraic group and B is a Borel
subgroup (arising from the negative roots) [Jan]. If λ is a weight, then Andersen
[And] proved that either H1(λ) = R1indGBλ is either zero or has a simple G-socle.
The socle of H1(λ), socGH

1(λ), can be explicitly described [Jan, II 5.15 Prop.].
For Hn(λ), n ≥ 2, the vanishing behavior remains an open question over fields of
characteristic p > 0.

Let us now return to the situation where G is a supergroup scheme with
Lie G = g where g is a simple classical Lie superalgebra and B is a BBW parabolic
subgroup in G. In Section 4, we proved that H0(λ) is either zero or has simple
socle. In dramatic contrast to the situation for reductive groups, Theorem 5.1.1
demonstrates that H1(λ) need not have simple socle. For example, if G = Q(3)
then H1((0, 0, 0)) = R1indGBC ∼= C⊕ C.
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6.2. Socles for H1(λ)

Let P = LP n UP be a parabolic subgroup such that B ⊆ P ⊆ G. For any
σ ∈ XF,+, let σ̄ be the weight in X with LP (σ̄)∗ = [L(σ)∗]UP where LP (σ̄) is the
inflation of a simple LP -module.

Theorem 6.2.1. Let G be a supergroup arising from a simple Lie superalgebra
g, B be a BBW parabolic subgroup, and λ ∈ X. Suppose there exists a parabolic
subgroup scheme P in G with B ⊆ P ⊆ G with R0 indPB Lf(λ) = 0. Then for all
σ ∈ XF,+,

[socGH
1(λ) : L(σ)] = [socLR

1 indPB Lf(λ) : LP (σ̄)].

Proof. Suppose that R0 indPB Lf(λ) = 0. Consider the spectral sequence given in
Theorem 3.3.1 with K = P , H = B and N = Lf(λ). One has a five-term exact
sequence of the form

0→ E1,0
2 → E1 → E0,1

2 → E2,0
2 → E2.

The assumption implies that Ei,02 = 0 for i ≥ 0. Therefore,

H1(λ) ∼= indGP [R1indPBLf(λ)].

In order to compute the socle we need to consider homomorphisms of L(σ) into
H1(λ):

HomG(L(σ), H1(λ)) ∼= HomG(L(σ), indGP [R1indPBLf(λ)])

∼= HomP (L(σ), R1indPBLf(λ))

∼= HomLP (k,HomUP (k, L(σ)∗ ⊗R1indPBLf(λ)))

∼= HomLP (k,HomUP (k, L(σ)∗)⊗R1indPBLf(λ))

∼= HomLP (k, LP (σ̄)∗ ⊗R1indPBLf(λ))

∼= HomLP (LP (σ̄), R1indPBLf(λ)).

The statement of the theorem follows from this chain of isomorphisms. �

6.3.

The following result uses Theorem 6.2.1 and provides a criterion for the irreducibi-
lity of socGH

1(λ).

Corollary 6.3.1. Let G be a supergroup arising from a simple classical Lie super-
algebra g, B be a BBW parabolic subgroup, and λ ∈ X. Suppose there exists a
parabolic subgroup scheme P in G with B ⊆ P ⊆ G satisfying:

(a) R0 indPB Lf(λ) = 0,

(b) R1 indPB Lf(λ) has simple L-socle.

Then socGH
1(λ) is simple.
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6.4. Applications

Let G = Q(2) and σ = (σ1, σ2) be a weight in (X0̄)+. In [Pen1, Sect. 7], Penkov
computed the characters of all the irreducible Q(2)-modules L(σ) of highest weight
σ. In particular, suppose σ is not a nonzero integer multiple of ρ. Then

chL(σ) =


e0 σ = 0,

2 chL0̄(σ) + 2 chL0̄(σ − α) σ1 − σ2 6= 1,

2 chL0̄(σ) σ1 − σ2 = 1

,

where L0̄(σ) is the irreducible G0̄-module of highest weight σ, with

chL0̄(σ) = eσ + eσ−α + · · ·+ ewσ+α + ewσ.

Here w = sα, which is the longest element in W0̄. If σ is a nonzero integer multiple
of ρ, then

chL(σ) = 2 chL0̄(σ).

On the other hand, from [Bru1, Lem. 4.4] the character of the induced module
indGBLf(σ) for nonzero dominant σ is

ch indGBLf(σ) = 2(eσ + 2eσ−α + · · ·+ 2ewσ+α + ewσ).

Therefore, when σ is not an integer multiple of ρ with σ1 6= σ2 +1, indGBLf(σ) is an

irreducible module isomorphic to L(σ). Otherwise, indGBLf(σ) has length 2, with
composition factors L(σ) and L(σ − α). Moreover, by Serre duality [Bru1, Thm.
5.1], H1(σ) ∼= H0(−σ)∗. If wσ ∈ (X0̄)+, then H1(σ) is either irreducible or has
socle isomorphic to L(wσ − α). In summary, if H1(σ) 6= 0, then H1(σ) will have
simple G-socle.

Let G = Q(n). Consider a minimal parabolic subgroup Pα containing B with
Lie Pα the Lie superalgebra generated by b = Lie B with the root spaces xα where
α ∈ ∆0̄ where ∆0̄ = {εi − εi+1 : i = 1, 2, . . . , n}. Then Pα = Lα nUα where Lα is
a supergroup scheme of type Q(2).

Now assume that λ ∈ X with 〈λ, α∨〉 < 0. Then by Theorem 3.1.1,

R0indPαB Lf(λ)|Lα ∼= R0indLαB∩LαLf(λ)|Lα = 0.

One can now invoke Theorem 6.2.1:

[socGH
1(λ) : L(σ)] = [socLα R

1 indPαB Lf(λ) : LPα(σ̄)]. (6.4.1)

The analysis for Q(2) shows that R1 indPαB Lf(λ) has a simple Lα-socle. We can
now state the following theorem.

Theorem 6.4.1. Let G = Q(n) and λ ∈ X where 〈λ, α∨〉 < 0 for some α ∈ ∆0̄.
Then H1(λ) has a simple G-socle.

6.5.

Let g be a simple classical Lie superalgebra of type other than Q. Then a similar
type of analysis can be done for minimal parabolic subgroups Pα = LαnUα where
Lα is of type GL(2|2). This motivates the following open problem.
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Problem 6.5.1. Determine socGH
1(λ) for G = GL(2|2).

The solution to the aformentioned problem in conjunction with Corollary 6.3.1
would provide necessary insights into solving the more general problem.

Problem 6.5.2. Compute socGH
1(λ) for all λ ∈ X.

The sheaf cohomology groups Hn(λ) for n ≥ 0 are central objects for the
cohomology and representation theory of G. As demonstrated in this paper, these
sheaf cohomology groups unify the theory of Lie superalgebra representations.
Their vanishing behavior is tied in with the combinatorics of the Weyl group for
G0̄ acting on odd roots. Furthermore, concrete calculations are highly dependent
on the use of the detecting subalgebra f along with the finite reflection group W1̄.
This produces a unique mixture of the odd and even theories. Further investigations
along these lines should yield solutions to the open questions about these G-
modules and provide new insights into the representation theory for classical simple
Lie superalgebras.
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[KW] T. Krämer, R. Weissauer, Semisimple super Tannakian categories with a small
tensor generator, Pacific J. Math. 276 (2015), no. 1, 229–248.

[Kum] S. Kumar, Kac–Moody Groups, their Flag Varieties and Representation Theo-
ry, Progress in Mathematics, Vol. 204, Birkhaüser, Boston, MA, 2002.
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