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The locking of lasers to optical cavities is ubiquitously required in the field of precision interferometry
such as Advanced LIGO to yield optimal sensitivity. Using higher-order Hermite-Gauss (HG) modes for the
main interferometer beam has been a topic of recent study, due to their potential for reducing thermal noise
of the test masses. It has been shown however that higher-order HG modes are more susceptible to coupling
losses into optical cavities: for a generic HGn;n mode, the misalignment and mode-mismatch-induced power
losses scale as 2nþ 1 and n2 þ nþ 1 respectively with n being the mode index. In this paper we calculate
analytically for the first time the alignment and mode mismatch sensing signals for arbitrary higher-order
HG modes with both the traditional sensing schemes (using Gouy phase telescopes and quadrant
photodetectors) and the more recently proposed radio-frequency jitter-based sensing schemes (using only
single-element photodiodes). We show that the sensing signals and also the signal-to-shot noise ratios for
higher-order HG modes are larger than for the fundamental mode. In particular, for a generic HGn;n mode,
the alignment and mode mismatch sensing signals in the traditional sensing schemes scale approximately asffiffiffi
n

p
and n respectively, whereas in the jitter-based sensing schemes they scale exactly as 2nþ 1 and

n2 þ nþ 1, respectively, which exactly matches the decrease in their respective tolerances. This potentially
mitigates the downside of higher-order HG modes for their suffering from excessive misalignment and
mode-mismatch-induced power losses.
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I. INTRODUCTION

The sensitivity of all leading gravitational wave detectors
such as Advanced LIGO and Advanced Virgo [1–3] at signal
frequencies around 100 Hz is limited by the thermal noise of
the test-mass optics. This is also likely to be the case for next
generation detectors such as Cosmic Explorer and Einstein
Telescope [4,5]. To reduce this noise and thus obtain better
detector sensitivity, the idea of replacing the currently used
fundamental Gaussian laser beam with higher-order optical
modes such as Laguerre-Gauss (LG) modes or Hermite-
Gauss (HG) modes has been proposed. Higher-order modes
with more uniform intensity distributions than the funda-
mental Gaussian beam can better “average out” the effects of
this thermal noise [6,7]. Research into the potential use of
higher-order LG3;3 mode carried out with numerical simu-
lations and tabletop experiments [8,9] has shown that the
surface figure imperfections present even in state-of-the-art
mirrors will cause significant impurity and losses for the
LG3;3 mode in realistic, high-finesse cavities [10–12].
However, it has also been shown [13,14] that higher-order

HG modes such as HG3;3 mode can be made almost as
robust as the currently used HG0;0 against mirror surface
deformations with the deliberate addition of astigmatism to
the test masses.
A. Jones et al. [15] and the authors of this paper [16] have

shown however the misalignment and mode-mismatch-
induced power coupling losses increase with the mode
order. As a result, higher-order HGmodes are more sensitive
to beam distortions such as misalignment and mode mis-
match than the fundamental mode. However, in this paper
we show that higher-order HG modes also have stronger
alignment and mode mismatch sensing signals and thus
better sensing and control capabilities. This is essential for
the implementation of higher-order HG modes in future
gravitational wave detectors for their thermal noise benefits,
as well as in many other areas that utilize the beneficial
higher-order spatial laser modes, such as in multimode
optical quantum information systems [17] and a variety
of microscopy-related systems for high resolution imaging
[18]. We demonstrate this result by calculating the so-called
relative sensing gain, which is defined as the error signal
ratio of higher-order mode compared against the fundamen-
tal mode. In this paper we will investigate both analytically*liu.tao@ligo.org
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and through FINESSE [19–22] simulations the alignment and
mode mismatch sensing gains as functions of HG mode
index for an arbitrary nonastigmatic optical cavity in differ-
ent detection schemes. The cavity mirrors are assumed to be
infinitely large and have no clipping loss.
We consider the traditional heterodyne wavefront sensing

(WFS) scheme [23,24] and themore recently proposed radio-
frequency jitter modulation sensing (RFJ) scheme [25]
for the alignment sensing, and the mode-converter sensing
(MCS) scheme [26] and radio-frequency lens modulation
sensing (RFL) scheme [25,27–29] for mode mismatch
sensing, as shown in Fig. 1. Specifically, WFS uses two
split photodetectors separated by π

2 radians Gouy phase for
the two orthogonal misalignment degrees of freedom per
axis, namely tilt and lateral displacement. RFJ for alignment
sensing on the other handmakes use of an electro-optic beam
deflector (EOBD) to impose RF jitter sidebands separated
from the carrier frequency by the higher-order mode differ-
ence frequency of the optical cavity. Demodulating the beat
signal between the RF jitter modulation-induced offset
mode sidebands and the misalignment-induced carrier
frequency offset modes on a single-element photodiode
in orthogonal demodulation phases (i.e. separated by π

2

radians) results in linear error signals for both tilt and
translation of the input beam with respect to the cavity
axis. ForMCSwe use an astigmaticmode converter and two
45°-rotated quadrant photodetectors (QPD) separated by π

4

radians Gouy phase to sense the two orthogonal mode
mismatch degrees of freedom, namely waist size and waist
position mismatch. RFL for the mode mismatch sensing on
the other hand uses an electro-optic lens (EOL) device to
produce RF defocus sidebands separated from the carrier
frequency by twice the higher-order mode difference

frequency of the optical cavity to simultaneously extract
the full mode mismatch error signals in the orthogonal
demodulation phases from a single photodiode. We show
that in all the aforementioned sensing schemes, higher-order
HG modes always have stronger sensing signals compared
against the fundamental mode. In particular, RFJ/L schemes
show an increase in the sensing gains and the signal-to-shot
noise ratio that exactly matches the decrease in the corre-
sponding tolerance [15,16], which potentially mitigates the
downside of higher-order HG modes for their suffering from
excessive misalignment and mode-mismatch-induced power
losses in sensing-noise-limited interferometers. We also
conduct the corresponding FINESSE simulations for compari-
son against the analytical results for the sensing gains. The
FINESSE results agree extremely well with the analytical
models.
This paper is structured as follows: In Secs. II and III we

present a step by step theoretical derivation of the align-
ment and mode mismatch sensing signals in symmetric
cavities for arbitrary HG modes, respectively. We also
include a comparison with the corresponding FINESSE
simulation results. We report our conclusions and dis-
cussions in Sec. IV.

II. ALIGNMENT SENSING

In the following two subsections, we will calculate
the alignment sensing error signals in the traditional
WFS [23,24] and the more recently proposed RFJ [25]
with an arbitrary higher-order HG mode as the carrier.
The general expression for a HG mode propagating

along the z axis is [30]

FIG. 1. Illustration of various alignment and mode mismatch sensing schemes considered in this paper. The traditional sensing
schemes are on the top row, and the more recently proposed jitter-based sensing schemes are shown on the bottom.
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Un;mðx; y; zÞ ¼ Unðx; zÞUmðy; zÞ ð1Þ
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"
2
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where ΨðzÞ ¼ arctan
$
z−z0
zR

%
is the Gouy phase with zR ¼

πw2
0

λ being the Rayleigh range. k is the wave number, λ is the
wavelength, wðzÞ is the beam radius and RcðzÞ is the
wavefront radius of curvature. They are related to the beam
waist size w0 and beam waist position z0 via

wðzÞ ¼ w0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
"
z − z0
zR

#
2

s

RcðzÞ ¼ z − z0 þ
z2R

z − z0
: ð3Þ

The single mode electric field before entering the cavity
can thus be written as

Eðx; y; zÞ ¼ E0Un;mðx; y; zÞeiðωt−kzÞ ð4Þ

where E0 is the initial field amplitude and ω is the field
angular frequency.
For alignment sensing, as illustrated in the top panels of

Fig. 2, since HG modes are separable in x and y, and
therefore the sensing gains for misalignment in one axis are
independent of the mode index in the orthogonal axis, one
can always consider the single-axis behavior, such as a
misalignment in the xz plane for the HGn;0 mode, without
loss of generality [16]. By symmetry the same arguments

can be applied to the misalignment in the yz plane for the
HG0;m mode and HGn;m modes in general.
In this section we consider a generic HGn;0 mode with

the misalignment of the beam occurring in the xz plane at
the center of a symmetric cavity, which we make coincident
with the origin of our coordinate system, i.e. z0 ¼ 0. We
can thus simplify the initial beam as

Eðx; zÞ ¼ E0Unðx; zÞeiωt: ð5Þ

A. Alignment Sensing: WFS

In WFS scheme, we make use of two quadrant photo-
detectors in reflection of the cavity away from the cavity
waist by π and π=2 Gouy phases for the tilt and lateral
offset degrees of freedom, respectively.

1. WFS: Tilt

Let us look at the tilt degree of freedom first. We apply a
phase modulation with modulation index m at a frequency
Ω to the carrier field in the HGn;0 mode. Keeping the first
order sidebands only, the beam (5) becomes

E ¼ E0Uneiωt
"
1þ i

μ
2
ðe−iΩt þ eiΩtÞ

#
ð6Þ

where μ is the phase modulation depth. According to the
results in paper [16], upon application of a misalignment
angle α between the input beam axis and the cavity optical
axis about the cavity waist, the field at the cavity input
mirror, up to the first order, becomes

Uα
n ≈ Un þ i

α
Θ

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ þ

ffiffiffi
n

p
Un−1eiΨ

%
ð7Þ

where Θ ¼ λ
πw0

is the far-field divergence angle andΨ is the
accumulated Gouy phase from the input mirror to the cavity
waist. The input modulated beam from Eq. (6), now reads

E ¼ E0

"
Un þ

iα
Θ

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ þ

ffiffiffi
n

p
Un−1eiΨ

%#
eiωt

×
"
1þ i

μ
2

$
e−iΩt þ eiΩt

%#
: ð8Þ

In order to detect an alignment error signal in reflection of
the cavity, we must consider the reflected field from the
cavity Erefl. In reflection, each term in Eq. (8) is multiplied
by the cavity complex reflectance function Fðω; nÞ, where
n is the mode index. The complex reflectance in general is
given by

FIG. 2. Illustration of misalignment (top) and mode mismatch
(bottom) between the input laser mode (red) and the cavity
eigenmode (grey). Top: the left panel shows lateral translation of
δx0 and the right panel shows tilt of α. Bottom: the left panel
shows the waist size mismatch of amount δw0 and the right shows
the waist position mismatch of amount δz.
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Fðω; nÞ ¼ r1 −
r2t21 exp ð−iðD ω

c þ ðnþ 1ÞΨrtÞÞ
1 − r1r2 exp ð−iðD ω

c þ ðnþ 1ÞΨrtÞÞ
ð9Þ

where r1, t1, r2, and t2 are the amplitude reflectivities and
transmissivities of the cavity input mirror and end mirror,
respectively; D is the exact round-trip length of the cavity;
and Ψrt the Gouy phase accumulated on one round-trip
path inside the cavity. In general the cavity complex
reflectance function Fðω; nÞ is complicated. However,
for a high-finesse, completely over-coupled cavity that is
geometrically stable, all reflectivity coefficients are real,
and either equal to 1 for nonresonant field components, or
−1 for resonant field components. For example, the cavities
in Advanced LIGO have similar properties and so we can
make the assumptions throughout to make the analytical
results more intuitively understandable. As a result, we
have Fðω; nÞ ¼ −1 while the reflectance functions for
the nonresonant field components, such as Fðω; n% 1Þ,
Fðω% Ω; nÞ, and Fðω% Ω; n% 1Þ, are all 1.
The reflected field Erefl with the above assumption is

Erefl¼
"
−Unþ

iμ
2

$
UneiΩtþUne−iΩt

%
−
iα
Θ
ðUnþ1

ffiffiffiffiffiffiffiffiffiffi
nþ1

p

þUn−1
ffiffiffi
n

p
Þþ α

Θ
μ
2

$
Unþ1

ffiffiffiffiffiffiffiffiffiffi
nþ1

p
eiΩtþUnþ1

ffiffiffiffiffiffiffiffiffiffi
nþ1

p
e−iΩt

þUn−1
ffiffiffi
n

p
eiΩtþUn−1

ffiffiffi
n

p
e−iΩt

%#
·E0eiωt ð10Þ

where we have set the accumulated Gouy phase from the
cavity waist to the QPD to be π. This produces an extra
factor of eiπ·ð%1Þ ¼ −1 for the adjacent upper and lower
modes scattered from the original mode, as the result of tilt.
The photocurrent produced by a split photodetector in

reflection from the cavity is given by

IPD ¼

 Z
∞

0
dx −

Z
0

−∞
dx

!

Erefl · E&
refl ð11Þ

for an ideal split photodetector, assuming an appropriate
responsivity of 1A=W. Erefl and E&

refl have 9 terms each, so
there are 81 terms to evaluate in the product EreflE&

refl.
However, most terms will have no contribution to the
signal. In particular, only terms that are odd in x have
contributions to the split photodetector signal. We also
know only terms that oscillate with the modulation fre-
quency Ω contribute to the photodetector signal after
demodulation at Ω and low-pass filtering. The nonvanish-
ing photocurrent is then

IPD ¼ −2E2
0

α
Θ
μ
$
eiΩt þ e−iΩt

%$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
βn;nþ1 þ

ffiffiffi
n

p
βn;n−1

%

ð12Þ

where βn;nþ1 are the beat coefficients

βn;nþ1 ¼

 Z
∞

0
dx −

Z
0

−∞
dx

!

Un · Unþ1: ð13Þ

In general evaluating the beat coefficients is complicated,
but as n goes large βn;nþ1 approaches a constant value
around 0.64. For further details see the Appendix.
We may assume the photocurrent signal is converted to a

voltage signal by an appropriate transimpedance stage with
a gain of 1V=A. Demodulating the beat signal with a phase
ϕ ¼ 0 (a condition often known as in-phase or I-phase
demodulation) and removing signal components at 2Ωwith
a low-pass filter, we obtain the following expression for the
tilt error signal measured at QPD1:

VΩ;QPD1

WFS ¼ −2E2
0

α
Θ
μ
$ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

βn;nþ1 þ
ffiffiffi
n

p
βn;n−1

%
: ð14Þ

We define the relative sensing gain Σn as the ratio of the
error signal for the higher-order mode HGn;0 and the
fundamental mode HG0;0

Σn ≡
$ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

βn;nþ1 þ
ffiffiffi
n

p
βn;n−1

%
=β0;1: ð15Þ

The sensing gain increases with the mode index.

2. WFS: Lateral offset

Now let us look at the lateral offset degree of freedom.
According to the results in paper [16], the beam after the
lateral displacement with respect to the cavity optical axis,
at the cavity input mirror becomes

Uδx0ðx; zÞ ≈ Un þ
δx0
w0

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ −

ffiffiffi
n

p
Un−1eiΨ

%

ð16Þ

where δx0 is the lateral displacement along the x direction.
The difference for this path compared earlier is that the
accumulated Gouy phase from the cavity waist to the QPD
is set to π=2 instead. This produces an extra factor of
ei

π
2·ð%1Þ ¼ %i for the upper and lower adjacent modes

scattered from the original mode. We thus have

Uδx0ðx; zÞ ≈ Un þ i
δx0
w0

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ þ

ffiffiffi
n

p
Un−1eiΨ

%
:

ð17Þ

Comparing against Eq. (7) (with an additional factor of −1
for the adjacent upper and lower scattered modes from the π
Gouy phase), we see that the alignment signal calculation
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for tilt and lateral displacement is essentially the same if
one changes the expansion parameter α

Θ to − δx0
w0
. As a result,

we can write down directly the lateral translation error
signal from Eq. (14):

VΩ;QPD2

WFS ¼ 2E2
0

δx0
w0

μ
$ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

βn;nþ1 þ
ffiffiffi
n

p
βn;n−1

%
ð18Þ

with the demodulation phase set to zero as well. We also
obtain the same sensing gain in this translation path as the
tilt case in Eq. (15).
As shown in Fig. 5 in the Appendix, the beat coefficients

converge to around 0.64 as the mode order gets large. We
thus can approximate our exact results in Eqs. (14) and (18)
by replacing the complicated higher-order beat coefficients
(i.e. excluding β0;1) with a constant value 0.64. After the
approximation explained above we obtain

Σn ≈ 0.64 ·
$ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

þ
ffiffiffi
n

p %
=β0;1: ð19Þ

As shown in Fig. 3, the approximation is quite good except
for lower mode HG0;0, which is due to the fact that for
lower mode index the beat coefficients, β0;1 for example,
are quite different from our approximation 0.64. We also
conduct the corresponding FINESSE simulation in black
in Fig. 3. They agree exceptionally well with the exact
analytical results in yellow.
We thus conclude that the alignment sensing gain for

higher-order mode HGn;0 in this traditional WFS scheme

scales approximately as
ffiffiffi
n

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. The calculation is

done assuming misalignment in the xz plane for a generic
HGn;0 (i.e. 2D), but one can easily generalize it to an
arbitrary 3D case since HG modes are separable in x and y
axes and any off-axis misalignment can be resolved into a
tilt in each axis.

B. Alignment sensing: RFJ

For the alignment sensing with the RF jitter modulation
scheme, we use an EOBD to impose RF jitter modulation
sidebands separated from the carrier frequency by the
higher-order mode difference frequency of the optical
cavity. The scheme involves demodulating the beat signal
between the RF jitter modulation-induced offset mode
sidebands and the misalignment-induced carrier frequency
offset modes on a single-element photodetector in orthogo-
nal demodulation phases. This produces simultaneously
linear error signals for the two orthogonal misalignment
degrees of freedom. With a single-element photodetector,
the beat coefficients between say HGn;m and HGn0;m0 modes
will simply be the Kronecker delta functions

βðn;mÞ;ðn0;m0Þ≡
Z

∞

−∞

Z
∞

−∞
dxdyUnm ·Un0m0 ¼δn;n0 ·δm;m0 : ð20Þ

We will show explicitly with orthogonal demodulation
phases this beat signal provides simultaneously linear error
signals for both tilt and translation of the two axes.
Similar to the WFS scheme, we consider misalignment

in the xz plane for a generic HGn;0 beam propagating along
the z axis. The initial field in Eq. (5) becomes

Uðx; zÞ ¼ E0Unðx; zÞeiωt: ð21Þ

The field after the EOBD modulator becomes [25]

UEOBD ≈ E0Uneiωt þ i
μα
2Θm

E0

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ1

þ
ffiffiffi
n

p
Un−1eiΨ1

%$
eiðωþΩÞt þ eiðω−ΩÞt

%
ð22Þ

where μα is the RF jitter modulation depth, Θm is the far-
field beam divergence angle at the tilt-modulator location,
and Ψ1 is the accumulated Gouy phase from the modulator
to the cavity waist.

1. RFJ: Tilt

Let us look at the tilt degree of freedom. Upon applying a
tilt of angle α between the beam coming out of the EOBD
and the cavity optical axis at the cavity waist, Eq. (22)
becomes

FIG. 3. Relative alignment sensing gain Σn in WFS and RFJ
schemes for HGn;0 modes. The analytical sensing gains in
Eqs. (15) and (29) and the approximation in Eq. (19) are included.
The corresponding FINESSE numerical results are also included
for comparison.
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Uα ≈ E0Uneiωt þ i
α
Θc

E0

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
Unþ1e−iΨ2 þ

ffiffiffi
n

p
Un−1eiΨ2

%

þ i
μα
2Θm

& ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p "
Unþ1 þ i

α
Θc

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
Unþ2e−iΨ2 þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
UneiΨ2

%#

× e−iΨ1 þ
ffiffiffi
n

p "
Un−1 þ i

α
Θc

$ ffiffiffi
n

p
Une−iΨ2 þ

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
Un−2eiΨ2

%#
eiΨ1

'$
eiðωþΩÞt þ eiðω−ΩÞt

%
ð23Þ

where Ψ2 is the accumulated Gouy phase from the cavity
waist to the PD.We can safely ignoreΨ2 from now on since
single-element photodetectors can only detect the beat
between the same mode sidebands (such as HGnþ1;0 and
HGnþ1;0, HGn−1;0 and HGn−1;0) assuming the aperture of
the PD is much larger than the beam size. These same mode
sidebands have the same accumulated Gouy phaseΨ2. This
overall phase factor however has no contribution to the
photocurrent E · E& as it cancels. Later on we will also see
the extra accumulated Gouy phase Ψ1 for the sideband
modes can also be “absorbed” into an overall demodulation
phase and does not concern us.
In order to extract the error signals in reflection of the

cavity, we need to multiply each term in Eq. (23) with a
suitable reflectance function Fðω; nÞ of the cavity to obtain
Erefl. In general the cavity reflectance function Fðω; nÞ in
Eq. (9) is complex. However, in the high-finesse, com-
pletely over-coupled cavity case, all resonant components
have the reflectance function of −1 whereas nonresonant
field components have the reflectance function of 1. RFJ
scheme relies on modulating at the higher-order mode
difference frequency, which makes the upper mode in the
upper sideband and the lower mode in the lower sideband
resonant in the optical cavity. As a result, we have
Fðω; nÞ ¼ FðωþΩ; nþ 1Þ ¼ Fðω−Ω; n− 1Þ ¼ −1 while
the rest reflectance values for the nonresonant field
components, such as Fðω; n% 1Þ, are all 1. The photo-
current signal on the single-element photodetector, which
is defined as

IPD ¼
Z

∞

−∞
dxErefl · E&

refl ð24Þ

becomes

IPD ¼ μαα
ΘmΘc

E2
0ð2nþ 1Þ

$
eiΨ1eiΩt þ e−iΨ1e−iΩt

%
ð25Þ

where we again have assumed a responsivity of 1 A/W, and
used the orthonormal condition on a single-element photo-
diode in Eq. (20)

Z
∞

−∞
dxUn · Un0 ¼ δn;n0 : ð26Þ

Now let us perform the mathematical operations equiv-
alent to the demodulation process. With demodulation, we
multiply the above photocurrent signal (after being con-
verted to a voltage signal by a transimpedance stage with a
gain of 1V=W) by a local oscillator cosðΩtþ δϕÞ ¼
1
2

$
eiðΩtþδϕÞ þ e−iðΩtþδϕÞ

%
and then extract the DC terms

(all components without frequency dependence) with a
low-pass filtering.

VΩ
RFJ ¼ IPD × cosðΩtþ δϕÞ

¼
μααE2

0ð2nþ 1Þ
$
eiΨ1eiΩt þ e−iΨ1e−iΩt

%

ΘmΘc

×
eiðΩtþδϕÞ þ e−iðΩtþδϕÞ

2

¼ μααE2
0ð2nþ 1Þ

2ΘmΘc

$
eiðΨ1−δϕÞ þ eið−Ψ1þδϕÞ

%

þ ðterms in 2ΩÞ: ð27Þ

The DC terms can be maximized by setting the overall
demodulation phase offset δϕ to be Ψ1. We have thus seen
that the difference in the accumulated Gouy phases in the
upper and lower sidebands does not concern us here if we
adjust the overall demodulation phase correspondingly
(and we know how much exactly we should adjust).
Demodulating with demodulation phase set to be Ψ1

(i.e. I-phase demodulation), we obtain the error signal

VΩ;I
RFJ ¼

μαα
ΘmΘc

E2
0ð2nþ 1Þ: ð28Þ

The relative sensing gain then is simply

Σn ¼ 2nþ 1: ð29Þ

2. RFJ: Lateral offset

Now let us consider the lateral offset error signal. Upon
applying a lateral displacement of amount δx0, Eq. (22)
becomes [16]
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Uδx0 ≈ E0Uneiωt −
δx0
w0

E0eiωt
$ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Unþ1e−iΨ2 −
ffiffiffi
n

p
Un−1eiΨ2

%
þ i

μα
2Θm

E0

& ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p "
Unþ1 −

δx0
w0

$ ffiffiffiffiffiffiffiffiffiffiffi
nþ 2

p
Unþ2e−iΨ2

−
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
UneiΨ2

%#
e−iΨ1 þ

ffiffiffi
n

p "
Un−1 −

δx0
w0

$ ffiffiffi
n

p
Une−iΨ2 −

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
Un−2eiΨ2

%#
eiΨ1

'$
eiðωþΩÞt þ eiðω−ΩÞt

%
: ð30Þ

We can again ignore Ψ2 since the field components that
have contributions to the single-element photodetector
signal have the same accumulated Gouy phase Ψ2. This
overall phase factor drops out and has no contribution to
the photocurrent. Using the fact that Fðω;nÞ¼Fðωþ
Ω;nþ1Þ¼Fðω−Ω;n−1Þ¼−1, and F ¼ 1 for all other
terms for our high-finesse, completely over-coupled cav-
ity, the single-element PD signal, as defined in Eq. (24),
becomes

IPD ¼ iμα
Θm

δx0
w0

E2
0ð2nþ 1Þ

$
eiΨ1eiΩt − e−iΨ1e−iΩt

%
ð31Þ

where we have used the orthonormal condition on a
single-element photodiode in Eq. (26). For the demodu-
lation process, similar to Eq. (27), we can adjust the
overall demodulation phase to be Ψ1 þ π=2 (a condition
often known as quadrature-phase or Q-phase demodula-
tion) to extract the optimal error signal

VΩ;Q
RFJ ¼ −

μαδx0
Θmw0

E2
0ð2nþ 1Þ: ð32Þ

We thus see we can extract the two orthogonal alignment
sensing error signals in Eqs. (28) and (32) simultaneously
with a single-element photodetector with orthogonal
demodulation phases Ψ1 and Ψ1 þ π=2 respectively. The
resulting error signals are proportional to each other, and
they scale as 2nþ 1 with n being the mode order of the
carrier HGn;0, see Fig. 3. This linear dependence in n comes
from the fact that the “effective” modulation depth for the
EOBD in Eq. (22) scales roughly as

ffiffiffi
n

p
. Beating it with the

scattered modes caused by the static misalignment [whose
amplitude also scales roughly as

ffiffiffi
n

p
as shown in Eq. (23)]

results in the linear dependence for the RFJ sensing gain
here. We also conduct the corresponding FINESSE simu-
lation. As shown in blue in Fig. 3, they agree extremely well
with the analytical results in orange.
We thus see that the alignment sensing error signals in

RFJ scheme increase linearly with respect to the mode
index, as shown in Fig. 3. This increase is even faster than
the scaling relation in the traditional WFS technique in
Eq. (14), due to the extra factor of

ffiffiffi
n

p
from the effective

modulation depth of the EOBD for the jitter-based scheme.

III. MODE-MISMATCH SENSING

For the mode mismatch sensing, as illustrated in the
bottom panels of Fig. 2, we cannot reduce the problem to a

single-axis case, so we will have to consider both x and y
axes at the same time [16]. In this section, we will calculate
the mode mismatch sensing error signals with an arbitrary
higher-order HG mode HGn;m as the carrier in both the
MCS the more recently proposed RFL. For the sake of
compactness and simplicity, wewill consider the case where
the mode mismatch occurs at the center of a symmetric
cavity, which we make coincident with the origin of our
coordinate system, i.e. z0 ¼ 0. As a result, we can simplify
the initial beam in Eq. (4) as

Eðx; y; zÞ ¼ E0Un;mðx; y; zÞeiωt ð33Þ

where Un;mðx; y; zÞ is the transverse function representing
the HGnm mode in Eq. (1).

A. Mode-mismatch sensing: MCS

For the MCS scheme, we make use of a π=2 mode
converter and two 45°-rotated quadrant photodetectors
away from the cavity waist by π=4 and π=2 Gouy phases
for the two orthogonal waist size and waist position
mismatch degrees of freedom, respectively. This scheme
was first introduced by Magaña-Sandoval et al. [26] in the
case of HG0;0 mode mismatch sensing. In this section,
however, we are going to extend this scheme to a generic
HGn;m mode mismatch sensing. Similar to the alignment
error signal calculation, we start with applying a phase
modulation with modulation index m at a frequency Ω to
the carrier HGn;m mode. Keeping only the first-order
sidebands, the field becomes

E ¼ E0Un;meiωt
"
1þ i

μ
2
ðe−iΩt þ eiΩtÞ

#
: ð34Þ

1. MCS: Waist size mismatch

Let us consider the waist size mismatch degree of
freedom first. Upon application of a waist size mismatch
between the input beam and the cavity eigenmode, the
input beam becomes [16]

Uϵ
n;mðx; y; zÞ ≈ Un;m − i

ϵ
2

$
AnUnþ2;m þ BnUn−2;m

þ AmUn;mþ2 þ BmUn;m−2

%
ð35Þ
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where ϵ ¼ w
w0
− 1 is the relative waist size mismatch, and

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 1Þ

p
and Bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
. We have

also used the fact that the accumulated Gouy phase from
the cavity center to the QPD for each mode order is π=4 in
the above equation. This introduces a factor of ei

π
4·ð%2Þ ¼ %i

for the upper and lower adjacent modes scattered from the
original mode by two mode order as the result of mode
mismatch. As illustrated above, in the mode mismatch
sensing with WFS scheme we use a π=2 mode converter,
which causes an additional π=2 Gouy phase accumulation
and thus a factor of eiπ=2 ¼ i for each mode order in the
focusing axis (y axis) while the nonfocusing axis (x axis)
experiences normal Gouy phase accumulation [26]. The
above mode mismatched beam after passing through the
mode converter becomes

Uϵ
n;mðx; y; zÞ ≈ im

"
Un;m − i

ϵ
2

$
AnUnþ2;m þ BnUn−2;m

− AmUn;mþ2 − BmUn;m−2

%#
ð36Þ

where every mode order in the y direction accumulates one
extra factor of eiπ=2 ¼ i due to the π=2 mode converter.
Similar to the alignment sensing case, we multiply each

term in the incoming beam with the corresponding cavity
reflectance function to get the reflected beam Erefl. After
making the assumption about a high-finesse and com-
pletely over-coupled cavity so that only Fðω; nþmÞ ¼ −1
while F ¼ 1 for all other terms to simplify our analytical
results, we obtain

Erefl ¼ E0imeiωt
"
−Un;m þ iμ

2
ðUn;meiΩt þ Un;me−iΩtÞ −

iϵ
2

$
Unþ2;mAn − Un;mþ2Am þ Un−2;mBn − Un;m−2Bm

%

þ ϵμ
4

$
Unþ2;mAneiΩt þ Unþ2;mAne−iΩt − Un;mþ2AmeiΩt − Un;mþ2Ame−iΩt þ Un−2;mBneiΩt þ Un−2;mBne−iΩt

− Un;m−2BmeiΩt − Un;m−2Bme−iΩt
%#

: ð37Þ

Erefl and E&
refl have 15 terms each, so there are 225 terms to

evaluate in the product EreflE&
refl for the photocurrent.

However, only terms that are odd with respect to y ¼ %x
have contributions to the 45°-rotated QPD that we are using.
We also know only terms that oscillate with the modulation
frequency Ω have contribution to the photodetector signal
after demodulation at the RF modulation frequency Ω and
low-pass filtering. The photocurrent is then

IQPD ¼ E2
0ϵμ

$
eiΩt þ e−iΩt

%$
−Anβðn;mÞ;ðnþ2;mÞ

þ Amβðn;mÞ;ðn;mþ2Þ − Bnβðn;mÞ;ðn−2;mÞ

þ Bmβðn;mÞ;ðn;m−2Þ

%
ð38Þ

where βðn;mÞ;ðn0;m0Þ are the beat coefficient at a 45°-rotated
quadrant photodetector

βðn;mÞ;ðn0;m0Þ ¼

 Z
∞

0
dy
Z

y

−y
dxþ

Z
0

−∞
dy
Z

−y

y
dx

−
Z

∞

0
dx
Z

x

−x
dy −

Z
0

−∞
dx
Z

−x

x
dy

!

× Un;m · Un0;m0 : ð39Þ

One can easily confirm that the beat coefficient βðn;mÞ;ðn0;m0Þ
satisfies

βðn;mÞ;ðn0;m0Þ ¼ βðn0;m0Þ;ðn;mÞ ¼ −βðm;nÞ;ðm0;n0Þ: ð40Þ

Demodulating at phase ϕ ¼ 0 we obtain the I-phase
signal

VΩ;QPD1
MCS ¼ E2

0ϵμ
$
−Anβðn;mÞ;ðnþ2;mÞ þ Amβðn;mÞ;ðn;mþ2Þ

− Bnβðn;mÞ;ðn−2;mÞ þ Bmβðn;mÞ;ðn;m−2Þ

%
: ð41Þ

It is sometimes common to use the Rayleigh range zR ¼
πw2

λ ≈ zR0 þ
2πw2

0

λ · ϵ to characterize the amount of waist size

mismatch. With the Rayleigh range mismatch δzR ¼ 2πw2
0

λ ·
ϵ as the expansion parameter, we can rewrite the error
signal as

VΩ;QPD1

MCS ¼ E2
0

λμ
2πω2

0

δzR
$
−Anβðn;mÞ;ðnþ2;mÞ þAmβðn;mÞ;ðn;mþ2Þ

−Bnβðn;mÞ;ðn−2;mÞ þBmβðn;mÞ;ðn;m−2Þ

%
: ð42Þ

We define the relative sensing gain Ωn;m as the ratio of
the error signal for the higher-order mode HGn;m and the
fundamental mode HG0;0
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Ωn;m≡
$
−Anβðn;mÞ;ðnþ2;mÞþAmβðn;mÞ;ðn;mþ2Þ−Bnβðn;mÞ;ðn−2;mÞ

þBmβðn;mÞ;ðn;m−2Þ

%
=
$
2

ffiffiffi
2

p
βð0;0Þ;ð0;2Þ

%
: ð43Þ

To make it more precise, let us consider the case where
n ¼ m, i.e. we are considering symmetric higher-order HG
modes such as HG0;0, HG1;1, HG2;2, HG3;3, etc. As a result,
using the properties of βðn;mÞ;ðn0;m0Þ in Eq. (40), we can
simplify the relative sensing gain to

Ωn;n ¼
$
Anβðn;nÞ;ðn;nþ2Þ þBnβðn;nÞ;ðn;n−2Þ

%
=
$ ffiffiffi

2
p

βð0;0Þ;ð0;2Þ
%
:

ð44Þ

We thus have an increasing mode mismatch sensing gain
for higher-order modes.

2. MCS: Waist position mismatch

Now let us look at the waist position mismatch error
signal. The beam after the waist position displacement δz0,
according to the results in paper [16], is

Uδz0
n;mðx;y;zÞ≈Un;m− i

λδz0
4πw2

0

$
AnUnþ2;mþBnUn−2;m

þAmUn;mþ2þBmUn;m−2− ðCnþCmÞ ·Un;m

%

ð45Þ

where Cn ¼ 2nþ 1, and we have used the fact that the
accumulated Gouy phase from the cavity waist to the QPD
in this path for each mode order is π=2. And this brings an
extra factor of ei

π
2·ð%2Þ ¼ −1 for the offset modes. After the

π=2 mode converter, the beam becomes

Uδz0
n;mðx;y;zÞ¼ im

"
Un;m− i

λδz0
4πw2

0

$
AnUnþ2;mþBnUn−2;m

−AmUn;mþ2−BmUn;m−2−ðCnþCmÞ ·Un;m

%#
:

ð46Þ

Comparing Eqs. (36) and (46) we see that we only need
to track two changes going from the waist size mismatch
error signal result in Eq. (41) to the unknown waist position
mismatch error signal we are calculating: (a) we need to
replace the Un;m coefficient from 1 to ð1þ i ϵ2 ðCn þ CmÞÞ;
(b) we need to replace the mode mismatch parameter ϵ with
λδz0
2πw2

0

. The additional term resulting from replacement (a) is

proportional to Un;m and thus has to beat with the upper or
lower modes, such as Un%2;m and Un;m%2 to have a non-
vanishing beat signal. This additional beat signal however
is of second order in ϵ and thus does not affect the linear
error signal, as can be seen from Eq. (37). As a result,

replacement (a) has zero net contribution to the photo-
current and subsequently the error signal up to the linear
order. Now to obtain the waist position mismatch error
signal, one simply needs to make the replacement (b),
which results in

VΩ;QPD2

MCS ¼ E2
0

λδz0
2πw2

0

μ
$
−Anβðn;mÞ;ðnþ2;mÞ þ Amβðn;mÞ;ðn;mþ2Þ

− Bnβðn;mÞ;ðn−2;mÞ þ Bmβðn;mÞ;ðn;m−2Þ

%
ð47Þ

which interestingly has the same slopes as the waist size
mismatch error signal in Eq. (42). And we have the same
sensing gain as in the waist size sensing case in Eq. (43).
Similar to the alignment WFS case, we want to approxi-

mate our exact results in Eqs. (42) and (47) to have a better
sense of the scaling relation of the sensing gain with respect
to the carrier’s mode order. As in the alignment sensing
case, we can simplify Eq. (44) by replacing the complicated
higher-order beat coefficients (excluding βð0;0Þ;ð0;2Þ) with a
constant value of 0.41. For more details see the Appendix.

Ωn;n ≈ 0.41 ·
$ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ 1Þðnþ 2Þ
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p %
=

×
$ ffiffiffi

2
p

βð0;0Þ;ð0;2Þ
%

ð48Þ

where we have used the definitions for An and Bn.
This approximation is also quite close to the exact

results, as shown in Fig. 4. We thus conclude that the
mode mismatch sensing gain for higher-order HGn;n modes
in this mode converter and QPD sensing scheme scales

FIG. 4. Relative mode mismatch sensing gain Ωn;n in MCS and
RFL sensing schemes for symmetric higher-order HGn;n modes.
The analytical sensing gains in Eqs. (44) and (57) and the
approximated sensing gain in Eq. (48) are shown. The corre-
sponding FINESSE simulation results are included as well for
comparison.
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approximately as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 2Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
. We also

conducted the corresponding FINESSE simulation. As
shown in black in Fig. 4, they agree extremely well with
the exact analytical results in yellow.

B. Mode mismatch sensing: RFL

For the RFL mode mismatch sensing scheme, we use an
EOL device to impose RF lens modulation sidebands
separated from the carrier frequency by twice the higher-
order mode difference frequency of the optical cavity, since
we need the second order upper modes and lower modes
generated from mode mismatch to resonate in the cavity.
The scheme requires demodulating the beat signal between
the RF lens modulation-induced offset mode sidebands and
the mode-mismatch-induced carrier frequency offset modes
on a single-element photodiode in the orthogonal demodu-
lation phases. This can produce simultaneously linear error
signals for the waist position and waist size mismatch
between the input beam and the cavity eigenmode.
Similar to the mode-converter mode mismatch sensing

scheme, we consider a generic HGn;m mode as the carrier in
Eq. (33)

Uðx; y; zÞ ¼ E0Un;mðx; y; zÞeiωt: ð49Þ

We pass the carrier through an EOL device to modulate the
curvature of the beam S. If we consider a sinusoidal
oscillation in the wavefront curvature of the beam

S ¼ μS cosðΩtÞ ð50Þ

where μS is the RF lens modulation depth. The input beam
after the EOL modulator becomes [16]

UEOL≈E0Un;meiωt− i
kw2

0μS
16

E0

$
AnUnþ2;me−2iΨ1

þBnUn−2;me2iΨ1 þAmUn;mþ2e−2iΨ1 þBmUn;m−2e2iΨ1

þðCnþCmÞ ·Un;m

%$
eiðωþΩÞtþeiðω−ΩÞt

%
ð51Þ

keeping only the first order terms, where An ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 1Þ

p
and Bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
.

1. RFL: Waist size mismatch

Now let us consider the RFL waist size mismatch
sensing error signal. Upon application of waist size mis-
match ϵ ¼ w

w0
− 1, Eq. (51) becomes

Uϵ ≈ E0Un;meiωt þ E0

ϵ
2
ðAnUnþ2;m − BnUn−2;m þ AmUn;mþ2 − BmUn;m−2Þeiωt − i

kw2
0μS
16

E0

"
An

"
Unþ2;m þ ϵ

2
ðAnþ2Unþ4;m

− Bnþ2Un;m þ AmUnþ2;mþ2 − BmUnþ2;m−2Þ
#
e−2iΨ1 þ Bn

"
Un−2;m þ ϵ

2
ðAn−2Un;m − Bn−2Un−4;m þ AmUn−2;mþ2

− BmUn−2;m−2Þ
#
e2iΨ1 þ Am

"
Un;mþ2 þ

ϵ
2
ðAnUnþ2;mþ2 − BnUn−2;mþ2 þ Amþ2Un;mþ4 − Bmþ2Un;mÞ

#
e−2iΨ1

þBm

"
Un;m−2 þ

ϵ
2
ðAnUnþ2;m−2 − BnUn−2;m−2 þ Am−2Un;m − Bm−2Un;m−4Þ

#
e2iΨ1 þ ðCn þCmÞ

"
Un;m þ ϵ

2
ðAnUnþ2;m

− BnUn−2;m þ AmUn;mþ2 − BmUn;m−2Þ
##

ðeiðωþΩÞt þ eiðω−ΩÞtÞ ð52Þ

where similar to RFJ we have omitted the accumulated
Gouy phase difference Ψ2 from the cavity waist to the
single-element PD because it does not affect the PD signal.
The photocurrent on the single-element photodetector is
defined as

IPD ¼
Z

∞

−∞

Z
∞

−∞
dxdyErefl · E&

refl ð53Þ

where the reflected fieldErefl is obtained bymultiplying each
term in Eq. (52) with a suitable reflectance function Fðω; nÞ.
Using the fact that Fðω; nþmÞ ¼ FðωþΩ; nþm
þ2Þ ¼ Fðω −Ω; nþm − 2Þ ¼ −1, and F ¼ 1 for all other

terms for completely over-coupled cavity, the photocurrent
becomes

IPD ¼ ikw2
0μSϵE

2
0

8
ðn2 þm2 þ nþmþ 2Þ

× ðe2iΨ1eiΩt − e−2iΨ1e−iΩtÞ ð54Þ

where we have used the orthonormal condition in Eq. (20).
Similar to the RFJ sensing scheme in Eq. (27), we can

adjust the overall demodulation phase to be 2Ψ1 þ π=2 (not
Ψ1 þ π=2) to eliminate the effect of accumulated Gouy
phase difference between different sideband modes and
maximize the demodulated signal. This Q-phase error
signal is
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VΩ;Q
RFL ¼ −

kw2
0μSϵ
8

E2
0ðn2 þm2 þ nþmþ 2Þ: ð55Þ

Using the Rayleigh range mismatch δzR ¼ 2πw2
0

λ · ϵ as the
expansion parameter, we can rewrite the error signal as

VΩ;Q
RFL ¼ −

μSE2
0

8
δzRðn2 þm2 þ nþmþ 2Þ: ð56Þ

Thus, the relative waist size sensing gain for HGn;n mode in
the RFL scheme is

Ωn;n ¼ n2 þ nþ 1: ð57Þ

2. RFL: Waist position mismatch

Upon application of a waist position mismatch δz0
between the input beam and the cavity eigenmode at the
cavity waist, the input beam in Eq. (51) becomes

Uδz0 ≈E0Un;meiωt þE0

iλδz0
4πw2

0

eiωtðAnUnþ2;m þBnUn−2;m þAmUn;mþ2 þBmUn;m−2 þ ðCn þCmÞUn;mÞ

− i
kw2

0μS
16

E0

"
An

$
Unþ2;m þ iλδz0

4πw2
0

ðAnþ2Unþ4;m þBnþ2Un;m þAmUnþ2;mþ2 þBmUnþ2;m−2 þ ðCnþ2 þCmÞUnþ2;m

%#

× e−2iΨ1 þBn

"
Un−2;m þ iλδz0

4πw2
0

ðAn−2Un;m þBn−2Un−4;m þAmUn−2;mþ2 þBmUn−2;m−2 þ ðCn−2 þCmÞUn−2;mÞ
#
e2iΨ1

þAm

"
Un;mþ2 þ

iλδz0
4πw2

0

ðAnUnþ2;mþ2 þBnUn−2;mþ2 þAmþ2Un;mþ4 þBmþ2Un;m þ ðCn þCmþ2ÞUn;mþ2Þ
#
e−2iΨ1

þBm

"
Un;m−2 þ

iλδz0
4πw2

0

ðAnUnþ2;m−2 þBnUn−2;m−2 þAm−2Un;m þBm−2Un;m−4 þ ðCn þCm−2ÞUn;m−2Þ
#
e2iΨ1

þ ðCn þCmÞ
"
Un;m þ iλδz0

4πw2
0

ðAnUnþ2;m þBnUn−2;m þAmUn;mþ2 þBmUn;m−2 þ ðCn þCmÞUn;mÞ
%#

×
$
eiðωþΩÞt þ eiðω−ΩÞt

%
ð58Þ

where similarly we have omitted the accumulated Gouy
phase difference for different sidebandsΨ2. We can similarly
simplify the reflected field Erefl using the fact that Fðω; n þ
mÞ ¼ Fðω þ Ω; n þ m þ 2Þ ¼ Fðω − Ω; n þ m − 2Þ ¼
−1, and F ¼ 1 for all other terms for completely over-
coupled cavity. The PD signal on a single-element PD
becomes

IPD ¼ −
μSE2

0

8
δz0

$
e2iΨ1eiΩt þ e−2iΨ1e−iΩt

%

× ðn2 þm2 þ nþmþ 2Þ: ð59Þ

Similarly, we can eliminate the effect of the accumulated
Gouy phase difference between different sideband modes by
adjusting the overall demodulation phase to be 2Ψ1 (notΨ1).
The result I-phase signal is

VΩ;I
RFL ¼ −

μSE2
0

8
δz0ðn2 þm2 þ nþmþ 2Þ ð60Þ

which interestingly has the same slope as the waist size
mismatch error signal in Eq. (56).
We have thus seen, similar to the alignment sensing with

the RFJ scheme, we can extract the two orthogonal mode

mismatch sensing error signals in Eqs. (60) and (55) with a
single-element photodetector in the orthogonal demodula-
tion phases. The resulting error signals in RFL scheme
scale quadratically with respect to the mode order, as shown
in Fig. 4. And this quadratic dependence comes from the
fact that the “effective” modulation depth for the EOL in
Eq. (51) scales roughly as n. Beating it with the scattered
modes caused by the static mode mismatch (whose
amplitude also scales roughly as n) results in the quadratic
dependence for the RFL sensing gains, which scales even
faster than the MCS technique.

IV. CONCLUSION

We have offered a detailed analytical derivation for the
first time for the alignment andmode mismatch sensing error
signals with a generic higher-order HG mode as the carrier.
Specifically, we have investigated the traditional WFS
scheme and the more recently proposed RFJ scheme in
Sec. II for the alignment sensing; and for the mode mismatch
sensing, we have studied the MCS scheme and the RFL
scheme in Sec. III. We have seen analytically for instance the
necessity for the π=2 accumulated Gouy phase difference
between the two split photodetectors for the alignmentWFS,
and the necessity for the π=2 mode converter and the π=4
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accumulated Gouy phase difference between the two
45°-rotated QPDs for the mode mismatch sensing. We have
also conducted the corresponding FINESSE simulations for
the alignment and mode-mismatch sensing for higher-order
HG modes, and the resultant relative sensing gains agree
extremely well with the respective exact analytical results, as
shown in Figs. 3 and 4.
We have shown that in all schemes the alignment and

mode mismatch sensing signals are stronger for higher-
order Hermite-Gauss modes, as summarized in Table I for
the sensing gains. On the other hand, the shot noise at the
photodetector in all of the analyzed sensing schemes is
independent of the mode indices of the beam. Therefore
the alignment or mode mismatch signal-to-shot noise ratio
increases with mode indices exactly as derived for the
sensing gains. In a shot noise-limited sensing regime,
and a sensing-noise-limited control loop, increasing mode
index is therefore seen to reduce the residual alignment or
mode mismatch error. This goes at least some way to
nullify the downside of increasing mode indices in terms
of the reduced alignment and mode mismatch tolerances
as described in Refs. [15,16]. In particular, the increases
in the sensing gain with RFJ/L scheme exactly match
the decreases in the corresponding tolerances, as shown in
the last two rows in Table I. This result shows that for these
schemes the downside of using higher-order HG modes
with respect to their suffering from excessive misalignment
and mode-mismatch-induced power losses could be
eliminated.
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APPENDIX: BEAT COEFFICIENTS

Some example beat coefficients βn;nþ1 on a split photo-
detectors in Eq. (13) and βðn;nÞ;ðn;nþ2Þ and βðn;nÞ;ðn;n−2Þ on a

quadrant photodetectors in Eq. (39) are shown in Figs. 5
and 6. We can see that they both asymptotically approach to
some fixed value around 0.64 and 0.41 respectively as n
goes large, which are determined by linearly extrapolating
from the end points and finding the intercepts. As a result,
we can approximate the exact sensing gains in WFS and
MCS in Eqs. (15) and (44) and simplify the scaling
relations by replacing the complicated higher-order beat
coefficients with their rough asymptotic values, i.e. 0.64 for
βn;nþ1 and 0.41 for βðn;nÞ;ðn;nþ2Þ and βðn;nÞ;ðn;n−2Þ.

TABLE I. Summary of the alignment and mode-mismatch
sensing gains, and induced power coupling losses in Ref. [16].

Alignment Mode mismatch

Traditional
schemes

WFS:
ffiffiffi
n

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
MCS:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnþ 1Þðnþ 2Þ
p

Beam jitter-based
schemes

RFJ: 2nþ 1 RFL: n2 þ nþ 1

Power loss 2nþ 1 n2 þ nþ 1

FIG. 5. Beat coefficients βn;nþ1 on a split photodiode in blue.
The two straight dashed lines connecting the four end points
intersect at the one point with its y coordinate being around 0.64.

FIG. 6. Beat coefficients βðn;nÞ;ðn;nþ2Þ in red and βðn;nÞ;ðn;n−2Þ in
yellow on a 45 degree rotated quadrant photodiode. They both
converge to around 0.41 as n goes large. Notice that βðn;nÞ;ðn;n−2Þ
have no definition when n < 2, as shown in the yellow line.
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