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Abstract
Finite tensor categories (FTCs) T are important generalizations of the categories of
finite dimensional modules of finite dimensional Hopf algebras, which play a key role
in many areas of mathematics andmathematical physics. There are two fundamentally
different support theories for them: a cohomological one and a universal one based
on the noncommutative Balmer spectra of their stable (triangulated) categories T. In
this paper we introduce the key notion of the categorical center C•

T of the cohomology
ring R•

T of an FTC, T. This enables us to put forward a complete and detailed program
to investigate the relationship between the two support theories, based on C•

T of the
cohomology ring R•

T of an FTC,T. Our main result is the construction of a continuous
map from the noncommutative Balmer spectrum of an arbitrary FTC, T, to the Proj
of the categorical center C•

T and a theorem that this map is surjective under a weaker
finite generation assumption for T than the one conjectured by Etingof–Ostrik. We
conjecture that, for all FTCs, (i) the map is a homeomorphism and (ii) the two-sided
thick ideals of T are classified by the specialization closed subsets of ProjC•

T. We
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verify parts of the conjecture under stronger assumptions on the category T. Many
examples are presented that demonstrate how in important cases C•

T arises as a fixed
point subring of R•

T and how the two-sided thick ideals of T are determined in a
uniform fashion (while previous methods dealt on a case-by-case basis with case
specific methods). The majority of our results are proved in the greater generality of
monoidal triangulated categories and versions of them for Tate cohomology are also
presented.

Mathematics Subject Classification Primary 18M05 · 18G65; Secondary 16T05

1 Introduction

1.1. Fifty years ago, Quillen pioneered the idea that even though the cohomology
ring for a finite group cannot be completely calculated, its spectrum can be described
via elementary abelian subgroups [51, 52]. This promoted the spectrum as an impor-
tant object in the cohomology and representation theory of finite groups. The theory
of support varieties was developed in the 1980s to bridge homological properties of
modules to the ambient geometry of the cohomological spectrum. In a major break-
through, Friedlander and Suslin in 1995 proved that the cohomology ring for a finite
group scheme (equivalently, a finite dimensional cocommutative Hopf algebra) is
finitely generated [32], and the theory of support varieties was developed in this set-
ting through the innovation of π -points by Friedlander and Pevtsova [30].

The subject evolved further by the mid 2000s when Balmer introduced tensor
triangular geometry (TTG) to provide a unifying method for addressing problems
in representation theory, homotopy theory and algebraic geometry [4, 5]. Given a
symmetric monoidal category, K, Balmer’s idea was to utilize the monoidal (tensor)
structure to view the category like a commutative ring, and construct a topological
space SpcK via prime ideals in K. Many earlier ideas in the cohomology theory fit
nicely into the framework of TTG. For instance, in the representations of finite group
schemes and quantum groups at roots of unity, the topological spaces SpcK manifest
themselves naturally as the projectivization of the spectrum of the cohomology ring.

The authors [40] developed a general noncommutative version of Balmer’s theory
that deals with an arbitrary monoidal triangulated categoryK (M�C for short). There
are many important families of M�Cs coming from diverse areas of mathematics and
mathematical physics. One such family is comprised of the stable module categories
of finite dimensional Hopf algebras, and more generally, the stable categories of finite
tensor categories. These M�Cs are in general not symmetric (because Hopf alge-
bras are not necessarily cocommutative). The key feature of our new approach is to
define the noncommutative Balmer spectrum SpcK and support data for K in terms
of tensoring thick ideals ofK, and not to use object-wise tensoring. This enables us to
distinguish between prime ideals and completely prime ideals in SpcK, and provide
new insights about the tensor product property on supports.

1.2. In recent years, there has been a substantial effort to better understand the cohomol-
ogy and support theory for finite dimensional Hopf algebras H , and more generally,
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for finite tensor categories T. By definition, a finite tensor category is an abelian
k-linear category with k-bilinear monoidal product, such that morphism spaces are
finite-dimensional, all objects have finite length, the unit object is simple, there are
enough projectives, there are finitely many isomorphism classes of simple objects, and
every object has a left and right dual. Equivalently, T is a k-linear monoidal category
which is equivalent, as an abelian category, to the category of modules for a finite-
dimensional k-algebra; see [27, Defs. 1.8.5 and 4.1.1 and Ch. 6] for background. Finite
tensor categories are important generalizations of the categories of finite dimensional
modules mod(H) and play an important role in mathematical physics and quantum
computing.

There are two major approaches to support theory for finite tensor categories:

(i) cohomological support and
(ii) support via the (noncommutative) Balmer spectrum of the stable category T.

For the second one, we note that all finite tensor categories are Frobenius [28]. The
corresponding stable categories T are M�Cs, which have the property that they are
the compact parts of M�Cs admitting arbitrary set indexed coproducts.

In this paper we provide a program with the goal of establishing a precise relation-
ship between the two support theories for all finite tensor categories. Many parts of
this program apply to the compact subcategories of all M�Cs admitting arbitrary set
indexed coproducts.
1.3. For a topological space X , denote by Xcl(X), the collection of all of its closed
subsets. Define the cohomology ring of an M�C, K to be the ring

R•
K :=

⊕

i≥0

HomK(1, �i1),

where 1 denotes the unit object of K. Define the Tate cohomology ring of K to be the
ring

R̂•
K :=

⊕

i∈Z

HomK(1, �i1).

It is well known that these rings are (graded) commutative (see e.g. [55]). For M, N ∈
K denote the sets

Hom•
K(M, N ) =

⊕

i≥0

HomK(M, �i N ), ̂Hom
•
K(M, N ) =

⊕

i∈Z

HomK(M, �i N ).

They have canonical structures of R•
K and R̂•

K-modules, respectively, given by

g · h = �i (h)(g ⊗ idM ), for g ∈ HomK(1, �i1), h ∈ HomK(M, � j N ),

where we use the natural isomorphism (�i1) ⊗ M ∼= �i M . Set End•
K(M) =

Hom•
K(M, M),̂End

•
K(M) = ̂Hom

•
K(M, M).
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208 D. K. Nakano et al.

The cohomological support map W : K → Xcl(Proj R•
K) and the Tate cohomolog-

ical support map Ŵ : K → Xcl(Proj R̂•
K) are given by

W (M) = {p ∈ Proj R•
K : p ⊇ AnnR•

K

(
End•

K(M)
)},

Ŵ (M) = {p ∈ Spech R̂•
K : p ⊇ Ann R̂•

K

(̂
End

•
K(M)

)}.

Here, following [4], for a Z-graded commutative ring R we denote by

Spech R

the space of homogeneous prime ideals of R, equipped with the Zariski topology. For
a commutative ring R and a finitely generated R-module Y ,

{p ∈ Spec R : Yp �= 0} = {p ∈ Spec R : p ⊇ AnnR(Y )},

see e.g. [2, Ch. 3, Exercise 19(v)]. Therefore, the cohomological support map and the
Tate cohomological support map are given by the more classical formulas

W (M) = {p ∈ Proj R•
K : End•

K(M)p �= 0},
Ŵ (M) = {p ∈ Spech R̂•

K :̂End•
K(M)p �= 0},

respectively for those objects M ∈ K for which End•
K(M) is a finitely generated R•

K-

module and̂End
•
K(M) is a finitely generated R̂•

K-module. These supports maps were
widely used for many classes ofM�Cs in various degrees of generality (stable module
categories of finite groups, finite group schemes, and finite dimensional Hopf algebras,
derived categories of algebraic varieties, etc.), and were defined in this generality in
[17].

The noncommutative Balmer spectrum SpcK of K is the topological space of all
thick prime ideals ofK, see Sect. 2 for definitions. The basic notions were introduced
by Buan, Krause and Solberg [16]. The concepts were reintroduced and extensively
studied by the authors in [40]. The corresponding support map V : K → Xcl(SpcK)

is defined by

V (M) := {P ∈ SpcK | M /∈ P}.

The following is one of the major problems in the area:

Problem A What is the relationship between the cohomological support map W :
K → Xcl(Proj R•

K) and the Tate cohomological support map Ŵ : K →
Xcl(Spech R̂•

K), on the one hand, and the Balmer spectrum support map V : K →
Xcl(SpcK), on the other hand?

1.4. We now present a new framework with the aim of settling this problem for the
stable categories of all finite tensor categories.

Let K be a collection of objects that generates the M�C, K, as a triangulated
category. Define the categorical center Ĉ•

K of the Tate cohomology ring R̂•
K as the
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graded subring spanned by all g ∈ HomK(1, �i1), such that for every object M ∈ K,
the following diagram commutes, where the isomorphisms are structure isomorphisms
for an M�C:

1 ⊗ M M M ⊗ 1

�i1 ⊗ M �i M M ⊗ �i1

g⊗idM

∼=
∼=

idM ⊗g

∼=
∼=

(1.1)

Define the categorical center of the cohomology ring R•
K to be

C•
K := R•

K ∩ Ĉ•
K.

When K is taken to be the collection of all objects of K, then Ĉ•
K is isomorphic to

the Tate cohomology ring of the Drinfeld center of K (cf. [27, Section 7.3]), which is
a monoidal additive category with an autoequivalence induced from �. For smaller
collectionsK (which matter in our situation), our categorical centers Ĉ•

K are generally
bigger algebras than those. (Note that the Tate cohomology ring R̂•

K is itself graded
commutative for all M�Cs, K, so Ĉ•

K is not a center in the classical sense). If K is
a braided M�C, then Ĉ•

K = R̂•
K. The categorical center Ĉ

•
K of the Tate cohomology

ring R̂•
K is a subalgebra of the graded center ofK studied in [12, 18] and other papers,

but the latter is typically much bigger and contains R̂•
K. In Sect. 3 we present a detailed

comparison of the categorical center with other algebras of homological origin. We
refer the reader to the diagram (3.2) that summarizes this relationship.

Remark In both notations Ĉ•
K and C•

K we suppress the dependence on a generating
set of objects K to avoid overcrowded notation.

In Sect. 4 we describe how in important situations, the categorical centers C•
K and

Ĉ•
K arise as fixed point subring of R•

K and R̂•
K under group actions. In Sect. 5 we

present an explicit calculation of the categorical centers C•
K and Ĉ•

K for the stable
module categories of many classes of (non-cocommutative) Hopf algebras that have
been actively studied before.

Remark In the case when K is the stable category T of a finite tensor category T, the
collection K will be chosen to be the (finite) set of simple objects of T.

With the notion of categorical center, we present the following key definition that
will be used throughout this paper.

Definition The central cohomological support and Tate central cohomological sup-
port of an M�C, K, are the maps WC : K → ProjC•

K and ŴC : K → Proj Ĉ•
K given

by

WC (M) = {p ∈ ProjC•
K : p ⊇ AnnC•

K

(
End•

K(M)
)},

ŴC (M) = {p ∈ Spech Ĉ•
K : p ⊇ AnnĈ•

K

(̂
End

•
K(M)

)}.
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1.5. Etingof and Ostrik [28] conjectured that all finite tensor categories T satisfy the
strong finite generation condition:

(fg) R•
T is noetherian and for all M ∈ T, End•

T(M) is a finitely generated R•
T-

module.
We say that an M�C, K, satisfies the weak finite generation condition if

(wfg) for all M ∈ K, End•
K(M) is a finitely generated C•

K-module
and that K satisfies the weak Tate finite generation condition if

(wTfg) for all M ∈ K,̂End
•
K(M) is a finitely generated Ĉ•

K-module.
Since for all M, N ∈ K, Hom•

K(M, N ) is a direct summand of End•
K(M ⊕ N ) and

̂Hom
•
K(M, N ) is a direct summand of̂End

•
K(M⊕N ), the two conditions are equivalent

to
(wfg) for all M, N ∈ K, Hom•

K(M, N ) is a finitely generated C•
K-module and

(wTfg) for all M, N ∈ K, ̂Hom
•
K(M, N ) is a finitely generated Ĉ•

K-module.
Here, the terminology “weak" is justified by the fact that if the Drinfeld center of a
finite tensor categoryT satisfies the (fg) condition, thenT satisfies the (wfg) condition;
hence, the validity of the Etingof–Ostrik conjecture implies that all stable categories
of finite tensor categories satisfy (wfg). To see this, we first note that Negron and
Plavnik [47] proved that the validity of the Etingof–Ostrik conjecture implies that the
cohomology ring of T is finitely generated over the cohomology ring of the Drinfeld
center of T. The first algebra is isomorphic to R•

T and the action of the cohomology
ring of the Drinfeld center of T factors through C•

T, see Sect. 3 and [47, Proposition
3.3].

Our main result proves the existence of continuous maps ρ and ρ̂ that can be used
to solve Problem A for all FTCs. It is striking that such continuous maps can be
constructed without any assumptions on the M�C, K, see part (a) of the theorem.
In parts (b)–(d) we establish properties of these maps under weak finite generation
assumptions.

Theorem B Let K be an M�C.

(a) There is a continuous map ρ̂ : SpcK → Spech Ĉ•
K defined by

ρ̂ : SpcK → Spech Ĉ•
K

P �→ 〈g ∈ Ĉ•
K : cone(g) /∈ P〉.

Its composition with the contraction map Spech Ĉ•
K → Spech C•

K, gives rise to
the continuous map

ρ : SpcK → Spech C•
K, P �→ 〈g ∈ C•

K : cone(g) /∈ P〉.

In addition, we have the compatibility properties

V (A) ⊆ ρ̂−1(ŴC (A)) and V (A) ⊆ ρ−1(WC (A))

for all A ∈ K.
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(b) If K satisfies the weak finite generation condition, then the image of ρ contains
ProjC•

K.
(c) If K is the stable category of a finite tensor category and satisfies the weak finite

generation condition then ρ takes values in ProjC•
K and is surjective.

(d) If K satisfies the weak Tate finite generation condition, then ρ̂ is surjective.

The first part of the theorem is motivated by a result of Balmer [5, Theorem 5.3]
which established its validity in the symmetric monoidal case. In connection to part
(c) of the theorem, in the symmetric case, Balmer also proved that ρ̂ is surjective under
the assumption that K is connective (i.e. that R•

K = R̂•
K), [5, Theorem 7.3], or under

the assumption that R̂•
K is coherent, [5, Theorems 7.13]. Both assumptions are strong

even in the case of the stable module category of a finite group.
On the other hand, part (b) of the theorem has important general applications. As

discussed above, the Etingof–Ostrik conjecture implies (wfg) for the stable category of
each finite tensor category T; that is, Theorem B(b) and the Etingof–Ostrik conjecture
imply the surjectivity of ρ for all such categories T.

Part (c) of the theorem provides a continuous surjective map

Spc(mod(A)) → Proj H•(A, k)

for all quasitriangular finite dimensional Hopf algebras satisfying the weak finite
generation condition. This is a very general fact, a special case of which handles
quantum groups of all types. Even in the case of the small quantum group of type A,
the surjectivity is non-trivial, and was independently proved by Negron and Pevtsova
in [46].
1.6.We conjecture that the surjective continuous map ρ in Theorem B is a homeomor-
phism for every finite tensor category (Conjecture E below). In the rest of the paper we
obtain auxiliary results towards the validity of the conjecture under stronger assump-
tions (Theorems C and D below). Recall from [16, 40] that a map σ : K → Xcl(X)

for a topological space X is a weak support datum map if the following conditions are
satisified:

(1) σ(0) = ∅ and σ(1) = X ;
(2) σ(A ⊕ B) = σ(A) ∪ σ(B), ∀A, B ∈ K;
(3) σ(�A) = σ(A) for all A ∈ K;
(4) If A → B → C → �A is a distinguished triangle, then σ(A) ⊆ σ(B) ∪ σ(C);
(5) �σ (I ⊗ J) = �σ (I) ∩ �σ (J) for all thick ideals I and J of K, where �σ (I) :=

∪A∈Iσ(A).

We note that for every M�C, K, the Balmer spectrum support map V : K →
Xcl(SpcK) is a weak support datum map. Furthermore, the cohomological support
map W : K → Xcl(Proj R•

K), the Tate cohomological support map Ŵ : K →
Xcl(Spech R̂•

K) and their central counterparts WC : K → Xcl(ProjC•
K) and ŴC :

K → Xcl(Spech Ĉ•
K) always satisfy conditions (1–4), but for arbitrary M�Cs it is

unknown whether they satisfy condition (5). If the central cohomological support map
WC : K → Xcl(ProjC•

K), respectively the Tate central cohomological support map
ŴC : K → Xcl(Spech Ĉ•

K), are weak support data maps, then by [40, Theorem 4.5.1],
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212 D. K. Nakano et al.

we get universal continuous maps

η : ProjC•
K → SpcK respectively η̂ : Spech Ĉ•

K → SpcK.

Our first auxiliary theorem constructs right inverses of the surjective continuous
maps ρ and ρ̂ from the main Theorem B under certain stronger assumptions on the
underlying category.

Theorem C

(a) If K is an M�C for which the central cohomological support is a weak support
datum and K satisfies the (wfg) condition, then ρ(η(p)) = p for every homoge-
neous prime ideal p of C•

K.
(b) If T is a finite tensor category whose stable category K = T satisfies (wfg) and

central cohomological support is a weak support datum, then ρ takes values in
ProjC•

K and η : ProjC•
K → SpcK is a right inverse of ρ : SpcK → ProjC•

K.
(c) IfK is anM�C forwhich the Tate central cohomological support is aweak support

datum andK satisfies the (wTfg) condition, then η̂ : Spech Ĉ•
K → SpcK is a right

inverse of ρ̂ : SpcK → Spech Ĉ•
K.

The distinction between parts (a) and (b) is that in the more general setting of part (a)
it is not claimed that the map ρ : SpcK → Spech C•

K avoids the irrelevant ideal of
C•
K, while in the important setting of part (b) it does, which in light of part (a), leads

to the invertibility result. As always, this seemingly simple fact is the hardest to prove.

1.7. Denote by ThickId(K) the set of all thick two-sided ideals of an M�C. It is an
ordered monoid with the operation I, J �→ 〈I⊗ J〉 and the inclusion partial order. The
setXsp(X) of specialization closed subsets of a topological space X is also an ordered
monoid with the operation of intersection and the inclusion partial order.

Our second auxiliary theorem shows that the surjective continuous maps from the
main TheoremB are homeomorphims and classifies thick tensor ideals, under stronger
assumptions than those in Theorem C.

Theorem D Let K be an M�C, which is the compact part of a compactly generated
M�C, K̃.

If K satisfies the (wfg) condition, ProjC•
K is a Zariski space and the central coho-

mological support of K has an extension to a faithful extended weak support datum
K̃ → X (ProjC•

K) (see Sect. 2.3 for definitions), then the following hold:

(a) The maps ρ and η are inverse homeomorphisms

SpcK
ρ

�
η
ProjC•

K.

(b) The map

�WC : ThickId(K) → Xsp(ProjC
•
K)

is an isomorphism of ordered monoids.
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On the spectrum and support theory of a finite tensor… 213

If K satisfies the (wTfg) condition, Spech Ĉ•
K is a Zariski space and the central

cohomological support of K has an extension to a faithful extended weak support
datum K̃ → X (Spech Ĉ•

K), then the following hold:

(c) The maps η̂ and ρ̂ are inverse homeomorphisms

SpcK
ρ̂

�
η̂

Spech Ĉ•
K.

(d) The map

�ŴC
: ThickId(K) → Xsp(Spec

h Ĉ•
K)

is an isomorphism of ordered monoids.

By the discussion in Sect. 1.5, the validity of the Etingof–Ostrik conjecture
implies that the conclusions in Theorem D(a)–(b) holds for the stable category of
each finite tensor category T for which ProjC•

T is a Zariski space and the central
cohomological support has an extension to a faithful extended weak support datum
IndT → X (ProjC•

T), see Appendix A on background on the stable category of the
indization IndT of T.

Theorem D recovers the well-known classifications of thick ideals and Balmer
spectra in the symmetric and braided cases of stable categories of finite group schemes
[4, 30], Lie superalgebras [15], as well as perfect derived categories of topologically
Noetherian schemes [4, 56].

We should mention connections of our work with [45] (via correpondence with
Cris Negron). Let Z•

T be the image of the restriction map from the cohomology of the
Drinfeld center to the cohomology for T which was under consideration in [45]. In
particular, it was pointed out to that one expects ProjC•

T to be a more precise model
for SpcT when compared to Proj Z•

T. Moreover, the algebra C•
T should be easier to

compute as opposed to Z•
T (cf. the results in Sect. 5 vs. the discussions in [45, Section

10.5]).
Examples. Theorems B and C have relatively mild assumptions that are not hard

to verify in wide generality. In Sect. 9 we demonstrate that even the most restrictive
assumptions of Theorem D can be verified in a uniform fashion for wide classes of
Hopf algebras using our new concept of the categorical center of a cohomology ring
and the results about it, obtained in the first part of the paper. We prove that, if the
assumptions in TheoremD are satisfied for a finite dimensionalHopf algebra, then they
are satisfied for the Plavnik–Witherspoon co-smash product [49] of this Hopf algebra
and the coordinate ring of a finite groups. Based on this theorem, we prove that the
assumptions in Theorem D are satisfied for the Benson–Witherspoon Hopf algebras,
and the coordinate rings of all finite group schemes. This conveniently recovers the
previous classification results for wide classes of finite tensor categories that were
treated on a case-by-case basis with various methods.

1.8. We conjecture that the conclusions of parts (a)–(b) of Theorem D hold for the
stable categories of all FTCs.
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214 D. K. Nakano et al.

Conjecture E For every finite tensor category T, the following hold:

(a) The continuous map

ρ : SpcT → ProjC•
T

is a homeomorphism.
(b) The monoids ThickId(T) and Xsp(ProjC•

T) are isomorphic.

It is highly anticipated that the conditions in Theorem D to validate Conjecture E
will hold in general. In fact, the conditions in Theorem D that an M�C, K satisfies
the (wfg) condition and ProjC•

K is a Zariski space are natural assumptions that have
appeared in the literature. In Appendix B we show that the condition that the central
cohomological support of K has an extension to a faithful extended weak support
datum K̃ → X (ProjC•

K) is also natural. Namely, we show that the Balmer support
of the compact part K of a compactly generated M�C, K̃, always has an extension
to an extended weak support datum. Note that the conclusion of parts (a) and (b) of
Theorem D means that the former and latter supports coincide on thick ideals of K,
which would imply that the existence of a faithful extension to K̃ of the former support
implies the existence of a faithful extension to K̃ of the latter support.

1.9 Executive summary

The key conditions entering in Theorems B–D are as follows

(i) The validity of the Etingof–Ostrik conjecture;
(ii) The weak finite generation condition;
(ii’) The weak Tate finite generation condition;
(iii) The central cohomological support WC : K → ProjC•

K is a weak support
datum map;

(iii’) TheTate central cohomological support ŴC : K → Spech Ĉ•
K is aweak support

datum map.

The implications of Theorems B–D are as follows:
Stable categories of finite tensor categoriesT: for such categories the conclusion in

Theorem C(a) is valid under the Etingof–Ostrik conjecture and that in Theorem D(a)
is valid under the Etingof–Ostrik conjecture and condition (iii). We expect that con-
dition (iii) holds in broad generality but it is open in key situations, such as the finite
dimensional module categories of small quantum groups. TheoremB(a) holds without
any assumptions and can be helpful in studying the structure of the categorical center
C•
T of the cohomology ring R•

T, starting from the topology of SpcT. For instance,
prove noetherianity of SpcT and then extend it to C•

T, as a step to approaching the
Etingof–Ostrik conjecture for arbitrary finite tensor categories T.

The Tate side: the conditions (ii’) and (iii’) entering in Theorems B(c), C(b) and
D(b) are strong conditions on T. The question of what finite tensor categories satisfy
them is currently under intense study [9, 20, 44] and even the case ofmodule categories
of finite groups is still open. In these situations Theorems B(c), C(b) and D(b) give
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On the spectrum and support theory of a finite tensor… 215

important information about cohomological support of elements of T computed with
respect to Tate cohomology.

The classification of thick tensor ideals: Theorems B–D with Conditions (i)–(iii’)
not only lead to a resolution of Problem A but also provide an explicit description of
the Balmer spectrum of the stable categories of finite tensor categories and their thick
ideals, which is of considerable interest on its own.

Monoidal triangulated categories K which are the compact parts of M�Cs admit-
ting arbitrary set indexed coproducts: In this general situation, the conclusion in
Theorem B(a) is valid under no assumptions, while Theorems B(b), C(a) and D(a)
rely on assumptions (ii) and (iii). We expect that these conditions are satisfied in far
greater generality than stable categories of finite tensor categories, thus yielding strong
results towards the resolution of Problem A in full generality. On the Tate side, Theo-
rems B(c), C(b) andD(b) rely on assumptions (ii’) and (iii’), which aremore restrictive
assumptions as pointed out even in the case of stable categories. This direction has
attracted a lot of attention recently [9, 19, 20, 48].

2 Background on noncommutative Balmer spectra

Recall that amonoidal triangulated category (M�C for short) is a triangulated category
K with a biexact monoidal structure such that K is a suspended monoidal category,
in the language of [55]. We will assume throughout that the endomorphism ring of
the unit object of K is isomorphic to the base field k. In this section we collect some
background material on the noncommutative Balmer spectrum of an M�C that will
be used in the paper, see [4, 16, 40, 41].

2.1 The Balmer spectrum of anM1C

A (two-sided) thick ideal I of an M�C, K, is a full triangulated subcategory closed
under direct summands such that I satisfies the ideal condition: for each A ∈ I and
B ∈ K, the objects A⊗ B and B⊗ A are both in I. If only A⊗ B (respectively B⊗ A)
is required to be in I, then I is a right (respectively left) thick ideal of K. Given a
collection of objects S, the thick two-sided ideal generated by S will be denoted 〈S〉.

A two-sided thick ideal P of K is called prime if I ⊗ J ⊆ P implies that one of I
or J is contained in P, for all thick ideals I and J. If P satisfies the stronger condition
that A ⊗ B ∈ P implies A or B is in P for all objects A and B of K, then we call
P completely prime. The collection of all prime ideals of K is the Balmer spectrum
of K, denoted SpcK, as a topological space under the Zariski topology where closed
sets are defined to be arbitrary intersections of the base of closed sets

V (A) = {P ∈ Spc(K) : A /∈ P}.

The map V defined above, which sends objects of K to closed sets of SpcK, will be
referred to as the Balmer support.

123



216 D. K. Nakano et al.

Recall that a subsetM ofK is calledmultiplicative if all objects ofM are nonzero,
and if A and B are in M then so is A ⊗ B. The Balmer spectrum of an M�C, K, is
always nonempty by the following result ( [40, Theorem 3.2.3]):

Theorem 2.1.1 Suppose M is a multiplicative subset of a M�C, K, and suppose I is
a proper thick ideal of K which intersectsM trivially. If P is maximal element of the
set

X(M, I) := {J a thick ideal of K : J ⊇ I, J ∩ M = ∅},

then P is a prime ideal of K.

Using Zorn’s lemma and the fact that X(M, I) is always nonempty for any M
and I as in the hypothesis of Theorem 2.1.1, we conclude given such a multiplicative
subset M and thick ideal I, there always exists at least one prime ideal P containing
I and disjoint from M.

2.2 Universality of the Balmer support

Recall the definition of a weak support datum from Sect. 1.6. The Balmer support

V : K → Xcl(SpcK)

is a weak support datum, [40, Lemma 4.1.2]. In [40, Theorem 4.5.1] it was proved
that it is a final object in the category of all weak support data for K:

Theorem 2.2.1 Let K be an M�C and σ be a weak support datum from objects of K
to subsets of a topological space X, such that �σ (〈A〉) is closed for any object A of
K. Then there is a unique map ησ : X → SpcK satisfying �σ (〈A〉) = η−1

σ (V (A)),
defined by

ησ (x) = {A ∈ K : x /∈ �σ (〈A〉)}

for all x ∈ X. The map ησ is continuous.

2.3 Reconstruction of the noncommutative Balmer spectrum

An M�C, K, is said to be compactly generated if it is closed under arbitrary set
indexed coproducts, the tensor product preserves set indexed coproducts, K is com-
pactly generated as a triangulated category, the tensor product of compact objects is
compact, 1 is a compact object, and every compact object is rigid (cf. [27, Definition
2.10.11]). The full subcategory of compact objects of K, denoted by Kc, is an M�C;
we say that Kc is the compact part of K.

Recall that for a topological space X , denote by X (X) the collection of all of its
subsets. An extended weak support datum for a compactly generated M�C, K, is a
map σ̃ : K → X (X) that satisfies properties (1), (3)–(4) in Sect. 1.6 and the following
properties (replacing conditions (2) and (5), respectively):
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(2’) σ̃ (
⊕

i∈I Ai ) = ⋃
i∈I σ̃ (Ai ), for all Ai ∈ K;

(5’)
⋃

D∈Kc σ̃ (A ⊗ D ⊗ C) = σ̃ (A) ∩ σ̃ (C) for all A ∈ K,C ∈ Kc.

This is a slightlyweaker assumption that the notion of extendedweak support datum
used in [40, 41]. We say that such a support map satisfies the faithfulness property if

�σ̃ (〈M〉K) = ∅ ⇔ M = 0, ∀M ∈ K

and the realization property if for every W ∈ Xcl(X) there exists M ∈ Kc such
that �σ̃ (〈M〉Kc) = W . Here, 〈M〉Kc and 〈M〉K denote the thick ideals of Kc and K
generated by an object M in one of them. We say that σ̃ : K → X (X) is an extension
of σ : Kc → Xsp(X) if

�σ̃ (〈M〉Kc) = �σ (〈M〉Kc) for all M ∈ Kc.

We will need the following reconstruction result for the noncommutative Balmer
spectrum, which is a slightly more general version of [40, Theorem 6.2.1]. Its proof
is identical to that of [40, Theorem 6.2.1].

Theorem 2.3.1 Assume that K is a compactly generated M�C and σ : K → X is
an extended weak support datum for a Zariski space X such that �σ (〈C〉) is closed
for every compact object C. Suppose in addition that σ satisfies the faithfulness and
realization properties. Then the following hold:

(a) The map ησ : X → SpcKc is a homeomorphism.
(b) The map �σ is an isomorphism of ordered monoids between the set of thick ideals

of Kc, equipped with the operation I, J �→ 〈I ⊗ J〉 and the inclusion partial
order, and the set Xsp(X) of specialization closed subsets of X, equipped with the
operation of intersection and the inclusion partial order.

3 Nine algebras

In this section we describe the algebras of homological origin that will play a role in
this paper and exactly where the categorical centers fit into this picture. We compare
the latter rings to various families of algebras that have appeared in the literature.

3.1 Relation between the categorical center and the graded center of anM1C

LetK be anM�Cwith a fixed set of generatorsK. Recall from the introduction that the
categorical center Ĉ•

K of the Tate cohomology ring R̂•
K is the graded subring spanned

by all g ∈ HomK(1, �i1) such that the diagram (1.1) commutes for all objectsM ∈ K.
A pathological problem in this situation is that, if M1 → M2 → M3 → �M1 is a

distinguished triangle and the diagram (1.1) commutes forM = M1 andM = M3, then
it does not necessarily commute for M = M2. This comes from the non-uniqueness of
the extension morphism in the TR4 axiom for triangulated categories. Consequently,
the algebra Ĉ•

K depends on the choice of the collectionK and is bigger than the algebra
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that is obtained in this way when we chooseK to be the set of all objects ofK. Because
of this, we choose K to be as small as possible, and in particular, in the case of the
stable category T of a finite tensor category T, K will be always chosen to be the
(finite) set of simple objects of T. This is illustrated in detail in Sect. 5.

The graded center ofK, as studied in [12, 18], is the (graded commutative) algebra
Z•(K) whose degree n component consists of natural transformations

η : idK → �n such that η� = (−1)n�η.

By [17, Proposition 2.1], there are two injective homomorphisms L,R : R̂•
K ↪→

Z•(K), which send g ∈ HomK(1, �n1) to

M 1 ⊗ M �n1 ⊗ M �nM and

M M ⊗ 1 M ⊗ �n1 �nM,

∼= g⊗idM ∼=

∼= idM ⊗g ∼=

respectively. By way of definition, the categorical center of the Tate cohomology ring
R̂•
K is given by

Ĉ•
K := {g ∈ R̂•

K | L(g) = R(g) on all objects M ∈ K}.

This realizes Ĉ•
K as a subalgebra of the graded center Z•(K), which is generally much

smaller than Z•(K) since the Tate cohomology ring R̂•
K is itself embedded in Z•(K).

3.2 The Drinfeld center

Recall that theDrinfeld center of amonoidal categoryT, denotedZ(T), is the category
with objects given by pairs (A, γ ), where A is an object of T and γ is a half-braiding,
that is, a natural isomorphism

γM : A ⊗ M ∼= M ⊗ A, M ∈ T

satisfying the associativity condition [27, Eq. (7.41)]. It is again a monoidal category
with unit object (1, β),where1 is the unit object ofT andβ is the structure isomorphism
βM : 1 ⊗ M ∼= M ∼= M ⊗ 1 in T. A morphism (A, γ ) → (A′, γ ′) in Z(T) is defined
to be a morphism g : A → A′ in T such that the diagram

A ⊗ M A′ ⊗ M

M ⊗ A M ⊗ A′

g⊗idM

γM γ ′
M

idM ⊗g

commutes for all objects M of T, see [27, Sect. 7.13-14] for details. For example, if
T = mod(H) for a finite dimensional Hopf algebra H , then Z(T) is equivalent to the
categorymod(D(H)), where D(H) is the Drinfeld double of H (cf. [27, Proposition
7.14.6]).
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3.3 Cohomology rings of M1Cs and their categorical centers

The Drinfeld center Z(K) of an M�C, K, is a monoidal additive category equipped
with the autoequivalence (A, γ ) �→ (�A, γ ′), where γ ′ is the natural isomorphism
defined by the composition of �γ with the M�C structure isomorphisms:

(�A) ⊗ M M ⊗ (�A)

�(A ⊗ M) �(M ⊗ A)

∼=

γ ′
M

�(γM )

∼=

(We are not aware of an argument showing that Z(K) is necessarily a triangulated
category.)

Thus, we have another canonical algebra attached to K: the Tate cohomology ring
of the Drinfeld center Z(K),

R̂•
Z(K) :=

⊕

i∈Z

HomZ(K)((1, β),�i (1, β)).

It is easy to verify that forgetful functor Z(K) → K induces an injective homomor-
phism

R̂•
Z(K) ↪→ Ĉ•

K given by g ∈ HomZ(K)((1, β),�i (1, β)) �→ g ∈ HomK(1, �i1),

(3.1)

which is an isomorphism if the collectionK is chosen to be the set of all objects ofK.
Similarly, we have the cohomology ring of the Drinfeld center Z(K),

R•
Z(K) :=

⊕

i≥0

HomZ(K)((1, β),�i (1, β)),

and the injective homomorphism (3.1) restricts to an injective homomorphism

R•
Z(K) ↪→ C•

K,

which is an isomorphism if the collectionK is chosen to be the set of all objects ofK.

3.4 Relations in the case of stable categories of finite tensor categories

Recall that a finite tensor category T is a tensor category which is equivalent to the
category of finite dimensional representations of a finite dimensional k-algebra. See
[27, Ch. 4] for background on finite tensor categories.

Consider the important special case whenK is the stable category of a finite tensor
category T which is not semisimple; as usual the corresponding stable category will
be denoted by T. In this situation the collection K will be chosen to be the (finite) set
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of simple objects of C. Furthermore, R•
T is isomorphic to the cohomology ring of T

R•
T :=

⊕

i≥0

ExtiT(1, 1).

This follows from the canonical isomorphism

⊕

i>0

ExtiT(A, B) ∼=
⊕

i>0

HomT(A, �i B)

for all objects A, B of a Frobenius category T (see e.g., [26, Proposition 2.6.2] for the
case of group algebras, which extends to arbitrary Frobenius categories), and from the
isomorphisms EndT(1) ∼= k and EndT(1) ∼= k (the first isomorphism is part of the
definition of a finite tensor category, the second one follows from the assumption that
T is not semisimple, which implies that 1 is not projective). The algebra R̂•

T is called
the Tate cohomology ring of T.

In the special case of the stable module category mod(H) of a finite dimensional
Hopf algebra H , R•

mod(H)
and R̂•

mod(H)
are isomorphic to the cohomology ring and

the Tate cohomology ring of H , respectively.
The Drinfeld centerZ(T) of a finite tensor categoryT is also a finite tensor category

[27, Proposition 7.13.8], and hence we can additionally form its stable category Z(T).
The categorical centers C•

T ⊆ Ĉ•
T are closely related to two additional algebras of

interest: the cohomology ring of the Drinfeld center Z(T),

R•
Z(T) :=

⊕

i≥0

ExtiZ(T)((1, β), (1, β)) ∼= R•
Z(T)

and the Tate cohomology ring of the stable category of the Drinfeld center of T, that
is, Z(T):

R̂•
Z(T) :=

⊕

i∈Z

HomZ(T)((1, β),�i (1, β)).

By [57, Proposition 2.1.1], there is a monoidal triangulated functor F : Z(T) → T
which extends the usual forgetful functor F : Z(T) → T. If (A, γ ) ∈ Z(T)—i.e.,
γ : A⊗− ∼= −⊗ A is a half-braiding forT—then it is straightforward to verify that γ
also defines a half-braiding onT. If g : A → A′ defines amorphism (A, γ ) → (A′, γ ′)
in Z(T), then the diagram

A ⊗ M A′ ⊗ M

M ⊗ A M ⊗ A′

g⊗idM

γM γ ′
M

idM ⊗g

commutes in T for any object M , and hence commutes in T; thus g also defines a
morphism F̌(A, γ ) → F̌(A′, γ ′). Therefore, F : Z(T) → T factors as
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Z(T) Z(T) T,
F̌

F

where the functor Z(T) → T is the forgetful functor. The functor F̌ is additive and
monoidal, and commutes with the respective shift functors on Z(T) and Z(T), and
thus induces a homomorphism of graded rings

i : R̂•
Z(T)

∼= R̂•
Z(T) → R̂•

Z(T),

sending g : (1, β) → �i (1, β) to F̌(g) : (1, β) → �i (1, β).

Lemma 3.4.1 The image of the composition of ring homomorphisms R̂•
Z(T) →

R̂•
Z(T) → R̂•

T is contained in Ĉ•
T.

Proof Let g ∈ R̂•
Z(T) be a map in Z(T) denoted by g : (1, β) → �i (1, β). As a

morphism in the stable category of Z(T), g corresponds to an equivalence class of
morphisms in Z(T) from (1, β) → �i (1, β). Since g corresponds to a morphism in
the Drinfeld center of T, by definition the diagram

1 ⊗ A �i1 ⊗ A

A ⊗ 1 A ⊗ �i1

g⊗idA

idA ⊗g

commutes, for all A ∈ T, and where the vertical maps are the half-braidings associated
to 1 and �i1, respectively. Since the half-braidings associated to these objects are the
same as the structure maps in the monoidal triangulated structure, the commutativity
of this diagram implies that the image of g under this composition, in other words
F(g), is in Ĉ•

T. ��
For T the stable module category of any finite tensor category T, we have now

exhibited a collection of nine algebras (up to isomorphism):

R•
Z(T)

∼= R•
Z(T) R•

Z(T) C•
T R•

T
∼= R•

T

R̂•
Z(T) R̂•

Z(T) Ĉ•
T R̂•

T Z•(T)

i

i R,L

(3.2)

Remark 3.4.2 From now on, when the underlying M�C (K or T) is clear from the
discussion, we will omit the subscript in the notation for the above algebras and will
simply write

C•, Ĉ•, R•, R̂•.
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Analogously, we will write End•(A),̂End
•
(A), Hom•(A, B), ̂Hom

•
(A, B) without

subscripts K or T.

4 Categorical centers of cohomology rings and fixed point subrings

In this section we show that, in certain important situations, the categorical centers
C•
K and Ĉ•

K of the cohomology rings R•
K and R̂•

K can be interpreted as fixed point
subrings with respect to a natural group action.

4.1 The group of endotrivial objects of anM1C

Let K be an arbitrary monoidal category. Recall that an object M ∈ K is called left
dualizable if there exists an object M∗ ∈ K and evaluation, coevaluation maps

ev : M∗ ⊗ M → 1, coev : 1 → M ⊗ M∗,

such that the compositions

M
coev⊗ id−−−−−→ M ⊗ M∗ ⊗ M

id⊗ ev−−−→ M and M∗ id⊗ coev−−−−−→ M∗ ⊗ M ⊗ M∗ ev⊗ id−−−→ M∗

are the identity maps on M and M∗, respectively. The left dual object M∗ is unique
up to a unique isomorphism, [27, Proposition 2.10.5]. In a similar way one defines
the notions of a right dualizable object M and its right dual ∗M , see [27, Definition
2.10.2]. An object M ∈ K is called rigid if it is both left and right dualizable.

An object M ∈ K is called invertible if it is left dualizable and the maps ev and
coev are isomorphisms, cf. [27, Definition 2.11.1].

Lemma 4.1.1 Every invertible object M of a monoidal categoryK is rigid with ∗M ∼=
M∗. The set of invertible objects of K forms a group under ⊗, with the inverse of
M ∈ K equal to M∗.

Proof A result of this type was proved in the case of rigid monoidal categories in [27,
Proposition 2.11.3]. We provide brief details because of the more general setting that
is considered here. For an invertible object M ∈ K, we have the maps

coev−1 : M ⊗ M∗ → 1, ev−1 : 1 → M∗ ⊗ M,

and one easily checks that M∗ and this pair of maps satisfy the axioms for right dual
object of M ; thus M∗ is also a right dual of M . This, in particular implies that M∗
is also invertible with left/right dual given by M and that M∗∗ ∼= M . The rest of the
lemma is now straightforward. ��

With the previous lemma, one can define the group of endotrivial modules for any
rigid monoidal category. As far as the authors know this definition has not appeared
in the context of non-symmetric monoidal categories.
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Definition 4.1.2 Let K be a monoidal category where every object is rigid. For any
object in M ∈ K, let [M] note the isoclass of objects defined by M . Let T (K) be the
group consisting of the classes [M] for invertible objects M with the product structure
[M] · [N ] = [M ⊗ N ], identity object [1], and inverses [M]−1 := [M∗]. We will call
T (K) the group of endotrivial objects forK, extending the standard terminology from
representations of finite groups.

For H a finite dimensional Hopf algebra, one can consider the stable module cat-
egory mod(H), and the group of endotrivial modules T (H) := T (mod(H)). In the
case where H is cocommutative, T (H) is an abelian group. Carlson and Nakano have
conjectured that T (H) should be finitely generated [25, Sec. 10, (2)]. In the important
case when H = kG is a group algebra of a finite group the theory of endotrivial
modules has been well-studied (cf. [38]). Puig [50] proved that T (kG) is a finitely
generated (abelian) group. The structure of T (kG) has been computed for a various
families of groups (cf. [21–24]). When H is an arbitrary Hopf algebra, an interest-
ing question is to determine if T (H) is finitely generated, and to work out the group
structure.

4.2 The action of the group of endotrivial modules

For the rest of the section, let K be an M�C. Let T (K) be the group of endotrivial
objects ofK. It acts on the Tate cohomology ring R̂• by homogeneous automorphisms
(and thus, on R•) in the following way. The action of M ∈ T (K) on g ∈ Hom(1, �i1)
is the morphism σM (g) ∈ Hom(1, �i1) given by the composition

1
coev−−→ M ⊗ M∗ ∼= M ⊗ 1 ⊗ M∗ idM ⊗g⊗idM∗−−−−−−−−→ M ⊗ �i1 ⊗ M∗ ∼=

∼= �i (M ⊗ 1 ⊗ M∗) ∼= �i (M ⊗ M∗) �i coev−1−−−−−→ �i1. (4.1)

Lemma 4.2.1 For an M�C, K, and g ∈ Hom(1, �i1), the following hold:

(a) If the diagram (1.1) commutes, then the diagram (1.1) with M replaced by �nM
commutes for all n ∈ Z.

(b) If the diagram (1.1) commutes for M = M1 and M = M2, then it commutes for
M = M1 ⊗ M2.

(c) For an invertible M ∈ K, the diagram (1.1) commutes if and only if σM (g) = g.

Proof Parts (a) and (b) are straightforward and are left to the reader. (c) If the diagram
(1.1) commutes and M is invertible, then one can replace the second arrow in (4.1)
with the composition of the other three arrows in the commutative diagram

M ⊗ 1 ⊗ M∗ M ⊗ �i1 ⊗ M∗

1 ⊗ M ⊗ M∗ �i1 ⊗ M ⊗ M∗

idM ⊗g⊗idM∗

∼=
g⊗idM ⊗ idM∗

∼=
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where in the second column �i1 ⊗ M ⊗ M∗ ∼= �i (M ⊗ M∗) ∼= M ⊗ �i1 ⊗ M∗.
The cancellation of coev and coev−1 and the bi-functoriality of the tensor product in
K gives that σM (g) = g. The opposite direction is proved in an analogous way. ��

Lemma 4.2.1(c) implies that for every M�C, K, we have the inclusions of graded
algebras

Ĉ• ⊆ (R̂•)T (K)∩[K] ⊆ R̂• and C• ⊆ (R•)T (K)∩[K] ⊆ R•,

where [K] denotes the collection of isoclasses of objects of K corresponding to the
objects in K. In the following case, the first inclusions in each of the two chains
become equalities, and the categorical centers have a concrete realization as rings of
fixed points.

Corollary 4.2.2 If anM�C,K, is generated by a subgroup G of its group of endotrivial
objects T (K) and [K] := G, then

Ĉ• = (R̂•)G and C• = (R•)G .

Proof The corollary follows from Lemma 4.2.1(c). ��

5 Examples of categorical centers

In this section we illustrate how the categorical centersC•
K and Ĉ•

K of the cohomology
rings R•

K and R̂•
K arise as fixed point subrings for the stable module categories of

important classes of Hopf algebras. For a Hopf algebra A over a field k, we will
denote by

Ĥ
•
(A, k) ∼= R̂•

mod(A) (5.1)

its Tate cohomology ring.

5.1 Basic Hopf algebras

Afinite dimensional Hopf algebra A is called basic if all its irreducible representations
are 1-dimensional (i.e., A is basic when considered as an algebra). In this situation,
the irreducible representations are endotrivial objects of mod(A), and the set of irre-
ducibles is closed under tensoring. Furthermore,mod(A) is generated by that subgroup
of endotrivial objects. The following proposition gives an explicit description of the
categorical centers in this case.

Proposition 5.1.1 Let A be a finite dimensional basic Hopf algebra and G be the set of
isomorphism classes of non-zero 1-dimensional A-modules in the stable module cate-
gorymod(A) of finite dimensional A-modules. Then G is a subgroup of T (mod(A))

and
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Ĉ•
mod(A) = (R̂•

mod(A))
G ∼= (Ĥ

•
(A, k))G and C•

mod(A)

= (R•
mod(A))

G ∼= (H•(A, k))G .

Proof Every non-zero 1-dimensional A-module is invertible in the abelian category
mod(A) of finite dimensional A-modules with inverse given by its left=right dual.
The set of those modules is closed under tensoring and taking inverses. Hence, G
is a subgroup of T (mod(A)). Since A is basic, all irreducible A-modules are one
dimensional, and thus every module in mod(A) has a composition series with one
dimensional subquotients. Therefore, G generatesmod(A) as a triangulated category
and the proposition follows from Corollary 4.2.2. ��

Example 5.1.2 (Unipotent Hopf algebras) Assume that A is a finite dimensional Hopf
algebra which is local when considered as an algebra; we will call such a Hopf algebra
a unipotent Hopf algebra. It has a unique irreducible representation coming from its
counit, and this representation is the unit object 1 ofmod(A). One can then take G to
be the image of 1 in mod(A). Since 1 ⊗ M ∼= M ⊗ 1 for all M ∈ mod(A), G acts
trivially on R̂•

mod(A)
. Proposition 5.1.1(b) implies that

Ĉ•
mod(A) = R̂•

mod(A)
∼= Ĥ

•
(A, k) and C•

mod(A) = R•
mod(A)

∼= H•(A, k).

Example 5.1.3 (Quantum Borels) LetR be an irreducible root system of rank n. Let �
be a positive integer and ζ be a primitive �th root of unity. Assume that � is a positive
integer such that

(i) � is odd, (ii) ifR is of type G2 then 3 � �, and (iii) � > h where h is the Coxeter
number for R.

Let g be the complex simple Lie algebra associated with R, and b be a Borel
subalgebra. For every lattice � with ZR ⊆ � ⊆ X , where X is the weight lattice,
one can construct a small quantum Borel subalgebra uζ,�(b), [44]. We will follow the
notation of [41, Sect. 5.1]; the generators of uζ,�(b) will be denoted by Eαi and Kμ

for {α1, . . . , αn} a base of simple roots of R and μ ∈ �/�′, where the sublattice �′
of � is given by the display below Eq. (5.1.1) in [41].

It is well known that uζ,�(b) is basic (see e.g., [41, Proposition 5.3.1(a)]), so
Proposition 5.1.1(b) applies to it. By [41, Proposition 5.3.1(c)], the group G in Propo-
sition 5.1.1(b) acts trivially on R•

mod(uζ,�(b))
. Therefore,

C•
mod(uζ,�(b)) = R•

mod(uζ,�(b))
∼= H•(uζ,�(b), C).

Using the Lyndon-Hochschild-Serre spectral one shows that

R̂•
mod(uζ,�(b))

∼= Ĥ
•
(uζ (u), C)uζ,�(t),

where uζ (u) and uζ,�(t) are the unital subalgebras of uζ,�(b) generated by the ele-
ments {Eαi | 1 ≤ i ≤ r} and {Kμ | μ ∈ �/�′}, respectively. Now we can invoke
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the argument in [41, Proposition 5.3.1(c)] to show that the group G acts trivially on
R̂•
mod(uζ,�(b))

. Therefore,

Ĉ•
mod(uζ,�(b)) = R̂•

mod(uζ,�(b))
∼= Ĥ

•
(uζ,�(b), C). (5.2)

5.2 Plavnik–Witherspoon co-smash product Hopf algebras

Webeginwith a constructionof families offinite dimensionalHopf algebras introduced
by Plavnik and Witherspoon [49, Section 2]. Let L be a finite group and A be a finite
dimensional Hopf algebra with L acting on A by Hopf automorphisms. Set

AL = (A∗#kL)∗.

As an algebra, AL ∼= A ⊗ k[L]. The algebra k[L] is semisimple and the central
idempotents are indexed by g ∈ L . Therefore, the modules for AL are the same as
L-graded A-modules. We write such modules in the form

M =
⊕

x∈L
Nx ⊗ kx , (5.3)

where each Nx is an A-module and kx is the 1-dimensional k[L] corresponding to
x ∈ L .

There is a functor F : mod(A) → mod(AL), defined by

N �→ N ⊗ ke

on objects, where e is the identity of L . The functor F extends to a fully faithful
monoidal triangulated functor mod(A) → mod(AL); this is proved similarly to [40,
Lemma 9.2.2]. The functor F induces an isomorphism between the Tate cohomology
rings of AL and A:

R̂•
mod(AL )

∼= R̂•
mod(A). (5.4)

Consider the collection S of objects of mod(AL), defined as the objects of the
forms

(1) N ⊗ ke, for N a simple A-module, and
(2) ε ⊗ kx , where ε is the trivial A-module, and x is an element of L .

Every object of the generating set K (that is, every irreducible AL -module) can be
written as a tensor product of elements of S. The formula for the tensor product of
modules of AL , as proven in [49], gives

(N ⊗ ke) ⊗ (ε ⊗ kx ) ∼= (N ⊗x ε) ⊗ (ke ⊗ kx ) ∼= (N ⊗ ε) ⊗ kx ∼= N ⊗ kx .
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This implies that the identification (5.4) gives an embedding

Ĉ•
mod(AL ) ↪→ Ĉ•

mod(A).

Under the identification (5.4), Ĉ•
mod(A)

is characterized as the subring of R̂•
mod(A)

spanned by all homogeneous elements g for which (1.1) commutes with all irreducible
A-modules N . Under that identification, Ĉ•

mod(AL )
is characterized as the subring of

R̂•
mod(AL )

spanned by all homogeneous elements g for which (1.1) commutes with the
sub-collection (1) and (2) of S. (Here we apply Lemma 4.2.1(b)). The commutativity
condition on the elements of Ĉ•

mod(AL )
coming from the sub-collection (1) is precisely

equivalent to the condition defining Ĉ•
mod(A)

. Therefore, a homogeneous element g in

Ĉ•
mod(A)

is in Ĉ•
mod(AL )

if and only if (1.1) commutes for that g and all AL -modules of
the form M = ε ⊗ kx for some x ∈ L . Each of the modules ε ⊗ kx is 1-dimensional
and invertible: the inverse of ε ⊗ kx is ε ⊗ kx−1 . These invertible objects form a
group isomorphic to L , under − ⊗ −. By Lemma 4.2.1(c), we may now conclude the
following.

Theorem 5.2.1 Let AL be the Plavnik–Witherspoon co-smash product Hopf algebras
corresponding to the finite dimensionalHopf algebra A and a finite group L, as defined
above. Then there exist isomorphisms

Ĉ•
mod(AL )

∼= (Ĉ•
mod(A))

L and C•
mod(AL )

∼= (C•
mod(A))

L .

Many important families of finite dimensional Hopf algebras arise as Plavnik–
Witherspoon co-smash product Hopf algebras, and thus satisfy Theorem 5.2.1.

Example 5.2.2 (Twisted quantumBorels)Retain the notation of Example 5.1.3. Denote
by � is the Dynkin quiver associated to R. Its automorphism group Aut(�) acts on
the lattices ZR and X . If the lattice � is stable under Aut(�), then Aut(�) acts on
uζ,�(b) by Hopf algebra automorphisms by

φ(Eαi ) = Eφ(αi ), 1 ≤ i ≤ n, φ(Kμ) = Kφ(μ), μ ∈ �,

for φ ∈ Aut(�). One can consider the group algebra k Aut(�) and the co-smash
product:

H := (uζ,�(b)∗#k Aut(�))∗.

By [41, Proposition 5.3.1(c)], under the assumptions on ζ and R, the categorical
centers of the cohomology rings of the small quantumBorel subalgebras coincide with
the full cohomology rings:

Ĉ•
mod(uζ,�(b)) = R̂•

mod(uζ,�(b))
∼= Ĥ

•
(uζ,�(b), C), C•

mod(uζ,�(b))

= R•
mod(uζ,�(b))

∼= H•(uζ,�(b), C).
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Now, applying Example 5.1.3 we obtain

Ĉ•
mod(H)

∼= (Ĥ
•
(uζ,�(b), C))Aut(�) and C•

mod(H)
∼= (H•(uζ,�(b), C))Aut(�).

Example 5.2.3 (Benson–WitherspoonHopf algebras)LetG and L befinite groupswith
L acting on G by group automorphisms, and let k be a field of positive characteristic
dividing the order ofG. Consider the Benson–WitherspoonHopf algebra HG,L , which
was studied in [13]. By definition, HG,L = (k[G]#kL)∗, where k[G] is the dual of
the group algebra of G, and kL is the group algebra of L . Theorem 5.2.1 implies that

C•
mod(HG,L )

∼= H•(G, k)L and Ĉ•
mod(HG,L )

∼= Ĥ
•
(G, k)L .

Example 5.2.4 (Finite group schemes) Consider k[�], the coordinate algebra of �, a
finite group scheme, which is a commutative finite dimensional Hopf algebra. Assume
for this example that k is algebraically closed. One has � ∼= π � �0 where π is a
finite group and �0 is an infinitesimal group scheme [30, Remark 4.1]. Let Dist(�)

be the distribution algebra of �. Then

k[�] ∼= (Dist(�))∗ ∼= (Dist(π � �0))
∗

∼= (Dist(�0)#kπ)∗ ∼= (k[�0]∗#kπ)∗.

So, k[�] is a Plavnik–Witherspoon co-smash product Hopf algebra for A = k[�0] and
L = π . One has as algebras k[�] ∼= k[π ]⊗k[�0]where k[π ] is isomorphic to the dual
of the group algebra of π . The coordinate algebra of �0, k[�0], has an augmentation
ideal, I, that is nilpotent, i.e., k[�0] is a unipotent Hopf algebra. Example 5.1.2 implies
that

Ĉ•
mod(k[�0]) = R̂•

mod(k[�0]) ∼= Ĥ
•
(k[�0], k) and C•

mod(k[�])
= R•

mod(k[�0]) ∼= H•(k[�0], k).

Theorem 5.2.1 implies that

Ĉ•
mod(k[�]) ∼= (Ĥ

•
(k[�0], k))π and C•

mod(k[�]) ∼= (H•(k[�0], k))π .

6 From the Balmer spectrum to the central cohomological support

In this section we prove part (a) of Theorem B from the introduction, which produces
continuous maps from the Balmer spectrum SpcK of anM�C,K, to the target spaces
of the Tate central cohomological support Spech Ĉ• and the target space of the central
cohomological support ProjC•.

6.1 Properties of the central cohomological support maps and cones

We begin with the following proposition.
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Proposition 6.1.1 For every M�C, K, the Tate central cohomological support ŴC

satisfies the following properties:

(a) ŴC (0) = ∅ and ŴC (1) = Spech Ĉ•;
(b) ŴC (A ⊕ B) = ŴC (A) ∪ ŴC (B) for all A, B ∈ K;
(c) ŴC (�A) = ŴC (A) for all A ∈ K;
(d) If A1 → A2 → A3 → �A1 is a distinguished triangle, then

ŴC (A1) ⊆ ŴC (A2) ∪ ŴC (A3);
(e) ŴC (A ⊗ B) ⊆ ŴC (A) ∩ ŴC (B) for all A, B ∈ K.

The central support WC satisfies the same properties, with the second part of property
(a) replaced by WC (1) = ProjC•.

This implies that the central cohomological support is a quasi-support datum,
although (e) is a stronger condition than is required for quasi-support data.

Proof The proofs of properties (a)–(d) for both ŴC and WC are analogous to the
corresponding statements for the classical cohomological support and left to the reader.

We prove (e) for the Tate central cohomological support. The argument for
the central cohomological support is similar. First we note that ŴC (A ⊗ B) ⊆
ŴC (A) is straightforward from the definition. Suppose g : 1 → �i1 in Ĉ• is in
AnnĈ•(̂End

•
(A)); in other words, g ⊗ idA = 0, as maps A ∼= 1 ⊗ A → �i1 ⊗ A ∼=

�i A. Then it is clear that g ⊗ idA⊗B = g ⊗ idA ⊗ idB is also equal to 0, and so
g ∈ AnnĈ•(̂End

•
(A ⊗ B)). Since

AnnĈ•(̂End
•
(A)) ⊆ AnnĈ•(̂End

•
(A ⊗ B)),

it follows that ŴC (A ⊗ B) ⊆ ŴC (A).
For the inclusion ŴC (A ⊗ B) ⊆ ŴC (B), we must appeal to the definition of Ĉ•.

The proof is an induction on the length of A with respect to the generating set K.
In the case that A is in K, since g ∈ Ĉ•, the structure isomorphisms of K identify
g⊗idA ⊗ idB with idA ⊗g⊗idB = idA ⊗0 = 0. Thus, g ∈ AnnĈ•(̂End

•
(A⊗B)), and

ŴC (A⊗ B) ⊆ ŴC (B) follows as before. If A is not inK, we can pick a distinguished
triangle

A → A2 → A3 → �A

with the lengths of A2 and A3 less than the length of A with respect to K. Then

ŴC (A ⊗ B) ⊆ ŴC (A2 ⊗ B) ∪ ŴC (A3 ⊗ B)

⊆ (ŴC (A2) ∩ ŴC (B)) ∪ (ŴC (A3) ∩ ŴC (B))

⊆ ŴC (B).

��
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Proposition 6.1.1(e) implies at once the following:

Corollary 6.1.2 For an M�C, K, and A ∈ K,

ŴC (A) = �ŴC
(〈A〉) and WC (A) = �WC (〈A〉).

Before constructing maps between the Balmer spectrum of a monoidal triangulated
category and Spech Ĉ•, ProjC•, we recall an elementary consequence of the Octa-
hedral Axiom for triangulated categories. Recall that given a morphism g : A → B
in a triangulated category, cone(g) is the object (which is unique, up to a possibly
non-unique isomorphism) given in a distinguished triangle

A
g−→ B → cone(g) → �A.

Lemma 6.1.3 Let K be a triangulated category and I any triangulated subcategory
of K. Let g′ : A → B and g : B → C be morphisms in K. Suppose cone(g) and
cone(g′) are in I. Then cone(gg′) is in I as well.
Proof By the Octahedral Axiom for triangulated categories, there exist morphisms
giving the following diagram, where the rows and columns are distinguished triangles:

A B cone(g′) �A

A C cone(gg′) �A

0 cone(g) cone(g) 0

�A �B � cone(g′) �2A

g′

g

gg′

Since the third column is a triangle, if cone(g′) and cone(g) are in I, so is cone
(gg′). ��

6.2 Construction of̂� and�

In the next two results we introduce a continuous map from the noncommutative
Balmer spectrum to the homogeneous spectrum for the Tate categorical center. These
results first appeared in the commutative case byBalmer in [5, Definition 5.1, Theorem
5.3].

We first recall an elementary property of cone(g), for g ∈ R̂• (see [5, Proposition
2.13] in the symmetric case, or [17, Proposition 3.6(d)]).

Proposition 6.2.1 Let K be a M�C, and

1
g−→ �i1

h−→ cone(g)
f−→ �1

be a distinguished triangle. Then
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(a) g ⊗ g ⊗ idcone(g) = 0;
(b) idcone(g) ⊗g ⊗ g = 0.

Proof We first show (a). From the distinguished triangle given in the proposition, we
obtain for any object A a long exact sequence

· · · → Hom j (A, 1)
g·−→ Hom j (A, �i1) → Hom j (A, cone(g)) → · · ·

by basic properties of triangulated categories, see [43, Lemma 1.1.10], where themaps
are obtained by composition with shifts of the morphisms g, h, and f . From this long
exact sequence, we obtain the short exact sequence

0 → ̂Hom
•
(A, 1)/(g · ̂Hom

•
(A, 1)) → ̂Hom

•
(A, cone(g))

→ ker(g · |̂
Hom

•
(A,1)

) → 0, (6.1)

where we have used the fact that ̂Hom
•
(A, 1)[i] ∼= ̂Hom

•
(A, �i1) as graded vector

spaces. In fact, this is a short exact sequence of R̂•-modules. From this short exact
sequence, it is clear that the action of g2 acting on ̂Hom

•
(A, cone(g)) is 0 for any

object A, and in particular this holds for A = cone(g). Hence, g ⊗ g ⊗ idcone(g) = 0.
The proof of (b) follows similarly, but here we use an alternate action of R̂• on

̂Hom
•
(A, B), for arbitrary objects A and B, given by setting g.x equal to the compo-

sition

A ∼= A ⊗ 1
x⊗g−−→ � j B ⊗ �i1 ∼= �i+ j B,

for g : 1 → �i1 and x : A → � j B. Note that the two actions coincide on
̂Hom

•
(A, 1), since the diagram

A ⊗ 1 � j1 ⊗ �i1

� j1 ⊗ 1 � j (1 ⊗ 1) � j (1 ⊗ �i1)

A � j1 �i+ j1

1 ⊗ � j1 � j (1 ⊗ 1) � j (�i1 ⊗ 1)

1 ⊗ A �i1 ⊗ � j1

x⊗g

∼=id⊗g

∼= � j (id⊗g)

∼=
∼=

∼=

x � j g

∼=

∼=
∼=

g⊗id

� j (g⊗id)

∼=

g⊗x

∼=

commutes by the structure axioms of an M�C. That is, R̂• acts centrally on
̂Hom

•
(A, 1). Then the proof of (b) follows exactly the proof of (a), until the final

step, when we note that the action of g2 on idcone(g) ∈ ̂Hom
•
(cone(g), cone(g)) is

equal to idcone(g) ⊗g ⊗ g. ��
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Proposition 6.2.2 For anM�C,K, there is awell-definedmap ρ̂ : SpcK → Spech Ĉ•
given by

ρ̂(P) = 〈g ∈ Ĉ• : g is homogeneous, cone(g) /∈ P〉

for P ∈ SpcK.

Proof Fix P ∈ SpcK. We will prove that ρ̂(P) is a prime ideal of Ĉ•. By definition,
ρ̂(P) is an ideal; we will first show that the homogeneous elements of degree i in ρ̂(P)

are precisely those elements of Ĉ• of form g : 1 → �i1 such that cone(g) /∈ P.
We first show that this set is closed under addition. Suppose g and g′ are two

morphisms 1 → �i1 such that cone(g + g′) ∈ P. We must show that one of cone(g)
and cone(g′) is in P. By Proposition 6.2.1, we know that g ⊗ g ⊗ idcone(g) is the zero
morphism

1 ⊗ 1 ⊗ cone(g) ∼= cone(g)
0−→ �i1 ⊗ �i1 ⊗ cone(g) ∼= �2i cone(g),

and likewise for g′; similarly, idcone(g) ⊗g ⊗ g and idcone(g′) ⊗g′ ⊗ g′ are also 0.
Consider the morphism idcone(g) ⊗ idA ⊗(g + g′)3 ⊗ idcone(g′) for an object A ∈ K,
the generating set of K. This is a morphism

cone(g) ⊗ A ⊗ 1⊗3 ⊗ cone(g′) → cone(g) ⊗ A ⊗ �i1⊗3 ⊗ cone(g′).

By exactness of the monoidal product, the cone of this morphism is

cone(g) ⊗ A ⊗ cone((g + g′)3) ⊗ cone(g′).

Since cone(g + g′) ∈ P by assumption, so is cone((g + g′)3), by Lemma 6.1.3. Now
note that since g and g′ are in Ĉ• and A is inK, g and g′ commute (up to isomorphism)
with idA, and they skew-commute with each other by the graded-commutativity of
Ĉ•. Since both idcone(g) ⊗g2 and (g′)2 ⊗ idcone(g′) = 0, this implies that the entire
morphism idcone(g) ⊗ idA ⊗(g + g′)3 ⊗ idcone(g′) = 0. Hence, we have the following
distinguished triangle, where (as noted above) the third term is in P:

cone(g) ⊗ A ⊗ cone(g′) 0−→ �3i cone(g) ⊗ A ⊗ cone(g′)
→ cone(g) ⊗ A ⊗ cone((g + g′)3) ⊗ cone(g′) →

By the Splitting Lemma for triangulated categories (i.e., [43, Corollary 1.2.5]), this
implies that the third term of this triangle is isomorphic to

(
�3i cone(g) ⊗ A ⊗ cone(g′)

) ⊕ (
� cone(g) ⊗ A ⊗ cone(g′)

)
.

By the thickness of P, each summand, and hence cone(g) ⊗ A ⊗ cone(g′), is in P.
Since this holds for any object A of K, and K generates K as a triangulated category,
by induction cone(g) ⊗ B ⊗ cone(g′) ∈ P for any object B of K, by the following
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argument. If A1 and A2 satisfy the property that cone(g) ⊗ Ai ⊗ cone(g′) ∈ P for
i = 1, 2 and

A1 → A2 → A3 → �A1

is a distinguished triangle, then

cone(g) ⊗ A1 ⊗ cone(g′) → cone(g) ⊗ A2 ⊗ cone(g′) → cone(g) ⊗ A3 ⊗ cone(g′)

is also distinguished, and sinceP is a triangulated subcategory, cone(g)⊗A3⊗cone(g′)
is in P as well. Similarly, if A satisfies the property that cone(g) ⊗ A⊗ cone(g′) ∈ P,
then

cone(g) ⊗ �A ⊗ cone(g′) ∼= �(cone(g) ⊗ A ⊗ cone(g′))

is in P as well. Therefore cone(g) ⊗ B ⊗ cone(g′) ∈ P for all B ∈ K, and by the fact
that P is prime, either cone(g) or cone(g′) is in P. This completes our first claim.

Now suppose g is one of the homogeneous generators ρ̂(P), that is, g : 1 → �i1
for some i , and cone(g) /∈ P. We now claim that given any other map g′ : 1 → � j1
in Ĉ•, gg′ also satisfies cone(gg′) /∈ P. One way to see this is by Verdier localization:
since P is thick, there exists a triangulated categoryK/Pwhere objects are the same as
inK, equipped with a triangulated functorK → K/P which is the identity on objects,
and the objects which are isomorphic to 0 inK/P are precisely those objects in P (see
[43, Section 2.1]). If cone(gg′) was in P, then the image of gg′ would be invertible
in K/P, which would imply that both g and g′ would have images also invertible in
K/P, in other words, cone(g) and cone(g′) would necessarily be in P.

We have shown that the homogeneous generators of ρ̂(P) are closed under addition
and multiplication with arbitrary homogeneous elements of Ĉ•, and so the homoge-
neous elements of ρ̂(P) are precisely those morphisms g in Ĉ•

i such that cone(g) /∈ P.
By Lemma 6.1.3, these homogeneous elements satisfy the prime condition, since if
cone(gg′) /∈ P then this implies that one of cone(g) and cone(g′) must also be not in
P. Thus, ρ̂(P) is a homogeneous prime ideal of Ĉ•. ��
Proposition 6.2.3 For all M�Cs, K, the map ρ̂ : SpcK → Spech Ĉ• is continuous.

Proof For a proof in the symmetric case, see [5, Theorem5.3(b)]. Consider an arbitrary
closed set in Spech Ĉ•; this has the form Z(I ) = {p ∈ Spech Ĉ• : I ⊆ p} for
some homogeneous radical ideal I of Ĉ•. Define S as the collection of objects S =
{cone(g) : g ∈ I homogeneous}. Now we note that for any P in SpcK, we have

P ∈ (ρ̂)−1(Z(I ))

�
I ⊆ ρ̂(P)

�
∀g ∈ I , g ∈ ρ̂(P)
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�
∀g ∈ I , cone(g) /∈ P

�
P ∈ V (S).

Thus, the preimage of the closed set Z(I ) in Spech Ĉ• is the closed set V (S) in SpcK.
��

Denote the contraction map

θ : Spech Ĉ• → Spech C•, p := p ∩ C•.

Since this map is continuous, we have the following corollary of Proposition 6.2.3:

Corollary 6.2.4 For an M�C, K, the map

ρ := θ ◦ ρ̂ : SpcK → Spech C•,

which is explicitly given by

ρ(P) = 〈g ∈ Ĉ• : g is homogeneous, cone(g) /∈ P〉 for P ∈ SpcK,

is continuous.

Another consequence of Proposition 6.2.3 yields information about the inverse
images of ρ̂ and ρ.

Corollary 6.2.5 For an M�C, K,

(a) the map ρ̂ : SpcK → Spech Ĉ• satisfies

ρ̂−1(ŴC (A)) ⊇ V (A) for all A ∈ K

and
(b) the map ρ : SpcK → Spech C• satisfies

ρ−1(WC (A)) ⊇ V (A) for all A ∈ K.

Proof By definition, ŴC (A) = Z(I ), where I is the homogeneous ideal given as
the annihilator of̂End

•
(A) in Ĉ•. By the last part of the proof of Proposition 6.2.3,

ρ̂−1(ŴC (A)) = V (S), where S is the collection of objects defined by

S = {cone(g) : g homogeneous g ∈ I }.

Suppose g is a homogeneous element of I , i.e., cone(g) ∈ S. Then, by applying−⊗ A
to the distinguished triangle

1
g−→ �i1 → cone(g) → �1,
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we obtain the distinguished triangle

A
0−→ �i A → cone(g) ⊗ A → �A.

Hence,�i A⊕�A ∼= cone(g)⊗A, and so A is in the thick ideal generated by cone(g).
In other words, if a prime ideal P is in V (A), meaning that it does not contain A, then it
must not contain cone(g) either, and hence is in V (S). This proves (a), and (b) follows
directly. ��

7 The surjectivity of � and̂�

We will show in this section that if K is a M�C satisfying the (wTfg) condition, then
ρ̂• is surjective, and that ifK satisfies the (wfg) condition then the image of ρ• contains
ProjC•

K (parts (b) and (d) of Theorem B in the introduction). In the important case of
stable categories of finite tensor categories T, we also prove part (c) of Theorem B
that ρ• takes values in ProjC•

T (i.e., misses the irrelevant ideal of T) and, with this
codomain, ρ• is surjective.

7.1 Behavior of cones under the central cohomological support maps

We first recall that for g ∈ Ĉ•, the object cone(g) possesses desirable properties with
respect to the central cohomological support. The objects cone(g) appearing here are
analogues of Carlson’s Lζ -modules, see [8, Sect. 5.9].

For homogeneous elements g1 ∈ Ĉ• (resp. g2 ∈ C•), denote by Ẑ(g1) (resp. Z(g2))
the Zariski closed subsets of Spech Ĉ• (resp. Spech C•) defined by g1 (resp. g2).

The following result is given in [17, Proposition 3.6, Proposition 3.7]. This is a
monoidal triangulated version of [8, Proposition 5.91].

Proposition 7.1.1 [17] Let K be an M�C, A an object of K, and g : 1 → �i1 a
homogeneous element of Ĉ•.

(a) ŴC (cone(g) ⊗ A) ⊆ ŴC (A) ∩ {p ∈ Spech Ĉ• : g ∈ p} := ŴC (A) ∩ Ẑ(g).
(b) If K satisfies the (wTfg) condition, then ŴC (cone(g) ⊗ A) = ŴC (A) ∩ Ẑ(g).
(c) If i ≥ 0, then WC (cone(g) ⊗ A) ⊆ WC (A) ∩ {p ∈ Spech C• : g ∈ p} :=

WC (A) ∩ Z(g).
(d) If i ≥ 0 andK satisfies the (wfg) condition, then WC (cone(g)⊗ A) and WC (A)∩

Z(g) coincide, except possibly at the unique maximal homogeneous ideal m of
C•.

Proof Since we have a distinguished triangle

A → �i A → cone(g) ⊗ A → �A,

ŴC (cone(g) ⊗ A) ⊆ ŴC (A). Moreover, ŴC (cone(g) ⊗ A) ⊆ ŴC (cone(g)), by
the fact that the central support is a quasi-support datum. It remains to show that
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ŴC (cone(g)) ⊆ Ẑ(g). This follows from Proposition 6.2.1, since if p contains the
annihilator of̂End

•
(cone(g)) then it must contain g2, and by primeness then contains

g. This proves (a); (c) follows similarly.
For (b), suppose that p contains g : 1 → �i1, and the annihilator of ̂End

•
(A).

We must show that p ∈ ŴC (A ⊗ cone(g)). Since the action of Ĉ• on ̂Hom
•
(B, A ⊗

cone(g)) factors through ̂Hom
•
(A ⊗ cone(g), A ⊗ cone(g)) for any object B, it is

enough to prove that

AnnĈ ̂Hom
•
(B, A ⊗ cone(g)) ⊆ p

for some B. Suppose to the contrary. From the distinguished triangle

A → A → cone(g) ⊗ A → �A,

we obtain a short exact sequence of Ĉ•-modules by the same argument as for the short
exact sequence (6.1), for any object B:

0 → ̂Hom
•
(B, A)/(g · ̂Hom

•
(B, A)) → ̂Hom

•
(B, cone(g) ⊗ A) (7.1)

→ ker(g · |̂
Hom

•
(B,A)

) → 0.

Since p does not contain the annihilator of ̂Hom
•
(B, cone(g) ⊗ A), we have that

̂Hom
•
(B, cone(g) ⊗ A)p = 0.

By (7.1), this implies ̂Hom
•
(B, A)p = g · ̂Hom

•
(B, A)p. Now using the hypothesis

that ̂Hom
•
(B, A)p is a finitely-generated Ĉ•

p-module, and g is in pĈp, by Nakayama’s

Lemma, ̂Hom
•
(B, A)p = 0. Since ̂Hom

•
(B, A) is a finitely-generated Ĉ-module by

assumption, this implies that AnnĈ ̂Hom
•
(B, A) � p, for any object B. But this is a

contradiction, since we know that AnnĈ̂End
•
(A) ⊆ p by assumption.

The proof of (d) follows similarly to (b), with one small modification. Suppose that
p ∈ Spech C• contains g : 1 → �i1, is different from the irrelevant (i.e. maximal
homogeneous) idealm, and also contains the annihilator of End•(A). Suppose for the
sake of contradiction that p does not contain the annihilator of Hom•(B, A⊗cone(g))
for any object B. Using the long exact sequence as before, we obtain an analogue of
(7.1):

0 → Hom≥i (B, A)/(g · Hom•(B, A)) → Hom•(B, cone(g) ⊗ A)

→ ker(g · |Hom•(B,A)) → 0. (7.2)
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This is a short exact sequence of C•-modules. Now since localization at p sends the
middle term of this short exact sequence to 0 by assumption, we have

Hom≥i (B, A)p = g · Hom•(B, A)p.

But now note that Hom•(B, A)p ∼= Hom≥i (B, A)p by commutative algebra, since
p by assumption does not contain the irrelevant ideal of C•. This implies that there
exists t a positively-graded homogeneous element of C• which is not contained in p,
and the map

Hom•(B, A)p → Hom≥i (B, A)p,

x

y
�→ t i x

t i y

is an isomorphism for x ∈ Hom•(B, A) and y an element of C• not in p. Hence,
Hom•(B, A)p = g · Hom•(B, A)p, and the remainder of the proof of (d) follows
exactly the end of the proof of (b). ��

The next three corollaries follow immediately from Proposition 7.1.1.

Corollary 7.1.2 SupposeK is an M�C, and that there exists a finitely generated ideal
I such that

√
I is the unique maximal homogeneous idealm of C•. Ifm is in the image

of ρ : SpcK → Spech C•, then there exists an object A ofK such that WC (A) = {m}.
Proof Suppose ρ(P) = m, and let I = 〈g1, . . . , gn〉. Since ρ(P) = m, cone(gi ) /∈ P
for all i . This implies by primeness of P and the fact that each cone(gi ) ⊗-commutes
with all objects of K that cone(g1) ⊗ · · · ⊗ cone(gn) �= 0. By Proposition 7.1.1(c),

WC (cone(g1) ⊗ · · · ⊗ cone(gn)) ⊆ Z(g1, . . . , gn) = {m}.

Since cone(g1) ⊗ · · · ⊗ cone(gn) is nonzero, WC (cone(g1) ⊗ · · · ⊗ cone(gn)) �= ∅,
and so

WC (cone(g1) ⊗ · · · ⊗ cone(gn)) = {m}.

��
Corollary 7.1.3 Let T be a finite tensor category and K = T be its stable category.
Suppose that K satisfies (wfg). Then m, the irrelevant ideal of C•, is not in the image
of ρ : SpcK → Spech C•, i.e., ρ takes values in ProjC•:

ρ : SpcK → ProjC•.

Proof This follows from [14, Corollary 4.2], which states that the dimension of the
support variety of an object A is equal to 0 if and only if A is projective in T (see
also [29, Proposition 2.4(1)] in the finite-dimensional Hopf algebra setting). While the
support varieties of [14] are based on the whole cohomology ring R• rather than its
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categorical center C•, the same proofs carry through assuming the finite generation
of each End•(A) over C•, rather than its finite generation over R•. Hence, there is no
object A such that WC (A) = {m}, since this would imply that A is projective in T,
and thus WC (A) = WC (0) = ∅. By Corollary 7.1.2, m is not in the image of ρ. ��
Corollary 7.1.4 Let K be an M�C.

(a) SupposeK satisfies (wTfg). Let g1, . . . , gn ∈ Ĉ• and cone(g1)⊗· · ·⊗cone(gn) ∼=
0. Then 〈g1, . . . , gn〉 = Ĉ•.

(b) SupposeK satisfies (wfg). Let g1, . . . , gn ∈ C• and cone(g1)⊗· · ·⊗cone(gn) ∼= 0.
Then m ⊆ √〈g1, . . . , gn〉, where m denotes the irrelevant ideal of C•. If gi is of
strictly positive degree for i = 1, 2, . . . , n, then m = √〈g1, . . . , gn〉.

Proof By Proposition 7.1.1(b), we know that

ŴC (cone(g1) ⊗ · · · ⊗ cone(gn)) =
⋂

i

ŴC (cone(gi ))

= {p ∈ Spech Ĉ• : gi ∈ p ∀ i}.

Clearly, if cone(g1) ⊗ · · · ⊗ cone(gn) ∼= 0, then from the definition of support,
ŴC (cone(g1) ⊗ · · · ⊗ cone(gn)) = ∅, which implies that

{p ∈ Spech Ĉ• : gi ∈ p ∀ i} = ∅,

in other words, the ideal generated by g1, . . . , gn is the entire ring Ĉ•. This proves (a).
Similarly to the proof of part (a), if cone(g1) ⊗ · · · ⊗ cone(gn) ∼= 0 for gi homo-

geneous in C•, then WC (cone(g1) ⊗ · · · ⊗ cone(gn)) = ∅. This coincides with

Z(g1, . . . , gn) = {p ∈ Spech C• : gi ∈ p ∀ i}

except possibly for themaximal idealm, byProposition7.1.1(d).Hence, Z(g1, . . . , gn)
is either empty, in which case g1, . . . , gn generate the entire ring C•, or it is {m}, in
which case the radical of 〈g1, . . . , gn〉 is equal to m. This proves (b). ��

7.2 Surjectivity of� and̂�

We can now show that finite generation ensures that ρ and ρ̂ are surjective. Note that
there is no requirement that ŴC orWC be weak support data, which is the requirement
which ensures the existence of themapsηŴ : Spech Ĉ• → SpcK andηW : ProjC• →
SpcK, as in Theorem 2.2.1.

Theorem 7.2.1 Let K be an M�C.

(a) If K satisfies (wTfg), then ρ̂ : SpcK → Spech Ĉ• is surjective.
(b) IfK satisfies (wfg) and p is a homogeneous prime of C• different from the irrelevant

ideal m, then p is in the image of ρ : SpcK → Spech C•.
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Proof We prove (a) directly, and (b) follows from the analogous argument. Let p be
a homogeneous prime in Ĉ•. We will construct a prime ideal P in SpcK such that
ρ̂•(P) = p. To construct this prime ideal, we will employ Theorem 2.1.1.

Consider the following subsets of K:

(1) I = {A ∈ K : p /∈ ŴC (A)}.
(2) M = {cone(g1) ⊗ cone(g2) ⊗ · · · ⊗ cone(gn) : gi ∈ p homogeneous}.

First, note that I is a thick ideal. This follows directly from the fact that ŴC is a
quasi-support datumwith the additional property that ŴC (A⊗B) ⊆ ŴC (A)∩ŴC (B).

Second, note that M is closed under the tensor product, by definition. We claim
thatM is a multiplicative subset; it remains to be shown that all objects ofM are not
isomorphic to 0. This follows from Corollary 7.1.4(a), since the ideal generated by
g1, . . . , gn is contained in p for any collection g1, . . . , gn ∈ p.

Next, we claim that I and M are disjoint. Take an arbitrary element cone(g1) ⊗
· · · ⊗ cone(gn) ofM. By Proposition 7.1.1(b),

ŴC (cone(g1) ⊗ · · · ⊗ cone(gn)) =
⋂

i

ŴC (cone(gi )).

Since each gi ∈ p, we have for all i that p ∈ ŴC (cone(gi )), again by Proposition 7.1.1.
Hence, p ∈ ⋂

i ŴC (cone(gi )) = ŴC (cone(g1)⊗· · ·⊗ cone(gn)), which implies that
cone(g1) ⊗ · · · ⊗ cone(gn) /∈ I. Thus, I and M are disjoint.

Now, by Theorem 2.1.1 we know that there exists at least one prime ideal P of K
such that I ⊆ P and M ∩ P = ∅. We claim that ρ̂(P) = p. By definition,

ρ̂(P) = {g ∈ Ĉ• : cone(g) /∈ P}.

If g ∈ p, then since P ∩ M = ∅, cone(g) /∈ P, and hence g ∈ ρ̂(P). On the other
hand, if h /∈ p, then p /∈ ŴC (cone(h)) by Proposition 7.1.1(b), and so cone(h) ∈ I.
Since I ⊆ P, it follows that cone(h) ∈ P, and hence h /∈ ρ(P). Therefore, ρ•(P) =
p. ��

8 Inverses of themaps � and̂�

In this section we prove that under natural conditions (which are stronger than those
used in the previous sections), the pairs (ρ, η) and (ρ̂, η̂) are pairs of inverse homeo-
morphisms. Under those conditions we obtain a classification of the thick two-sided
ideals of an M�C in terms of homological data.

8.1 Right inverses of� and̂�

If the central cohomological support WC : K → ProjC• is a weak support datum,
then by Theorem 2.2.1 there is a unique continuous map η : ProjC• → SpcK defined
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by

η(p) := {M ∈ K : p /∈ �WC (〈M〉)} for p ∈ ProjC•.

By Corollary 6.1.2,

η(p) = {M ∈ K : p /∈ WC (M)}.

If the Tate central cohomological support ŴC : K → Spech Ĉ• is a weak support
datum, then again by Theorem 2.2.1 there is a unique continuous map η̂ : Spech Ĉ• →
SpcK given by

η̂(p) := {M ∈ K : p /∈ �ŴC
(〈M〉)} for p ∈ Spech Ĉ•

and by Corollary 6.1.2, η̂(p) = {M ∈ K : p /∈ ŴC (M)}.
Proposition 8.1.1 Let K be an M�C for which the central cohomological support is
a weak support datum. Then the following hold:

(a) ρ(η(p)) ⊆ p for every homogeneous prime ideal p of C•.
(b) If K satisfies the (wfg) condition, then ρ(η(p)) = p for every p ∈ ProjC•.
(c) If K satisfies the (wfg) condition, then η(ρ(P)) ⊆ P for every prime ideal P of K.

Proof (a) Let p be a homogeneous prime of C•. Then

ρ(η(p)) = 〈g ∈ C• : cone(g) /∈ {M ∈ K : p /∈ �WC (〈M〉)}〉
= 〈g ∈ C• : p ∈ �WC (〈cone(g)〉)〉
= 〈g ∈ C• : p ∈ WC (cone(g))〉
= 〈g ∈ C• : AnnC•(End•(cone(g))) ⊆ p〉.

Suppose that g is one of the homogeneous generators ofρ(η(p)). Then note that g⊗
g is in the annihilator of cone(g), since g⊗g⊗ idcone(g) = 0, by Proposition 6.2.1.
Hence, g ⊗ g ∈ p, and thus g ∈ p. Since p contains all homogeneous generators
of ρ•(η(p)), it contains the entire ideal.

(b) One has

ρ(η(p)) = 〈g ∈ C• : p ∈ WC (cone(g))〉.

By Proposition 7.1.1(d), applied for A = 1, WC (cone(g)) = Z(g) or
WC (cone(g)) � {m} = Z(g), where m is the irrelevant ideal of C•. Since p �= m,

ρ(η(p)) = 〈g ∈ C• : p ∈ Z(g)〉 = 〈g ∈ C• : g ∈ p〉 = p.

(c) One has

η(ρ(P)) = {M : 〈g : cone(g) /∈ P〉 /∈ WC (M)}
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= {M : AnnC•(End•(M)) � 〈g : cone(g) /∈ P〉}.

Suppose M is in η(ρ(P)). Then there exists some h ∈ AnnC•(End•(M)), i.e.,
having h⊗ idM = 0, such that h /∈ 〈g : cone(g) /∈ P〉; in particular, h is not one of
the generators of this ideal, and so cone(h) ∈ P. Since h ⊗ idM = 0, the triangle

M
0−→ �i M → M ⊗ cone(h) → �M

is distinguished. By the Splitting Lemma for triangulated categories, this implies
that

M ⊗ cone(h) ∼= �i M ⊕ �M .

The left hand side is in P by the ideal property, and this implies by the thickness
of P that M ∈ P. This proves (c).

��
Proposition 8.1.1(b) and Corollary 7.1.3 imply the following:

Corollary 8.1.2 Assume that T is a finite tensor category whose stable category T
satisfies (wfg) and that the central cohomological support is a weak support datum.
Then the map η : ProjC• → SpcK is a right inverse of ρ : SpcK → ProjC•.

In a similar way to the proof of Proposition 8.1.1, by using Proposition 7.1.1(b),
one proves the following:

Proposition 8.1.3 LetK be anM�C for which the Tate central cohomological support
is a weak support datum. Then the following hold:

(a) ρ̂(̂η(p)) ⊆ p for every homogeneous prime ideal p of Ĉ•.
(b) IfK satisfies the (wTfg) condition, then ρ̂(̂η(p)) = p for every homogeneous prime

ideal p of Ĉ•, i.e., η̂ is a right inverse of ρ̂.
(c) If K satisfies the (wTfg) condition, then η̂(ρ̂(P)) ⊆ P for every prime ideal P of

K.

8.2 Conditions for� and� to be inverse homeomorphisms

The following theorems in this section provide the description of the Balmer spec-
trum and the classification of thick tensor ideals for the compact part of an arbitrary
compactly generated M�C via the central cohomology rings.

Theorem 8.2.1 LetK be an M�Cwhich is the compact part of a compactly generated
M�C, K̃. Assume that K satisfies the (wfg) condition, ProjC• is a Zariski space, and
the central cohomological support of K has an extension to a faithful extended weak
support datum K̃ → X (ProjC•). Then the following hold:

(a) The maps η and ρ are inverse homeomorphisms

SpcK
ρ

�
η
ProjC•.
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(b) The map

�WC : ThickId(K) → Xsp(ProjC
•)

is an isomorphismof orderedmonoids, where the set of thick ideals ofK is equipped
with the operation I, J �→ 〈I⊗J〉 and the inclusion partial order, andXsp(ProjC•)
is equipped with the operation of intersection and the inclusion partial order.

Proof Since ProjC• is a Zariski space, every closed set of ProjC• is the variety
generated by a finite collection of homogeneous elements, say g1, . . . , gn . By Propo-
sition 7.1.1(d),

WC (cone(g1) ⊗ · · · ⊗ cone(gn)) = WC (cone(g1)) ∩ · · · ∩ WC (cone(gn))

= Z(g1) ∩ · · · ∩ Z(gn)

= Z(g1, . . . , gn),

where for an element g ∈ C•, Z(g) denotes the closed set of ProjC• defined by
g (and not of Spech C• as used in Sect. 7). Hence, the central support satisfies the
realization condition. Therefore, the extension of the central cohomological support
satisfies the assumptions of Theorem 2.3.1. Part (a) of that theorem gives that η is a
homeomorphism. In view of this, Proposition 8.1.1(b) implies that ρ takes values in
ProjC• and is a right inverse of η. Hence, ρ is an inverse of η, which proves part (a).
Part(b) follows from Theorem 2.3.1(b). ��

In a similar manner, by using Propositions 7.1.1(b) and 8.1.3(b) and Theorem 2.3.1,
one proves the following:

Theorem 8.2.2 LetK be anM�C, which is the compact part of a compactly generated
M�C, K̃. Assume thatK satisfies the (wTfg) condition,Spech Ĉ• is a Zariski space and
the Tate central cohomological support of K has an extension to a faithful extended
weak support datum K̃ → X (Spech Ĉ•). Then the following hold:

(a) The maps η̂ and ρ̂ are inverse homeomorphisms

SpcK
ρ̂

�
η̂

Spech Ĉ•.

(b) The map

�ŴC
: ThickId(K) → Xsp(Spec

h Ĉ•)

is an isomorphism of ordered monoids, where the set of thick ideals of K is
equipped with the operation I, J �→ 〈I ⊗ J〉 and the inclusion partial order, and
Xsp(Spech Ĉ•) is equipped with the operation of intersection and the inclusion
partial order.
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9 Examples to TheoremD

In this section we show that the assumptions of Theorem D can be verified in a
uniform fashion for wide classes of Hopf algebras, leading to a classification of the
thick tensor ideals of their stable module categories in terms of homological data that
goes far beyond previous classes of Hopf algebras treated on a case by case basis.

9.1 Plavnik–Witherspoon co-smash product Hopf algebras

In the case of Plavnik–Witherspoon co-smash products AL considered in Sect. 5.2,
one can prove that, if the initial Hopf algebra A satisfies the conditions in Theo-
rem 8.2.1, then so does AL . This leads to a classification of the thick tensor ideals and
noncommutative Balmer spectrum of the stable module category of AL .

Theorem 9.1.1 Let AL be the Plavnik–Witherspoon co-smash product Hopf algebra
corresponding to the finite dimensional Hopf algebra A, and the finite group L acting
on A. Assume that the Hopf algebra A satisfies the following conditions:

(a) mod(A) satisfies the (wfg) condition;
(b) C•

mod(A)
is finitely generated algebra over the base field k;

(c) the central cohomological support of mod(A) has an extension to a faithful
extended weak support datum Mod(A) → X (ProjC•

mod(A)
).

Then mod(AL) also satisfies conditions (a)–(c). In particular,

Spc
(
mod(AL)

) ρ

�
η
Proj(C•

mod(A))
L

are inverse homeomorphisms and the map

�WC : ThickId (
mod(AL)

) → Xsp
(
Proj(C•

mod(A))
L)

is an isomorphism of ordered monoids.

Proof The theorem will follow from Theorem 8.2.1 by showing that conditions (a),
(b) and (c) hold when A is replaced by AL . By Theorem 5.2.1,

C•
mod(AL )

∼= (C•
mod(A))

L ,

and thus condition (b) holds for AL since L is a finite group. Consequently, one has
the geometric quotient map

ν : ProjC•
mod(A) → (ProjC•

mod(A))/L
∼= Proj(C•

mod(A))
L ∼= Proj(C•

mod(AL )).

To verify condition (a) for AL we apply the decomposition (5.3). It suffices to show
that Ext•AL

(Mx ⊗kx , My⊗ky) is finitely generatedC•
mod(AL )

-module for all x, y ∈ L ,
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Mx , My ∈ mod(A). This follows by observing that

Ext•mod(AL )(Mx ⊗ kx , My ⊗ ky) ∼= Ext•mod(A)(Mx , My) ⊗ Homk[L](kx , ky),

(9.1)

which is finitely generated as a C•
mod(AL )

-module by the condition (a) for A and the

fact that C•
mod(A)

is module finite over (C•
mod(A)

)L ∼= C•
mod(AL )

.
Denote by WC,A and WC,AL the central cohomological supports of mod(A) and

mod(AL), respectively. Denote by W̃C,A the extension ofWC,A from condition (c) to
Mod(A). Let For : Mod(AL) → Mod(A) be the forgetful functor associated to the
canonical embedding of A in AL . It restricts to a functor For : mod(AL) → mod(A).
It follows from (9.1) that

WC,AL (M) = ν(WC,A(For(M))) for all M ∈ mod(A).

Define the map

W̃C,AL : Mod(A) → X (ProjC•
mod(A)) by W̃C,AL (M) := ν(WC,AL (For(M)))

for M ∈ Mod(A). Using the tensor product formula [49, Theorem 2.3] for AL -
modules, one easily verifies that W̃C,AL is an extended weak support datum. Its
faithfulness is obvious. ��

9.2 Benson–Witherspoon Hopf algebras

Consider a Benson–Witherspoon Hopf algebra HG,L = (k[G]#kL)∗ as in Exam-
ple 5.2.3. It is a special case of the construction in the previous section with A = kG.
Conditions (a) and (b) of Theorem 9.1.1 hold because A is the group algebra of a finite
group. A faithful extension of the cohomological support of kG was constructed in [10,
11], which verifies condition (c) in the theorem. By Theorem 9.1.1 and Example 5.2.3,
we have:

Proposition 9.2.1 For each Benson–Witherspoon Hopf algebra HG,L ,

Spcmod(HG,L)
ρ

�
η
Proj(H•(G, k))L

are inverse homeomorphisms and the map

�WC : ThickId (
mod(HG,L)

) → Xsp
(
Proj(H•(G, k))L

)

is an isomorphism of ordered monoids.

A classification of the thick tensor ideals and the noncommutative Balmer spectra
of the stable module categories of the Benson–Witherspoon Hopf algebras was given
in [40, Theorem 9.3.2] in terms homogeneous prime ideals of (H•(G, k))L .
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9.3 Finite group schemes

Let k[�] be the coordinate algebra of a finite group scheme � with k algebraically
closed. Recall that

k[�] ∼= (k[�0]∗#kπ)∗,

where π is a finite group and �0 is an infinitesimal group scheme. This is a Plavnik–
Witherspoon co-smash product Hopf algebra for A = k[�0] and L = π . Since we
have the isomorphisms of algebras

A = k[�0] ∼= k[t1, t2, . . . , ts]/(t p
r1

1 , . . . , t p
rs

s ) ∼= k(Zpr1 × · · · × Zprs )

and C•
mod(k[�0])

∼= H•(k[�0], k), conditions (a) and (b) of Theorem 9.1.1 hold. Here
weuse that, since k[�0] is a unipotentHopf algebra, its cohomological support depends
only on its algebra structure, but not coalgebra structure.

Next we verify condition (c) of Theorem 9.1.1 for k[�0]. Let E be the unique
elementary abelian subgroup of Zpr1 × · · · × Zprs consisting of the identity element
and elements of order p. One can now apply the constructions in [11, Section 2], so that
there exists a rank variety Wr

E (M) for M ∈ Mod(kE) with the following properties:

(i) W̃E (M) ∼= Wr
E (M), where W̃E denotes the Benson–Carlson–Rickard extension

[10] of the cohomological support for E to Mod(kE) and
(ii) Wr

E (M) = ∅ if and only if M is a projective kE-module.

With the coproduct on k[�0], we need to show that

(iii) Wr
E (M ⊗ N ) = Wr

E (M) ∩ Wr
E (N ) for all M, N ∈ Mod(k[�0]) restricted to

E-modules.

Using the shifted subgroup description of the rank variety, the rank variety will consist
of operators, xα = α1t p

r1−1+α2t p
r2−1+· · ·+αs t prs−1 with αi ∈ K , i = 1, 2, . . . , s,

where K is a field extension of k of large enough transcendence degree, such thatM〈xα〉
is not free. We can now follow the argument in [31, Lemma 3.9]. The coproduct on
xα can be written as

�(xα) ∈ xα ⊗ 1 + 1 ⊗ xα + I ⊗ I,

where I is the augmentation ideal of k[�0]. By applying the argument in [31, Propo-
sition 2.2], it follows that [M ⊗ N ]〈�(xα)〉 is free if and only if [M ⊗ N ]〈xα⊗1+1⊗xα〉
is free. From this (iii) follows.

Now we apply the fact that W̃k[�0](M) = res∗(W̃E (M)). By using the line of
reasoning given in [11, Theorems 10.6, 10.8], one has

(iv) W̃k[�0](M) = ∅ if and only if M is a projective k[�0]-module;
(v) W̃k[�0](M ⊗ N ) = W̃k[�0](M) ∩ W̃k[�0](N ).

This proves condition (c) of Theorem 9.1.1 for k[�0]. Now Theorem 9.1.1 yields the
following:
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Proposition 9.3.1 [45, Theorem 10.3] For each finite group scheme �,

Spc
(
mod(k[�]))

ρ

�
η
Proj

(
H•(k[�0], k)

)π

are inverse homeomorphisms and the map

�WC : ThickId (
mod(k[�])) → Xsp

(
Proj(H•(k[�0], k))π

)

is an isomorphism of ordered monoids.

This result recovers a theorem of Negron and Pevtsova [45, Theorem 10.3] who
employed their hypersurface support theory. The example shows how it is obtained
through a uniform approach based on Theorems D and 9.1.1.
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Appendix A

In this appendix we show that given any finite tensor category T over a field k, there
exists a compactly generated monoidal triangulated category K̃ whose compact part
is the stable category of T, that is,

K̃c ∼= T.

We will construct K̃ as the stable category of the indization of T. We recall this
construction briefly.

Ind-objects, and indizations of categories, were originally introduced in [1]. We
follow the construction as in [33, Chapter 6]. Consider the embedding of T into T∨,
the category of functors Top → Set, via the Yoneda embedding. Then the indization
ofT is the smallest full subcategory ofT∨ containing the image ofT, and closed under
taking filtered colimits, and it is denoted Ind(T).

We now claim the following, which is well-known to experts in the field.

Theorem A.0.1 Let T be a finite tensor category over k. Then:

(a) Ind(T) is a Frobenius abelian monoidal category, and its stable category Ind(T)

is a compactly generated monoidal triangulated category.
(b) Ind(T)c ∼= T.
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Proof SinceT is a finite tensor category over k,T is equivalent (as an abelian category)
to mod(A) for some finite dimensional k-algebra A (see [27, page 10]). Let Ind(T)

be the ind-completion of T as above. By [33, Proposition 6.1.12], Ind(T) ∼= Mod(A),
since A is finite dimensional (and thus the finitely-presented A-modules are the finite
dimensional A-modules). By [33, Proposition 6.1.9, Proposition 6.1.12], a functor
F : T′ → T′′ extends to a functor I F : Ind(T′) → Ind(T′′), and Ind(T′ × T′′) ∼=
Ind(T′) × Ind(T′′), respectively. This implies that the tensor product ⊗ : T×T → T
extends to a tensor product Ind(T) × Ind(T) → Ind(T).

It is noted in [33, Introduction] that the category of ind-objects of a triangulated
category does not appear to be triangulated; on the other hand, we claim that Ind(T) is
a triangulated category. Since T is a finite tensor category, injectives and projectives
coincide in T; in particular, this means that A is injective over itself. By [37, Theorem
15.9], since A is self-injective, if M is any (not necessarily finite dimensional) A-
module, M is injective if and only if it is projective. Hence, injectives and projectives
coincide for Ind(T) (i.e., it is Frobenius), and so the category Ind(T) is a triangulated
category.

Now note that by [39, Theorem 3], if R is a perfect ring, then M is a compact object
in Mod(R) if and only if there is a finitely-generated R-module M ′ with M ∼= M ′ in
Mod(R); since A is finite dimensional, it is perfect, and so Ind(T)c ∼= T. ��

Appendix B

Let K be a compactly generated M�C with compact part Kc, equipped with the
universal Balmer support V sending objects of Kc to closed sets in SpcKc. In this
appendix, forK such that SpcKc is Noetherian, we construct an extension of V to the
non-compact objects of K.

We first recall a basic consequence of Noetherianity of SpcKc.

Lemma B.0.1 Suppose SpcKc is topologically Noetherian. Then finitely-generated
thick ideals of Kc satisfy the descending chain condition.

Proof Suppose

· · · Ii ⊆ Ii−1 ⊆ · · · ⊆ I0

is a descending chain of finitely-generated thick ideals of Kc. Then

· · ·�V (Ii ) ⊆ �V (Ii−1) ⊆ · · · ⊆ �V (I0)

is a descending chain of closed subsets of SpcKc (the fact that they are closed follows
from finite generation, since if I = 〈A1, . . . , Am〉 then �V (I) = ⋃

i=1...m V (Ai )).
This chain stabilizes by the Noetherianity assumption. But note that every thick ideal
is semiprime, e.g., equals the intersection of prime ideals over it (cf. [41, Proposition
4.1.1]). This implies that if �V (Ii ) = �V (I j ), then Ii = I j . ��

We next note a general lemma on localizing categories. Part (a) was originally
proven in the symmetric case by Balmer–Favi [7, Lemma 4.5].
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Lemma B.0.2 We have the following.

(a) Suppose I and J are thick ideals of Kc. Then Loc(I ∩ J) = Loc(I) ∩ Loc(J).
(b) Suppose SpcKc is topologically Noetherian. Then for any set-indexed collection

{Ii }i∈I of thick ideals of Kc, there is an equality Loc(
⋂

i∈I Ii ) = ⋂
i∈I Loc(Ii ).

Proof Part (a) follows exactly the same as in the symmetric case; we recall the Balmer–
Favi proof here for reference. It is clear that Loc(I ∩ J) ⊆ Loc(I) ∩ Loc(J). By e.g.,
[43, Theorem 4.3.3] or [35, Theorem 7.2.1],

Loc(I) ={A ∈ K : for any morphism C
f−→ A with C ∈ Kc, there exists D ∈ I

such that f factors through D}

for any thick subcategory I. Let A ∈ Loc(I)∩Loc(J), and suppose C is compact with
f : C → A a morphism. We must show that f factors through some object in I ∩ J.
By assumption, there exist objects D1 ∈ I and D2 ∈ J with factorizations

C A

D1 D2

f

g

But now note that by standard properties of dual objects, g : D1 → D2 factors

D1 D2

D1 ⊗ D∗
1 ⊗ D1 D2 ⊗ D∗

1 ⊗ D1

g

coev⊗ id

g⊗id

id⊗ ev

and hence the original morphism f factors through D2 ⊗ D∗
1 ⊗ D1, which is in I∩ J.

Therefore, A ∈ Loc(I ∩ J).
For (b), suppose A is in

⋂
i Loc(Ii ), and again let f : C → A be a morphism

with C compact. Just as in part (a), we must show that f factors through an object
in

⋂
i∈I Ii . Pick some i ∈ I and set Ii := I1. We know by assumption that there is

some D1 ∈ I1 such that f factors through D1. We now iterate this process: at the kth
step, if for some j we have Dk /∈ I j , we can, using the same method as in part (a),
construct Dk+1 such that Dk+1 ∈ I j and Dk+1 ∈ 〈Dk〉, and f factors through Dk .
This constructs a chain of thick ideals:

· · · 〈Dk+1〉 � 〈Dk〉 � 〈Dk−1〉 � · · · � 〈D1〉.

Now, since by assumption SpcKc is Noetherian, it follows from Lemma B.0.1 that
this chain must terminate; in other words, at some step, the object D := Di which has
been constructed is in every ideal I j in our collection of ideals, since otherwise we
could continue the chain of strict inclusions. By construction, then, f factors through
D, and D ∈ ⋂

i Ii , which completes our proof. ��
Wewill assume for the remainder of this section that SpcKc is Noetherian.We now

define a version of extended Balmer supports for an arbitrary objects ofK. Alternative
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methods for extending the Balmer support in the symmetric case include approaches
via generalized tensor idempotents [7, 54] based on the work of Rickard [53], via
containment in homological primes [3, 6], and via containment in “big" primes [3].
Another theory of supports for localizing ideals was developed in [36], using the frame
approach to localizing tensor ideals that was proposed in [34].

Definition B.0.3 Let A ∈ K. Define the extended Balmer support of A as

Ṽ (A) = {P ∈ SpcKc : ∀C ∈ Kc\P, A ⊗ Kc ⊗ C � Loc(P)}.

Thus Ṽ (−) forms a map from objects of K to subsets of SpcKc.

Theorem B.0.4 If C ∈ Kc, then Ṽ (C) = V (C). Furthermore, Ṽ satisfies the following
properties. In other words, Ṽ is an extended support which extends V .

(a) Ṽ (0) = ∅ and Ṽ (1) = SpcKc.
(b) Ṽ (

⊕
i∈I Ai ) = ⋃

i∈I Ṽ (Ai ) for any set I and collection of objects Ai ∈ K.
(c) If A → B → D → �A is a distinguished triangle, then Ṽ (A) ⊆ Ṽ (B) ∪ Ṽ (D).

(d) Ṽ (A) = Ṽ (�A).
(e)

⋃
D∈Kc Ṽ (A ⊗ D ⊗ C) = Ṽ (A) ∩ Ṽ (C) for all A ∈ K and C ∈ Kc.

Proof First, let C be compact. Then

Ṽ (C) = {P ∈ SpcKc : ∀D ∈ Kc\P, C ⊗ Kc ⊗ D � Loc(P)}
= {P ∈ SpcKc : ∀D ∈ Kc\P, C ⊗ Kc ⊗ D /∈ P}
= {P ∈ SpcKc : C /∈ P}
= V (C).

The second equality is by [42, Lemma 2.2] and the third is by the definition of a prime
ideal. This shows that Ṽ extends the usual Balmer support defined on compact objects,
and (a) follows from this since 0 and 1 are both compact.

Next, we show (b). We have P /∈ Ṽ (
⊕

i∈I Ai ) if and only if there exists C ∈ Kc\P
such that

⊕

i∈I
Ai ⊗ Kc ⊗ C ⊆ Loc(P).

Since Loc(P) is a localizing category, this implies that

Ai ⊗ Kc ⊗ C ⊆ Loc(P)

for all i , and thus P /∈ Ṽ (Ai ) for all i . This implies Ṽ (
⊕

i∈I Ai ) ⊇ ⋃
i∈I Ṽ (Ai ).

For the other direction, suppose P /∈ Ṽ (Ai ) for all i . Then for each Ai , there exists
Ci ∈ Kc\P such that Ai ⊗Kc ⊗Ci ⊆ Loc(P). Consider the open set

⋃
i∈I Ṽ (Ci )

c of
SpcKc. By the assumption of Noetherianity, every subset of SpcKc is quasi-compact,
and so the cover of open sets V (Ci )

c has a finite subcover, say Ṽ (C1)
c, . . . , Ṽ (Cn)

c.
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By primeness of P, since each Ci /∈ P, we can pick compact objects D1, . . . , Dn−1
such that C := C1 ⊗ D1 ⊗ C2 ⊗ D2 ⊗ · · · ⊗ Dn−1 ⊗ Cn is not in P. We now claim
that C ∈ 〈Ci 〉 for all i ∈ I . To show this, we just need to show that C is in every prime
ideal Q containing Ci , by [41, Proposition 4.1.1]. Suppose Q is a prime containing
〈Ci 〉 for some i ∈ I . Then Q ∈ Ṽ (Ci )

c, and hence in Ṽ (C j )
c for some j = 1, . . . , n.

In other words, C j ∈ Q, and so it is now clear that C ∈ Q. Hence, C ∈ 〈Ci 〉 for all
i ∈ I .

But now note that for any i ∈ I , every object D of 〈Ci 〉 has the property that
Ai ⊗Kc ⊗ D ⊆ Loc(P). This implies that for all i , we have Ai ⊗Kc ⊗C ⊆ Loc(P).
Then

(
⊕

i∈I
Ai

)
⊗ Kc ⊗ C ∼=

⊕

i∈I
(Ai ⊗ Kc ⊗ C) ⊆ Loc(P),

and, recalling that C by construction was not in P, this shows that P /∈ Ṽ (
⊕

i∈I Ai ).
This completes the proof of (2).

For (c), suppose A → B → D → �A is a distinguished triangle in K, and that
P /∈ Ṽ (B) ∪ Ṽ (D). Then there exist compact objects C1 and C2 which are not in P
such that B ⊗Kc ⊗C1 and D ⊗Kc ⊗C2 are both contained in Loc(P). Since C1 and
C2 are both not in P, there exists a compact object E for which C1 ⊗ E ⊗C2 /∈ P. But
now it is clear that A ⊗ Kc ⊗ C1 ⊗ E ⊗ C2 ⊆ Loc(P), since Loc(P) is triangulated.
Thus P /∈ Ṽ (A), and so Ṽ (A) ⊆ Ṽ (B) ∪ Ṽ (D).

(d) is straightforward from the fact that localizing categories are triangulated.
For (e), suppose P /∈ ⋃

D∈Kc Ṽ (A ⊗ D ⊗ C). Then for each D ∈ Kc, there exists
ED ∈ Kc\P such that A⊗D⊗C⊗Kc⊗ED ⊆ Loc(P). Now, construct a sequence of
ideals as follows. Begin with 〈E1〉 for some ED1 := E1 corresponding to D1 ∈ Kc as
above. Now suppose there exists an element D2 inKc such that E2 /∈ 〈E1 ⊗ F1 ⊗ E2〉
for some F1 such that E1 ⊗ F1 ⊗ E2 /∈ P (note that since E1 and E2 are both not in P
by assumption, it follows that E1 ⊗ Kc ⊗ E2 � P, and so there always exists at least
one F1 such that E1 ⊗ F1 ⊗ E2 /∈ P). Then take 〈E1 ⊗ F1 ⊗ E2〉 as the next ideal, with
F1 as above. Continue in this manner. We obtain a sequence of strictly descending
principal ideals generated by objects which are not in P:

· · · � 〈E1 ⊗ F1 ⊗ E2 ⊗ F2 ⊗ · · · ⊗ Ei 〉 � 〈E1 ⊗ F1 ⊗ · · · ⊗ Ei−1〉 � · · · � 〈E1〉.

This sequence must terminate by Noetherianity and Lemma B.0.1. In other words,
for some n, if we set E := E1 ⊗ F1 ⊗ · · · ⊗ Fn−1 ⊗ En , then for any D ∈ Kc with
corresponding object ED , the object E is in the ideal 〈E ⊗ FD ⊗ ED〉 for any FD such
that E ⊗ FD ⊗ ED /∈ P. Now we claim that A⊗Kc ⊗C ⊗Kc ⊗ E ⊆ Loc(P). Given
D ∈ Kc, we already know that A⊗D⊗C⊗Kc⊗ED ⊆ Loc(P). But now note that any
objectG in 〈E⊗FD ⊗ED〉 also has the property that A⊗D⊗C⊗Kc⊗G ⊆ Loc(P),
and in particular this is true for E , since E ∈ 〈E⊗FD⊗ED〉 by assumption. Therefore,
A⊗ D ⊗C ⊗Kc ⊗ E ⊆ Loc(P) for any D ∈ Kc, and thus A⊗Kc ⊗C ⊗Kc ⊗ E ⊆
Loc(P).
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The result now follows directly. If P ∈ Ṽ (C), then C ⊗Kc ⊗ E � Loc(P), which
means that there exists some H ∈ Kc such that C ⊗ H ⊗ E /∈ P; and in that case, we
can now see that P /∈ Ṽ (A), since this means that A⊗Kc ⊗ (C ⊗ H ⊗ E) ⊆ Loc(P).
Therefore, P /∈ V (A) ∩ V (C), giving one direction of the claimed equality.

For the other direction, suppose P ∈ ⋃
D∈Kc Ṽ (A ⊗ D ⊗ C). Then there is some

D for which P ∈ Ṽ (A ⊗ D ⊗ C). Suppose P /∈ Ṽ (C), in other words, C ∈ P. Then
A⊗D⊗C would be in Loc(P), which would immediately imply P /∈ Ṽ (A⊗D⊗C),
a contradiction. In other words, P ∈ Ṽ (C). We must just show now that P ∈ Ṽ (A).
Suppose E ∈ Kc\P. If A ⊗ Kc ⊗ E ⊆ Loc(P), then this would imply that A ⊗ D ⊗
C ⊗ Kc ⊗ E ⊆ Loc(P), which would contradict the fact that P ∈ Ṽ (A ⊗ D ⊗ C).
Hence A ⊗ Kc ⊗ E � Loc(P) for all E ∈ Kc\P, which implies P ∈ Ṽ (A). This
completes the proof. ��

Next we give a characterization of elements with empty support for categories with
finite Krull dimension. For ease of notation, for any integer m ≥ 1, we will denote
A(m) for the collection of objects

A(m) := A ⊗ Kc ⊗ A ⊗ · · · ⊗ Kc ⊗ A︸ ︷︷ ︸
m copies of A

.

Theorem B.0.5 Suppose A ∈ K satisfies Ṽ (A) = ∅. If Kc has finite Krull dimension
n (that is, any chain of strict containments of prime ideals is at most length n), then
A(n) = {0}.
Proof Suppose Ṽ (A) = ∅. Then for each prime P ∈ SpcKc, there exists a compact
objectC which is not in P, such that A⊗Kc⊗C ⊆ Loc(P). Since

⋂
P∈SpcKc P = {0},

it is enough to show that A(n) ⊆ Loc(P) for all primes P, by Lemma B.0.2.
We will show by induction on the maximum m such that there exists a chain of

prime ideals P = P1 � P2 � · · · � Pm that A(m) ⊆ Loc(P). If P is a maximal
ideal, then 〈P,C〉 = Kc for any C ∈ Kc\P, in particular for some C for which
A⊗Kc⊗C ⊆ Loc(P), which exists by assumption. Hence one can form the unit object
1 by successively taking shifts, cones, direct sums, and tensor products with arbitrary
compact objects, applied to objects in {P,C}. Note that each operation preserves the
property that applying A ⊗ Kc ⊗ − gives a collection of objects in Loc(P); since
objects of P, as well as C by assumption have this property, so does 1. In other words,
A ⊗ Kc ⊗ 1 ⊆ Loc(P), and in particular A(1) = {A} ⊆ Loc(P). This completes the
base case of the induction.

Now, assume that P is any prime in SpcKc, with m the maximum number such
that there is a chain of strict containments of prime ideals over P of length m. By
assumption, as before, there exists a compact C not in P with A⊗Kc ⊗C ⊆ Loc(P).
Now note that it is enough to show that A(m −1) ⊆ Loc〈P,C〉; if this is true, one can
form any object in this set by successively taking shifts, cones, arbitrary set-indexed
direct sums, and tensor products, applied to objects in {P,C}. As in the base case of
the induction, each of these steps preserves the property that applying A ⊗ Kc ⊗ −
produces a collection of objects contained in Loc(P). Therefore, this implies that
A(m) ⊆ Loc(P).
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To show that A(m − 1) is contained in Loc〈P,C〉, it is enough to show that it is
contained in Loc(Q) for any prime ideal Q containing 〈P,C〉, since every thick ideal
is the intersection of prime ideals above it (again, by [41, Proposition 4.1.1]) and by
Lemma B.0.2. But such a prime ideal Q properly contains P, and so by the inductive
hypothesis A(m − 1) is contained in Loc(Q) for all suchQ. This completes the proof.

��
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