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Abstract

Across a variety of biological datasets, from genomes to conservation to the fossil record,
evolutionary rates appear to increase toward the present or over short time scales. This has
long been seen as an indication of processes operating differently at different time scales,
even potentially as an indicator of a need for new theory connecting macroevolution and
microevolution. Here we introduce a set of models that assess the relationship between rate
and time and demonstrate that these patterns are statistical artifacts of time-independent
errors present across ecological and evolutionary datasets, which produce hyperbolic pat-
terns of rates through time. We show that plotting a noisy numerator divided by time versus
time leads to the observed hyperbolic pattern; in fact, randomizing the amount of change
over time generates patterns functionally identical to observed patterns. Ignoring errors can
not only obscure true patterns but create novel patterns that have long misled scientists.

Author summary

For decades, evolutionary biologists have observed that rates of evolution seem to acceler-
ate over short time periods, a pattern seen across diverse data sources, from genomes to
the fossil record. This observation has sparked debates about its implications for under-
standing the link between microevolution and macroevolution. Our research challenges
this widely accepted notion, revealing that these apparent patterns are actually statistical
artifacts resulting from time-independent "noise". By employing a novel statistical
approach, we found that this time-independent noise, often overlooked as inconsequen-
tial, create a misleading hyperbolic pattern, making it seem like evolutionary rates increase
over shorter time frames when, in fact, they do not. In other words, our findings suggest
that smaller, younger clades appear to evolve faster not due to intrinsic properties but
because of statistical noise. Ultimately, our study underscores the critical importance of
accounting for inherent biases and errors in interpreting biodiversity patterns across both
shallow and deep time scales.
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Introduction

Biology is characterized by diversity: how a modern moss survives and evolves is very different
from how Cambrian trilobites did the same. Biologists thus take immediate notice when broad
patterns manifest across a diverse set of lineages. One such recurring pattern is that evolutionary
rates exhibit an exponential increase towards the present or over shorter time scales, highlight-
ing a potentially new fundamental principle in how life evolves. The consistency of this pattern
across dimensions of diversity, from genomes to the fossil record [1-6], highlight its universality
and arguably point to the need for new conceptual bridges connecting disparate timescales of
evolutionary change [7,8], despite past work showing potential artifactual causes [9]. It also
challenges the long-held view that the processes playing out in the past generally behave simi-
larly in the present—that is, life seems to evolve “faster” now. Understanding this pattern offers
the potential for new insights into the underlying mechanisms that shape biodiversity.

Here we introduce a set of novel models that assess the relationship between rate and time
that includes hyperbolic and linear functions of time. We show that one potentially crucial but
largely overlooked factor (but see [10,11]) affecting rate patterns is the impact of empirical
errors inherent in rate estimates, and that this apparently has driven the pattern observed
across extinction risk, trait evolution, and diversification rate estimates over time, based on
model fitting and new randomization tests. We suspect that questions about rates changing
over time scales can only be properly examined, across a variety of fields, once the biasing
effect of uncertainty is taken directly into consideration.

Impish problems

The concern over spurious correlations between ratios and shared factors has a longstanding his-
tory in the statistical literature, dating back to Pearson’s pioneering work more than a century ago
[12]. Pearson illustrated this problem by recounting a biologist’s study of skeletal measurements,
specifically femur and tibia length normalized as fractions of the humerus length. Expecting a
high correlation to validate correct groupings, the biologist was unaware that an “imp” had ran-
domly shuffled bones between specimens. Surprisingly, the high correlation would persist even
after this randomization, revealing that such spurious relationships arise from inherent properties
of the variables rather than indicating meaningful biological connections [12-15].

Similarly, when plotting an evolutionary rate against its corresponding denominator, time,
the representation becomes a plot of time against its reciprocal (i.e., k/time vs time), resulting
in a relationship that is negatively biased [5,6]. In fact, if the numerator is held constant, the
slope on a log-log scale must be -1.0 [1,16]. However, the numerator in an evolutionary rate,
which quantifies the absolute amount of evolutionary change between two time points, is
unlikely to remain constant across all timescales, as seen empirically [17]. Our hypothesis is
that the observed hyperbolic pattern comes about due to this reciprocal relationship, especially
given uncertainty in rates. We show mathematically why this might be the case, develop an
approach for estimating the magnitude of the effect, and do randomizations and simulations
to suggest that this is driving nearly all the observed empirical patterns.

Components of evolutionary rate patterns through time

In the context of evolutionary biology, a rate is a measure of evolutionary change per unit of
time,

r(t) =—= (1)
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Evolutionary change, x(t), encompasses a variety of measures, including number of nucleotide
substitutions in DNA [18], the number of transitions between discrete phenotypes [19], speciation
and extinction events [20], or the absolute change in a continuous trait after some interval of time
[21]. The specifics of the different types of evolutionary rates and how they are estimated are var-
ied. For instance, one model may assume changes follow a Poisson distribution on a nested tree
structure (e.g., substitution rates), while others may assume trait changes are drawn from a normal
distribution with the rate being the measure of the variance (e.g., Brownian motion). Nevertheless,
at its core, an evolutionary rate reduces to some measure of change over time.

While it is common to perceive uncertainty and error as obscuring patterns rather than
contributing to them, these uncertainties and errors may be key drivers of the repeated pattern
of rates increasing towards the present. For illustrative purposes, we focus on the simplest
approach for calculating rates of morphological evolution to demonstrate the impact of biases
and errors on the relationship between rate and time. Measurements are assembled as a set of
paired comparisons that differ in some trait value (e.g., body size) measured at two separate
time points, with ratio of the differences in trait and time being an estimate of the rate,

Pt) =21 >t (2)

Here x; and x, are the initial and final values of the trait measurement between two time
points, t; and t,, respectively. Expressing a rate in such a way is similar to the “darwin,” a
widely used unit of evolutionary change first defined by Haldane [22]: with the darwin, the x;
are the traits measured in log space.

Various phenomenological patterns can describe how rates change through time. The simplest
is that 7(¢) is a constant rate of change, maintaining a constant value regardless of the measure-
ment interval. For example, under a molecular clock, a mutation rate resulting from DNA copy-
ing errors is expected to be constant across clades of different ages. In other words, even though a
pair of taxa sharing a common ancestor 5 million years ago are expected to have far fewer muta-
tions than a pair sharing an ancestor 50 million years ago, on a per-time basis the rate will be iden-
tical. The biological rationale for such consistency in rate is rooted in the assumption that
processes governing rates operate similarly in the past as they do in the present-a foundational
premise in much of evolutionary biology. On the other hand, if mutation rates were increasing
towards the present (perhaps due to a decrease in the protective ozone layer, or loss of function of
mutation repair enzymes), then we would expect the rates to increase near the present.

Measurements of x; often reflect the mean for a species or even a measurement of a single
individual and, therefore, represent an estimate of the true value. If each measurement esti-
mate, x;, carries some level of noise attributed to factors like finite sample size (e.g., how repre-
sentative is this particular flower of the species as a whole) or measurement error (e.g., how
long is this rather stretchy squid, does this messy DNA band represent an A or a T), then
X, = x, + €,, with £; denoting an error component that can lead to overestimation or underes-
timation of the measurement. Thus, we can express the rate estimate as including error:

|(x, + &) — (%, + &)

r(t) = b, >t 3
(1 = ,> (3)

We can reorder the terms to get:

. X, — X, £, — €
f) = >t 4
() |(E_q)+(5_H>|2 1 @)
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The first term on the right hand-side reflects the underlying model. For example, with a
constant nonzero rate the first term should be constant: larger trait differences (numerator)
are balanced out by larger time intervals (denominator). However, the effect of the second
fraction, the error, is quite different. Since these errors are not inherently time-dependent
(e.g., sequencing errors in a DNA analysis or measurement of body lengths in dinosaurs),
there are no a priori reasons for the magnitude of the error in a 5-million-year-old clade would
necessarily be any greater or lesser than the magnitude in a 50-million-year-old clade-the
numerator will come from a consistent, time independent, distribution. But this is divided by
different amounts of time in the denominator. A hyperbola will invariably result from the sec-
ond term when the ratio of these differences in error are scaled by time, and then plotted
against time (even if the time estimate itself also has error, as it inevitably does). Thus, the over-
all pattern of empirical rates versus time is whatever the true pattern is plus a hyperbola com-
ing from measurement error. At short times, under most models we expect the true difference
in trait values to be small, while the uncertainty in measurements may remain high, leading to
the hyperbola term dominating.

To assess the relative contribution of constant, hyperbolic, and linear functions towards a
rate estimate over time, we derived a novel least-squares approach [23]. Our method allowed
us to predict changes in observed evolutionary rates sampled through time by minimizing the
logarithm of the residual sum of squares between the predicted and observed values. We
derived a model that, at its most complex, is given as,

7(t) :§+mt+b. (5)

Here h denotes the hyperbolic component [in units of x()], m is scalar modulating the
effect of time up and down linearly [in units of x(t)t?], and b is a constant base rate [in units of

x(t)t"]. Essentially, the " represents the (ﬂ) term in the equation above, while the mt+b

=t

terms represent the (%) term, if we are willing to assume a simple model where the under-

lying rate varies linearly with time (including the possibility of it being constant). The full
model assumes all three components have impacted the fitted value for #(¢) in some way. We
also fit a range of restrictions to this model where one or more of the parameters are set to
zero. For example, restricting h = m = 0 is a model in which the rates would be inferred to be
constant through time, as one would expect from a process like a molecular clock. The maxi-
mum likelihood fit of a model was assessed using the logarithm of the residual sum of squares
and first converting this into a measure of the model variance and then into a log-likelihood.
To facilitate comparisons across a set of models, we converted the log-likelihood into an
Akaike Information Criterion score (AIC); we also assessed confidence regions (e.g., S1-S6
Figs) around each of the parameters.

Results
Revisiting empirical cases of Age-Dependent Rates

We analyzed five empirical datasets that encompass diverse data types, including substitution
rates (Ho et al. [2]), rates of body size evolution from extant and extinct taxa (measured in dar-
wins; Gingerich [1], Uyeda et al. [17]), speciation rates from phylogenetic trees of extant spe-
cies (Henao Diaz et al. [3]), and contemporary species extinction rates (Barnosky et al. [24]).
We also included a dataset of birth rates obtained from 25,000 trees simulated under a Yule
process (i.e., pure birth) with the same rate (i.e., 0.10 birth Myr'l) and clade ages drawn from a
uniform distribution. Estimates of the birth rates included a correction to account for the
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biased estimates for smaller tree sizes. This simulated dataset served as a type of control given
that the trees were generated without error and thus the best fit model should generally appear
as a horizontal line centered on the generating rate.

In all five empirical datasets, we observed a consistent negative trend in rates through time
on a log-log scale (Fig 1D, 1G, 1], 1M and 1P). This aligns with published results indicating
higher rates closer to the present, declining as time increases. When we fit our least-squares
model separately to each empirical dataset, we found, with one exception, that all were best fit
by a model that included all three parameters (h, m, and b). The Henao Diaz et al. [3] data
favored a model without a base rate (b = 0 speciation events Myr'l; Fig 1]), but there were
three other models within 2 AIC units from the best fit model, including the full model, and all

featured a positive hyperbolic parameter estimate (h = 1.31-2.75 speciation events). One con-
sistent finding across all five empirical datasets was that the best fit model included a positive

hyperbolic parameter estimate (h > 0) as well as a non-zero linear component (#1 # 0). This is
similar to results from De Lisle and Svennson [16], who also found that a substantial propor-
tion of the empirical pattern could be explained by plotting a ratio versus its denominator,
without specifying a particular cause. While it can be hard to estimate raw uncertainty from
the empirical datasets (the data are often the observed difference in measurements without
uncertainty), in two datasets there are actually multiple observations of rate for a single time
point, Gingerich [1] and Uyeda et al. [17]. Using just the latter (for the former, we had to esti-
mate the point positions, creating additional uncertainty), there were 653 time intervals where
there were two or more observations of rates. If rate were a noiseless function of time, there
would be no variation at a particular time; the presence of multiple rates can thus be used to
estimate how much variation comes from noise, The median coefficient of variation across
these intervals was 0.59, meaning the standard error was 59% the value of the mean; in 12% of
the time periods, the standard error was greater than the mean.

To put these results into perspective, imagine measuring the height of the Eiffel Tower,
which is accurately known to be 330 meters. If these measurements are normally distributed,
centered on the true height, with a coefficient of variation of 0.59 or higher, around 5% of peo-
ple might either mistakenly record the height as shorter than a giraffe or more than double the
actual height. In other words, a coefficient of variation of 0.59 (or higher) represents a massive
amount of variation in a measurement. However, it does not indicate how much of this the
result or measurement errors or natural factors like the Eiffel Tower’s height slightly changing
with temperature. As Brett [25] demonstrated, when coefficients of variation are high this also
increases the risk of finding misleading correlations in the data.

For the fitted rate values within each dataset, we decomposed the rate to reflect the propor-
tion of the rate attributable to each of the three components in our least-squares model. This
allowed us to assess how much of the fitted rate comes from each component as a function of
time instead of relying solely on interpreting the parameters in the fitted model, the colored
bands in Fig 1. Decomposing the fitted rates in this way revealed that a significant portion of
the relationship between rate and time in the empirical datasets is caused by the hyperbolic
component (dark pink in Fig 1D-1R). This occurred despite model fits indicating that there
was signal for both constant and linear components. Any influence of other components only
came with long time intervals: exactly what would be expected if there is largely time-indepen-
dent noise in measurements that only becomes outweighed with signal when the true differ-
ence between the measurements is high.

One question is how this problem can be addressed. We performed simulation approaches
to assess how well our approach could work at estimating the true underlying rates when the
presumed error was removed (S11, S12, and S13 Figs). Our approach outperformed DeLisle
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Fig 1. Comparisons of log-linear trends in evolutionary rates. The first column of figures is for the original data; the second column is using the
randomization procedure; third shows the confidence in the assignment of rate to parameters. Time is plotted along the horizontal axis, and rate along the
vertical axis, both on log scales. The first row of figures comes from a pure birth simulation, a variable process but where all information is known precisely,
while the other rows come from empirical datasets. Points represent observed rate and time pairs: for example, a comparison between two populations
measured at different times. For the pure birth simulation there are some rates that are zero, which are correctly placed at negative infinity on a log scale but

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012458  September 13, 2024 6/24


https://doi.org/10.1371/journal.pcbi.1012458

PLOS COMPUTATIONAL BIOLOGY Increasing rates are artifacts of noise

appear at the bottom of the plot here. The black solid and dashed lines represent the prediction and 95% confidence intervals, respectively, from the best-
fitting model using our framework that estimates the hyperbolic (1), linear slope (m), and y-intercept (b) parameters, the hmb model. Note the close match
between the predictions from the hmb model and the empirical data, even where the point distribution flattens out in D and G. The green lines show the
prediction from the best hmb model of what the underlying rates would be in the absence of measurement error (deleting the h/f term). The thick line
follows the black prediction line; colors indicate the relative impact of the various components from our least-squares model on the overall rate in the best
fitting model. Dark pink represents the hyperbolic component (which appears linear on this log-log plot), goldenrod denotes a constant rate component,
and blue signifies a component that changes linearly with time. For example, if the prediction for abs(h/t) at a particular time was 0.6, the prediction for abs
(m*t) was 0.3, and the prediction for abs(b) was 0, the height of the band at that time point would be 2/3 pink, 1/3 goldenrod. Finally, the third column
illustrates the proportion of the rate from each model component over time, with band thickness indicating uncertainty in that proportion. Essentially this
is the same as the color bands in the first column, but with the y-axis showing the proportion of the overall rate coming from each of the three parameters in
the model, and band thickness showing the 95% confidence interval in how much weight each component provides (i.e., the point estimate might be that
the band should be 67% pink, but the confidence interval could go from 40% to 84% pink). For the simulation in the first row, a constant rate drives the
reconstructed rates (which is consistent with the generating model used), while for the five empirical plots (Fig 1F, 11, 1L, 10, 1R) at young ages the
hyperbolic component comprises much of the rate, while at deeper times other components may become important, albeit often with substantial
uncertainty.

https://doi.org/10.1371/journal.pcbi.1012458.g001

and Svennson’s [16] approach of comparing linear regression slopes to -1, as it more accurately
identified trend directions. However, our method sometimes incorrectly detected trends when
the generating rate was perfectly constant, especially under high noise conditions (e.g., S12

Fig, rates of 0.1 or 1, left two columns). Given the apparent large uncertainty in empirical data-
sets, even in cases where, say, the trend parameter was nonzero [for example, the value of
-0.00007 (CI -0.00009: -0.00005) for m for Gingerich [1]], we would avoid drawing strong bio-
logical conclusions from this. We are somewhat more confident in estimates for the y intercept
of the rate. For example, having a rate of 0.059 (CI 0.051-0.069) for Uyeda et al. [17] is reason-
able, especially as we expect there to be a positive rate of overall evolution.

Deriving an appropriate null expectation

A potential explanation for the interest in the severe empirical decline in rates over time is that
it conflicts with the de facto null scientists often envision, which is a constant rate across time.
One way to construct a null is to reshuffle the data and plot rates randomly with respect to
times and observe whether they create a horizontal line. However, the actual data are the dif-
ferences in trait measurements and the differences in time. To generate an appropriate empiri-
cal null, we developed a procedure similar to that of Sheets and Mitchell [8]. We first separated
each empirical rate into its numerator and denominator components. The numerator was
obtained either directly from the original data or by multiplying the empirical rate by their
respective denominator of measured time. We then shuffled the numerators at random across
a given empirical dataset and divided them by the unshuffled times to obtain a new set of rates
and times. This not only follows the long tradition of using reshuffling to get null distributions
when examining ratios against common factors [12], but also has the advantage of keeping the
same distributions of times and amount of change as the original data, which can matter for
some of the biases here [13]. Our expectation was that the observed relationships between rate
and time will differ from results where evolutionary change and time are completely random
with respect to one another.

As expected, when we randomized the numerator relative to the denominator of the empir-
ical rates, the relationship between rate and time was almost entirely driven by the hyperbolic
component across all examined datasets (Figs 1E, 1H, 1K, 1N, 1Q and 2, OR comparison
type). However, we also observed surprisingly substantial similarity between the randomized
and empirical results (for example, between Fig 1G and 1H). They were so similar, in fact, that
when model parameters were optimized on the randomized data and applied to the corre-
sponding empirical data, the resulting coefficient of determination (R?), which indicates
explanatory power, was nearly identical or sometimes greater than that of the actual empirical
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Fig 2. Comparisons of coefficient of determination (R”) between the observed fit and fits from randomizing the numerator relative to the denominator
of the empirical rates. First, we obtained the R* of the empirical original (O) data fit to the original (O) parameters (comparison type OO). Essentially, we see
how well the hmb model with fit from the original empirical data predicts the variation in the observed rates. Second, we see how well variation in observed
rates (O) is predicted when we fit the hmb model to randomized data (R), where presumably any true trend is erased (the OR comparisons). Randomization
involved first separating each empirical rate into its numerator and denominator components, shuffling the numerators at random across a given empirical
dataset, and then divided them by the unshuffled times to obtain a new set of rates and times, repeated 100 times. The last comparison examines how well
randomized data is predicted from an hmb model fit to a different randomized dataset (the RR comparison). The expectation for data is that the best prediction
(highest R?) should be OO: the data one is attempting to predict are used to fit the model. Using randomized data as a prediction for the original empirical data
(OR) should be poor: with randomized data, any sort of biological trend has been erased. This was often not the case. The boxplots show the distribution of the
comparisons used (only one per dataset for OO, but more for OR and RR as they have randomized datasets); the brackets show a p-value comparing the
distributions (see Methods for the details of the calculation, which avoid issues of differential power coming from different sample sizes).

https://doi.org/10.1371/journal.pchi.1012458.g002

fit (Fig 2). For example, in our largest empirical dataset, Uyeda et al. [17] with 5,886 observa-
tions, we predicted 86.9% of the variation using an hmb model fit to the actual data, but fitting
to randomized data explains on average 85.6% of the variation (SI Table). The fits are signifi-
cantly different (p < 0.001), but the amount of variation explained functionally remains very
similar. The fit of original data to randomized data (OR) and the fit of randomized data to dif-
ferent randomized data (RR) was also very similar, further suggesting that the original data
functions similarly to data where amount of change and time are completely shuftled. For Ho
et. al. [2], the amount of empirical variation explained by the randomized data was signifi-
cantly and substantially lower than when fitted using the original data, but still remained fairly
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high. With the pure birth simulation, there is no true time-correlated component of the varia-
tion (as the true rate is constant) and so the R? is extremely but expectedly low.

We hasten to acknowledge that some differences in the R* among empirical and random-
ized fits is expected given the inferred shifts in the contribution of three components through
time. For example, while the empirical dataset of Uyeda et al. [17] is largely consistent with a
hyperbolic distribution (Fig 1D and 1F), the rates nearer the maximum age are largely driven

by the linear component—that is, the effect of (52751) is less than that of (u) at deep times.

ty—ty =ty
This is also demonstrated in the different pattern between Fig 1D, with the original data, and
Fig 1E, with the randomized data: the two lines appear very similar until deeper time points.
Nevertheless, as a practical matter, the fact that we can take measurements like amount of
change within Daphnia over a summer [26], the amount of change between late Cretaceous
Tyrannosaurus and Triassic Coleophysis over 98 million years [27], and many datasets in
between, shuffle these values, and have the model fit nearly as well on the original data—
including explaining over 80% of the variation—suggests that the apparent patterns arise from
fitting noise. By contrast, the Yule dataset (Fig 1A-1C), where there is variance due to the
model (a given simulation condition can create trees of very different sizes) but no error in the
number of taxa used, the tree, or the total height. In this case, the empirical pattern was very
different from a hyperbola (Fig 1A) but does become hyperbolic when randomized (Fig 1B).
Even an error creating a bias, such as censoring the data with zero rates without using a correc-
tion, creates a pattern very different from the hyperbola as a consequence of noise (S7 Fig).

Discussion

Our study demonstrates that the pattern of increased evolutionary rates towards the present,
observed across various axes of biodiversity, such as contemporary extinction rates [24] and
macroevolutionary rates in morphology and molecular studies [1,2,17], closely resembles what
we would expect from purely random data. Even within large datasets, the observed hyperbolic
pattern closely mirrors noise, except at deeper times where there may be enough signal to over-
come the hyperbolic pattern from noise. Furthermore, it is worth noting that while our focus
was on ecological and evolutionary datasets, similar conflicts between rates measured over dif-
ferent time scales exist in other fields, including the Hubble tension regarding the cosmic
expansion rate [28,29].

Our findings do not imply that assessing patterns of rates over time is impossible. For
instance, in dendrochronology, annual tree growth is often estimated using cores with a rela-
tively consistent number of years, rather than increasing the number of years for older sam-
ples. A recent study on contemporary bird extinction dynamics [30] employed 100-year
rolling windows to estimate average extinction rates over time, and contrary to expectation,
did not find the highest rate at present. Approaches like these, which maintain consistent time
intervals, should likely be robust to the statistical artifacts uncovered here. However, the tradi-
tional approach of simply taking rates and plotting versus times is fundamentally flawed and
practically uninformative, even with corrections. One could easily add more complexity to our
linear hmb model, for example (such as different rates in different discrete times, rates corre-
lating with some external variable, and more), but at least with the amount of variation we see
in the empirical datasets here we would not believe any results are biologically informative.
Moreover, though our envisioned noise mechanism alone generates data nearly indistinguish-
able from empirical data, it is far from the only bias or source of error in these data (see also
[31]). First, it is worth reflecting on the various kinds of causes for noise at the tips. For exam-
ple, there is simple uncertainty (a ruler with finite precision), traits that are themselves some-
what ambiguous (width of a jellyfish), sampling uncertainty, or phenotypic plasticity.
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Estimates of time can be biased and associated with large amounts of uncertainty. There is also
substantial ascertainment bias in which datasets scientists examine. Over short time periods, we
only look at cases where we expect a detectable amount of change; over long time periods, we
only compare things similar enough to make comparison sensible (e.g., body length between
two species of dinosaurs, not body length between a dinosaur and a tree). For diversification
analyses, clades below a certain size are often excluded, creating a bias in recovered rates, espe-
cially for clades originating more recently. Finally, models themselves can be wrong, which can
result in incorrect estimates of amount of change, time, or the interplay between them.

An implication of our results is that any errors present in measurements of evolutionary
change not only greatly affect rate estimation overall, but also any comparative test that exam-
ines rate shifts within a single phylogenetic tree. Consider a scenario where we want to com-
pare evolutionary rates between a paraphyletic group of taxa and clade within it (such as seed
size evolution in nonflowering plants versus angiosperms). Any inaccuracies in trait measure-
ments or character state assignments within the tree could lead to the erroneous inference that
the subclade has a higher rate, simply due to less overall time in terms of branch lengths to mit-
igate the effects of these errors (S10 Fig). This discrepancy also creates a concerning disconnect
between the expected error rates for specific phylogenetic comparative models, derived from
simulations, and their actual behavior in empirical settings when assessing rate differences
within and among groups. That is, null models for many comparative tests may fit far worse in
an empirical setting than might be indicated by careful simulation study conducted in the
absence of measurement error [32], providing alternative explanations with artificially inflated
support. Even with Bayesian approaches that attempt to integrate over uncertainty in results,
data are still typically assumed to be free of errors, and this being incorrect will tend to lead to
increased rates, especially where the magnitude of the effect of the error is high relative to the
magnitude of the effect of the signal. This may also pose substantial issues to molecular and
fossil dating analyses.

We anticipate that our findings will encourage further development of approaches that
acknowledge measurement error when estimating rates. In models of continuous trait evolu-
tion, measurement error can be addressed by directly inputting the standard error of the spe-
cies means for a trait to the model [33]. However, this practice is not yet standard, but at the
very least, measurement error could be incorporated as a parameter to estimate in the model.
The current standard approach forces it to be zero, which is a very strong, and likely very inac-
curate, assumption. In other comparative models, especially those related to the evolution of
discrete characters (e.g., higher-level phenotypic characters exhibiting a finite state space),
rates are determined without methods to mitigate potential errors, like inaccuracies in charac-
ter state assignments. Several approaches derived for dealing with sequence error in phyloge-
netic inference could also prove useful in this context (see [34, 35]) Such errors have a clear
impact of inflating rates over shorter time scales (e.g., Figs 1 and S9). More generally, this
points to the need to incorporate the potential effects of measurement error and other uncer-
tainty in causing a pattern, not just noise. This has been dismissed as a potential cause of the
pattern here [8] but both randomization and simulation presented here show how the empiri-
cal pattern can come directly from error in the numerator.

One unexplored issue is that while our study solely focused on errors in measurements of
evolutionary change, errors in the temporal component underlying a rate can also significantly
influence rate estimates. In certain scenarios, such as diversification models, we suspect errors
in branch lengths might counteract the observed patterns, at least partially. Therefore, given
the potential biases in molecular age estimates [36-38], it is prudent to prioritize the develop-
ment of integrative approaches that address errors not only in measurements of evolutionary
change, but also in the underlying branch lengths.
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Finally, our findings demonstrate the importance of using informed nulls as expectations of
a process [39], especially as errors have a biased effect on rate estimates. Understanding how
rates vary both within and among phylogenies will always remain a key part of biology, as they
can point to important principles governing biodiversity across disparate timescales. However,
statistical artifacts can still impishly affect our results, particularly when we dismiss uncertain-
ties in our measurements as inconsequential.

Materials and methods
Overall workflow

Other than the Yule simulations themselves (see below), all analyses were done in R 4.4.0 [40]
using targets [41]. This creates a reproducible workflow that allows for caching intermediate
results. All scripts and substantial outputs are available at https://github.com/bomeara/
hyperbolic_rates; doi: 10.5281/zenodo.13372718. The R package developed for this project,
hyperr8, is at https://github.com/bomeara/hyperr8. Other packages used included ggplot [42],
ape [43], dplyr [44], Rmpfr [45], tidyr [46], nloptr [47], dentist [48], and scales [49].

Empirical data and Yule simulation

We fit our models to five empirical data sets and rates generated from a simulation of Yule
trees. We used the body size dataset compiled by Uyeda et al. ([17], their “Dryad7.csv”), which
integrates contemporary field studies, historical field data, and the fossil record for mammals,
squamates, and birds. This was filtered for points that were BodySizeCorrelated = = 1, but no
further filtering was done. Due to its historical importance, we also used the morphological
rate data set of Gingerich [1]. We used the mitochondrial substitution rate (measured in sites
Myr’l) data of Ho et al. [2]. Finally, we used the rates of contemporary species extinction (E/
Msy, or extinctions per million species-years) from Barnosky et al. [24].

The original study of Henao Diaz et al. [3] estimated diversification rates (i.e., speciation,
extinction, and net diversification rates) from these trees. However, these were not available
(Matt Pennell, personal communication). We therefore re-estimated diversification rates by
fitting a constant birth-death model to each tree using modified functions extracted from the
R package TreePar [50]. Specifically, we re-parameterized the likelihood function to search for
the maximum likelihood estimates of turnover, 7, which is speciation + extinction, and extinc-
tion fraction, &, which reflects the ratio of extinction rate to speciation rate. We conditioned
the likelihood on survival (i.e., probability that the observed tree could have gone extinct by
time, t). For each tree, we transformed estimates of 7 and £ back to the original speciation and
extinction variables.

In the case of Gingerich [1], Ho et al. [2], and Barnosky et al. [24] the original data were not
readily available. We therefore used plotdigitizer.com to manually digitize the points from the
log-log plots, as they allowed easiest visibility of individual points. For Ho et al. [2] we recre-
ated Fig 1A from [7]. For Gingerich [1], in cases where there were multiple data points per
symbol, and so we recorded one point for each replicate. For example, a symbol of “5” became
five points at that location, whereas an “X” means 10 or more. In the latter case, we encoded
these as ten points.

For the Yule simulated rates, we generated a vector of 25,000 ages from a uniform distribu-
tion, starting at log(1 Myr) and ending at log(50 Myr). We then transformed the ages back to
their original units. This ensured that the sampling was approximately even on a log-log plot.
We then simulated a tree at each of these ages in the R package TreeSim [51] with a known
birth rate of A = 0.10 births Myr™". Each simulation began with two lineages and terminated
once the tree reached the specified age. Estimates of the birth rate were obtained analytically
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using our newly derived unbiased estimator, /°, for Yule birth rates (see section Deriving an
unbiased estimator for the Yule birth rate section below).

Least-squares model

We implemented a set of least-squares models into an R package, hyperr8, whose namesake is
based on our expectation of hyperbolas and as an homage to Mike Sanderson’s r8s software
[52]. The basic idea is to minimize the logarithm of the residual sum of squares between the
log predicted and log observed rates coming from a model which, in its most general form,
predicts a rate estimate as:

7(t) :§+mt+b. (6)

This general model is referred to as the hmb model after its free parameters h, m, and b that
correspond to the hyperbolic, linear, and constant components. We can fix any of the parame-
ters to 0 to create simpler models nested within this general one. For example, h0b fixes m at 0
and estimates  and b. The simplest model in the set of possible models restricts 4 = m = 0 and
the rates are assumed constant through time. To avoid some extreme rates driving the fit, we
used the log of the empirical rates and the log of the predicted rates when calculating the resid-
ual sum of squares. If any empirical data set rates contain rates of zero, as was true in our pure
birth simulation for trees that started and ended with two taxa, we used a loglp transform on
all rates. This is done automatically in the hyperr8 software.

For each empirical data set we fit and compare a set of models that range in complexity, as well
as assess uncertainty in their inferred model parameters. We accomplished this by taking advan-
tage of the fact that one can convert the residual sum of squares to a log-likelihood. We first calcu-

lated the maximum likelihood estimate for the variance of the residuals, ¢, by dividing the
residual sum of squares by the number of observations. The log-likelihood is then calculated as,

log(L) = —.5n+log(a?), (7)

and we maximize this to obtain the MLE of model parameters for a given model. The log-likeli-
hood and the number of free parameters were also used to compute the Akaike Information Cri-
terion ([53], AIC). This allowed us to use dentist [48] to compute uncertainty around the
parameter estimates (see Adding uncertainty in our plots section below).

Our optimization procedure starts with a diverse set of starting points and algorithms from
the nloptr package [47] in R, to fine-tune a given model. Initially, we optimize model parame-
ters using fixed starting points with the NLOPT_LN_SBPLX [54] algorithm. Subsequently, a
different set of fixed starting points is applied to the same algorithm, followed by random start-
ing points centered on the best values found in the first round of optimization with
NLOPT_LN_SBPLX. The optimization process cycles through the NLOPT_LN_BOBYQA
[55], NLOPT_LN_SBPLX, and NLOPT_LN_NEWUOA_BOUND [56] algorithms to mitigate
the risk of suboptimal fits. If a better log-likelihood is discovered during the parameter search,
those parameters and log-likelihood are used for comparison with other models. This search
effort is applied to both the original data and each of the randomized datasets. The resulting
fits are provided in S1 Table.

Contribution of each parameter to the fitted rate

Using the best-fitting model, we calculated the values of h/t, m*t, and b for any given value of t.
Since these are usually summed to obtain the fitted rate, 7(¢), it is exceedingly rare that a fitted
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rate will be estimated as being less than zero. For example, the rate could decrease with time
when m is less than one, but a high enough value for b would ensure that m*t + b remains
above zero over the range of times examined. Nevertheless, we took the absolute value of each
component anyway when calculating its overall contribution to the rate. If h = 2, m = -1, and
b =0, then at time ¢ = 1 the overall rate is 2/1 + -1*1 + 0 = 1, but the contribution of the linear
component, m, is |-1| / (|2|+]-1|) = §, while at time ¢ = 0.5 the overall rate is 2/0.5 + -1*0.5

+0 = 3.5 and the contribution m is |-0.5| / (|4] +]-0.5]) = .

The rightmost column in Fig 1 of the main text shows the predicted rate as a band, but we also
wanted the color of that band to communicate the relative contribution of each component. This
was accomplished by using geom_ribbon within ggplot2 [42] with ribbon widths proportional to
the contribution of each component. However, this visually makes the ribbons look narrower
when the rate has a slope with high magnitude, so we estimated what the slope is locally, which
was then used to inflate the ribbon width on steeper parts of the predicted rate line.

Adding uncertainty in our plots

Overall uncertainty in the rate estimates as we all as individual estimates of h, m, and b were
inferred using dentist [48]. Functions within dentist work by “denting” the likelihood surface,
trying sample points around the rim to approximate the confidence interval one would calcu-
late from a chi-square distribution with the same number of degrees of freedom (e.g., a differ-
ence in likelihood of 1.92 log likelihood units for a single parameter). In some ways, this is
similar to sampling a credibility interval in a Bayesian analysis, but without the possibility of
rescuing a ridge in likelihood space through the use of priors. This gives us a set of points
inside a region that has “good enough” likelihood. For well-behaved surfaces with a unimodal
peak, this will look approximately like an ellipse when any pair of parameters are plotted. To
be conservative, we take the minimum and maximum of each parameter inside the confidence
region (i.e., the highest and lowest values for 4, m, and b) and use these to calculate the range
of possible values for the component contributions. For example, we compute the contribu-
tions of hyperbolic, linear, and constant components for 4,45, My0x bimax then do it again for
Rnax> Munax> Dmins then for Ry, My, bin, and so forth until we have tried all eight combina-
tions at a given time point. The right-hand column of Fig 1 in the main text was created in this
way, where the vertical thickness of the bands is due to their range of uncertainty in their pro-
portions. We used dentist’s defaults for estimating the likelihood width to use as well as num-
ber of steps. For figures on the surfaces, we increased the number of steps to 10,000 and reran
the analyses to create denser plots that are easier to see. The results from the dentist for each
data set are shown in S1-S6 Figs.

Randomization procedure

As described in the main text, we used a randomization procedure to generate a new empirical
null to compare against our empirical fits. This involved first separating each empirical rate
into its numerator and denominator components. Some of the datasets included information
on the numerator (e.g., difference in log body size for datasets whose rates are measured in
darwins) and the denominator (e.g., time separating the pair of values being compared), while
others included only rate and time. For the latter, we imputed the numerator by multiplying
the rate by time. We then shuffled the numerators at random across a given empirical data set,
and then divided them by the unshuffled times to obtain a new set of rates and times. This was
repeated 100 times for each dataset.

Rates derived solely from phylogenetic trees, such as those in the Henao Diaz et al. [3] data-
set and our pure birth simulations, present a unique challenge for our randomization
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procedure. Typically, rates are assessed across the entire tree, which reflects the total time span
of all branch lengths. However, the time indicated on the x-axis typically represents the age of
the tree, which, although related [57], are far from perfectly correlated. Utilizing the age of the
tree to calculate the numerator would significantly underestimate the rate. In such cases, we
opted to use the total branch length of the tree to calculate both the numerator and the denom-
inator when recalculating the rate, while still employing the tree’s age for the x-axis and model
fitting. We do note that for the Yule simulation dataset, we did re-run all analyses using total
tree height as opposed to clade age and did not find any substantive and qualitative differences
from the results presented in the main text (S7 Fig).

Comparing empirical and randomized data sets

We commonly use statistical approaches like bootstrapping, jackknifing, or randomizations to
estimate parameters from resampled data as a means of testing for robustness. Here, we took
an additional step by evaluating the predictive accuracy of these parameters derived from
resampled data on the original empirical data. The first step is assessing how well the best
model fitted from the empirical data predicts the empirical rates. This is done by calculating
the coefficient of determination (R”) between the empirical rates and predictions from the fit-
ted model (using log rates for the calculation, with the exception of the pure birth simulation
where we used loglp given the presence of rates of zero). In Fig 2, this is OO, the comparison
of the empirical original (O) data fit to the original (O) parameters. We also compared the fit
of the empirical original data to predictions from the randomized data (OR). This allowed us
to see how much the random data “null” predicts the original data. It is possible that, even if
the original data were pure noise, the fit would still be worse when using a different random-
ized dataset since it was not tuned to the focal dataset. To check this, we also computed the R
between a randomized dataset and the fitted values from a different randomized dataset (the
RR column). Our expectation was that if the reshuffled data substantially differed from the
empirical data, the fitted values from the reshuffled data would explain little, if any, of the vari-
ation in the empirical rate. By contrast, if the empirical pattern is largely noise, as we suspected,
there will be little difference between the datasets.

We also sought to highlight any significant differences between the original data to original
fit (OO) to original data to randomized fit (OR), and the OR fit to the randomized data with
different randomized data fit (RR). One issue with this is differences in sample sizes. With OO,
for a given dataset and model, there is only one calculation of R% with OR, if we have 100 ran-
domizations there are 100 values for R%; with RR, since we do not fit the same randomized
dataset to itself, there are (100-1)*100 = 9,900 comparisons. So if comparing OO with OR, we
would be comparing 1 value with 100 to see if they come from the same distribution; when
comparing OR to RR, we would be comparing 100 values with 9,900. Using a standard ¢-test
or Wilcoxon rank-sum test we would expect less power to detect difference in the OO-OR
comparison (1 vs 100) than in OR-RR (100 vs 9,900). This makes it more likely that we would
find no significant difference between the OO and OR distributions but would find one
between OR and RR distributions. This relative lack of power would artificially support our
hypothesis that there is no difference between empirical and random data. To avoid this risk,
we used percentiles to compute the p-value for the OO-OR comparison, with the p-value
equaling 2*max(percentile, 1-percentile), where the percentile is where the OO value is relative
to the distribution of OR values. In order to have a comparable value for OR-RR comparison,
we took a single R? value from the set of RR, computed its percentile given the values from OR,
converted this to a p-value as for the OO-OR comparison so sample sizes for the OO-OR and
OR-RR comparisons were equal. For the OR-RR comparisons we repeated this for 1,000
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random draws from the RR distribution to reduce variance in the p-value from choosing a sin-
gle representative. The average of these was taken as the p-value for the OR-RR comparison.

We also stress the importance of distinguishing biological significance from statistical sig-
nificance, something long emphasized in the literature [58]. In the context of our work, a p-
value is the probability of two distributions being exactly equal. For example, in the Uyeda
et al. [17] dataset, it is clear from Fig 1 in the main text that while the empirical dataset is
largely consistent with a hyperbolic distribution, the few points of maximum age are more
consistent with a linear distribution. This is reflected in Fig 2 in the main text, where the fit of
the empirical data to predictions from randomized data are slightly worse than fit to empirical
data predictions. Due to the large size of the dataset, there is little variance in the former, so the
latter is outside the observed distribution and thus is quite significantly different. Biologically,
though, an R? of 86.9% using the empirical data is not substantially better than an R* of 85.6%
using randomized data. It is heartening that on a huge dataset the pattern is not identical to
random, but this reflects the rates nearer the maximum age being largely driven by the linear
component (see Fig 1 main text).

As a visual aid, we have also made an animated gif comparing the original and randomized
datasets. Given issues with drawing rates of zero for the pure birth simulation, we arbitrarily
assigned those rates to be 10% of the minimum value of the nonzero rates for ease in plotting.
This is available in our supplemental documents (10.5281/zenodo.13372718).

Deriving an unbiased estimator for the Yule birth rate

Prior to the development of our least-squares approach described above, we first simulated
trees under a pure birth (Yule) process to explore potential artifacts or confounding behaviors
that might lead to rates exponentially increasing towards the present when the generating rate
is set to be constant through time. We generated a vector comprising 1000 clade ages, uni-
formly sampled in log space along a line ranging from 1 Myr to 50 Myr. We then simulated a
tree at each of these ages with a known birth rate of A = 0.10 births Myr™". The simulation
began with two lineages and terminated once the tree reached the specified age. Estimates of
the birth rate were obtained analytically using the MLE estimator of the birth rate, A, as derived
in [59],

n—2
> X

where denominator represents the sum of the edge lengths, x;, in a tree. We then plotted all

j,:

(8)

1000 rates against time and fit a loess curve to assess the trend through time.

One immediate observation was the impact of zero rates—i.e., trees starting at n = 2, but
which fail to bifurcate after time, t. In an empirical context, such estimates are almost always
either discarded (i.e., censored) or not included due to the fact such clades are inherently unin-
teresting (evolutionary “minivans” [60]). However, not including these zero rates produces an
ascertainment bias where the higher rates nearer the present, which are a result of trees going
on a run of speciation events early, are not properly counterbalanced by the higher instances
of zero rate trees over shorter time scales. As a result, the mean shifts up where the no change
results are more frequent, which we suspect explains the exponentially increasing birth rate
estimates towards the present in our Yule simulations (S8 Fig).

Indeed, when zero rate trees are included, the exponential increase disappears entirely, but
instead with the overall rate estimates showing a downward bias towards the present. In other
words, when examining birth rates across time, as we do here, after correcting for ascertain-
ment bias (e.g., only including trees >3 taxa) by including the zero rate trees the trend shows
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an opposite trend of rates slightly decreasing towards the present (S8 Fig). A regression line on
the loglp transformed data showed a significant positive slope (slope = 0.013), with clade age
still accounting for over 6% of the variation. Again, this is due to the higher frequency of trees
that failed to speciate over shorter time intervals. When these trees are included, they effec-
tively drive the regression line down.

The remaining downward bias suggests that the Yule birth rate, /., is a biased estimator of 4,
which is not unusual for likelihood-based estimators. Here we quantify the remaining bias by
relying heavily on the formulas from Steel and Mooers [57]. A key insight from [57] was that
the expected average edge length in a tree grown under a Yule process is actually 5., as opposed
to ; that might follow from the assumption of exponentially distributed wait times before any
given lineage splits on a Yule tree. This is because each speciation event contributes to the aver-
age edge length, and each event creates two lineages, leading to the factor of 1/2 in the expres-
sion. For comprehensive mathematical proofs under various conditions (i.e., conditioning) we
refer the reader to [57].

We use the expected average edge length, 2

290

to express the expected value of the MLE esti-
mator of 4 as,

£(3) -] g

where the total length is defined as the expected average length ;; multiplied by the 2n-2 edges.
This expression simplifies to,

p(2) =22 (10)

n—1

which we then use to derive the bias of the MLE estimate of / by subtracting A from E(i)

Bias(?l) :E(Z) I k) B B (11)

n—1 n—1

The expected value is indeed less than the true value and therefore provides an underesti-
mate of A. To correct for this, we can multiply ) by a “correction” multiplier of - that con-
verges to 1 as n increases.

Note that when # is small, and zero rates are not included, this correction will amplify
higher rates, potentially exacerbating the trend of exponentially increasing rates toward the
present. However, when zero rates are included, the rates show a remarkably constant trend
through time (S8 Fig). A regression line on the loglp transformed data showed a slope that is
essentially zero (slope = 0.005), with time explaining less than <1% of the variation in the
birth rates (R* = 0.004). Thus, throughout the main text, we exclusively focus on estimates of

i through time.

Yule sensitivity to excluding zero rates

As mentioned above, most diversification studies and simulations typically exclude zero rates
from their analyses, which can introduce bias. Excluding zero rates fails to properly balance
higher rates nearer the present with the higher instances of zero-rate trees over shorter time
scales (see S7 Fig). For our least-squares model, removing zero rates from our Yule simulation
dataset necessarily shifted the signal towards the hyperbolic component (S7 Fig). We were con-
cerned that if our randomization procedure incorrectly attributed exponentially increasing
rates towards the present to errors when there were none, it would also raise questions about
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the empirical results, which also omitted zero rates. To test this, we reran all analyses on the
Yule simulation dataset with the zero rates excluded. As expected, the strongest signal nearest
the present was for the hyperbolic component (S7 Fig). In this case, the randomization creates
a pattern very different from the hyperbola as a consequence of noise.

Within and among tree rate bias

One implication of our study is that errors in measuring evolutionary changes not only greatly
affect rate estimation overall, but also any comparative test that examines rate shifts within a
single tree. For instance, consider a scenario where we want to compare evolutionary rates
between two sister clades that differ in age. Any inaccuracies in branch lengths or character
state assignments within the tree could lead to the erroneous inference that the younger clade
has a higher rate, simply due to less overall time to mitigate the effects of errors.

To demonstrate this, we conducted simulations of character state transitions and estimated
transition rates with and without error. We ran 1000 simulations each on two types of
64-taxon trees that represented extremes in tree balance: pectinate (i.e., “caterpillar” trees) and
perfectly balanced trees, where diversity is evenly distributed between sister clades. The age of
each tree was varied by scaling clade age using values from a vector of 1,000 ages drawn from a
uniform distribution, ranging from log(5 Myr) to log(20 Myr). We used a simple transition
model that assumed equal transition rates between states 0 and 1, and we chose generating
rates of 0.01 transitions Myr™' for pectinate and 0.05 transitions Myr ' for balanced to ensure
that a large number of invariant or saturated data sets were not produced across our age range.
Finally, we estimated the transition rates in the R package corHMM [61] on the resulting data
sets with and without error, with error being introduced by choosing six taxa at random and
changing their true state to the opposite and incorrect one.

The results of these simulations are shown in 59 and S10 Figs. First, in the absence of error
the estimated transitions rates are, on average, constant across time and are centered on the
generating value. However, when we introduce error, the rates are significant and negatively
correlated with time, which is consistent with findings presented in the main text. Importantly,
if we were to compare the rates between a clade that is say 5-million-years-old that is sister to a
clade of say million-years-old, rates be higher in the younger clade simply as a byproduct of
errors. Particularly intriguing is the observation that pectinate trees tend to mitigate error
impacts more effectively than balanced trees, irrespective of the generating rate (not depicted).
Plotting results based on total time (i.e., the sum of all branch lengths) reveals a notable yet
intuitive trend-namely, that a young pectinate tree contains significantly more time overall
than a balanced tree of the same size. Thus, this underscores the challenges in accurately esti-
mating rates within and among trees that contain errors.

Other sources of bias

Note that the biases arising from error are unlikely to be the only biases playing a role in rate
estimation. As we have written elsewhere [60], there is a likely substantial effect of human
selection biases. Scientists study Daphnia over a summer because the rate is high enough that
they can expect to find a pattern, ignoring all the other groups with multiple generations over
that period but less evidence for size change. Scientists study dinosaur size differences over 98
million years because their overall similarity is high enough that a comparison seems reason-
able; other groups that have changed enough over such a long span of time that they are no
longer considered comparable “things” are ignored. Within groups, we focus on the ones
where traits are variable: no one studies gain or loss of having skulls in mammals, nor gain or
loss of woodiness in oaks, or gain or loss of powered flight in cnidarians, instead focusing on
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the groups that have elevated enough rates to be practical to study. There are also biases about
sizes of groups to study and the way we identify groups, taking the tens of millions of clades on
the tree of life and only choosing to assign names to some of them, often seemingly based on
key characters arising on the branch leading to a group. We choose to study “X-idae” because
that clade received the family name, rather than one node rootward or tipward. The remark-
able thing about our study is that while those biases no doubt play a role, the fact that just ran-
domization creates a nearly identical pattern to the actual data suggests that error alone has a
dramatic effect all on its own.

Evaluating fit to simulated distributions

To assess how well the new method in the hyperr8 package performs, we generated data under
a variety of scenarios. The first was a constant rate of 0.4 changes per time unit (which went
from 0.01 to 50-time units). The second was a rate that started at 0.6 changes per time unit and
increased with a slope of 0.01 per time unit. The third was a rate that started at 1 change per
time unit and decreased with a slope of -0.01 per time unit. The fourth was a sine wave with a
period of 26-time units. This is something that our method should perform poorly at, as such
periodicity is not a component of the model (this model is inspired by [62]). For added real-
ism, we added error through using times with noise (standard deviation of 10% of the mean).
Ten replicate datasets of 500 and 5000 data points were simulated by taking the expected rates,
multiplied them by time to get the numerator, and then sampled from a normal distribution
with sd of 0.000001, 0.01, 0.1, and 1 and mean at the predicted numerator, then divided by
time. Some of this variation seems quite large, but it spans the empirical data. For example, the
Uyeda et al. [17] dataset had 79 time points where the inferred rate at that time point had a
coefficient of variation (ratio of standard deviation to mean) greater than 1. Results are shown
in S11 and S12 Figs.

Caveats

This study’s outcomes represent a conflict of interest for us, as scientists whose careers are
based on extensive work developing new ways to estimate rates of evolution in a variety of con-
texts [61, 63-65]. Rates are crucial for understanding biology, but their usefulness is dimin-
ished, at least in the short term, by inherent time-dependence primarily caused by noise.
Although we aimed for objectivity in interpreting our results, we may have inadvertently
downplayed the impact of the statistical artifacts we uncovered.

There were also analysis choices that could affect communication of results. For example,
we found that the parameter estimates from some of the empirical data sets were slightly out-
side the distributions of parameter estimates from the randomizations. This could be spun to
demonstrate how significantly different the results are, but in practice the differences have little
impact (as shown by the similarity in the R results).

While we did not set a minimum or maximum dataset size, we also did not sample every
published comparison of rates versus time. Instead, we limited our focus to the datasets that
have been given attention recently and span a variety of rates ranging from molecules to extant
species and trees to fossils [7]. Finally, we developed a robust optimization procedure into the
hyperr8s package, starting with multiple starting points and using algorithms in nloptr and
dentist to explore parameter space. However, no algorithm guarantees success, and incorrect
estimates could result in poorer fits but unlikely to produce the hyperbolic patterns we discov-
ered here.

Finally, one issue with the original datasets is non-independence of the data points. This
includes the standard phylogenetic non-independence because of shared ancestry [21], but
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also stems from the way some of the comparisons were calculated. For example, Uyeda et al.
[17] compiled information from dozens of studies, leading to over 6,031 comparisons, but
there are only 1,684 distinct samples used. To ensure comparability with earlier results, we did
not correct for either of these issues.

Supporting information

S1 Fig. Overall uncertainty in the individual estimates of h, m, and b for the Yule simula-
tion dataset. The top row displays univariate confidence regions for each parameter fitted to
the Yule simulation dataset. The best model, denoted as hmb, allowed all parameters to vary
freely. Sampled parameter values are represented by dots, with gray dots indicating values out-
side the confidence region and black dots inside. The blue line indicates the boundary between
these points. This representation offers a flattened view of the multidimensional analysis;
within the horizontal range of black points, some gray points may exist where values for other
parameters lead to poor likelihoods. The red circle marks the maximum likelihood estimate.
The second row presents bivariate plots, with colors indicating confidence regions as described
above. In an effective analysis, the black region in these plots should form an ellipsoid shape,
surrounded by gray. To obtain a conservative estimate from the points, such as those in the
rightmost column of Fig 1 in the main text, a rectangular prism was placed around the clusters
of black points. The range of values, such as the proportion of hyperbolic weight, was derived
from calculations at the vertices of this prism. The overall approach of dentist resembles Mar-
kov Chain Monte Carlo in Bayesian analysis but does not rely on prior distributions. Instead,
it focuses on establishing bounds rather than defining a region that comprises a certain pro-
portion of overall probability.

(TIF)

S2 Fig. Same dentist plot as in S1 Fig but showing parameter uncertainty for the Uyeda
et al. [17] dataset. The best model was hmb so all parameters were free to vary.
(TIF)

S3 Fig. Same dentist plot as in S1 Fig but showing parameter uncertainty for the Gingrich
[1] dataset. The best model was hmb so all parameters were free to vary.
(TIF)

S4 Fig. Same dentist plot as in S1 Fig but showing parameter uncertainty for the Henao
Diaz et al. [3] dataset. The best model was hm0 so the b parameter is fixed at zero.
(TIF)

S5 Fig. Same dentist plot as in S1 Fig but showing parameter uncertainty for the Ho et al.
[2]. The best model was hmb so all parameters were free to vary.
(TIF)

S6 Fig. Same dentist plot as in S1 Fig but showing parameter uncertainty for the Barnosky
et al. [24]. The best model was hmb so all parameters were free to vary.
(TIF)

S7 Fig. Fig 1, but with additional ways to handle the Yule simulation dataset presented in
the main text. The first column is for the original data; the second column is using the ran-
domization procedure. The horizontal axis is time; the vertical axis is rate (both on a log-
scale). Dots show individual rate estimates; the black line shows the regression from the best
fitting model and the dashed lines show the 95% confidence interval around that regression.
The thick line shows the relative impact of the magnitude of each component on the overall
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rate in the best fitting model: dark red is from the hyperbolic component (which would be lin-
ear on this log-log plot), goldenrod is from a constant rate component, and blue is from a lin-
ear component. Note that for the pure birth simulation there are some rates that are zero,
which are placed at negative infinity on a log scale; ggplot2 handles these by plotting them
along the x-axis. The third column shows the proportion of the rate from each component
over time, with the thickness of the bands representing the uncertainty in that proportion.
(TIF)

S8 Fig. Trends of the Yule birth rate through time under various conditions of the data
and the estimator. We simulated 1000 Yule trees that assumed a constant rate of 0.1 birth
My-1, (dotted black line) regardless of the time. When zero rate tree are excluded (i.e., cen-

sored), and we rely on the MLE of the birth rate, 4, we find that rates exponentially increase
towards the present (blue line, MLEcensored+biased). However, when we include the zero
rate trees the line dramatically shifts downwards, with rates nearer the present being lower
than in deeper time frames (purple line, MLEuncensored+biased). This suggests that the MLE
estimator of the birth is biased. When we apply a “correction” to account for the bias, we see
that the rates are indeed constant through time (yellow line, MLEuncensored+unbiased),
which is consistent with the simulation scenario.

(TIF)

S9 Fig. Log-linear plot of estimated transition rates with and without error as a function of
clade age obtained from simulated character state transitions. The figure displays the results
of state transition rates estimated at various time points, using data simulated on two types of
64-taxon trees representing extremes in tree balance: pectinate (resembling “caterpillar” trees)
and perfectly balanced trees, where diversity is evenly distributed between sister clades. The
true rates were assumed to be constant over time, indicated by the red dashed line. The first
column (a and c) illustrates rates with no errors in the datasets and constant rates over time,
depicted by the blue trend line. The second column (b and d) shows rate estimates from the
same data but with errors introduced by randomly selecting several taxa and changing their
true state to the incorrect one before re-estimating the rate. These errors result in an artificial
negative relationship between the transition rate and clade age.

(TTF)

$10 Fig. Log-linear plot of estimated transition rates with and without error as a function
of sum of all branch lengths obtained from simulated character state transitions. Note that
this figure is similar to S9 Fig but replaces clade age on the vertical axis with the total time rep-
resented by a given tree (i.e., the sum of all branch lengths). Note the difference in scale for
both axes. Pectinate trees are less affected by errors compared to balanced trees due to the
greater overall time represented in the former.

(TIF)

S11 Fig. Simulation results for different scenarios of the hmb model described in the main
text. Each dot represents a simulated comparison. Within each subplot, the x-axis represents
time and the y axis empirical rate, both on a log scale. The red line represents the true rate at
that time under the model, the other solid lines the reconstructed rates under the best-fitting
hmb model for each replicate dataset. The dashed line shows a linear fit to the points. The sub-
graphs are arranged in columns by generating models 1, 2, 3, and 4 and by dataset sizes of 500
or 5000 points and in rows by the standard deviation used in the simulation. Model 1 is a con-
stant rate; models 2 and 3 are increasing and decreasing rates with increased time, respectively;
model 4 is a sine wave with a periodicity of 26 million years. Note that with low measurement
error, the clouds of points resemble the generating model (red line) but with increasing
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amounts of noise the clouds begin to resemble the points found in the empirical datasets.
(TIF)

S12 Fig. This shows multiple simulations and is arranged in the same way as S11 Fig. Each
purple or green line represents the hmb model fit for the generating rate from a different repli-
cate; the true generating rate is in red. Note that the axes in this plot are not log transformed.
(TIF)

S13 Fig. Plot arranged as in S12 Fig but showing the estimate of how much of the empirical
rate stemmed from the hyperbolic process (equivalent to measurement error) as solid pur-
ple or green lines versus the median across the simulations (red line). The match is not per-
fect, but hmb generally performs well despite in some cases (like model 4) not being able to
match the complexity of the generating model.

(TIF)

S1 Table. Summary of the results obtained from fitting a least-squares model to each
empirical dataset and various iterations of our Yule simulated datasets. Rows highlighted
in bold indicate the models with the lowest AIC overall from the seven models fitted to each
dataset. The values in parentheses beneath each of the model parameters denote the two ends
of the 95% confidence interval obtained from our uncertainty analyses.

(XLSX)

S1 Movie. An animated gif comparing the original empirical data and five different ran-
domizations of the numerator with respect to the denominator.
(GIF)
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