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Abstract: Operator theoretic methods in dynamical system have been dominated by the use of
Koopman operators and their continuous time counterparts, such as Koopman Generators and
Liouville Operators. The advantage gained from their use primarily stems from the ability
to extract subspaces and eigenfunctions within a space of observables that are invariant
with respect to the Koopman operator over that space. When this occurs, a dynamic mode
decomposition of the systems state provides a linear model for the dynamical system.

Not all Koopman operators have eigenfunctions that may be exploited in this manner. However,
the framework can still be leveraged for approximations using other operators. In this setting,
we present a different operator for the study of dynamical systems, the weighted composition
operator. These operators are compact for a wide range of dynamics and spaces, and through
their interactions with occupation kernels and vector valued kernels, they admit an estimation
of the underlying dynamics.

This manuscript presents a new algorithm for the data driven study of dynamical systems from
data, and also provides two numerical experiments where convergence is achieved as a proof of
concept.
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1. INTRODUCTION

Operator theoretic methods in learning dynamical systems
has been dominated by the use of the Koopman opera-
tor since Mezic, Rowley, and others made the connection
between Dynamic Mode Decompositions (introduced in
Schmid (2010)) and the Koopman operator (cf. Budisié
et al. (2012) and Kevrekidis et al. (2016)). Rosenfeld
et al. (2019a) developed an approach to learning dynamical
systems using Koopman generators, or more generally Li-
ouville operators, which leverages a strong relationship be-
tween observables representing trajectories corresponding
to an unknown dynamical system and Liouville operators
corresponding to that system. In principle, this relation-
ship follows from the classical chain rule and the funda-
mental theorem of calculus combined with notions from
reproducing kernel Hilbert spaces (RKHSs), and through
this combination of relationships, Rosenfeld et al. (2019a)
was able to achieve a point-wise convergent approximation
of the flow field over a designated compact set, given a rich
enough collection of data Rosenfeld et al. (2019b).

The present manuscript aims to achieve point-wise con-
vergence to the flow field of an unknown dynamical sys-
tem from observed trajectory data through the use of a

different operator, the weighted composition operator (cf.
Rosenfeld et al. (2022)). This operator uses a collection
of test functions to leverage integration by parts to study
unknown dynamical systems, analogizing the weak SINDy
algorithm (cf. Messenger and Bortz (2021b), Messenger
and Bortz (2021a)). As has been demonstrated, a specific
class of weightings provides substantial robustness with
regard to noise corrupted data in the weak SINDy algo-
rithm (cf. Messenger and Bortz (2022)). This operator will
be approximated through the use of finite rank operators
that are constructed from the observed data and functional
relationships between the weighted composition operators
and occupation kernels.

A weighted composition operator is given formally as
Wieg = (g o ¢) - f. The principle advantage of using
weighted composition operators is that they have been
well studied over a variety of function spaces, including
RKHSs, and for a large collection of weighted composition
operators, the relationships required on f and ¢ that gives
rise to a compact weighted composition operator have been
established (Ueki, 2007). For example, if ¢(x) = ax with
la| < 1, and f a polynomial then Wy, is compact over
the Fock space and the Hardy space (Ueki, 2007). This



suggests that the operator W 4 is approximable by finite
rank operators for a rich collection of multiplication sym-
bols, f, which is desirable for the estimation of unknown
continuous f.

This manuscript will study a generalization of weighted
composition operators for the estimation of an unknown
dynamical system to that corresponding to vector valued
RHKSs (cf. Paulsen and Raghupathi (2016)). Section 2
will give a brief review of vector valued RHKSs and oc-
cupation kernels. Section 3 will introduce a new weighted
composition operator that corresponds with vector valued
symbols, and it will present relationships between this new
operator and a variety of observables in a RKHSs. Section
4 will present a construction of a finite rank approximation
of weighted composition operators from observed trajec-
tory data, which will leveraged ideas from Messenger and
Bortz (2021b). Finally, Section 5 will perform numerical
experiments and compare the results with that of Liouville
operators, which will be discussed in Section 6.

2. VECTOR VALUED RKHS AND OCCUPATION
KERNELS

Vector valued RKHSs are Hilbert spaces of functions that
map a domain to a Hilbert space, and were introduced
to the learning community through Micchelli and Pontil
(2005). Note that in this manuscript, we are only consid-
ering real valued function spaces.

Definition 1. Let X be a set and Y be a Hilbert space. Let
H be a Hilbert space of functions that map X into ). H is
called a vector valued RKHS if for every z € X and v € Y
the mapping g — (g(z),v)y is a bounded linear functional
over H.

The Reisz representation theorem implies that for each
x € X and v € Y there is a function K, , € H for which
(9(z),v)y = (g, K3 ) u. Note that the mapping v — K, ,
is a bounded linear map from ) to H, where boundedness
follows from the closed graph theorem. Hence, for each
r € X we can define an operator K, : V — H as
K,v = K,,. The adjoint of the operator K, is the
evaluation map, where K*g = g(z) for all g € H, which
follows from the definition of K, , with regards to the
inner products.

Definition 2. The operator valued kernel function associ-
ated with a vector valued RKHS is given as K(z,y) =
K>K, and is an operator from ) to itself for each pair
z,y € X.

Ezample 3. In the case where ) = R"™, K(x,y) is a square
matrix of size n.

Ezample 4. Let H be a scalar valued RKHS over a set
X with kernel function k(z,y). Let H = H™ for n € N.
Take g = (g1 -+~ gn)T and h = (hy --- hn)T be two
elements in H, and define the inner product between
them as (g,h)n = >.7_,(gj, hj) - The operator valued
kernel function corresponding to H is given as K (z,y) =
k(z,y)I, where I, is the n X n identity matrix.

A core component of the following work is the concept
of an occupation kernel. Occupation kernels embed a
continuous signal into a RKHS. Occupation kernels first
appeared in the literature via Rosenfeld et al. (2019a) and

are a generalization of occupation measures (see Lasserre
et al. (2008)) to RKHSs . Vector valued RKHSs first
appeared in the literature in Micchelli and Pontil (2005),
and we define them below.

Definition 5. Let 6 : [0,T] — R™ be a bounded measurable
signal. Let H be a vector valued RKHS from a R™ to R™.
The occupation kernel I'g,, € H is the representative of

the bounded linear functional g — <f0Tg(9(t))dt, 1/>]R =
<ga FG,V>H'

Just as with the kernel functions, the mapping v — I'g ,, is
a bounded linear mapping from R™ to H. Hence, we may
define an operator I'g : R" — H as I'gv =T'g ,,.

Ezample 6. If H is defined as in 1 with Y = R" and X =
R™, then I'y = f‘eln, where f‘g is the occupation kernel for
the scalar valued RKHS, and T'p(z) = fOT k(x,0(t))dt.

3. WEIGHTED COMPOSITION OPERATORS
CORRESPONDING TO VECTOR VALUED
SYMBOLS

This section gives a generalization of weighted composition
operators that correspond to vector valued symbols. This
definition is also similar to that of the multiplication
operator defined in Wendland (2004) for the study of
nonlinear control affine systems. One significant different
in the definition given here is that operator is mapping
a space of vector valued functions of a single scalar
value to scalar valued functions of several variables, which
will be important later when relationships between these
weighted composition operators and occupation kernels
are established.

Definition 7. Let H be a vector valued RKHS consisting
of functions mapping R to a Hilbert space ) and let H
be a scalar valued RKHS over R x R". Let f : R" —
Y and ¢ : R — R. Define the weighted composition
operator, Wy : D(Wy4) — H, with symbols f and ¢
as Wyrqg(t,z) = (90 ¢(t), f(x))y for all z € R where

geDWyy)={g9€ H:(g0¢(),f(-))y € H}.

Note that Wy 4 is a closed operator, given this particular
domain D(Wy,). When Wy, is densely defined, this
means that the adjoint is also densely defined and closed.
In this setting, we can determine several functions in H in
the domain of W;,¢'

Proposition 8. In the setting of Definition 7 and setting
K as the operator valued kernel of H and k as the scalar
valued kernel of H, then l;:m € D(W;ﬁ) and W}“@I;:(t’x) =
Ky f(z).

Proposition 9. In the setting of Definition 7 and setting
X =R Y =R" 0 : [0,7] — R"™ is a bounded
measurable signal, then T'y € D(W; 4) and W}“7¢I~’9(t) =

SR, (7)) £(0(7))dr for all z € R,

Examples of this operator being compact can be quickly
determined when H = H™ for appropriate H, since the

norm of functions g = (g1 --- gn)T € H are given as

lgllm = /225 ||9]||% Hence, if f is a vector valued func-

tion where each component corresponds to a polynomial,



then Wy 4 is a compact operator when ¢(z) = ax with
la] < 1 and H is the Fock space.

Henceforth, we will assume Wy 4 is a compact operator
over a given RKHS, and we will take ¢(t) = at. In this
context, we will write simply Wy 4 = Wy, as an abuse of
notation.

4. LEARNING NONLINEAR DYNAMICS VIA
WEIGHTED COMPOSITION OPERATORS

In this section we describe a methodology similar to that of
Dynamic Mode Decomposition as presented in Rosenfeld
et al. (2022) to attain an approximation of the dynamics
of an unknown dynamical system over a compact subset
of R™ from observed trajectory data.

Suppose that {v; : [0,7;] — R"}, is a collection of ob-
served trajectories corresponding to a dynamical system,
4 = f(7v). Our objective is to leverage these trajectories

to gain an estimation of f = (f1 --- fn)T. We will further
assume that, given a vector valued RKHS, H, consisting
of continuously differentiable functions from R to R™ and
a scalar valued space of continuously differentiable func-
tions, H, over R x R™, the weighted composition operator,
Wi.a, is compact for |a| < 1. We will further assume
that the constant function gy(t) = e, (the standard basis
element of R™) is in H.

One of the key ideas here is that Wy ,g,(0,z) =
(eg, f(z))rn fe(z) for £ = 1,2,...,n. Hence, if a
sufficiently good estimate, nya, of Wy is determined,
then Wy ag0(0,2) ~ Wyage(0,2) = fe(z), and thus, an
estimate of fy is determined for each ¢. More concretely
|Wf,ag€(0>x) - f(.%‘)| = |Wf,ag€(0ax) - Wﬁagé(oa'r” <
Wea — Weallllgell 2/ E((0,2), (0,2)). Since k is contin-
uous, the term +/k((0,),(0,z)) may be bounded uni-
formly over a compact set and finite time, and ||g¢||z is
a fixed quantity. Thus, the quality of the approximation
is controlled by how well Wﬁa approximates Wy ,. The
compactness here is important, since our Wf’a will be finite
rank operators arising from our observed trajectories.

The Dynamic Mode Decomposition with respect weighted
composition operators obtains a finite rank approximation
of the weighted composition operator, and then the func-
tion f is then decomposed with respect to the modes de-
termined from projections onto the right singular vectors
of the resultant finite rank linear mapping.

The finite rank approximation of Wy, is determined first
from the action of its adjoint on the occupation kernels in
the scalar valued space, written as 1:‘(7.,9(7)) for a bounded
measurable signal 6 : [0,7] — R™. For clarity, for each

h:RXxR® =R in H, (,Tiroemn) g = Joy h(r,0(r))dr.

Proposition 10. Suppose that Wy 4 : D(Wse) — H is a
densely defined weighted composition operator from a vec-
tor valued RKHS, H, consisting of continuously differen-
tiable functions mapping R to R™ and suppose that H is a
scalar valued RKHS over R x R" consisting of continuously
differentiable functions Let v [O T ] — R” such that ¥ =

f(7), then Wfa (ry(r ( fo t,o(T))f(v(r))dr € H

Proof. Consider the functional

g”/ ())>R"dt=/0 (g(p(1)),7(t))rndt
(T)),’Y(T»JR” —(9(¢(0)),7(0))n

T
- / (6 (S0 (£), 7 (1) i, (1)

0
This mapping is bounded by similar arguments to those
found in Rosenfeld et al. (2019b). Consequently, T, €
D(W;,) and the evaluation of Wy Iy at ¢ is reahzed
through the inner product with Ky, for t € R and v € Y.

The finite rank approximation, VAVf,a, is determined by
selecting a finite dimensional subspace, ay, of H and
another, 8, in H. The selection of ay plays a similar
role to the selection of test functions in Messenger and
Bortz (2021b). Indeed, any convenient observable in the
Hilbert space H may be selected for this role with the
caveat that the inner product with each of these functions
is computable. Here o = span{Ky, ¢, Kty e+ King,en}
for t; <ty < ... < ty, and B = span{l',,..., Ty, },
and Wyay = PsWyaPa. The sclection of B is more
constrained, where we aim to utilize integration by parts
inside the integral provided by the occupation kernels.
Here we select a diagonal kernel operator for H, since this
will result in block diagonal matrices, each corresponding
to a different dimension. This will reduce the required
storage for the overall approximation considerably and
allow the treatment the approximation of f to occur one
dimension at a time. The matrix representation of Wﬁmg
over the finite dimensional subspace « is given as

(Wrall, =

T T Ty Ty () i

CoumTea - Cone Do) a
X

<Wf,aKt1,e(7f"yl(T)>]f] <Wf,aKtA{,€g)f‘71(T)>j—:[

<Wf,aKt1,€eaf : <Wf,aKtM,€zvf7M(T)>H

Note that

(7))

(L D) i =

/ / K ((t,7i(t)), (1,7, (7)))drdt,

where K is the user selected kernel of H , and the double
integral can be estimated using numerical methods. The

terms (Wy.a. 0K, eo Doy ()it = (WraKeeer Doy (o)) i
since Pj is self adjoint and acts as the identity on 3, and
P, also acts as the identity on «. Moreover,

WraKt e Dy ()it =
(K, e (aTy), i (T))) me — (Kt, e, (a0),7;(0))rn

T 4
- [ Fean) g
= k(ti, aTy)(ee,v;(Tj))rn — k(ti,0){es,7;(0))rn

_/O ’ %k(ti,ar) (ee, 75 (T))gn dtdr. (2)



The estimation of the unknown dynamics f occurs one

dimension at a time through the application of Wﬁa,g
to the constant function, gs(z) = e;. To realize this
through the matrix representation given above, gy must
be projected onto . This projection may be expressed as
g = sz\il w; Ky, o, where the weights, w = (wy -+ wM)T
are determined through the application of the inverse of
Gram matrix,

<Kt1,ez7Kt1,ez>H <Kt1,€wKtM,€e>H
Ga = )
<KtM,6z7 Kt17ez>H e <KtM7€Z7 KtM,€e>H
to the vector ({ge, Kt e,)m -+ (gg,KtM’ee)H)T, where
(90, Kt, 0001 = (€0, €0)rndt = 1.

Hence, the estimation of f; is given as
Jo@) = (Crma(r) (82) -+ Do) (8,2)) W ), W

for any t.
If p10,..., 9 are right singular functions for Wﬁa)g with
corresponding singular values, o1¢...,0n¢, and left sin-

gular vectors 91 ¢, ...,%um,¢, then the estimation of f may

be represented as f(z) = (Zf\; (fe, pie) O 0i0(t, x))e=1

5. NUMERICAL EXPERIMENTS

In this section we present two numerical experiments as
a proof of concept. One for a particular instance of the
Duffing oscillator and another for an instance of the Lotka-
Voltera equation. For each experiment, we selected H as
the RKHS of functions from R to R? as a version of
the exponential dot product space (i.e. the real valued
Fock space), with the kernel function given as K(z,y) =
exp (,u:z:Ty) Iy with = 1/1000. The space H is the space
corresponding to k((t, ), (s,y)) = exp (u(t-s+zTy)),
which is also an exponential dot product kernel, and the
same p was used for both spaces and both experiments.
For the weighted composition operators, the parameter a
was selected as 0.9.

In each experiment, a lattice of initial conditions were
selected and from these initial conditions Runge-Kutta 4
was used with timestep 0.05 to generate synthetic trajec-
tory data. The occupation kernels and inner products were
computed using Simpson’s rule.

5.1 Experiment 1: Duffing Oscillator

The Duffing oscillator for this experiment was selected
as & = = — x>. For simulations the system state was

augmented as z = (z ﬂ'c)T which results in the system

. zZ9
z = .
21—2?

The initial values used in generating the trajectories shown
in Figure 1 was selected from a square lattice of side
length 0.25 over [—1,1]%. Each trajectory was generated
with RK4, using a time step of 0.05, up to time 7" = 2.

From these trajectories and the given kernel functions, the
method of Section 4 was implemented. This resulted in

Fig. 1. Presented here are the trajectories that were lever-
aged for data in the approximation of the dynamics
for the Duffing Oscillator. The initial values for the
trajectories were selected from a square lattice over
[—1, 1] with side length 0.25.

Dimension 1 Approximation for the Duing Oscillator

Fig. 2. This figure presents the approximations of the
dynamics for the Duffing oscillator in Experiment 1.
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Fig. 3. This figure presents the point-wise errors produced
by the approximations of the dynamics for the Duffing
oscillator in Experiment 1.

the approximations of the first and second dimensions of
f displayed in Figure 2. The point-wise errors over [—1,1]2
are plotted in Figure 3.

5.2 Experiment 2: Lotka-Voltera Equation

The Lotka-Voltera equation used for the second experi-
ment was
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Fig. 4. Presented here are the trajectories that were
leveraged for data in the approximation of the dy-
namics for the Lotka-Voltera equations. The ini-
tial values for the trajectories were selected as
{(4,9)7T,(4,8)T,(8,4)T,(8,8)T}, and each trajectory
was segmented in to 6 smaller trajectories.

Dimension 1 Approximation for Lotka Voltera Example

Dimension 2 Approximation for Lotka Voltera Example.

Fig. 5. This figure presents the approximations of the
dynamics in Experiment 2.

de 1 1 dy 1 2

at — 2" 10" @ 10" Y
The initial values were {(4,4)7,(4,8)T,(8,4)T,(8,8)"},
resulting in four trajectories generated using RK4 from
time ¢t = 0 to T' = 15. Each of these four trajectories were
segmented into 6 smaller trajectories, resulting in a total
of 24 trajectories used in the method of Section 4, which
are displayed in Figure 4.

The approximations of the dynamics are given in Figure
5. The pointwise error in the approximation for each
dimension are given in Figure 6.

6. DISCUSSION
6.1 On convergence

Weighted composition operators are compact for a wide
range of dynamics over spaces of real analytic functions.
This follows from the same proof that was leveraged
for scaled Liouville operators in Rosenfeld et al. (2022).
If we also have a collection of vector valued kernels in
H and a complete set of occupation kernels in H, it
follows that the sequence of finite rank operators created
through the selection of one function at a time from
these complete collections will converge to the weighted
composition operator. Consequently, this means that the
resultant subsequence of approximations of the dynamics
will also converge pointwise (and uniformly over compact
sets) to the unknown dynamics.

Complete sets of kernels can be quickly obtained for
spaces of analytic functions of a single variable, since

Error for Second Dimension for Lotka Voltera Example

Fig. 6. This figure presents the point-wise errors produced
by the approximations of the dynamics in Experiment
2. The overall shape of both errors are very similar,
but not identical. This is because both dimensions
are given by very similar quadratic equations in two
variables. Significantly, the relative error in both cases
is small.

any sequence {t,,}°°_; with a limit point implies that
{Ktm,ez};ji,zﬂ is a complete set in H, and in general
the collection of all kernel functions is complete within
a RKHS. The completeness of the collection of all oc-
cupation kernels corresponding to a dynamical system
follows from that of regular kernels, since short segments of
occupation kernels approximate kernel functions centered
at the initial points in norm. These considerations align
with that found in Rosenfeld et al. (2022).

6.2 Similarities with weak-SINDy Methods

The method presented here can be seen as an opera-
tor theoretic manifestation of the weak-SINDy algorithm
Messenger and Bortz (2021b). In this algorithm, data
from trajectories, {v; : [0,7] — R"}M,  are combined
with test functions, ¢; : [0,7] — R", that are com-
pactly supported in (0,7"). The dynamics are then param-

eterized as f(x) = Z%:l 0m Y, (x), and the parameters
are determined through the relation — fOT @)y (t)dt =

Jo 0i®Fa(0)dt = Sl O [ 05(1) Y (v;()dt, and
since the left and right hand sides are computable with the
available data, the parameters {6,,}»_, may be estimated
using a regression procedure Messenger and Bortz (2021D).
The fundamental relation for the weak-SINDy manifests
through the use of integration by parts, and the boundary
terms disappear since ; is compactly supported.

In (2), the kernel functions in «y replace the test functions
in the weak-SINDy method. Since kernel functions aren’t
necessarily compactly supported, the boundary terms in
(2) persist. However, there are kernel functions that are
compactly supported, such as the Wendland radial basis



functions (cf. Wendland (2004)). Moreover, if compactly
supported is relaxed to vanishing at 0 and T, then any
kernel function can be adjusted to vanish at those points
by replacing the kernel function, K, with K (s,t) =t¢- (T —
t)K (s,t)s- (T —s), and thus the boundary terms disappear
for this kernel function.

6.3 Discussion of Numerical Experiments

The estimations presented in Section 4 represent a form
of scattered data approximation, where instead of point
samples, as in Rosenfeld et al. (2022), trajectories are used
as the central unit of data. Occupation kernels are centered
at each of the trajectories, and pointwise estimation near
a trajectory are better than estimations further away from
a trajectory. This localized estimation property is shared
with that of scattered data interpolation using kernel
functions. This also explains the similarity in shape of the
error plots in Figures 3 and 6.

6.4 Discussion of Dynamic Modes

Since each dimension carries with it different collection
of singular functions in the estimation of the dynamics,
a direct description of dynamics modes (which arise from
each dimension sharing the same collection of basis func-
tions) is difficult. However, the utilization of the singular
value decomposition of the finite rank operators provides
a collection of basis functions arising from the interaction
of the data with the weighted composition operator. The
exploration of the utilization of this basis will be explored
in future work.

7. CONCLUSION

This manuscript introduced weighted composition opera-
tors as a tool for the estimation of a nonlinear continuous
time dynamical system. The presented method utilizes
the methodology introduced in Rosenfeld et al. (2022) to
obtain an estimation of the weighted composition opera-
tor corresponding to an unknown dynamical system, and
subsequently the application of this approximation is itself
applied to the 1 function to obtain an approximation of the
unknown dynamics.

The method described in this manuscript generalizes ap-
proaches using Koopman and Liouville operators to a new
collection of operators, while simultaneously providing an
operator theoretic analog to weak-SINDy methods given
in Messenger and Bortz (2021b).
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