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Abstract: This paper presents a new technique for norm-convergent dynamic mode decom-
position of deterministic systems. The developed method utilizes recent results on singular
dynamic mode decomposition where it is shown that by appropriate selection of domain and
range Hilbert spaces, the Liouville operator (also known as the Koopman generator) can be
made to be compact. In this paper, it is shown that by selecting appropriate collections of
finite basis functions in the domain and the range, a novel finite-rank representation of the
Liouville operator may be obtained. It is also shown that the model resulting from dynamic
mode decomposition of the finite-rank representation is closely related to regularized regression
using the so-called occupation kernels as basis functions.
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1. INTRODUCTION

Dynamic mode decomposition (DMD) methods are data
analysis methods that aim to generate a finite-rank rep-
resentation of a transfer operator corresponding to a non-
linear dynamical system using time series measurements
(Kutz et al., 2016; Budisi¢ et al., 2012; Mezié¢, 2005;
Korda and Mezi¢, 2018). The convergence of the finite-
rank representations to the true transfer operator (the
Koopman operator) has been established in results such
as Korda and Mezié¢ (2018), but only with respect to the
strong operator topology (SOT). Convergence in SOT does
not guarantee the convergence of the spectrum (Pedersen,
2012), and therefore the corresponding dynamic mode
decomposition (DMD) algorithms, which rely on spectrum
of the operator, are not guaranteed to converge.

In this paper, the above limitations are addressed by
removing Koopman operators from the analysis in favor
of Liouville operators (known as Koopman generators in
special cases). These operators are shown to be compact
provided their domains and ranges are selected appropri-
ately. The result is a norm convergent finite-rank repre-
sentation which significantly improves upon the aforemen-
tioned SOT convergent results.

There have been several attempts to provide compact
operators for DMD. The approaches in Das et al. (2021)
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and Rosenfeld et al. (2022) find compact operators through
the multiplication of an auxiliary operator against Koop-
man and Liouville operators, respectively. However, the
resultant operators only approximately correspond to the
dynamics in question, and as such, the resulting DMD
methods, while useful, are heuristic.

The approach in this paper generates compact Liouville
operators that truly correspond to the given continuous-
time dynamics. Such operators were shown to exist for a
large class of nonlinear systems in Rosenfeld and Kamala-
purkar (2023), where norm-convergent finite-rank repre-
sentations were also derived via the adjoint of the oper-
ators. In this paper, we develop a finite-rank represen-
tation that approximates the Liouville operator directly,
rather than through its adjoint. The direct approximation
makes the resulting DMD algorithm numerically efficient
and conceptually easier. Interestingly, the resulting model
is equivalent to the occupation kernel regression (OKR)
model developed in Li and Rosenfeld (2020).

OKR is a generalization of kernel ridge regression Zhdanov
and Kalnishkan (2013) where the loss function is defined in
terms of inner products of components of the vector field
that models the dynamics of the system and trajectory-
dependent functions in a reproducing kernel Hilbert space
(RKHS) called occupation kernels that represent integra-
tion along the trajectory. A Representer theorem is used to
construct an approximation of the vector field as a linear
combination of occupation kernels. Since the DMD model
developed in this paper is seen to be identical to the OKR
model without regularization, convergence results derived
in this paper are also applicable to OKR, provided the
regularization parameter is set to zero. To facilitate the



discussion, the following section recalls a few important
characteristics of DMD methods and RKHSs.

2. REPRODUCING KERNEL HILBERT SPACES AND
DYNAMIC MODE DECOMPOSITION

An RKHS, H, over a compact set X, is a space of functions
from X to R such that the evaluation functional E, : H —
R, defined as E,g := g(x), is bounded for every z € X. By
the Riesz representation theorem (Roman, 2008, Theorem
13.32), for each x € X there exists a function K, € H such
that (f, K;)g = f(x) for all f € H. The function K, is
called the kernel function centered at x, and the function
K(z,y) := (Ky, K;) g is called the reproducing kernel of
H (Steinwart and Christmann, 2008, Chapter 4).

A symmetric function K : X x X — R is called a positive
semidefinite kernel if for every integer M > 0 and every
finite collection of points {x1,...,xp} C X, the Gram
matrix (K (z;,;))%_, is positive semidefinite. By the
Aronszajn-Moore theorem (Aronszajn, 1950), given any
positive semidefinite kernel K, there exists a unique RKHS
H such that K is the reproducing kernel of H.

The motivation in DMD is to compute an invariant sub-
space of a transfer operator Ay that models the evolution
of test functions along the trajectories of a dynamical
system @ = f(z). The transfer operator maps a test
function g to its time derivative Vg - f. The subspace is
typically constructed as the span of eigenfunctions of the
operator. While such transfer operators over RKHSs may
not admit point spectra, DMD methods aim to construct
a finite-rank representation of the transfer operator and to
leverage the spectrum of the approximating operator for
modeling.

The objective is to find functions for which

|[Apd(x) — Ap(x)| <€ 1)
for some A and some small positive € and all z within a
domain of interest. Since norm convergence in a RKHS
of continuous functions yields uniform convergence over
compact sets (Steinwart and Christmann, 2008; Wend-
land, 2004), it is sufficient to satisfy ||Arp — Ao||lg < e.
In turn, if a finite-rank approximation of Ay, call it Ay, is

close enough, it is sufficient to satisfy ||A; — A|| < ¢, and
the rest follows as

|Af¢(37)~_ Ap(z)| < C”Af(ii_ Aol
CllAsd — Apdlla < Cl|Ay — Aglla < Cé,

where C' is a positive constant that depends on the domain
of interest and the kernel function, and the function ¢ is
assumed to be normalized.

A convergent approximation of the spectrum of the trans-
fer operator using the spectrum of finite-rank operators
requires compactness and convergence in norm, which
motivates the following section.

3. COMPACT LIOUVILLE OPERATORS AND
OCCUPATION KERNELS

This section, included here for completeness, recalls the
results from Rosenfeld and Kamalapurkar (2023) pertain-
ing to the existence of compact Liouville operators, given

formally as Ayg(z) = Vg(x) f(x). Compactness is achieved
through the consideration of differing spaces for the do-
main and the range of the operator. We emphasize that
compact Liouville operators are not restricted to these par-
ticular pairs of functions spaces. This section only provides
examples demonstrating the existence of such operators,
thereby validating the approach in the sequel.

8.1 Liouville Operators on Real Bergmann-Fock Spaces

The exponential dot product kernel, with parameter u > 0,
is given as K(x,y) = exp (%) In the single variable
case, the native space for this kernel is the restriction
of the Bergmann-Fock space to real numbers, denoted
by Fﬁ (R). This space consists of the set of polynomials
of the form h(z) = Y 7, arz”, where the coefficients
satisfy S0 ag|® u¥k! < oo, and the norm is given by
||hHZ = 3% lax|® uFk!. Extension of this definition to
the multivariable case yields the space F2(R™) where

le|

ap

the collection of monomials, x = with multi-indices

a € N forms an orthonormal basis, where for « € N,
al =, ol |al =30 a;, and 2® = [, 2. In this
setting, differential operators from F? (R") to Fp, (R™)
can be shown to be compact provided ps < 1.

Proposition 1. (Rosenfeld and Kamalapurkar (2023)).

If pwo < p1, then the differential operators
827; : F2 (R") — F72,(R™), are compact for i =1,...,n.

Multiplication operators can be shown to be bounded
provided that their symbols are polynomial.

Proposition 2. (Rosenfeld and Kamalapurkar (2023)). If
to < p1, then for any polynomial function p : R* — R,
the multiplication operator M, : F7 (R") — FZ (R"),
defined as [M,h] (z) = p(x)h(x), is bounded.

Boundedness of Liouville operators with polynomial sym-
bols then follows trivially from the above two results.

Theorem 1. (Rosenfeld and Kamalapurkar (2023)).

If puo < pp and if f : R® — R" is a component-
wise polynomial function, then the Liouville operator
Aj : F7 (R") — F2 (R") defined as Asg = Vg - [ is a
compact operator.

3.2 Occupation Kernels and Liouville Operators

Let H be an RKHS over a compact set X € R™ consisting
of continuous functions and let K be the reproducing
kernel of H. Given a continuous signal v : [0,7] — X, the

linear functional g ~ fOT g(y(t))dt is bounded. Hence, by
the Riesz representation theorem (Roman, 2008, Theorem
13.32), there exists a function I',, € H such that (¢,I'y) g =

fOT g(y(t))dt for all ¢ € H. The function I'; is called
the occupation kernel corresponding to v in H. These
occupation kernels were first introduced in Rosenfeld et al.
(2019b, 2024).

Occupation kernels corresponding to trajectories of a dy-
namical system have a useful relationship with adjoints
of Liouville operators and the reproducing kernels of the
underlying RKHSs.



Proposition 3. (Rosenfeld et al. (2022)). If v: [0,T] — X
is a solution of & = f(z) for some locally Lipschitz con-
tinuous function f : X — R", then AT, = K(,v(T)) —
K(-,7(0).

Proposition 4. (Rosenfeld et al. (2019a)). Given any con-
tinuous function v : [0,7] — X, the occupation kernel
corresponding to v in H may be expressed as I'y(z) =

f K (z,v(t))dt. As a consequence given two functions
;0 10,T;] = X and v, : [0,T;] = X

(r,,.T, //M ) didr. (2)

4. FINITE-RANK REPRESENTATION OF THE
LIOUVILLE OPERATOR

This section provides a novel finite-rank representation
of the Liouville operator Ay and subsequently, a novel
approach to obtain the dynamic modes of the underly-
ing dynamical system. Let H; and H, be RKHSs with
reproducing kernels K, and K., respectively. The RKHS
H, is used as the domain of the Liouville operator and
the RKHS H, is used as the range. In what follows, finite
collections of vectors dM c H, and rM C H, are selected
to establish the needed finite-rank representation of the
Liouville operator.

Since the adjoint of A maps occupation kernels to kernel
differences (Proposition 3), the span of the collection of
kernel differences

A" = {Ka(,7(T3)) = Ka(,m(0) 12, C Ha o (3)
are selected to be the domain of Ay. The corresponding

M
Gram matrix is denoted by Ggm = ((dz, d; >Hd) . The
4,g=1
result of Ay operating on functions in span is projected

onto the span of the collection of occupation kernels
M — span {Fw}?; C H,. (4)
The corresponding Gram matrix is denoted by G,uv =

M
((ri, ) o, ) . A rank-M representation of the operator
ij=1

Ay is then given by P.mAyPym :
P.v and Pyum denote projection operators onto spanr
and spand™, respectively. Under the compactness as-
sumptions and given rich enough data so that the spans of
{d;}32, and {r;}$2, are dense in Hy and H,, respectively,
the sequence of finite-rank operators {P.nmAfPym }37_4
can be shown to converge, in the norm topology, to A¢. To
facilitate the proof of convergence, we recall the following
result from Rosenfeld et al. (2022).

Proposition 5. (Rosenfeld et al. (2022)). Let H; and H,
be RKHSs defined on X C R™ and let Ay : Hy — H, be
a finite-rank operator with rank N. If span{d;}3°, C Hy
is dense in Hy and span{r;}5°, C H, is dense in H,, then
for all € > 0, there exists M(N) € N such that for all
i > M(N) and h € Hy, |[Anh — AnPyihl g < €llbllg,
and |[Anh — P Anh| g < €||h]l4,-

dJVI

spanr

Hy — spanr™ | where

M

The convergence result for Liouville operators on
Bergmann-Fock spaces restricted to the set of real numbers
follows from the following more general result.

Proposition 6. If A: Hy — H, is a compact operator, and
spans of the collections {d; }$2; and {r;}52, are dense in Hy

and H,., respectively, then limps o0 [|A — Povt APy ||g; =

0, where H||IZ,: denotes the operator norm of operators
from H, to H,.

Proof. Let {An}%_; be a sequence of rank-N operators
converging, in norm, to A. For an arbitrary h € Hy,
||Ah — PTMAPthHHT < ||[Ah — ANh”HT
+ HANh — ANPth”HT + HANPth — PTMANPth”HT
+ ||PTA1ANPth — P APy h”HT .
Using the fact that Ay, P.m An, and Ay Pyuv are all finite-
rank operators and the fact that the projection operator is
bounded with norm bound 1, Proposition 5, can be used
to conclude that for all € > 0, there exists M (N) € N such
that for all ¢ > M(N)
|Ah — PuAPuhly, < (A= Ax)hlg, +2¢ [,
+ [[(Ay — A)Pashll g, -
Since Apn converges to A in norm, given ¢ > 0, there
exists N € N such that for all j > N, and g € Hy
Ag — Ajgll; < €llglly,. Thus, for all j > N and 7 >
M(j5), |Ah — Pri APgih| < 4ellh|ly,- m|

4.1 Matrix Representation of the Finite-rank Operator

To formulate a matrix representation of the finite-rank
operator P, Ay Py, the operator is restricted to span d
to yield the finite-rank operator P Af|gm : spand™ —
spanr™. The resulting matrix representation is denoted
by [Af]. For brevity of exposition, the superscript M
is suppressed hereafter and d and r are interpreted as
M —dimensional vectors.

Theorem 2. Let g = a'r € spanr and h = 6 'd € spand
be functions with coefficients a € RM and § € RM,
respectively. If g = P,Ag|qh, then a = G}Gyd. That
is, [Af], == G}t G4, where G} denotes the Moore-Penrose
pseudoinverse of G, is a matrix representation of P.A¢|q.

Proof. Since g = P, Ay|qh = a'r, the coefficients a solve
T *
(AgoTd,r),, (87d, Ajri)
Gra= z = :
T T *
<Af(5 d T‘M> <(5 d, Af’I"M>Hd
Proposition 3 implies that Afn =d; foralli=1,---, M,

and as such, G.a = G4d. Since a = G;FG44 is a solution of
Gra = G40, we have, a = G;F G40, and as a result, G;FG,
is a matrix representation of P, Ay|q. ad

In the following section, the matrix representation [Af]]
is used to construct a data-driven representation of the
singular values and the left and right singular functions of
the operator P, Af|q.

4.2 Singular Functions of the Finite-rank Operator

The tuples {(o, ¢i, ;) }L,, with 0; € R, ¢; € Hy, and
¥; € H,., are singular values, left singular vectors, and right
singular vectors of PTAf|d7 respectively, if Vh € spand,
P.Ath = Zf\il oi; <h,gz$i>Hd. The following proposition
states that the SVD of P.A¢|s can be computed using



matrices in the matrix representation [Af]]; developed in
the previous section.

Theorem 3. If (W,X,V) is the SVD of G} with
W = [wy, ..., wm]|, V = [vi,...,0y], and ¥ =
diag ([o1, ..., om]), then for all ¢ = 1,...,M, o; are
singular values of of P.A¢|s with left singular functions
¢; == v;'— d and right singular functions ; := w;'—
tively.

r, respec-
Proof. Let ¢; = v d and v; = w;'r and h = §"d. Then,

M
P.Afh = ZUHZH (h, ¢}, =

i=1
M
T T, /sT 3. T
PAg6Td =Y oiw[r(57d,v, d) g,
i=1
Using the finite-rank representation, the collection

{(04, piybi) 1M, is a SVD of P, Ay|q, if for all § € RM,

M

<Z o <5Td7 v;—d>Hd wj) r. (5)
i=1

Simple matrix manipulations yield the chain of implica-
tions

(GFGas) ' r =

M
(5) <= Vo e RM GFrGy6 = Z

(67d, v/ d),,

= V5 eRM GFGqo = Za,- (wiv] Ga) &

i=1

M
< G:_Gd = ZO'Z' (wlv;r) Gd
i=1

— G} = =Wxv',

§ g;W;iv;

which proves the proposition. O

In the following section, the singular values and the left
and right singular vectors are used to generate a data-
driven model via a method termed singular Liouville
dynamic mode decomposition (SLDMD).

5. THE SLDMD ALGORITHM

Let the identity observable (hiq); be defined as (hiq);(x) =
x;, where x; is the j—th component of z.

Theorem 4. If (hiq); € Hg for j =1,---
[Pr Ay Pa(hia)1](x)

,n, then
fu(z) = : =DGlr(z)  (6)
(Pr A Pa(hia)n](z)

where D == ((v;(T})), — (VJ(O))z)jj L and (7;(+)); denotes
the i—th component of v;(-).

Proof. Using Theorem 3 and the definition of singular
values and singular functions of P, Ay|q,

f]\/[ Za—zgzw ’I‘ §EWT ( ) (7)

where §; = [<Pd(hid)17¢i>Hd -a<Pd(hid)n7¢i>Hd]T and

The modes & can be computed using ¢; = v;'— d as

<Pd(hid)17U1Td>Hda ce <Pd(hid)1av;\r/[d>Hd

§= : . :
<Pd(hid)n,v1Td>Hd, , <Pd(hid)n,v1\T/Id>Hd
<§;—d7 d1>Hd’ ’ <51rd7 dM>Hd
= : : V =46"GaV,
(ndydi)y s ooy (Ondidr)y,
where § = [d1, ..., 0y). Using the reproducing property

of the reproducing kernel of Hgy, the coefficients §; in
the projection of (hiq); onto d solve the system of linear

equations
((hia); > dv)y,
Ga0; = : =
((hia); > dar) g,
Letting D = ((v;(1})), —

cluded that 6T Gy
by £ = DV and

Fu(z) =

Using fM as a rank—M estimate of f, the estimated
system model is of the form & ~ fy/(z) = Ar(x), where
A € RM g a solution of

AG, = D. 8)

(n(T1)); = (n(0));

(e (Tar)), = (e (0)),
(7;(0)), ):L’]Ml it can be con-

D. Finally, the modes £ are given

DVEW "r(z) = DGfr(x). O

The use of fM as an estimate of f is justified by the
following result, which follows from the fact that P.A¢P;
converges to Ay in norm as M — oo.

Theorem 5. If p, < pa, Hg = F2,(R"), H, = F2 (R"),
f : R" — R" is a component-wise polynomial func-
tion, and the spans of the collections {d;}2; and
{r:}2, are dense in Hy and H,, respectively, then

(x)Hz) =0

Proof. Since the space F (R™) contains (hiq); for j =
1,---,n, the functions fM,j = PrAde(hi )j and fj =
Ajf(hiq); that denote the j—th row of fys and f, respec-
tively, exist as members of H,. Since z — K, (z,z) =

limas— oo (supxex HfM(a?) —

T . . . .
exp (”” "”) is continuous and X is compact, there exists
i

a real number K such that sup,y K, (2,2) = K. Since
tir < g, Theorem 1 implies that Ay : F7 (R") — F2 (R™)
is compact. Proposition 6 can then be used to conclude
that for all e > 0 and j = 1,...,n, there exists M(j) € N

R 2
such that for all ¢ > M(j), ||fi; — f;

H
the reproducing property, for i > M := max; M (j),

<

o =10, = 3 { (= 1) )y,
fj\fu Al i,
€3 ) Ky, = B



As a result, for all € > 0 there exists ‘M such that for all
1> M,

fl( \/2 sup K,.(x,2)% = ¢,

zeX zeX
which completes the proof. a
This convergence result, typically unattainable for

Koopman-based dynamic mode decomposition, is a key
feature of this algorithm.

6. OCCUPATION KERNEL REGRESSION

Another approach to modeling is to directly use the
occupation kernels as basis functions for regression.

If the components of the vector field f reside in the RKHS,
ie, f=1[f ... fn]T, with f; € H for i = 1,...,n, then
using the defining characteristic of the occupation kernel,
the inner product (f;,I')n may be expressed as

(i T, H—/“ﬁ = (A(T)); — (1(0)):

for each i = 1,...,n. As such, given a set of solutions
{vi : 0,T;] — R" M,, of & = f(z), components of
the function f can be estimated by minimizing the error
between the inner products (f;, ') g and the displacement

(v(T)): — (v(0)); of the i—th component of the trajectory.

A regularized regression problem to determine an approx-

imation f; of the i-th row of f can thus be formulated
as

min Z ( fl, i)

ﬁeH

)it — (@), — (5(0)),) + Al Al
)

where A > 0 is a regularization parameter. Using the
Representer theorem for occupation kernels (Li and Rosen-
feld, 2020, Proposition 1), the minimizer of (9) may be
expressed as a linear combination of occupation kernels
fi=Auly, + -+ Auly,, = Air(x),

where A; = [A1; ... Ani]. Using this representation of
the minimizer, the inner products and the norm in the
optimization problem can be computed as

<f17 o7 H— <2Akz 'yka > -
H

k=1
. IfillZr = AiGr AT
where G denotes the j—th column of G,.

(GI)TA]

and

Hence, the resolution (9) reduces to the finite dimensional
convex optimization problem
M

min Z ((GZ)TAZ-T —

2 T
A;ERIXM £ _’VJ(O))Z) +)‘A1G7‘Al .

(v (T5)

(10)
Solutions of the finite dimensional optimization problem
coincide with solutions of the linear system A;(G, +
My )G, = D;G,, where D; is the i—th row of D and
I denotes the M x M identity matrix.

Using the fact that the solution of A;(G, + Aly) = D;
is one of the solutions of A4;(G, + Ay )G, = D;G, (the
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Fig. 1. The blue marks are the mean(‘f(x)’) over x €

[-3,3] for different values of A using OKR trained
with noisy trajectories. the dashed red line is the

mean(‘f(:r) ) over x € [—3,3] calculated using the

SLDMD method trained with noisy trajectories.

only one if G, is nonsingular), the estimated model can be
expressed as & ~ Ar(zx), where A € R"*M is the solution

of
(11)

Interestingly, the model obtained via OKR coincides with
that obtained using DMD if the regularization parameter
is set to zero. As such, if occupation kernels are used
for regression, the resulting model encodes additional
structure, i.e., the singular functions and the singular
values of the underlying Liouville operator, as provided
by SLDMD. Furthermore, theorem 5, also applicable to
the regression model without regularization, provides an
alternative to the cumulative prediction error convergence
guarantees (see, for example Zhdanov and Kalnishkan
(2013) and Chapter 6 of Steinwart and Christmann (2008))
that are typically available for regression problems.

A(G, + M) = D.

7. NUMERICAL EXPERIMENTS

The purpose of the numerical experiment is to demon-
strate the effectiveness of the SLDMD algorithm, the OKR
algorithm, and to compare the two methods. Additionally,
the numerical experiment demonstrates the effects of the
regularization constant A on the OKR method.

This experiment utilizes the nonlinear model of the Duffing
oscillator given by
Tr1 = T2,

To approximate the system dynamics for any given value of
A > 0, 169 trajectories of the system are recorded starting
from a grid of initial conditions. In the first trial, each
trajectory is corrupted by Gaussian measurement noise
with standard deviation 0.001. The initial velocities are
obtained by numerically differentiating the measured noisy
trajectories. In the second trial, the trajectories are not
corrupted by noise, and the initial velocities are similarly
obtained by numerically differentiating the measured tra-
jectories. The recorded trajectories are then utilized to
approximate f. The SLDMD algorithm from Section 5
is implemented using the Moore-Penrose pseudoinverse.
The OKR algorithm from Section 6 is implemented using
the usual matrix inverse. Both methods use the kernel

K(x,y)fexp< y ) with = 5.
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Fig. 2. The blue marks are the mean(’f(m)‘) over x €

[-3,3] for different values of A using OKR trained
with noise free trajectories. the dashed red line is the

mean(’f(x)‘) over x € [—3,3] calculated using the
SLDMD method trained with noise free trajectories.

Figures 1 and 2 show the mean of the difference between
the actual values fo(z1) and the estimated values fg(l‘l)
over xo € [—3,3] using different values of A. Figure 1
shows the results for the system identification methods
using noisy trajectories, where OKR clearly outperforms
SLDMD for specific values of A\. Whereas, in Figure 2,
which shows the results of the two system identification
methods using noise free trajectories, the OKR technique
performs almost identically to the SLDMD technique for
A values between 10710 and 1073,

If the Gram matrix is not full rank, which is the case for
both trials of the numerical experiments, then inversion of
G, + AI; is numerically unstable for small values of A.
As such, consistent with Figures 1 and 2, it is expected
that the approximation f computed using OKR with a
small value of A would be poor. On the other hand, the
regularized inverse (G, + Ar)~! converges to the zero
matrix as A increases, which explains the error plateau
seen in Figures 1 and 2 for A > 102,

In theory, in the case where the trajectories are noise free
and the inner products in the Gram matrix G, are eval-
uated exactly, the SLDMD algorithm should outperform
OKR for any value of A, since the regularization introduces
a bias. The authors speculate that the slight improvement,
seen in Figures 1 and 2 for 10719 < X\ < 1073 is due to the
integration errors introduced when computing the entries
of the Gram matrix using Simpson’s rule. Since regular-
ization can prevent over-fitting when the underlying data
are noisy, a more accurate approximation may be obtained
for some values of A. In the case where the trajectories are
corrupted with measurement noise, there are errors in both
G, and D of (11), which make the effects of A even more
significant, consistent with Figure 1.

8. CONCLUSION

This paper introduces a novel approach towards the con-
struction of a finite rank representation of the Liouville
operator. New results on the construction of singular val-
ues and functions of the finite rank operator using singular
values and vectors of a matrix representation are also
obtained. The singular values and functions give rise to
a new dynamic mode decomposition model that is shown
to be equivalent to regression using occupation kernels.

Numerical experiments that study the effect of the regu-
larization parameter indicate that regularization may yield

better results when the data are corrupted by integration
errors and measurement noise. In order to support this
conjecture a detailed Monte Carlo simulation is needed,
which is a part of future work.
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