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We study representations of the Poincaré group that have a privileged transformation law along a p-
dimensional hyperplane, and uncover their associated spinor-helicity variables in D spacetime dimensions.
Our novel representations generalize the recently introduced celestial states and transform as conformal
primaries of SO(p, 1), the symmetry group of the p-hyperplane. We will refer to our generalized states as
“partially celestial.” Following Wigner’s method, we find the induced representations, including spin
degrees of freedom. Defining generalized spinor-helicity variables for every D and p, we are able to
construct the little group covariant part of partially celestial amplitudes. Finally, we briefly examine the
application of the pairwise little group to partially celestial states with mutually nonlocal charges.
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I. INTRODUCTION

The classification of particles into representations of the
Poincaré group is the basis of particle physics and quantum
field theory (QFT): it allows for the definition of the
S-matrix and scattering amplitudes and the easy identifi-
cation of the propagating degrees of freedom of QFTs.
The little group appearing in Wigner’s method of induced
representations is essential for building proper scattering
amplitudes and forms the basis of modern scattering
amplitude methods. While little group methods have by
now become commonly used for particle scattering, it has
not been widely applied to the description of the dynamics
of branes. In this paper we initiate the first steps toward
this direction. While we do not consider the seemingly
formidable task of quantizing p-branes, we will consider a
simpler situation where branelike objects appear and their
general states can be constructed using Wigner’s method.
To achieve this we will define a new eigenbasis of ordinary
quantum fields in D dimensions that have privileged
transformation properties on a p-hyperplane. We call this
state a p-sheet or a p partially celestial state, for reasons that
will become obvious below. Though not quite a p-brane, the
p-sheet does serve as an interesting toy model for p-branes,
as it highlights the importance of SO(D — p — 1) transverse
rotations, a feature that we expect to play a key role in a future
“Wigner” quantization of p-branes.
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Our starting point will be to look for states that (a) have
well-defined SO(p, 1) transformation properties, reflecting
the symmetry of a p + 1-worldsheet, and (b) are not zero-
energy eigenstates. In fact, these two requirements imply
that our p-sheet states are not energy eigenstates at all.
As we shall see in detail below, the SO(p, 1) covariance
of our p-sheets makes them the analogs of the celestial
states considered in [1-7], except only along p directions;
hence they are “partially celestial.” We will find the
appropriate eigenbasis of these states, and also find the
correct labels for characterizing p-sheet quantum states.
With our knowledge of the little group and canonical
Lorentz transformations we can use Wigner’s method of
induced representations to build up the full p-sheet Hilbert
space. We are also able to present for the first time the
generalized spinor-helicity variables in any spacetime
dimension, which has applications far beyond those pre-
sented here and is the most far reaching result in this paper.
These variables allow us to construct the most general
three-point amplitudes for partially celestial states. We also
briefly consider how the recently introduced pairwise little
group [8—11] can be generalized to p-sheets. For the case of
mutually nonlocal sheets of dimension p and D — p — 4 we
show that the pairwise little group is just a U(1), providing
a new example of pairwise helicity, which can be dynami-
cally realized if p 4 1-form electrodynamics is electrically
coupled to the p-sheet and magnetically coupled to the dual
D — p — 4 sheet.

The paper is organized as follows. First, we briefly
review the celestial solutions [1-7] of the Klein-Gordon
(KG) equation, which are solutions that transform cova-
riantly with respect to SO(D —1,1), viewed as the
Euclidean conformal group. Using celestial solutions as
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an inspiration, we then present solutions of the d-dimen-
sional KG equation which are SO(p, 1) covariant, reflect-
ing the symmetry of a p 4+ I-world volume. In their “rest”
frame, these solutions are also manifestly SO(D — p — 1)
rotationally invariant and RP~7~! translationally invariant
in the space orthogonal to the p-sheet. Next, we show how
to interpret these SO(p, 1) covariant solutions of the KG
equation as the wave functions of p partially celestial
quantum states, thus constructing their Hilbert space. The
generalization to spinning p-sheets is then achieved using
Wigner’s method of induced representations. We then
construct spinor-helicity variables that allow us to write
the most general three-point amplitudes. Finally, we present
the pairwise little group of two parallel sheets and argue
that for mutually nonlocal sheets the pairwise little group
reduces to a U(1) pairwise helicity.

II. PLANE WAVES AND CELESTIAL SCALARS

In preparation for presenting our p-sheet states we will
first review the construction of the celestial scalars and their
relation to plane waves. Consider first a massive classical
scalar field ¢(x) in D-dimensions. Its equation of motion is
the KG equation (in a mostly plus signature as is commonly
used in the celestial literature)

[—0? + V2 + m?]¢p(x) = 0. (1)

The most commonly used basis of solutions is the plane
wave basis ¢,(x) = ¢*7*. Each solution ¢,(x) in this
basis is translationally invariant in D — 1 directions x* —
x* 4+ Ax* orthogonal to p#, p - Ax = 0. One could instead
look for solutions of (1) which are SO(D — 1, 1) covariant
—these are the massive celestial scalars [1,12] ¢, (x;w).
Instead of the p* labels, these solutions are labeled by a
conformal dimension A and a vector w on RY, where
d = D — 2. Explicitly, they are given by

. 24-5-1 g Y
RAECT) PR ) L O
(im)? [=q(W) - x F ie]
d
s =v/x-x, a:A—E. (2)

The label PS here is to remind us that these are the celestial
wave functions defined in [1]. Here

q" (W) = (1+[w[*, 2, 1 = [i5]?) (3)

is a D = d + 2 dimensional vector. A Lorentz transforma-
tion A acting on ¢* induces a nonlinear map A:w — w' via

1/d

ow' .
Aug”(w). )

wi — |
q" (W) o

The map A:w — W nonlinearly realizes SO(d—1,1)
as the Euclidean conformal group acting on w & RY~2.

By substituting (4) in (2), one can easily check that these
solutions have the property that

A
d

NCTI (5)

ow'

Allj D? W' (W = | 3=
balate W) =| 5

The solutions (2) form a complete eigenbasis for the KG
equation for either A = % + iR or 0 < A < 1, also called
the principal series and complementary series representa-
tions of SO(D — 1, 1), respectively.

The celestial wave functions for massless scalars were
obtained in [1] by taking the massless limit of (2). In [13], an
equivalent construction of the celestial states for massless
particles in Four-dimensional (4D) was presented. The latter
followed Wigner’s method of induced representations, by
starting from a reference quantum state whose little group is
the “lower triangular” group {J3,K3,J, —K;,—J; — K, }.
Inspired by this construction, we present a slightly modified
derivation of the solution (2) using little group methods (see
also a parallel discussion for the massless case in the very
recent [14]), which will be easily generalized to our partially
celestial p-sheet solutions. First, we redefine the expression
in (2), as a function of g rather than w,

20tlas (is)®
T(x;q) = : —— K, (ms
¢A( Q> (lm)5 [_q X F l&‘]A ( )
s = x-x,a:A—g. (6)

Note that this is a solution to the KG equation only for null
g". Naturally, we define a reference value of ¢* as

o= (10..0.1), g

and note that this is a lightlike Lorentz D-vector as opposed
to the D —2 vector w. Accordingly, a “reference wave
function” is

2" (%) = @ (3 G- (8)

Here ¢, is chosen so that 5™ (x) is SO(D — 2) rotation-
ally invariant, but it is also manifestly invariant under the
linear combinations M;p_ | — My i€{l,...,D -1} of
SO(D —1,1) generators. Overall, the little group under
which ¢ (x) is invariant is given by

LGP = ISO(D - 2), (9)

where dim(LGP) = (D_l)zﬂ. Under general transforma-

tions in the Poincaré group PP = RPxSO(D — 1, 1), the
celestial scalar transforms as

Q= (Av)ePP:
5100 = 45200 = A5 (A4 )

= ¢ (x +v;A7g). (10)
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Without loss of generality, we perform the translation
before the Lorentz transformation. Note also that we
could further Taylor-expand the last line of (10) in o*,
and see that the action of an internal translation P# shifts
A — A+ 1 [15-17], but we will not do it explicitly in this
paper. Importantly, not all Poincaré transformations actually
lead to inequivalent solutions for ¢p—to label inequivalent
solutions we have to mod out by the action of the little group.
This is the same as finding canonical transformations
OePP/LGP. From (10), we can see that the generic
partially celestial scalar solution is parametrized by all
possible ¢# that can be reached from ¢., by Lorentz
transformations. These are one boost and p — 1 rotations

with angles a; that take ¢# to a generic value (7, yﬁ) Hence,
the canonical Lorentz transformations are

qﬂ = [Lq]gqﬁef’

Ly = || Rixs1() x B,(B). (11)

Here Ry ;. (a;) is a rotation by the angle a; in the plane
spanned by the k and k + 1 directions, while B, () is a boost
with velocity f along the p direction. Thus, the partially
celestial scalar solution is parametrized by one boost, D — 2
angles, and D translations, for a total of 2D — 1 parameters
of the coset PP/LGP. One can easily check that this is
indeed the correct dimension of this coset. There is a one-to-
one correspondence between the original ¢i S and qﬁf’o (x)
for O PP /LGP. To see this, note that every g* in (11)
uniquely defines a w, and vice versa.

III. THE PARTIALLY CELESTIAL
SCALAR SOLUTION

In this paper, we are interested in representations of the
D-dimensional Poincaré group PP = RPxSO(D —1,1)
which transform covariantly under a p 4+ 1-dimensional
Lorentz subgroup SO(p,1) C PP. These correspond to
ordinary quantum fields on p-dimensional hypersurfaces in
d dimensions, which we call p-sheets for short. As a first
step, we would like to construct the most general SO(p, 1)
covariant solutions to (1), drawing inspiration from the
celestial solutions (2). These would be akin to celestial
solutions in p “sheet-parallel” dimensions, while being
translationally invariant in D — p “external” directions. To
this end, we define p partially celestial scalars as

AT (is)e

(im)= [-q-x F ie]®

bap(x:q,A) = K, (ms),

1

p —
s = /x,A"x,, a=A— — (12)

where ¢" is a null D-dimensional vector and A* is a
D-dimensional two-index tensor. The latter is required

to specify the embedding of a p + l-worldsheet in
D-dimensional space. Similar to our little group construc-
tion of fully celestial scalars in the previous section, here we
need to specify reference values for both A7" ¢ and ¢, ;.

We choose

d’i wf( ) = ¢jA:;p(X; qP-ref’Ap.ref)’ (13)
where
Aﬂref_dlag( ,1,---,1,0,...,0),
@yt = (1,0,...,0,1,0,...,0), (14)

where the 1’s are repeated p-times in A"" »rer» While in q’; ref
the 1 is in the p + 1 entry. A””, et 18 the pI‘OJCCthH tensor into
the world volume of a p- hyperplane at rest, lying along
the first p dimensions, while q’;_ref is chosen so that
e ref( ) is SO(p — 1) rotationally invariant, but it is also
manifestly invariant under M;, — My, i€ {1,....,p — 1}. It
is also manifestly invariant under RP?=7~! x SO(D — p — 1)
corresponding to “external” translations and rotations.

Overall, the little group under which qﬁ A ret( ) is invariant
is given by

LGY =RPP1 xISO(p—1)x SO(D—p—1),  (15)

where dim(LGY)=D—-p—1+ ”(”2_1> + (D_p_lz(D_p_z).
For future reference, we also define for every A €SO
(d -1, 1) the Lorentz transformed tensor and vector,

q’;’/\—l = [A_l}’;ql[/’ ref?
Al = NaNSAY (16)

Under Poincaré transformations,
scalar transforms as

the partially celestial

Q= (Av)ePP:
Py (x) = Py (x) = Py (A(x + )
= $a,p,(xtvigpaApa). (17)

Without loss of generality, we do the translation first in
the Poincaré transformation. Importantly, not all Poincaré
transformations actually lead to inequivalent solutions ¢p—
to label inequivalent solutions we have to mod out by the
action of the little group. This is the same as finding
canonical transformations O € PP /LG? . From (17), we
can see that the generic partially celestial scalar solution is
parametrized by all possible (¢#, A**) that can be reached
from (g}, o, A’ er) by Lorentz transformations.

To find the most generic (g#, A**) we start from their
reference values and perform a fixed set of independent
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Lorentz transformations. We start with transformations that
act on ¢ within the p + 1 dimensional reference hyper-
plane along time and the first p spatial directions, while
leaving A" invariant. Since g* is a massless vector (even
though our irreps are massive), we can get to a generic g*
with one boost with velocity # and p — 1 rotations with
angles ;. From now on, we can perform further trans-
formations that act on A*, with g# going along for the ride.
First, we can boost A** by f' to give it velocity (nonzero
first row/column) in the x, direction. Without changing this
velocity, we can perform rotations between all spatial
directions orthogonal to xp. However, out of these rota-
tions, the ones outside the p-hyperplane leave the con-
figuration invariant and are in fact part of the little group
that leaves p(D — p — 2) rotation angles ¢;;. At this point
both ¢* and A are aligned in arbitrary directions orthogo-
nal to xp, and the velocity is in the xj, direction. Finally, we
can rotate the entire configuration arbitrarily in D —1
spatial directions, with D — 2 angles 0,. In other words,

the most general values for (g, A*) are (¢, Lq,A’I’)’fLA)

where

p=2

L,= HRk,k+1(ak) X B, (P).
k=1

D-2 p D=2
Ly= HRk,k+1(Hk) X H H Rij(¢ij) x Bp(p'). (18)
pal

i=1 j=p+1

Hence, the partially celestial scalar solution is parametrized
by (D—p—1)(p+ 1) — 3 angles, two boosts, and p + 1
translations, for a total of p(D — p) + D parameters of the
coset PP /LGY. One can easily check that this is indeed the
correct dimension of this coset. To summarize, p partially
celestial scalar solutions are solutions of the D-dimensional
KG equation that are invariant under the little group (15)
and are labeled by (D — p)(p+ 1) parameters of the
coset PP/LGP.

Finally, we note that in the massless limit, the depend-
ence of p partially celestial scalars on the reference plane A
drops out, as can be checked by explicit expansion of (13).

IV. PARTIALLY CELESTIAL SCALARS:
EXPLICIT EXAMPLES

A. Fully celestial state in D dimensions

This is the case discussed in Sec. II. One can easily check
that setting p = D — 1 in (13)—(18), we have A* = p
which is Lorentz invariant, and so the partially celestial
solution coincides with the definitions in Sec. II.

B. Partially celestial line in D dimensions

A partially celestial line in D dimensions corresponds
to a partially celestial solution (17) with p = 1. Its little
group is

LGP = R*x SO(D -2), (19)

whose dimension is 2 + (D — 2)(D — 3)/2. For D = 4 we
get R? x SO(2). The coset PP /LGP has dimension 2D — 1,
and it is parametrized by D — 3 angles ¢;;, D — 2 angles 6y,
two boost parameters /3, /#, one spatial translation, and one
time translation. The most generic ¢'" is given by

P(x) = P e (X + @39, A),

a, = (agy, a;,0,...,0),

_ Lt ‘
9, = 1 _ﬂ qu:l.ref;w

W . AMV
A=A,

D=2 D=2
Ly=]] Rexs1(6r) x HRl,j(%j) x Bp(f).  (20)
1 =2

k=

C. Massive particle in D dimensions

A massive particle in D dimensions corresponds to a
partially celestial solution (17) with p = 0. Since ¢* is ill-
defined for p = 0, the particle solution necessitates taking
A =0 rather than A =232 +R. In this case the little
group (in Poincaré) is

LGY = RP-' x SO(D - 1), (21)

whose dimension is D — 1+ (D — 1)(D —2)/2. For D =
4 we get spatial translations R? times the usual SO(3) ~
SU(2) little group for massive particles in 4D. The coset
PP /LGE has dimension D — 1, and it is parametrized by

D — 2 angles 6, one boost parameter ', and one time
particle

translation. The reference wave function ¢,

is given by

articl .
¢]rp§‘t106(x) = ¢§;0(x; Q(),refaAO,ref) =ie™"". (22)

This is simply a plane wave in the rest frame of the particle
(up to an irrelevant constant phase). In any other frame, we
have

¢pa.rticle ()C) _ ie—imy’(t-&-dt-&-ﬂ’)'c'-ﬁ) ,

D=2
ﬁ - Rk,k+1(€k><07 ey 0, l)T (23)
k=1

V. FROM PARTIALLY CELESTIAL SCALARS
TO PARTIALLY CELESTIAL QUANTUM STATES

The SO(p, 1) invariance of partially celestial scalars is
suggestive of a new class of quantum states representing a
p-sheet. To make this correspondence more concrete, we
can interpret the p partially celestial solution ¢(x) as the
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wave function of a single p partially celestial state. First,
we set up some notation. We denote canonical Poincaré
transformations by (L,a) = O € PP so that [0] € PP /LG?.
As shown above, each canonical Poincaré transformation is
labeled by (D — p)(p + 1) parameters. For every canonical
transformation there is a unique partially celestial scalar
solution ¢ (x) = ¢t (L(x + a)). We can now identify

$o(x) = (0]lag®(x)|0)
= (0] (x)ap|0)*, (24)

where |0) is the vacuum, ag (ap) is the creation (annihi-
lation) operator for a p partially celestial scalar which is
related to the reference scalar by the canonical Poincaré
transformation O. ®(x) is the field operator for a (real)
scalar field, which we can expand as

o(x) = / dOlpo(¥)al, + Hel.  (25)
PP/LGY

As for the field operator for particles, we require the
field operator transforms covariantly under the Poincaré
group [18],

Q= (A v")ePP:
D(x) - U[QO(x) U [Q] = O(A(x +v)).  (26)

In particular, ®(x) is invariant under little group trans-
formations Q € LGY. Similar to particles, this requirement
fixes the Poincaré transformation properties of the creation
and annihilation operators (see derivation in Appendix A),

ag - U[Q]aZU_l[Q] = azw,
ap = UlQaoU™'Q] = ago. (27)

where the product QO is just the group product of the
Poincaré group PP. In other words, a p partially celestial
scalar state |0) = a},|0) transforms as

UlQ]|0) = |Q0). (28)

By construction, the reference state |ref) = |O = identity)
is invariant under Q € LGY. This concludes our definition
of the quantum state of a single p partially celestial scalar.

VL. PARTIALLY CELESTIAL STATES WITH SPIN:
WIGNER’S METHOD

In the previous section we defined p partially celestial
scalar states by starting from a p partially celestial scalar
solution and interpreting it as the wave function of a
quantum state. Here we generalize our construction to p
partially celestial states with spin. A direct generalization of
our previous derivation would have been to start with a

partially celestial solution with spin, ¢(x); ;. and inter-
pret it as the wave function for a spinning p partially
celestial state (see, for example, the constructions of
fully celestial spinors in [1,19,20]) and massless p-forms
in [14]. Instead, we will follow a simpler route, using
Wigner’s method of induced representations. Similar
to the scalar case, spinning states are labeled by |O; o)
where O € PP /LG and o is a composite spin index. The
reference state is defined as usual as |ref;0) = |0 =
identity; o), and it is annihilated by all of the generators
of the little group LGY. Clearly, LG is generated by the
Poincaré algebra generators G, = {M;, M,;,, Py, My}
where i€[l,...,p—1] and k,/€[p+1,...,d], so that
G,|ref;6) = 0. Consequently, the reference p partially
celestial state [ref) transforms in a representation of
LGP, ie.

U[W]|ref; 0) = D, [W]|ref; 6”), (29)

for any W e LGY. Here D,,[W] is some representation
matrix of LG and ¢ is a collective index denoting a “spin”
label for LG’,? representations. For particles, p = 0, and
D = 4, the representation matrices reduce to the normal
spin representation matrices.

As in Wigner’s method for particles, for any
0OePP/L Gf,) we can define the quantum state in a general
frame as

|0; 6) = U[O]|ref; 5). (30)

This also serves as a definition of U[O] that can be
uniquely extended to all U[Q], Q€ PP acting on generic
states. But first, let us ask ourselves which generators
annihilate |O). The answer is straightforward. Take O =
(L,a) € PP/LGY and define MY, and Pf so that

M,, = L,"L/ (Mg~ ai,Pg).

P, = LM”PZ,O. (31)

From chapter 2 of Weinberg’s QFT book [18], we have
M, = U'oMG,U[0],
P, = U'0]PoU[O]. (32)

Then G?|0;0) = 0.

Next, we can ask how the state |O; o) transforms under a
generic Poincaré transformation Q € PP. This is uniquely
defined using Wigner’s method. Explicitly,

=Dy, [W]|0: ). (33)
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where O € PP /LGY is unique canonical Lorentz trans-
formation defined by

Al p
OﬂaODﬂAZ,ref - AI;Z:QO’
Oﬂaqz,ref = q’;,go- (34)

Note that generically QO is not a canonical Lorentz
transformation in and of itself, and so O # Q0. To
conclude, in this section, we have straightforwardly applied
Wigner’s method of induced representations to single p
partially celestial states with spin. The spin here is given by
the representation D, of the little group LGf,’ .

VII. SPINOR-HELICITY VARIABLES
FOR p-SHEET SCATTERING

Once we have fixed the little group for p-sheets we
can construct the generalizations of the spinor-helicity
variables, which are the key for the construction of the
scattering amplitudes. Consider the compact part of the
little group (15):

cLG? =SO(p-1)xSO(D-p—1).  (35)

Our task is to define D-dimensional massive spinor-helicity
variables that transform under CLGIIJ) . We define two kinds
of Minkowski spinors under the full D-dimensional
Lorentz group, which also carries spinor indices under
the (Euclidean) SO factors of the cLG?%. The first [L,),
transforms with the little group SO(D — p — 1) spinor
index, while the second |L,)), transforms with an SO(p —
1) spinor index. For even D the spinor representation is
chiral, and we also have spinors of the opposite chirality
|LA]% and |L4]|%. Foreven D — p — 1 or p — 1, we also have
spinors with dotted little group indices. Undotted spinor
indices are contracted in the northwest-southeast conven-
tion, while dotted ones are in the southwest-northeast
convention. We begin with a definition of |L,),, [Lils
where A,A are SO(D — p — 1) spinor indices and a, &
are SO(D —1,1) spinor indices. Defining for any N,
sy = 2N/2171 e have A, A = {1, cesSpopor pand @, =
{1,...,sp}. The reference values for the single angle
spinors are

|refA>a = 5A+s,m

[refsly = Oasar (36)

|refA>a = 5A+s,a7
ref;l, = Oits.ar

where s =sp —sp_,_;. Note that the dotted Lorentz
indices exist only for even dimensional D and the dotted
little group indices only exist for even dimensional
D —p—1. For odd D, we can now define Lorentzian
D-dimensional [I*],” matrices, while for even D we have
the corresponding [3#],5. [£]% matrices. Similarly, for odd

D — p — 1 we have D — p — 1 dimensional Euclidean [y;)5
matrices, while for even D — p — 1 we have the corre-

sponding [6'],5, [6/]*8 matrices. We can always choose a
basis so that the bottom right sp,_,_; X sp_,_; block of the
last D — p — 1 I'/X matrices is numerically identical to the
y/o matrices. We can freely raise and lower the indices on
the spinors via

(refA|* = e eB|refy) ;.

[refA]* = [ref | seB4eP, (37)
where e = i[[?~2] for odd D and & = i[£P~2] for even D
and similarly for ¢ with y and o.

Now, we can use these gamma/sigma matrices to
combine the spinors into

A/;:ref = nﬂy - [Uref]l{”[”ref]

odd D, oddD —p—1:
[Urefyll = <refA|a[l—w]aﬂ[}’1}AB|refB>ﬂ

even D,

vhl

evenD —p —1:
(et = (refA|*[2] (07 4l ref ), (38)
and similarly for mixed parity D and D — p — 1. In analogy

with Wigner’s method, we define |L,),, [L ], in any other
frame as

a

|LA>a = Laﬂ|refA>ﬂv
[Lalg = [refs|;L7 5, (39)

for every L€ SO(D — 1,1)/cLG?. One can readily check
that

Ay =0 = (o] [l
odd D, oddD —p —1:
[UL]I; = <LA|{I[F”]a/}[7I}AB|LB>ﬂ
even D, evenD —p—1:

[0.]] = (L[] oplor]anlLPY. (40)
In fact, the first equation can also be thought of as the
definition of the spinor-helicity variables. It is the gener-
alization of the relation p = |p)[p| for the definition of the
ordinary spinors.

By Wigner’s method, |L,),,[L4l, transform under a
generic A€ SO(D —1,1) as

ALILy)y = LoWhref ),
[LalpAo = [La[, WiLP s (41)
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where L €SO(D —1,1)/cLGY is the unique canonical
Lorentz transformation defined by A, n;, = LA, sL”, and
W =L"'AL€SO(D — p — 1) is a little group transforma-
tion. Now, by the definition (36), we have

Wyl |tety), = WaP|refp),
[ref,|, W7 = [refB|/;WBA. (42)

In other words, when acting on the reference spinors with a
spacetime-index little group transformation, it is the same
as acting on them with the same transformation in the little
group indices. This is the same thing that happens to
massive spinors in 4D [21]. We conclude that

Aaﬂ‘LA>ﬁ = WAB|Z‘B>rx’
[LalpAP = (Ll WP (43)

i.e. these spinors transform exactly with the correct
SO(D — p —1) little group factor. That makes them the
right building blocks for p partially celestial amplitudes.

Similarly, we can define the spinors [ref)),, [ref,|,
where a is an SO(p — 1) little group index. Note that
we do not dot the a index for reasons that will become
apparent momentarily. These are defined as

|ref(l >>a = 60(1’

(ref|, = &4. (44)
They are defined so that
ql;q,ref = ((refe|*[T* ]aﬂ|refa»/3’ (45)
for odd D and p — 1, and
Gy rer = (ref|*[2] 5ref, )7, (40)

for even D and p — 1. Similar to |L),[L|, the generic
[LY, [L| transform as

Aaﬁ|La»/} - Wab|l_‘;;>>m
ILpAP, = L], W), (47)

where L'€ SO(D —1,1)/cLG?Y is the unique canonical
Lorentz transformation defined by g, A, = L qprer> and

W = L""'ALe€SO(p —1) is a little group transformation.
One can readily check that

qpr = (LT ILaNgs (48)
for odd D and p — 1, and

= (L2 L0, (49)

for even D and p — 1, for any L€ SO(D —1,1)/cLGY.
Again these last two relations can be thought of as the
definitions of double-line SO(p — 1) spinors. We then see
that |L)), [L| transform with the correct SO(p — 1) little
group transformation and can be used to form p partially
celestial amplitudes.

VIII. CONSTRUCTING PARTIALLY
CELESTIAL AMPLITUDES

Using the spinor-helicity variables defined in the pre-
vious section, we can construct the little group-covariant
part of any partially celestial amplitude, generalizing the
4D massive formalism of [21]. We take all external states
to live in D-dimensional space and have “internal dimen-
sions” p,, with n=1,2,3,...,N and representations
RI* x R9™ under the compact little group cLGH =
SO(p,—1)xSO(D — p, —1). To saturate the required
little group transformation of the amplitude, we need to
combine the little group indices of the spinor-helicity
variables |ny ), [nAn|an’ Ny Ne,» and [[”an|a,,' This is

achieved via contractions of the CLGIL,)" indices using the

y/o matrices. Once the correct little group transformation is

obtained, all Lorentz indices can be contracted via the

. I — [l /

litle group invariants e e, kP, = [n'],; [k, and
— [l

[nk]? = [n'],, [k;]”” where

('] = 1) o€ e Plnpl (50)

as well as their double angle/double square bracket
counterparts.

As an example, consider the (little group covariant part
of) the three-point amplitude for three 3-celestial ampli-
tudes in 10D, transforming as the (0, 4), (0,4), and (0, 6) of
cLGY® = U(1) x SO(6). This amplitude is given by

Al = [3; 2RJ[GEB(I43,), (51)

where all the spinors are defined for D = 10 and p = 3.
Another example is the (little group covariant part of) the
three-point amplitude for a line (one partially celestial) state
emitting a massive scalar particle in 4D. We consider
the case in which the 2 one partially celestial legs have
helicity £4 under ¢LG} = SO(2)~U(1) (in the all-
incoming convention). The amplitude in this case is
Atrda = (14124), (52)
where both the spinors are defined for D =4 and p = 1,
and the values of A, A, correspond to different choices of
positive or negative helicity. We can get a direct analytical
expression for this amplitude using the explicit values
of the spinors given in Appendix B. As an illustration,
consider a line at rest along the x-axis emitting a massive
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scalar particle, while remaining at rest and rotating by an
angle . The amplitude for this process is

A A :< o e_7>. (53)

ip
-2 0

Note that the amplitude is helicity conserving in the all-
incoming convention.

Finally, note that translational invariance should pose
additional constraints on partially celestial amplitudes. In
fact, for particles we know that translational invariance
(i.e. momentum conservation) dictates that three-point
amplitudes are completely fixed by their little group
transformations. In our case, similar to the case of fully
celestial amplitudes [16,17], the generators for translation
assume a nonlinear differential form when expressed in
terms of (g,A,A). We leave the exploration of the con-
straints of translational invariance on partially celestial
amplitudes for future work, including whether three-point
partially celestial amplitudes are fixed by their little group
transformations.

IX. PAIRWISE LITTLE GROUP

Consider a scalar p-sheet parallel to a scalar p’ sheet in D
dimensions. To be parallel, we require that p + p’ < D — 2.
By applying Poincaré transformations, we can always go to
the “center of velocity” frame of the two sheets, in which
their wave functions are given by

P55 (6) = Gy (85 Gt Bsp):

P (X) = Pty (53 ety - Bry).

Bl = diag(0.1,....1,0,...,0,0,...,0) + M ().
B, , = diag(0,0.....0.1,....1,0,....0) + M (),
0 0 7
0 0 0 0 0
M (B) =~ 0 0 (54)
0 0 0 0 0
r’p 0 0 pp

In analogy with the pairwise little group for particles, we

can ask which subgroup of PP stabilizes both (ﬁ;’ff(x) and

+ ref
A/Ap/

(x). The answer is
pLGY , =1SO(p —1) x ISO(p' - 1)
X RP=P=P"2x SO(D—p—p'—=2). (55)
For particles in 4D, p = p’ =0, and the pairwise little

group reduces to SO(2) ~ U(1), consistent with [8-11]
(see also [22] for a discussion of pairwise helicity in the

context of 4D celestial amplitudes). In particular, we focus
on the case in which p’ = D — p —4. This is the case
where the sheets are mutually nonlocal, in the sense that
they source p-form gauge fields that are Electromagnetic
(EM)-dual to each other. In this case the p-form charges of
the two sheets are constrained by Dirac quantization, as
shown in [23],

n
g=eg=, p#D—p-—4, (56)

2
where e and g are the charge of the p and D — p — 4 sheets,
respectively. In the self-dual case, p = DT_4, the sheets can

be dyonic, and the Dirac quantization condition is gener-
alized to [24]

n
g=eig+ (=1)Perg =5, p=—7—- (57

2
In [8-11], the Dirac-quantized quantities ¢ were shown to
play the role of pairwise helicities labeling the representa-
tions of the U(1) little group. Here the situation is similar;
substituting p’ = D — p — 4 in (55), we have

PLG) 4 =1S0(p —1) < ISO(D - p = 5)R*> x U(1),
(58)

and we see that indeed pLGI’?. D—p—a has a U(1) factor. We
can naturally identify the pairwise helicities labeling the
representations of this factor of the pairwise little group
with the ¢ given in (56) and (57).

The presence of a U(1) factor for the pairwise little
group for mutually nonlocal partially celestial states hints
that the entire structure exposed in [8—11] generalizes
directly to the present case. This is reminiscent of a pair
of mutually nonlocal branes, which source p-form and p’-
form fields and thus carry extra angular momentum in these
fields. This extra angular momentum modifies the selection
rules for brane scattering, in the same way it modifies them
for monopoles and charges in 4D.

X. OUTLOOK AND FUTURE WORK

In this paper we defined the quantum states for scalar
and spinning p partially celestial states and, notably, the
generalized LG? -covariant spinor-helicity variables in D
dimensions. These results allow us to find the little group
covariant part of the most general three-point amplitudes
for partially celestial states. Additionally we found the
corresponding pairwise little group, which has a U(1)
factor for mutually nonlocal states. In a future little group
construction for branes, the helicities under the pairwise
little group should be identified with Dirac quantized
products of charges by examining the Lorentz-transforma-
tion properties of soft-photon-dressed electric and magnetic
states as in Ref. [11]; We expect that the same result can be
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shown for branes by considering their “soft-higher-gauge
field” dressed multibrane states. The generalized spinor-
helicity variables enable the bottom-up construction of (the
little group covariant part of) scattering amplitudes for p
partially celestial states. We give a procedure for construct-
ing the little group covariant part of three-point functions
for three partially celestial states in 10D and for two lines
and a scalar particle in 4D. Unlike in the case of particles, we
cannot be sure whether three-point amplitudes for partially
celestial states are completely fixed by their little group
transformation. We leave that question for future work, in
which we will analyze in detail the constraints from trans-
lational invariance on partially celestial amplitudes.
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APPENDIX A: FROM FIELD OPERATOR TO
LADDER OPERATORS

Here we show that the transformation properties of the
field operator (26) lead to the transformation (27) of the
creation operator. To see this, write for Q = (A, v) € PP

D(A(x+v)) = /

dO{po(x)U[Q)af,U~' Q)
PP/LGY

+do(x)UIQlaoU™'[Q]}, (A1)

or in other words
L0 90 (A 0y 8 (Ax 1))

- / d0{$o(x)UQla, U]
PP/LGY
T (1) UQlao U1} (A2)

Note that ¢ (A(x + v)) = ¢g-10/(x), and we can change
the integration variable on the left-hand side as O’ = QO,

/ d0{o(x)ao + 5 (x)ago}
PP/LGY

- / d0{¢po (1)U}, U]
PP/LGY
() UIQlaoU- Q). (A3)

from which (27) follows.

APPENDIX B: EXPLICIT PARAMETRIZATIONS

For completeness, we present here the generic A*, A, 1

for a massive particle in 4D, and the generic g, A*, 4, 7 for
a line partially celestial state in 4D.

1. Massive particle

As a special case of (20), the generic wave function for a
massive particle in 4D depends on the translation
(ap,0,0,0), one boosts ' and two angles 0, 0,. The
most general A" is then

AW = —ytyY, (B1)

where u* is defined the same way as (B2), and is the four-
velocity of the particle, given by

w =y (=1, sin6,sin b, f' sin@, cos O, cos ;). (B2)
Finally, we define the spinors |L), (L| corresponding to a

massive particle in 4D. By the definitions in Sec. VII, they
are given by

L) = (L))"
B ( eta. cos(%)

O (0
) ie>d, sin(3) >’ (83)
ie"7d. sin(%z) e 2d, cos(%z)

where a/, = \/7/(1 = ). Note that we do not have dotted
little group indices since the little group is SO(3) ~ SU(2)
whose 2 and 2 are equivalent. One can readily check that
(40) is satisfied.

2. Line

As a special case of (20), the generic wave function for a
line partially celestial state in 4D depends on the trans-
lations (ag, a;,0,0), two boosts f, ', and three angles
0,,0,, 1>. The most general (A*, g*) are then

AW = — iy,

1+ p

q' = (u + &), (B4)

where u* is the same four-velocity given in (B2), while & is
given by

& = (0,cos 0 cos @, — sinf; cos B, sin @5,
—sin @ cos @, — cos By cos B, sin @5,

(BS)

sin @, sin @1,).
Note that & denotes the line’s four-orientation, which is
always transverse to the four-velocity, u - £ = 0. Finally, we

define the spinors |L), (L| corresponding to the generic line
in 4D. By the definitions in Sec. VII, they are given by
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L)y = ([LY]2)

Ly i1 I} . gy
e [a+a’_e 2" cos(3) —ia_a’ e 2 sin(
o _o . KOV R?”) _lo1n
e [za+a’_e 2 sin(3) — a_d’ e 2" cos(

where a,. =

or. o,
) e |ia, d\e

_ioy ;] =
)| e 2 |a.d\ e

2 sin(%) - a_a et COS(%Z)}
91 92 . /! 912 . 92 ’ (B6)
] COS(E) —ia_a_ e sln(?)}

%. Note that we do not have dotted little group indices; the little group is SO(2) ~ U(1), and so the two-

component spinor representation is reducible and includes both :I:% helicities under the U(1). One can readily check that

(40) is satisfied.
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