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Abstract: We investigate the dynamics responsible for generating the potential of the η′,
the (would-be) Goldstone boson associated with the anomalous axial U(1) symmetry of
QCD. The standard lore posits that pure QCD dynamics generates a conning potential
with a branched structure as a function of the θ angle, and that this same potential largely
determines the properties of the η′ once fermions are included. Here we test this picture
by examining a supersymmetric extension of QCD with a small amount of supersymmetry
breaking generated via anomaly mediation. For pure SU(N) QCD without avors, we verify
that there are N branches generated by gaugino condensation. Once quarks are introduced,
the avor eects qualitatively change the strong dynamics of the pure theory. For F avors
we nd |N − F | branches, whose dynamical origin is gaugino condensation in the unbroken
subgroup for F < N − 1, and in the dual gauge group for F > N + 1. For the special cases
of F = N − 1, N, N + 1 we nd no branches and the entire potential is consistent with being
a one-instanton eect. The number of branches is a simple consequence of the selection
rules of an anomalous U(1)R symmetry. We nd that the η′ mass does not vanish in the
large N limit for xed F/N , since the anomaly is non-vanishing. The same dynamics that
is responsible for the η′ potential is also responsible for the axion potential. We present a
simple derivation of the axion mass formula for an arbitrary number of avors.
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1 Introduction

Understanding the dynamics of QCD is one the most important and exciting open questions
in modern particle physics. While many qualitative aspects are clear, including the existence
of chiral symmetry breaking with various quark and glueball condensates, the details of the
dynamics leading to connement and chiral symmetry breaking are still not fully understood.
Instantons might be expected to play an important role in the conning dynamics. However,
Witten, and separately Di Vecchia and Veneziano, argued convincingly that they are likely
not responsible for the main features of the QCD η′ potential [1–4]. Witten’s argument
focuses on the θ-dependence of the QCD vacuum energy. In the absence of fermions (pure
QCD) the dynamics responsible for connement is expected to produce a non-vanishing
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potential which depends on the θ angle. Once massless fermions are introduced, the θ-
dependence should disappear. This is due to the presence of the η′ (the Goldstone boson of
the anomalous axial symmetry) which acts as a heavy axion canceling the θ-dependence of
the theory. However in the large N limit the anomaly vanishes, and the η′ is expected to
become massless. This has very important consequences on the θ-dependence of the theory,
which we will review in detail in section 3. These arguments involving the large N limit
and the η′ mass led Witten to conclude that the potential of large N QCD must have a
branched structure, also implying that the dynamics responsible for generating the QCD
potential is not instantons (since an instanton eect produces a potential that is strictly 2π

periodic in θ, and does not have a branched structure). This also implies that any attempts
at deriving the usual QCD axion mass formula using insertions of ’t Hooft operators due to
instanton eects are futile.

The rst aim of this paper is to review the arguments summarized above in the simplest
language of the chiral Lagrangian, and examine the consequences for axion dynamics. The
main original part of the paper is the examination of the statements regarding conning
dynamics, the η′ potential and its branched structure in a QCD-like theory obtained by
perturbing the supersymmetric (SUSY) extension of QCD via small SUSY breaking obtained
from Anomaly Mediated Supersymmetry Breaking (AMSB) [5–9].

The dynamics of the unbroken SUSY theories have been understood in refs. [10–12],
for a review see [13]. Interestingly there are various phases as the number of avors F is
increased with respect to the number of colors N , and the IR dynamics is dierent in these
various SUSY phases. It has been recently shown [14, 15], that SUSY QCD with AMSB
has a vacuum with QCD-like chiral symmetry breaking SU(F ) × SU(F ) → SU(F )V (at
least as a local vacuum) for all avors where the original SUSY theory is asymptotically
free (F ≤ 3N).1 It is therefore possible to ask what the resulting η′ potential and chiral
Lagrangian look like. The η′ potential, as well as the chiral Lagrangian, are (mostly)
calculable within the scope of AMSB QCD theories, except for some O(1) Kähler potential
coeecients for some specic number of avors.

Throughout our calculations we will assume mQ ≪ m ≪ Λ, where m is the SUSY
breaking mass scale and mQ is the scale of the quark masses (that are added to the
superpotential). This choice leaves squarks and gluinos below the strong coupling scale
Λ and makes them participate in the strong dynamics. Hence these theories do not truly
have the same dynamics as ordinary QCD, but the massless spectrum is indeed just that
of QCD, with the squarks and gluinos picking up an AMSB mass at one loop. Ordinary
QCD would correspond to taking m > Λ, a limit we cannot take since there may be phase
transitions occurring. Nevertheless we nd some quite remarkable and unexpected results,
which may serve as lessons for the dynamics of ordinary QCD as well:

• The dynamics responsible for the η′ potential (and hence connement and chiral
symmetry breaking) is strongly dependent on the number of avors F .

• For |F − N | > 1 there is indeed a branched structure for the θ-dependent part of the
1For other recent work applying AMSB to exact SUSY results see [16–24].

– 2 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
9

potential, given by a function V (θ/|F − N |). The origin of the branches are gaugino
condensation in the unbroken subgroup for F < N and in the dual gauge group for
F > N + 1.

• For F = N −1, N, N +1 there is no branched structure for the potential, corresponding
to the fact that the entire θ-dependence is consistent with being generated by ordinary
instantons.

• While the η′ mass does vanish in the large N limit as long as the number of avors is
xed, if F ∝ N the η′ mass will not vanish, in agreement with the fact that the chiral
anomaly also remains xed for this case.

• For N ≫ F the vacuum energy has the same N dependence as in pure QCD without
fermions, i.e. it is proportional to N2. However, if both the number of avors F and
the number of colors N are large with F ∼ N ≫ 1 we nd that the vacuum energy is
proportional to N3/2.

• For generic θ the theory has a unique vacuum in the limit of equal quark masses. For
θ = π the vacuum structure depends critically on F and the quark masses mQ. For
F = 1 there exists a critical value for the quark masses mQ,0 ∼ m/N below which
there is a unique vacuum and CP remains unbroken. For mQ = mQ,0 the η′ is exactly
massless and for mQ > mQ,0 there are two degenerate vacua and CP is spontaneously
broken. For F > 1 we always nd doubly-degenerate vacua for all non-vanishing
quark masses leading to spontaneous CP breaking and a rst-order phase transition,
in agreement with the ndings of [25] for non-supersymmetric QCD.

So what do we expect for ordinary QCD? In that case F = N , and it is not clear
which (if any) of the large N limits is the most relevant. Based on the lessons learned
here one would expect that the light avors can play an important role in the conning
dynamics and are not negligible. However, the essence of the avor dependence in the
broken SUSY theories arises through the VEV of squarks, for example, if N > F , the group
conning in the IR is reduced to SU(N − F ). Thus it is not clear whether a similarly strong
F -dependence persists in the non-supersymmetric case. On the other hand, the number of
branches in SUSY QCD can also be understood as a simple consequence of the selection
rules of its anomalous U(1)R symmetry (that plays a similar role as U(1)A in ordinary QCD).
The number of avors F determines the size of the anomaly and through it the θ-dependence
of the potential, as we show in section 7. It is possible that this symmetry argument can be
interpolated into the regime with large SUSY breaking relevant for ordinary QCD, though
it is not immediately clear to us how to do it in a controlled way. The theory where this
seems hardest to do is pure SUSY Yang-Mills, i.e. the F = 0 limit of our models. SUSY
Yang-Mills has N branches, with the gluino condensate a function of θ/N . After SUSY
breaking via AMSB this translates into N branches for the vacuum energy as a function of
θ. This is a consequence of the U(1)R acting on the gluinos, and of its anomaly. In ordinary
QCD at large N we nd exactly the same number of branches for the vacuum energy as a
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function of θ [1, 2], even though there are no fermions present, and hence there is no trace
of this symmetry or a possible analogous one.

Results qualitatively similar to ours have been obtained by Dine, Draper, Stevenson-
Haskins and Xu [26] by perturbing the exact SUSY results with soft squark and gluino
masses (see also [27] for some comments). Here we use the specic form of AMSB which
allows a complete mapping of the SUSY breaking terms in a UV insensitive way, which
makes it possible to obtain the resulting conning potentials for the F ≥ N cases.

The paper is organized as follows. In the rst half of the paper we review the standard
lore of the η′ in ordinary QCD. In sections 2 and 3 we outline how the η′ is introduced
into the chiral Lagrangian and discuss possible origins of its non-perturbative potential:
instantons or connement dynamics. Then, using arguments from large N QCD, we
construct an improved potential for the η′ and investigate how it aects the axion mass in
section 4. In the second half of the paper we move on to SUSY QCD with AMSB to study
the origin of the η′ potential in a fully calculable framework. We summarize our ndings
from SUSY QCD in section 5. After a short review of AMSB in section 6 we use a spurion
approach to identify the θ dependence of the scalar potential in the chiral Lagrangian in
section 7 before we systematically obtain and study the chiral Lagrangian for F < N in
section 8, F = N, N +1 in section 9 and F > N +1 in section 10. We conclude in section 11.

2 General structure of the chiral Lagrangian

We are interested in the low energy dynamics of a conning SU(N) gauge theory with F

quarks in its fundamental representation, and always take F below the conformal window. In
analogy with QCD we assume that the quark masses are small compared to the connement
scale. In this section, to set the notation, we introduce the well-known chiral Lagrangian
that describes the lightest degrees of freedom of this theory, with an eye to the possible role
of instantons and the computation of the η′ and axion potentials.

At the classical level, when all quark masses vanish, there is a U(F )L × U(F )R =
SU(F )L × SU(F )R × U(1)L × U(1)R global symmetry,2 but quantum mechanically U(1)A is
explicitly broken. The vacuum structure of the gauge theory is such that only the diagonal
subgroup U(F )V is linearly realized, resulting in F 2 − 1 massless Golstone bosons, which
we will simply call ‘pions’ (πa). The inclusion of identical quark masses explicitly breaks
the U(F )L × U(F )R symmetry down to U(F )V . The dierences between quark masses can
further break U(F )V to U(1)F . Quark masses mq much smaller than the connement scale
Λ can be considered a perturbation. In this limit the pions remain the lightest states of the
theory, with masses suppressed by mq.

The vector U(1)V = U(1)L + U(1)R factor is identied with unbroken baryon number
U(1)B. The axial U(1)A = U(1)L − U(1)R is anomalous, with the anomaly given by

∂µjµ
A = F

g2

32π2 Tr GG̃ . (2.1)

Here we assumed that the anomaly is only due to the fundamental fermions of the SU(N)
gauge group, g is the SU(N) gauge coupling and Tr G G ≡ ϵµνρσ N2−1

a=1 Ga
µνGa

ρσ for a
2Note that this isomorphism holds only locally. Globally U(F ) = (SU(F ) × U(1))/ZF .
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normalization of the SU(N) generators of Tr[T aT b] = 2δab. In the absence of the anomaly
the Goldstone boson η′, associated to the U(1)A current, is massless. However, in the
presence of the anomaly, the η′ is expected to be just another massive particle, much heavier
than the pseudo-Goldstone pions. In particular, ’t Hooft argued that instanton eects can
explain the absence of a light η′ (solving the so called “U(1)-problem”) [28, 29].

The general approach to capture the physics of the U(1)A breaking in the Chiral
Lagrangian is to promote the θ parameter of the gauge theory, dened as

L ⊃ θ
g2

64π2 TrG G , (2.2)

to a spurion. Under a chiral rotation of the quarks

ψj → eiφψj , ψc
j → eiφψc

j , j = 1, . . . , F , (2.3)

the path integral measure changes non-trivially [30, 31]. This can be compensated by a
shift of the θ angle:

θ → θ + 2 F φ . (2.4)

Assigning this transformation behavior to θ promotes it to a spurion and formally restores
the U(1)A symmetry. Thus it can be used as a building block in the chiral Lagrangian to
construct U(1)A invariant terms. The same can be done for the explicit breaking from the
quark mass matrix mQ, promoting it to a spurion of SU(F )L × SU(F )R × U(1)A in the
usual way,

mQ → e−2iφURmQU †
L , (2.5)

where UL and UR are SU(F )L and SU(F )R transformations, respectively. To build the
chiral Lagrangian we need to introduce the Goldstone elds U , which under the SU(F )L ×
SU(F )R × U(1)A global symmetries transform as

U → e2iφULUU †
R (2.6)

and can be parametrized as
U = eiη′

eiπaT a
. (2.7)

This is in accordance with the expectation that the η′ shifts under the axial symmetry as

η′ → η′ + 2φ . (2.8)

We have absorbed the decay constants fη′ and fπ into η′ and π, respectively, so that the
meson elds are dimensionless. Note that U ∈ U(F )A = (SU(F )A × U(1)A)/ZF which
implies the identication (eiπaT a

, η′) ∼ (e− 2πi
F eiπaT a

, η′ + 2π
F ), i.e. the physical range of η′

in this normalization is η′ ∈ [0, 2π
F ] (see e.g. [25]).

The usual leading terms in the chiral Lagrangian can be written as

L = f2
π

4 Tr

(∂µU)†∂µU


+ αΛf2

π (Tr [mQU ] + h.c.) , (2.9)
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where Λ ≃ 4πfπ is the dynamical scale of the gauge group, α is an O(1) number, mQ is the
quark mass matrix, and we assumed that fη′ = fπ. Note that in the rest of the paper we
show potentials for the mesons (η′ and πa) where they are not canonically normalized. We
normalize the kinetic term only when showing the physical η′ mass. This choice simplies
the spurion analysis of the U(1)A symmetry.

To reproduce the symmetry properties of the high-energy theory in our eective theory
without fermions, we add to the above Lagrangian a term that breaks the U(1)A consistent
with the spurion analysis above. The simplest possibility appears to be

Linst = bΛ2f2
πe−iθ det U + h.c. , (2.10)

where b is an unknown dimensionless coecient. This term breaks the axial symmetry
explicitly, which is however restored if we promote θ to a spurion. Eq. (2.10) may correspond
to an ordinary instanton because it is proportional to e−iθ, the hallmark of 1-instanton
eects, which we will expand on in the next section. The resulting potential for the η′ is

Vη′ = −2bΛ2f2
π cos(θ − F η′) , (2.11)

a function which is explicitly 2π periodic in θ without branch cuts or singularities. In the
absence of quark masses, given the transformations eq. (2.4) and eq. (2.8) any potential
term can only depend on the U(1)A invariant combination θ − F η′.

To analyze the vacuum structure of the theory (and the axion mass) one can integrate
out the η′ and after that the pions. Since the η′ is much heavier than the pions, at leading
order its vev is determined from eq. (2.11), η′ = (θ + 2kπ)/F , where k is an arbitrary
integer. In the following we will restrict ourselves to the physical eld range η′ ∈ [0, 2π

F ] and
therefore set k = 0. We can also assume that the quark mass matrix has only one overall
phase θq, i.e. mQ = eiθq mq (which can always be achieved by a suitable SU(F )L × SU(F )R

rotation). Hence the potential for the lightest pseudo-Goldstone bosons can be obtained
from eq. (2.9) and is given by

Vπ = −αΛf2
πeiθ̄/F Tr(mqeiπaT a) + h.c. , (2.12)

where θ̄ = θ + F θq is the usual physical combination that can be measured. To nd the
θ̄ dependence one needs to minimize the potential with respect to the neutral Goldstone
bosons. For F avors there will be F − 1 neutral Goldstones corresponding to the Cartan
sub-algebra of SU(F )A. The Cartan sub-algebra is generated by the F − 1 generators,
t1, . . . , tF −1, that can be simultaneously diagonalized. The resulting potential is

Vπ0 = −2αΛf2
π

F

i=1
mi cos


 θ̄

F
+

F −1

j=1
tj
i πj


 (2.13)

where mi is the ith diagonal element of the quark mass matrix and tj
i is the ith diagonal

element of the jth Cartan generator. Note that despite its appearance eq. (2.13) is 2π

periodic in θ̄. A shift θ̄ → θ̄ + 2π can be compensated by a redenition of the GB elds πj

and the 2π periodicity of the cosine. Clearly if any mi = 0 one can simply set the remaining
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F − 1 arguments of the cosines to zero and reabsorb θ̄ into the VEVs of the neutral mesons.
However if all mi’s are non-zero one needs to minimize the potential of the sum of cosines
and the value at the minimum will be θ̄-dependent, leading to a non-vanishing axion mass.

For example, for F = 2 the potential is

V2 = −2αΛf2
π


mu cos


θ̄

2 + π0


+ md cos


θ̄

2 − π0


. (2.14)

The minimum of V2 is given by

Vmin = −2|α|Λf2
π


m2

u + m2
d + 2mumd cos θ̄ . (2.15)

For F = 3 the potential is

V = −2αΛf2
π


mu cos


θ̄

3 + π0 + η√
3


+ md cos


θ̄

3 − π0 + η√
3



+ms cos


θ̄

3 − 2η√
3


.

(2.16)

The equations for π0, η have to be minimized numerically. Note that the potentials in
eq. (2.14) and eq. (2.16) can be made manifestly 2π periodic in θ̄ by shifting π0 and η. In
the F = 2 case this shift takes the form π0 → π0 − θ̄

2 .

3 Instanton vs. condensates: large N limit and branched potential

The chiral Lagrangian term eq. (2.10), has the characteristic form of a one-instanton eect.
The action of a single instanton is SI = 8π2/g2, and an instanton always appears with
an e±iθ factor, because it has winding number one for an instanton and minus one for an
anti-instanton. This means that a one-instanton eect is always proportional to

e−8π2/g2±iθ . (3.1)

In supersymmetric theories (as we will see in the second half of this paper) it is customary
to introduce a complex (“holomorphic”) coupling constant τ = 4πi

g2 + θ
2π where g is the

gauge coupling. The instanton eect is then proportional to e2πiτ . One important takeaway
is that instanton eects will always involve an explicit e±inθ factor, where n is an integer,
giving rise to the explicit breaking of the axial symmetry.

Another important quantity to consider is the dynamical scale of the theory, the
generalization of ΛQCD. To one loop order it is dened as

Λ = µe
− 8π2

b0g2(µ) , (3.2)

where µ is an arbitrary scale, and b0 is the one loop beta function coecient. One can easily
show that this scale is RGE invariant to one loop order. This shows, that instanton eects
are proportional to Λb0 , which is usually called the instanton factor. It is now clear, that it
may be useful to dene a holomorphic version of this dynamical scale that also incorporates
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the θ dependece of the one-instanton eect, which is simply Λb0 = µb0e2πiτ . One of the
great advantages of this holomorphic scale is that it carries a spurious charge under the
anomalous axial symmetry, and it can be used as the spurion for the breaking of the axial
symmetry via anomalies. For a more detailed discussion of the denition of the dynamical
scale (especially in supersymmetric theories) see appendix A.

Witten and Veneziano [1, 32, 33] pointed out that the situation regarding the η′

potential might not be as simple as adding the one-instanton motivated eective operator
in eq. (2.10). The best way to see the possible issue is by considering the large N limit of
the theory, keeping the ’t Hooft coupling λ = g2N xed. The chiral anomaly (assuming the
number of avors is held xed) vanishes in this limit

∂µjµ
A ∼ F

g2

8π2 TrGG̃ ∼ λ

8π2
F

N
TrGG̃ → 0 (3.3)

and U(1)A is restored. Hence the expectation is that η′ can be treated on the same footing
as all other mesonic GBs in this limit, i.e. its mass vanishes for massless quarks. However
the type of instanton-inspired term, eq. (2.10), that we have used in the previous section
does not go to zero for N → ∞, since Λ is xed. In the large N limit it is unlikely to
capture the correct physics responsible for the η′ mass. A naive argument would suggest
that all instanton eects should vanish in the large N limit, since the instanton action
e−8π2/g2 ∝ e−N , however this may not be correct due to infrared divergences and the growth
of the number of zero modes one needs to integrate over. We will in fact see later cases
when there are nite instanton eects even at large N , unsuppressed by e−N .

Another convincing argument by Witten that eq. (2.10) is not the leading contribution
to the potential, comes from considering the vacuum energy of the theory. In pure QCD
(without fermions), the vacuum energy is proportional to N2 — scaling with the number of
gluons in the theory — and has a non-trivial dependence on θ of the form [34]

E(θ) = N2f(θ/N) , (3.4)

for some function f . This is motivated by exact results in two dimensional models and by
the fact that it reproduces the expectation that the η′ mass vanishes in the N → ∞ limit,
as we will verify momentarily. The vacuum energy, like all physical quantities, should be
2π-periodic in θ. In order to achieve this despite the dependence on θ only through θ/N

Witten proposed that the potential is in fact continuous but not-smooth in θ with multiple
branches. We will return to the form of this potential shortly.

Assuming that the small quark masses do not change the underlying dynamics and
have only a small eect on the potential, then the potential for η′ can be deduced from
the pure QCD vacuum energy E(θ). Using the U(1)A symmetry, where θ is promoted to a
spurion transforming as in eq. (2.4) under the U(1)A, the potential with vanishing quark
masses would be of the form

VF (θ, η′) = Vpure QCD(θ − F η′). (3.5)
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Using the expression in eq. (3.4) for the vacuum energy, this leads directly to the Veneziano-
Witten formula [1, 32] for the η′ mass3

m2
η′ = 2F

f2
π

d2E

dθ2



pure QCD

θ=0
. (3.6)

From eq. (3.4) it is apparent that d2/dθ2 E(θ)|θ=0 ∼ N0 which together with the N scaling
of the pion decay constant fπ ∼

√
N implies that m2

η′ ∼ 1/N , as expected in the large N

limit. This further justies the ansatz for the vacuum energy in eq. (3.4).
In order to incorporate these results in the chiral Lagrangian we have to modify the

term for the η′ mass. Requiring that the potential has N branches as Witten argued, we
suggest that instead of eq. (2.10) the proper term should rather be of the form

Lη′ = NΛ2f2
π(e−iθdet U)1/N + h.c. (3.7)

This potential correctly reproduces the expected scaling m2
η′ ∼ 1/N , and matches what we

will nd in the SUSY case below.4
The form of this potential has several important consequences. First, the dynamics

of the η′ mass does not actually directly originate from an instanton eect. Instanton
terms should always be proportional to einθ with n integer. Second, the non-analytic form
of eq. (3.7) implies that the vacuum structure of pure QCD is, as already anticipated,
non-trivial with various branches. This ensures that physics remains 2π periodic in shifts of
θ. For example, the pure QCD potential could be of the form

V (θ) = min
k


− 2N2

(4π)2 Λ4 cos


θ + 2πk

N


, k = 0, . . . , N − 1 (3.8)

and would satisfy the conditions on the η′ mass and the periodicity of the theory in θ. In this
case one has N dierent branches. It is important to point out that this branched structure
for the potential is a well-informed guess in ordinary QCD. The arguments reviewed above
and in [33] lead to postulating a dependence of the vacuum energy of the form V = V (θ/N).
In the following we see how these branches emerge explicitly in SUSY QCD.

Once fermions are introduced, the θ-dependence will change to θ → θ − η′F , and the
potential in the chiral Lagrangian responsible for the η′ mass will be of the form

V (θ, η′) = min
k


−2NΛ2f2

π cos


θ − F η′ + 2πk

N


, k = 0, . . . , N − 1 . (3.9)

The potentials in eq. (3.8) and eq. (3.9) are plotted in gure 1 for N = 3. The solid curve
gives the full potential, while the dashed lines show the contribution to the potential of the
dierent branches. The potential is not smooth, but remains periodic. The true minimum
of the energy is for θ = 0.

3Note that d2

dη′2 Vpure QCD(θ − F η′) = F 2

f2
π

d2

dθ2 Vpure QCD(θ − F η′). The actual prefactor is achieved after
the η′ kinetic term is canonically normalized.

4Note that one may instead use a term 1/N(−i log det U − θ)2 which is essentially just a pure η′ mass
term 1/N(F η′ − θ)2. Expanding eq. (3.7) gives exactly this mass term to leading order, while the quartic
η′4 is suppressed by N4 as expected.
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Figure 1. Potential for N = 3 pure QCD as given in eq. (3.8) (left) and η′ according to eq. (3.9) for
N = 3, F = 2 (right) along θ = 0. The three branches are depicted in dierent colors. The actual
potential is the lower envelope of the branches, i.e. the solid curve.

The η′ will adjust to the minimum of the potential so as to cancel the θ-dependence, in
essence itself acting like a heavy QCD-scale axion. This will wash out the presence of the
various branches of pure QCD, with the only remnant being the value of the η′ VEV

⟨η′⟩ = θ + 2πk

F
. (3.10)

It is important to note that η′ is an angular variable with periodicity 2π
F in our normalization.

This implies that there is a single minimum in the physical eld range η′ ∈ [0, 2π
F ], which

corresponds to the choice k = 0. In the absence of quark masses (explicit breaking terms)
the θ dependence completely disappears, as expected. Once quark masses are added, the
θ-dependence resurfaces through the θ-dependence of the η′ VEV (which now is just an
overall phase of the U matrix); see eq. (2.13). However the story is still not nished:
the light pseudo-Goldstone bosons themselves act as axions and would like to cancel the
remaining θ-dependence of the Lagrangian. For F quark masses there are only F −1 neutral
Goldstone bosons, and one cannot fully cancel all the θ-dependence of the Lagrangian, hence
the need for the usual axion that can cancel the remaining θ-dependence. If at least one of
the quark masses vanishes then there are enough neutral Goldstone bosons to completely
cancel the θ dependence, hence the mu = 0 solution of the strong CP problem.

We have seen that the most likely dynamical origin for the θ-dependence of the QCD
potential is not actually a direct instanton eect, but rather the conning dynamics that
gives rise to the various condensates of QCD. A nice heuristic picture of Di Vecchia and
Veneziano [2] starts with the fact that the low-energy theory should contain an η′TrGG̃

term to reproduce the chiral anomaly of theories with fermions. Once connement happens
this term can be thought of as a mixing between the η′ and a pseudo-scalar glueball whose
interpolating eld is TrGG̃. The glueball should also have a direct mass term generated by
connement. In this picture the mixing between the η′ and the pseudo-scalar glueball is the
origin of the η′ mass. In the supersymmetric theory we will often nd gluino condensation
as the origin of connement, the η′ mass and the various branches of the theory.
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4 The axion mass

Let us now investigate how our previous discussion aects the potential of the axion. To do
this we have to assume that there is a second chiral U(1) Peccei-Quinn (PQ) symmetry,
which is non-linearly realized at some high scale fa, and is anomalous under QCD. The PQ
symmetry acts as a shift symmetry on the resulting Goldstone boson, the axion: a → a + φ.
The anomaly explicitly breaks this symmetry, and to formally restore it we can promote
the θ-angle to a spurion

a → a + φ, θ → θ − nφ , (4.1)

where n is the anomaly coecient of U(1)P Q under QCD. This implies that the QCD
potential now depends on the combination θ + na − F η′. The QCD potential gives a mass
to one combination of η′ and a, and the orthogonal combination remains massless. Since
the dimensionless η′ is actually suppressed by fπ while the dimensionless a by fa, and
fa ≫ fπ, the massive eld is mostly composed by the η′, and the massless one to a good
approximation is the axion.

For concreteness let us consider the potential on the kth branch

Vk(η′,a,πj) = −2NΛ2f2
π cos


θ−F η′+na+2πk

N


−2αΛ2f2

π

F

i=1

mi

Λ cos


η′+θq +

F −1

j=1
tj
i πj




(4.2)
Integrating out the η′ gives to leading order in mi/Λ,5

η′ = 1
F

(θ + na + 2πk) . (4.3)

As expected the η′ adjusts to cancel the QCD potential, and to leading order washes out
all the eects of the various branches. The axion potential, to leading order is then

Va = −2αΛ2f2
π

F

i=1

mi

Λ cos


 θ̄ + an

F
+

F −1

j=1
tj
i πj


 (4.4)

where θ̄ = θ + F θq is the physical θ̄ and we used η′ = η′ + 2πk/F .6
This discussion also claries that while the axial anomaly is related to the generation

of the QCD contribution to the axion mass, it is not IR instantons that directly contribute
to the axion potential. Thus attempts at trying to draw instanton diagrams representing ’t
Hooft operators in order to explain the usual axion mass formula are futile. This of course
does not mean that there could not be additional contributions from small instantons much
above the QCD scale. There are indeed many models for that, using various modications
of the QCD dyanmics in the UV to obtain such terms (see e.g. [35–40]).

Finally let us discuss a simple method to obtain a closed form expression of the axion
mass for an arbitrary number avors, to leading order in mi/Λ and fπ/fa. With the axion

5Implicitly we assume αmi ≪ F
N

Λ.
6One should not try to minimize the η′ potential in (4.2) to higher order in mi/Λ. Including the shift in

the η′ VEV due to the quark masses will have an eect on the axion potential equivalent to considering a term
suppressed by higher powers of mi/Λ in the chiral Lagrangian of the form −α2f2

π
N

8F 2


Tr


mQU − U†m†

Q

2 .
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as a dynamical eld in (4.4), it is trivial to nd the minimum of this potential: the axion
will just cancel θ̄ while all the pions will have a vanishing VEV. Hence nding the mass
matrix is very simple, it is just a sum of pure quadratic terms

Va = αΛ2f2
π

F

i=1

mi

Λ


an

F
+

F −1

j=1
tj
i πj




2

. (4.5)

Integrating out the pions (which are much heavier than the axion) we directly obtain the
expression for the axion mass for an arbitrary number of avors7

m2
a = αΛn2 f2

π

f2
a


F

i=1
m−1

i

−1

. (4.6)

As expected, if any of the quark masses vanish, the axion mass will vanish too. The coecient
can be related to the pion masses by using the relation

F −1
i m2

πi
= 4αΛF −1

F

F
i mi to

arrive at the axion mass

m2
a = n2F

2(F − 1)
f2

π

f2
a

Tr m2
π

Tr mqTr m−1
q

. (4.7)

For F = 2 we get the usual expressions

m2
a = 2αΛn2 f2

π

f2
a

mumd

mu + md
= n2m2

π

f2
π

f2
a

mumd

(mu + md)2 . (4.8)

5 Lessons for the chiral Lagrangian from supersymmetric QCD with
AMSB: summary of results

Now that we have reviewed the standard lore about the dynamics leading to the η′ and
axion masses, we are ready to present our results for the analogous quantities in the
supersymmetric extensions of QCD, where a small amount of supersymmetry breaking
is introduced via anomaly mediation (AMSB) [6, 8, 9, 41]. We will start with the exact
vacuum of SUSY QCD and then introduce SUSY breaking via AMSB. As explained in [14]
the eect of AMSB will generate a mass for the squarks and gluinos proportional to the
amount of SUSY breaking denoted by m. To mimick ordinary QCD, we will also introduce
quark masses mQ in the superpotential, and consider the limit mQ ≪ m ≪ Λ. This will
allow us to nd the chiral Lagrangian of this QCD-like theory, and in particular identify
the potential of the η′, as well as the θ-dependence of the resulting vacuum energy. Before
detailing our calculations, we will give a brief summary of our major results:

• We verify Witten’s conjecture [1, 32, 33] that the η′ potential has a branched structure.
We also verify that for large N , but small F , the periodiciy of each branch is 2πN .

• However, for general number of avors, the conning potential changes qualitatively.
In particular, the periodicity is given by 2π|N − F | and the potential is not simply
the QCD potential with θ replaced by θ − F η′.

7For more details see appendix B.

– 12 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
9

• As Witten postulated [1, 33], the origin of the branches lies in the dynamics responsible
for connement. In the case of our almost supersymmetric theory this dynamics is
gaugino condensation in the unbroken gauge group (or for F > N + 1 in the unbroken
dual gauge group).

• Within the models considered here the dynamical origin of the η′ potential at large
F comes from the breaking of the gauge group from SU(N) to SU(N − F ) via the
F squark VEVs for F < N , while for F > N the presence of avors changes the IR
dynamics to that of a dual SU(F − N) gauge group which in turn will have its own
conning dynamics via gaugino condensation.

• For F = N − 1, N, N + 1 we nd no branch structure of the η′ potential. In this
case the dynamics leading to the vacuum structure is indeed consistent with being an
instanton eect.

• The η′ mass does not vanish in the large N limit if also F ∝ N . This is most easily seen
in the F = N − 1, N, N + 1 special cases where there is no branch structure to begin
with, but also applies to the cases with gaugino condensation. The non-vanishing
of the η′ mass in the large N limit is not too surprising, since the anomaly is also
non-vanishing for F ∝ N .

• The vacuum energy scales as N2 for N ≫ F , a scaling which is consistent with the
number of degrees of freedom (gluons and gluinos) in the theory. However, this scaling
gets reduced to N3/2 if also the number of avors is large, i.e. F ∼ N ≫ 1.

• In the limit of equal quark masses the theory has a unique vacuum for generic θ. For
θ = π we nd that for F = 1 and small quark masses below a critical value mQ,0
there is still a unique vacuum and CP remains unbroken. At the critical value, i.e.
for mQ = mQ,0 the η′ is massless and for mQ > mQ,0 there are degenerate vacua and
CP is spontaneously broken. For F > 1 there are always doubly-degenerate vacua for
all non-vanishing quark masses leading to spontaneous CP breaking and a rst-order
phase transition. This agrees with the ndings of [25] for non-supersymmetric QCD.

A typical result that illustrates the above points is the form of the η′ potential for F < N

on the kth branch:

Vk = −f(N, F )


m

|Λ|

F/N

m|Λ|3 cos


F η′ + θ + 2πk

N − F


+ O


mQ

m


(5.1)

where f(N, F ) is a numerical function of N, F . We can see nicely that the branch structure
is determined by N − F , in particular for N − F = 1 there will be no branches, and the
dynamical origin of this potential is a pure instanton term. For F < N − 1 this potential
originates from gaugino condensation in an SU(N − F ) subgroup, which leads to N − F

branches. We can also see that for F ∝ N the η′ mass does not go to zero.8

8At least as long as f(N, F ) does not vanish in that limit, which we will turn out to be the case in the
explicit calculation.
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Once the η′ is integrated out, we will obtain potentials analogous to eq. (2.13). The
typical form will be

V = −g(N, F )


m

|Λ|

F/N

|Λ|3
F

i=1
mi cos


 θ̄

F
+

F −1

j=1
tj
i πj


 , (5.2)

where the branch structure due to the strong dynamics is washed out. This is exactly like
in ordinary QCD, and the resulting axion mass (if a physical axion is introduced) will have
a structure similar to that in ordinary QCD.

6 Review of AMSB

First we will quickly review the most important formulae needed for our calculations, for
more details see [14, 15]. We will assume throughout that an N = 1 supersymmetric
extension of QCD (SUSY QCD) obtains soft breaking terms via anomaly mediation [5–9].
For other appraoches to perturbing exact results with soft breaking terms see [42–48]. The
mass scale of supersymmetry breaking is denoted by m, and AMSB will give rise to SUSY
breaking eects wherever there is a source of violation of scale invariance. This can be
tracked by including a conformal compensator Φ which will obtain an F -term set by the
SUSY breaking scale m, Φ = 1 + ϑ2m. This will result in two types of SUSY breaking
terms. There will be a tree-level potential term for the squarks of the form [15]

Vtree = ∂iW gij∗
∂∗

j W ∗+m∗m

∂iKgij∗

∂∗
j K−K


+m


∂iW gij∗

∂∗
j K−3W


+h.c. , (6.1)

generated whenever the Kähler potential is not quadratic or the superpotential not cubic.
The potential is assumed to be along the D-at direction. Here gij∗ = ∂i∂

∗
j K is the

Kähler metric and gij∗ its inverse. These terms play a crucial role in nding the correct
vacuum structure.

Due to the RGE running AMSB also generates gaugino and squark masses at the
loop-level [14]

mλ = g2

16π2 (3N − F )m , m2
Q = g4

(8π2)2 2Ci(3N − F )m2 , (6.2)

with Ci = (N2 − 1)/(2N). This sets up the UV boundary condition where all squark mass
squares are positive as long as the gauge group is asymptoticall free, i.e. F < 3N . Hence
with AMSB we are investigating a QCD-like theory where the massless spectrum exactly
matches that of QCD, however we also have the superpartners present at the massive
level, and still well below the scale of strong dynamics. These squarks and glunios will still
participate in the strong dynamics, hence the theory is not exactly QCD. One can connect
this theory to QCD by taking the Λ ≪ m → ∞ limit, however it is not clear whether a phase
transition occurs when m goes above Λ. We will not be trying to take the m > Λ limit, but
rather investigate the dynamics of the QCD-like theory with the additional superpartners.
Note that in the limit N ≫ F the physical masses mλ, mQ, m̄Q ∝ (g2N)m depend only on
the constant combination g2N = const., hence the physical masses are nite in the large N

limit if m has no dependence on N .
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7 A spurion argument for the θ-dependence

Our main results on the θ-dependence of the vacuum energy derived in sections 8, 9 and 10,
can be understood as simple consequences of the anomalous U(1)R symmetry of SUSY
QCD. While these arguments are well-known and are already discussed as early as in [10]
we nd it instructive to show explicitly how they can be used to nd the θ-dependence of
the potential.

Supersymmetric theories often contain a peculiar type of chiral symmetry, called the
R-symmetry, under which the various elements of a supermultiplet have dierent charges.
The best way to explain this symmetry is to assign R-charge +1 to the ϑ coordinate of
superspace (which is not to be confused with the θ angle). Since a chiral supereld has
an expansion of the form Φ = φ(y) + ϑψ(y) + ϑ2F (y), this implies that if the scalar has
R-charge r then the fermion has R-charge r − 1, and the F-component has R-charge r − 2.
Since the contribution of a superpotential to the Lagrangian is of the form


d2ϑW , a

superpotential term has to have R-charge 2, which usually determines the R-charges of the
chiral superelds. Finally, the gauge kinetic term can also be written in the chiral form

d2ϑWαW α where Wα = λα + . . . is the vector supereld whose lowest component is the
gaugino λα. Hence a gaugino always has to have R-charge +1.

Let us rst consider the case of pure super Yang-Mills (SYM) F = 0. The R-symmetry
in this case only acts on the gluinos, and is an axial rotation λ → eiαλ which is anomalous
under the gauge group. We can formally restore the anomalous symmetry by promoting θ

to a spurion,
θ → θ + 2Nα , (7.1)

where 2N is the anomaly coecient. Since physics is invariant under θ → θ + 2π, a Z2N

discrete subgroup of U(1)A, given by α = 2πk/(2N), survives as a symmetry at the quantum
level. This anomalous R-symmetry can be used to nd the eective superpotential of the
low-energy theory, assuming that pure SYM is conning with a mass gap (ie. gluinos and/or
gluons condense and form massive glueballs and gluinoballs). The θ-dependence of the
eective superpotential can be immediately xed from spurion analysis, as a superpotential
term has to have R-charge 2 (and dimension 3), hence

Wef = c µ3ei θ
N (7.2)

where µ is some dimensionful parameter. Since we are considering a supersymmetric theory
whose superpotential has to be holomorphic, the above superpotential can be rewritten in
terms of the holomorphic gauge coupling τ = 4πi

g2 + θ
2π as W ∝ e6πiτ/b0 with b0 = 3N for

SYM. Introducing the holomorphic dynamical scale Λ = µe
2πiτ(µ)

b0 we nd the usual form of
the eective superpotential for SYM, Wef = c′Λ3. In order for physics to be 2π periodic in
θ there must be N dierent branches with the nal form of the superpotential on the kth

branch given by
WSYM = c ωkΛ3 (7.3)

where ωk = ek 2πi
N . The full dynamics leading to this superpotential is that of gluino

condensation, and leads to c = N , as was argued in [49–52]. Since supersymmetry is
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unbroken, the potential is vanishing in the vacua of all of these branches, however the value
of the gluino condensate does dier on each of them.

Let us now turn on supersymmetry breaking in the form of AMSB. Since the SUSY
breaking parameter m appears as the F-term of the conformal compensator Φ = 1+ϑ2m, m

has to have R-charge −2. Hence from U(1)R spurion analysis as well as the SUSY selection
rules (i.e. eq. (6.1)) which include terms ∝ mW we expect a term in the potential9

V ∝ meiθ/N , (7.4)

which is indeed what we nd in our full analysis (see for example eq. (8.10) in the next
section). Again requiring that physics be 2π-periodic in θ, we can conclude that the vacuum
energy must have N branches as a function of θ.

Let us now add F avors Q, Q̄ in the fundamental and anti-fundamental representation
of SU(N) with vanishing R-charges. This will imply that the fermionic components have
R-charge −1, modifying the anomaly: the spurious charge of θ will now be 2(N − F ),10

θ → θ + 2(N − F )α . (7.5)

To see how this leads to the θ dependence of the potential and the branched structure, we
introduce SUSY breaking and quark masses. We begin by considering the supersymmetric
limit and the addition of quark masses mQ. mQ, as a spurion, has to carry R-charge 2
(as well as being in the bifundamental representation of the avor group). Assuming that
the only light elds in the IR eective theory are supermesons or superbaryons which do
not carry any R-charge (since Q, Q̄ have R-charge zero), we can again easily identify the
possible θ-dependence of these theories. This assumption corresponds to taking mQ ≪ |Λ|,
as we do in the following to make contact with QCD.

Since the only objects that transform non-trivially are the two spurions θ and mQ, we
can conclude that the form of the superpotential must be

Wef = aei θ
N−F + bmQ , (7.6)

purely from the U(1)R selection rules and holomorphy. Thus there will be a term of the form

V ⊃ (ab∗)m∗
Qe

iθ
N−F + h.c. , (7.7)

in the scalar potential which together with the requirement of 2π-periodicity in θ will imply
the existence of |N − F | branches.

Finally let us add SUSY breaking via AMSB as we did for the pure SYM case. Following
the same steps as above, we nd two more terms allowed in the scalar potential

V ⊃ b′(mmQ) + a′

mei θ

N−F


+ h.c. , (7.8)

9Note that AMSB allows two set of tree-level terms with a non-trivial U(1)R phase, Vtree ∼ mW and
Vtree ∼ m


∂iW gij∗

∂∗
j K


, but under our assumptions they have the same dependence on θ, because K and

all the low energy elds are neutral under the U(1)R. This remains true when we add F ̸= 0 below.
10The Dynkin index of the fundamental representation is normalized to 1/2.
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which are indeed both present in our explicit results below, see for example eqs. (8.5)
and (10.7). The |N − F | branches are preserved by AMSB. It is interesting to notice that
one can interpret the |N − F | distinct vacua as a spontaneous breaking of the Z2|N−F |
symmetry down to a Z2, as pointed out in [10] for F < N .

The θ-dependence of the potentials that we derive later in sections 8 and 10 can be
obtained purely from holomorphy and the U(1)R selection rules. However, a more precise
construction requires to distinguish between N > F [10], N = F [11], and N < F [12],
as we do in sections 8, 9 and 10. In particular for F = N the U(1)R is not anomalous
and does not give us information about the θ-dependence of the potential. We show in
section 9 how to analyze this case. However, we can still conclude that we expect a term
proportional to mmQ (following the same arguments as for F ≠ N) and that terms of the
form Λn, which were forbidden for F ≠ N , are instead allowed. We nd both classes of
terms in eq. (9.5). Note that the m2Λ2 term in the same equation should be interpreted
as a |m|2Λ2 term, because in later sections we rotate away the phase of m by shifting the
η′ and θ. Everywhere below we treat m as a real parameter. This explains the form of
eqs. (8.6), (9.5), (9.10) and (10.7).

8 F < N : the ADS superpotential. Modied branch structure and
instanton generated η′ mass

We have already argued above what the expected form of θ-dependence will be in SUSY
QCD with AMSB. In the next three sections we present the full detailed evaluation
of the chiral Lagrangian in these theories, which will also yield the explicit form of the
θ-dependence for each of these cases.

Let us rst investigate the simplest case of F < N . This was also explored in [26] by
adding a mass to the squarks and gluinos, reaching results similar to those obtained here via
the AMSB method. In the following we always assume N > 2 so that the chiral symmetry
and its breaking pattern can reect those of ordinary QCD.

For F < N the superpotential can be written in terms of the meson matrix
Mff ′ = Q̄f Qf ′ as

W = (N − F )


Λ3N−F

det M

1/(N−F )

+ Tr(mQM) , (8.1)

where the rst term is the non-perturbative ADS superpotential [10, 53] and the second
is a mass term for the quark superelds. Here Λ is the holomorphic scale, which is scale
invariant.11 Note that mQ can always be diagonalized by a bi-unitary transformation. In
the following we will assume the hierarchy Tr mQ ≪ m ≪ Λ, i.e. mQ is a small spurion that
explicitly breaks the U(F ) × U(F ) avor symmetry, just like the quark masses in QCD.

11For the conversion between the holomorphic scale and the physical scale see appendix A.
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We parameterize the D-at directions as Qa
f = Q̄a

f = fδa
f which implies Mff ′ = f2δff ′

and determine the scalar potential for f using eq. (6.1)12

V = (2F )−1


2F

f


Λ3N−F

f2F

1/(N−F )

− 2fTr(mQ)



2

− m


(3N − F )


Λ3N−F

f2F

1/(N−F )

+ f2Tr(mQ)


 + h.c. (8.2)

We neglect the contributions to the potential from the SUSY breaking squark mass terms
(see eq. (6.2)), since they are loop suppressed and give a negligible contribution to the
minimization of the potential. Like the D-terms, these terms also do not depend on the
Goldstone bosons.
For Tr mQ ≪ m ≪ Λ the scalar potential in eq. (8.2) is minimized for

|f | = |Λ|


N + F

3N − F

|Λ|
m

(N−F )/(2N)
+ O(mQ/m) . (8.3)

Thus the U(F ) × U(F ) avor symmetry is spontaneously broken to its diagonal subgroup
U(F )V . The GBs of the U(F ) × U(F ) → U(F )V breaking are parameterized by a unitary
matrix U (cf [26])

Qa
f = |f |δa

f , Q̄a
f = Qa

f ′Uf ′f , M = |f |2U . (8.4)

The resulting scalar potential for U obtained from the potential for Q and Q̄ after the
substitution of eq. (8.4) is

V = − m


(3N − F )


Λ3N−F

|f |2F

1/(N−F )

det(U)−1/(N−F ) + |f |2Tr(mQU)


 + h.c.

− 2


Λ3N−F

|f |2F

1/(N−F )

det(U)−1/(N−F )Tr(m†
QU †) + h.c .

(8.5)

As in the previous sections, we are only interested in the dependence on η′, θ and the
remaining neutral GBs, so we take U = eiη′

eiπjtj , where tj are the generators of the Cartan
sub-algebra of SU(F ). We would also like to remind the reader that η′ in our normalization
has a periodicity of 2π

F . Again, the elds are taken to be dimensionless: the physical
canonically normalized elds can be obtained with the replacement η′ → η′/(

√
2F f) and

π → π/(2f), with the identication fπ = fη′ = f .

12Note that the Kähler potential for f is not canonical K = 2F f†f and consequently gff† = 2F .
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In terms of the η′ and pions the scalar potential reads V = mink Vk, with

Vk = −2(3N −F )


N +F

3N −F

−F/N 
m

|Λ|

F/N

m|Λ|3 cos


F

N −F
η′− θ+2πk

N −F



−2


N +F

3N −F

1−F/N 
m

|Λ|

F/N

|Λ|3
F

i=1
mi cos


η′+θQ+

F −1

j=1
tj
i πj




−4


N +F

3N −F

−F/N 
m

|Λ|

F/N

|Λ|3
F

i=1
mi cos


 N

N −F
η′+θQ− θ+2πk

N −F
+

F −1

j=1
tj
i πj


 ,

(8.6)

where Λ3N−F = |Λ|3N−F eiθ. Here mi is the ith diagonal element of the quark mass matrix,
θQ = arg det mQ is the phase of the mass matrix, tj

i is the ith diagonal element of the jth
Cartan generator. The factors 2πk/(N − F ) in the cosine comes from the branches of the
complex root of the ADS superpotential.

While there is an unmistakable similarity between the rst term in eq. (8.6) and eq. (3.9)
and between the second and third term with eq. (2.12) in the QCD chiral Lagrangian, there
are some important qualitative dierences. As expected, the potential exhibits a branch-like
structure due to the non-analyticity induced by gaugino condensation. In contrast to
pure QCD the number of branches is not N but N − F . This is the consequence of the
dynamics of the SUSY theory: with F avors there are also F squarks that break the gauge
group to SU(N − F ). Then gaugino condensation in this unbroken group gives rise to the
N − F branches. The most important lesson here is that the introduction of avors does
actually change the dynamics of connement: instead of the N branches there are only
N − F branches, and the assumption that the potential of the theory with avors is simply
the potential of the conning theory with the replacement θ → θ − F η′ does not hold in
this case.

Assuming that the rst term in eq. (8.6) dominates the η′ potential, which is the case
for Tr mQ/m ≪ F 2/N , a simple analytic expression for the η′ mass is found to be

m2
η′ = (x − 3)2x

(x + 1)(x − 1)2 m2 , with x = F

N
. (8.7)

The mass of the η′ scales as mη′ ∝ 1/N in the N ≫ F limit as predicted by the Veneziano-
Witten formula. This expression depends only on the ratio x = F/N , i.e. it is nite in the
large N limit if also the number of avors is large with a xed ratio F/N . This is not too
surprising: the anomaly equation with F avors eq. (3.3) shows that if F ∝ N , then the
anomaly does not vanish in the large N limit, and there is no reason to expect the η′ mass
to vanish. The mass is a monotonously growing function for 0 ≤ x < 1 and diverges at
x = 1 where also our current treatment of SQCD breaks down. The pole at x = 1 is related
to the breakdown of the eective Lagrangian in eq. (8.6) for large N in the limit where
N − F is held xed.

Under the assumption that Tr mQ/m ≪ F 2/N it is straightforward to integrate out
the η′ as the rst term dominates and xes

η′ = θ + 2πk

F
+ N − F

F
2πj , (8.8)

– 19 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
9

where j labels the innite set of solutions due to the periodicity of the cosine. Restricting
η′ ∈ [0, 2π

F ] there is a unique minimum η′ = θ
F , corresponding to k = j = 0. The remaining

terms give the following potential for the neutral GBs and θ

V = −27N − F

3N − F


N + F

3N − F

−F/N 
m

|Λ|

F/N

|Λ|3
F

i=1
mi cos


θ + F θQ

F
+

F −1

j=1
tj
i πj


 . (8.9)

Despite the dierent branch structure of the η′ potential in eq. (8.6) compared to the
chiral Lagrangian in QCD, after integrating out the η′ we arrive at a potential which has
exactly the same structure as eq. (2.13). The reason is that if the η′ is heavier than the
remaining GBs it completely washes out any branch structure of the original potential — it
acts as a heavy QCD scale axion. This is in agreement with the result in [33] where it is
shown that for mumd < ms|md − mu| in large N QCD with three avors, the pion potential
does not have branches.

In order to nd the potential for θ the GBs πj need to be integrated out. Without an
explicit additional light axion this is more complicated than in section 4, since an analytic
solution for the minimization conditions is not known for general F . However, the solution
for F = 2 and F = 3 are analogous to the QCD chiral Lagrangian and lead to a smooth
and 2π-periodic vacuum energy for non-degenerate masses mi ̸= mj . Degenerate masses,
on the other hand, cause cusp-like features when at branch-transitions.

It is instructive to consider a few special cases for the scalar potential in eq. (8.6). The
simplest case is pure SYM theory with F = 0.13 In this scenario the contribution to the
scalar potential comes purely from gaugino condensation and has the form

Vk
F =0−−−→ −6N2m|Λphys|3 cos


θ + 2πk

N


, (8.10)

where we used that in pure SYM |Λ| = N1/3|Λphys| (see appendix A). This result reproduces
the expectation from gluodynamics in QCD that the vacuum energy is a function of the
form N2f(θ/N) with N branches.

Adding a small number of avors, i.e. taking the F ≪ N limit, the potential simplies to

Vk
N≫F→ −6N2m|Λphys|3 cos


F

N
η′− θ+2πk

N


− 14

3 N |Λphys|3
F

i=1
mi cos


η′+θQ+

F −1

j=1
tj
i πj


 .

(8.11)
This nicely shows that the leading term in the large N limit still comes from gaugino
condensation in the unbroken part of the group, whereas quark contributions are suppressed
by one power of N . It is also straightforward to see that for mQ = 0, i.e. when the axial
symmetry at the classical level is unbroken, the η′ mass m2

η′ ∝ F m|Λphys|3/f2 ∼ F/N

vanishes in the N → ∞ limit (f ∼
√

N) and the η′ becomes an exact GB, which is a
consequence of the anomaly term vanishing in the large N limit. In this limit θ is unphysical
as it can be absorbed in the denition of η′.

13While the ADS superpotential is not well-dened for F = 0 this naive extrapolation yields the same
result as the computation with the low-energy eective superpotential for gaugino condensation W = N Λ3

in AMSB.
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The situation changes when both F and N are large. For F = N − 1 the ADS
superpotential is generated by instantons and the branched structure for the combined
{η′, θ} potential completely disappears, i.e. it is automatically 2π periodic in θ. This is an
example where the dynamics produces a potential without branches, and the mechanism is
due to a calculable 1-instanton eect. This will persist both for nite and for large N , as
long as F = N − 1. In the limit N ≫ 1, with F = N − 1 xed, the potential takes the form

Vk
N=F +1≫1→ − 4N3/2m2|Λphys|2 cos


(N − 1)η′ − θ



− 2N1/2m|Λphys|2
F

i=1
mi cos


η′ + θQ +

F −1

j=1
tj
i πj




− 4N1/2m|Λphys|2
F

i=1
mi cos


Nη′ + θQ − θ +

F −1

j=1
tj
i πj


 .

(8.12)

The magnitude of this potential is set by m2Λ2, and is not vanishing in the large N limit.
While the instanton action is proportional to Λ2N+1 ∝ e−N , the potential still remains
nite at large N .

Another striking feature is that all terms have the same scaling with N with a non-
integer exponent if all masses are degenerate (


i mq = F mq). Note however that this

Lagrangian becomes strongly coupled in the large N limit, just like the more general eq. (8.6)
for the limit where N − F = p is held xed (rather than the x = F/N ratio).

8.1 Vacuum structure and phase transition

Before moving on to F ≥ N in the next section, we will comment on the vacuum structure
and compare it to results obtained for QCD using large N methods [1, 2, 33, 34, 54] and
arguments based on anomalies [25, 55] for nite N .

For F = 0 it has been shown in the large N limit that the theory possesses a unique
vacuum for generic values of θ and undergoes a rst-order phase transition as θ is moved
through π. This happens since in large N QCD the vacuum energy is branched and
non-analytic at points where the branches cross (see section 3). This means that at θ = π

a jump between two degenerate vacua occurs and CP is spontaneously broken. In the
supersymmetric version the vacuum energy for F = 0 in eq. (8.10) has the same structure
as in large N QCD and therefore has a doubly-degenerate vacuum at θ = π which means
CP is spontaneously broken at this point.

In [25] it was argued that for F = 1 at θ = π the theory has two degenerate vacua and
therefore spontaneously breaks CP, but only for large quark masses mQ above a critical
value, i.e. |mQ| > |mQ,0|. Below the critical value there is always a unique vacuum and CP
is not spontaneously broken. At the critical value η′ becomes exactly massless. Since we
will nd that the critical value is at masses of the order mQ,0 ∼ m/N , we can only reliably
observe the transition between these two regimes in the large N limit.

The scalar potential for F = 1 has the form

Vk(η′, θ̄) ∝ −am|Λ|3 cos


η′−(θ̄+2πk)
N −1


−bmQ|Λ|3 cos(η′)−2mQ|Λ|3 cos


Nη′−(θ̄+2πk)

N −1


,

(8.13)
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Figure 2. The η′ potential according to eq. (8.13) for N = 5 and F = 1 along θ = π. The four
branches are depicted in dierent colors. The actual potential is the lower envelope of the branches,
i.e. the solid curve, which is 2π-periodic. Note that the physical eld range for the η′ is η′ ∈ [0, 2π]
for which the potential reduces to the k = 0 branch. For mQ < mQ,0 (left), the minimum of the
potential occurs for η′ = θ and CP is conserved. For mQ = mQ,0 = (49/199)m (middle), the
potential is at and the η′ is massless. Above the critical point mQ > mQ,0, a phase transition
occurs and the minimum of the potential moves away from the CP conserving minimum and CP is
spontaneously broken.

where a = (3N − 1), b = N+1
3N−1 and we dropped a global factor of b−1/N (m/|Λ|)1/N . For

m ≫ mQ the rst term dominates and xes the η′ VEV and we can choose k = 0 and thus
η′ = θ̄ as a minimum.14 Plugging this into the last two terms we see that the potential is
regular at θ̄ = π

V (θ̄) ∝ −(b + 2) mQ|Λ|3 cos(θ̄) , (8.14)

and no phase transition occurs.
Taking the second derivate of the potential eq. (8.13) to nd the mass of the η′, it is

straightforward to show that the η′ becomes massless for

mQ = mQ,0 = (3N − 1)2

7N3 − 3N2 − N + 1m . (8.15)

Therefore we can only reliably trust the results for large N where mQ,0 ≪ m which we
assumed in the minimization of the potential. For mQ > mQ,0 there are two degenerate
minima which we show in gure 2 for N = 5, where the critical mass is mQ,0 = 49/199.

The situation is dierent for F > 1 with equal quark masses. In such a setup there are
CP-conjugate degenerate vacua at θ̄ = π for all masses |mQ| > 0 [25]. In particular this
includes the region where mQ ≪ m ≪ Λ what we assume throughout the paper. In order
to check if this is consistent with our results we follow [25] and take equal masses for all
matter elds, i.e. mQ = mQδff ′ , and assume that the pion VEVs do not break the residual
SU(F ) avor symmetry.15 If this is the case the VEV of eiπaT a has to be in the center of
SU(F ), i.e. U has to be of the form

U = eiη′
e2πil/F 1 , (8.16)

14Recall that η′ is an angular variable and is dened modulo 2π for F = 1 (and 2π
F

in general). Thus if
we want to restrict it to values in the interval [0, 2π] this xes k.

15In [25] it was shown that the SU(F ) preserving solutions are true local minima.
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where l = 0, 1, . . . , F − 1. The resulting potential is obtained from eq. (8.6) after the
replacement


j πjtj

i → 2πl/F and mi → mQ. The rst term again dominates for m ≫ mQ

and xes η′ = θ̄/F where we restricted η′ to its physical eld range η′ ∈ [0, 2π
F ]. Plugging

this into the remaining terms yields

Vl(θ̄) ∝ −F mQ|Λ|3 cos


θ̄

F
+ 2πl

F


. (8.17)

For generic values of θ̄ this has a unique minimum. E.g. for θ̄ = 0 the potential is clearly
minimized for l = 0. For θ̄ = π on the other hand the potential takes the form

Vl(π) ∝ −F mQ|Λ|3 cos
(2l + 1)π

F


, (8.18)

which has two minima: l = 0 and l = F − 1. Thus for θ̄ = π the vacuum congurations are
U = e±iπ/F 1. These are related by the CP transformation U → U † which implies that CP
is spontaneously broken irrespective of the size of mQ.

9 F = N, N + 1: the conning cases

For F = N all the ’t Hooft anomaly matching conditions can be solved in a conning theory
with color singlet degrees of freedom [11]: the meson matrix Mff ′ and the baryon elds
B = ϵf1···fN Bf1···fN

and B̄ = ϵf1···fN B̄f1···fN
, where Bf1···fN

and B̄f1···fN
are the completely

antisymmetric color singlet combinations of the quark and anti-quark superelds Q and
Q̄, respectively. The degrees of freedom describing the moduli space satisfy a quantum
modied constraint

det(M) − B̄B = Λ2N . (9.1)

This constraint is implemented in the superpotential with the help of a Lagrange multiplier
supereld X

W = X


det(M) − B̄B

Λ2N
− 1


+ Tr(mQM) . (9.2)

Note that we chose to implement the constraint on det(M) and B̄B such that X does not
carry a charge under the spurious U(1)A axial symmetry. Interpreting X as a dynamical
degree of freedom we consider the Kähler potential

K = Tr(M †M)
α|Λ|2 + X†X

β|Λ|4 + B̄†B̄
γ|Λ|2N−2 + B†B

δ|Λ|2N−2 , (9.3)

where α, β, γ, δ are unknown O(1) numbers. Note that keeping only the quadratic terms
in the Kähler potential is justied if M, X, B, B̄ ≪ Λ, which will turn out not to be the
case. A more solid approach is to start from F = N + 1 and then give one avor a heavy
supersymmetric mass µ with Λ ≫ µ ≫ m ≫ Tr mQ and integrate it out. In this approach
the Lagrange multiplier eld X will be identied with the MN+1,N+1 component of the
meson eld, justifying the assumption on its Kahler potential above. We have checked that

– 23 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
9

this procedure gives results which are compatible with our simplied approach. To leading
order in m and mQ the resulting scalar potential has a minimum for

Mff ′ = f2δff ′ , X = −m|Λ|2
α

, B = B̄ = 0 , with f = Λ . (9.4)

Whether this is the global minimum depends on the values of the unknown O(1) numbers
α and β [14, 15]. In the following we will assume that this chiral symmetry breaking
minimum is the global minimum. Parameterizing again the neutral GBs as M = |f |2U

with U = eiη′
eiπata , where the decay constant f is absorbed into the pion an η′ elds, we

nd a potential that is given by

V = −2|Λ|4

β + (N − 2) m2

α|Λ|2


cos


Nη′ − θ

 − 4m|Λ|2
N

i=1
mi cos


η′ + θQ +

N−1

j=1
tj
i πj




− 2m|Λ|2
N

i=1
mi cos


(N − 1)η′ − θQ − θ −

N−1

j=1
tj
i πj


 .

(9.5)
The structure of the potential, including the scaling of the prefactors, is very similar to
eq. (8.12). In particular there is no branch-like structure and the potential is a pure one-
instanton eect, i.e. it is proportional to e±iθ. One dierence is, however, that the rst term
is enhanced, i.e. the pure η′ potential here scales as |Λ|4 instead of m2|Λ|2 in eq. (8.12).16

Consequently the leading contribution to the η′ mass is proportional to Λ instead of the
SUSY breaking scale m, as it was the case for F < N . This is a direct consequence of
the quantum modied constraint on the moduli space in eq. (9.1) which breaks the axial
symmetry already before SUSY breaking is introduced. Note that just as in ordinary QCD
when mQ = m = 0 physical quantities do not depend on θ. The dependence of the |Λ|4
term can be shifted away by a redenition of the η′ eld that leaves the rest of the action
invariant. Integrating out the η′ gives

Vk = −6m|Λ|2
N

i=1
mi cos


θ + N θQ + 2πk

N
+

N−1

j=1
tj
i πj


 , (9.6)

which is a straightforward extrapolation of the F = N − 1 case.
For F = N +1 the baryons Bf = ϵf1···fN f Bf1···fN

and antibaryons B̄f = ϵf1···fN f B̄f1···fN

transform in the antifundamental and fundamental representation of SU(F ), respectively.
In this case the classical and quantum constraints are identical and follow from the
superpotential

W = BMB̄ − det(M)
Λ2N−1 + Tr(mQM) , (9.7)

where the contraction of avor indices is implicit in the rst term and we also added a mass
term. The Kähler potential up to quadratic order in the elds is of the form

K = Tr(M †M)
α|Λ|2 +



f

B̄†
f B̄f

β|Λ|2N−2 +


f

B†
f Bf

γ|Λ|2N−2 , (9.8)

16In the alternative derivation where we integrate out one avor from the F = N + 1 case the scaling is
|Λ|2µ2 which is still much larger than |Λ|2m2.
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where α, β, γ are unknown O(1) numbers, which for simplicity we will set to one in the
following. The corresponding scalar potential is minimized for

Mff ′ = f2δff ′ , Bf = B̄f = 0 , with |f |2 = |Λ|2


N − 2
N

m

|Λ|

1/(N−1)
. (9.9)

Note that in contrast to the N = F case |f | ≪ |Λ| which justies keeping only terms
quadratic in the elds in the Kähler potential.

We again introduce the GBs as M = |f |2U (including the phase of f is just a shift in
the denition of the η′), resulting in the following potential

V = − 2(N − 2)


N − 2
N

m

|Λ|

(N+1)/(N−1)
m|Λ|3 cos


(N + 1)η′ − θ



− 2


N − 2
N

m

|Λ|

N/(N−1)
|Λ|3

N+1

i=1
mi cos


Nη′ − θQ − θ −

N

j=1
tj
i πj




− 4


N − 2
N

m

|Λ|

1/(N−1)
m|Λ|2

N+1

i=1
mi cos


η′ + θQ +

N

j=1
tj
i πj


 .

(9.10)

Similarly to the F = N and F = N − 1 cases also this potential does not have a branch-like
structure and is consistent with an instanton eect. After integrating out the η′ we again
obtain a potential for the pions which has the same structure

V = −23N − 2
N


N − 2

N

m

|Λ|

1/(N−1)
m|Λ|2

N+1

i=1
mi cos


θ + (N + 1) θQ

N + 1 +
N

j=1
tj
i πj


 .

(9.11)
In the large N limit |Λ| = N1/4|Λphys|, and the potential energy scales as V ∝ N3/2 for

i mi ∝ N .

10 F > N + 1: gaugino condensation in the dual gauge group

For N + 1 < F < 3/2N we can study the low-energy dynamics in a weakly coupled dual
SU(F −N) gauge theory with dynamical scale Λ̃. This theory contains F (anti-)fundamentals
q (q̄) under SU(F − N) and the meson matrix M , which we identify with the meson matrix
that appears in the original theory. The superpotential is given by

Wd = 1
µ

qiMij q̄j + Tr(mQM) , (10.1)

where µ is a scale which appears in the relation between the dynamical scales of the original
and dual theories

Λ3N−F Λ̃3Ñ−F = (−1)F −N µF , (10.2)

where we introduced Ñ = F − N to make the relation more symmetric. We consider a
Kähler potential which contains the dynamical scale of the original theory [56]

K = Tr(M †M)
|Λ|2 +



i

q†
i eṼ qi +



i

q̄†
i eṼ q̄i , (10.3)
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where we set unknown O(1) numbers to one. We assume that M gets a VEV of the form
⟨Mff ′⟩ = f2δff ′ , so that SU(F ) × SU(F ) → SU(F )V . Plugging this in the superpotential
generates a mass term for q and q̄ of size m̃ = f2/µ = det(M/µ)1/F . Thus in order to
describe the low-energy dynamics we can integrate out q and q̄, such that we have a pure
SU(F − N) gauge theory below m̃. The dynamical scale of the low-energy eective theory
Λ̃ef is obtained from the matching condition


Λ̃ef
m̃

3Ñ

=


Λ̃
m̃

3Ñ−F

. (10.4)

Gaugino condensation generates an eective superpotential for the low-energy eective
theory

W ef
d = Ñ Λ̃3

ef + Tr(mQM) = (N − F )


Λ3N−F

det M

 1
N−F

+ Tr(mQM) , (10.5)

which is the ADS superpotential after using eq. (10.2). This implies that SQCD is symmetric
around F = N , i.e. the dynamics governing the F > N + 1 scenario is secretly the same as
for the F < N case. The potential is generated by gaugino condensation in the unbroken
part of the gauge or dual gauge group, respectively. Now we can simply compute the scalar
potential with eq. (6.1). The minimum to leading order in mQ is given by

Mff ′ = f2δff ′ , with |f |2 = |Λ|2
3N − 2F

N

m

|Λ|

 F −N
2N−F

. (10.6)

With this it is straightforward to nd the potential for the neutral GBs

V = min
k

Vk

Vk = − 2(3N − 2F )
3N − 2F

N

m

|Λ|

F/(2N−F )
m|Λ|3 cos


F

F − N
η′ − θ + 2πk

F − N



− 2
3N − 2F

N

m

|Λ|

N/(2N−F )
|Λ|3

F

i=1
mi cos


 N

F − N
η′ − θQ − θ + 2πk

F − N
−

F −1

j=1
tj
i πj




− 4N

3N − 2F

3N − 2F

N

m

|Λ|

N/(2N−F )
|Λ|3

F

i=1
mi cos


η′ + θQ +

F −1

j=1
tj
i πj


 ,

(10.7)

which has the same structure as eq. (8.6) for F < N . However, there is a subtle dierence.
The number of branches in the η′ potential changed from N − F to F − N supporting that
the structure of the potential is symmetric in F around F = N . F − N in this case appears
since it is gaugino condensation in the dual gauge group which is responsible for generating
the η′ potential.

Once we integrate out η′ we nd again a potential of the following form

V = −2(5N − 2F )
3N − 2F

3N − 2F

N

m

|Λ|

N/(2N−F )
|Λ|3

F

i=1
mi cos


θ + F θQ

F
+

F −1

j=1
tj
i πj


 .

(10.8)
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11 Conclusions

We investigated the dynamics behind the potential of the η′, and consequently also the
axion mass from QCD eects, in strongly coupled QCD-like theories. These models are
based on N = 1 SUSY QCD with SUSY breaking generated via AMSB, ensuring that the
massless spectrum matches that of QCD. They also have a QCD-like global symmetry
breaking pattern after SUSY breaking is added, hence one can calculate the η′ potential
and the chiral Lagrangian, as long as SUSY breaking is small compared to the scale of
strong interactions.

We nd that, as expected, the resulting η′ potential has a branched structure originating
from the dynamics responsible for connement (i.e. gluino condensation). Such branched
structure cannot originate from pure instanton eects, and indeed we see that for most
cases the dynamics responsible for the η′ mass is dierent than instantons. For a generic
number F of avors we nd |N − F | branches, implying that the introduction of avor
qualitatively changes the conning potential. For F < N − 1 the avor eect is simply the
breaking of the gauge group to SU(N − F ) via squark VEVs, while for F > N + 1 one has
a whole new SU(F − N) dual gauge group, which will provide the gaugino condensates. For
the special cases of F = N − 1, N, N + 1 we nd a single branch for the conning potential,
consistent with the entire potential being generated by a single instanton. We also nd that
mη′ → 0 for large N as long as the number of avors is held xed, in agreement with the
expectation that the anomaly vanishes in this limit. However for F ∝ N the η′ mass does
not vanish in the large N limit, in accordance with the fact that the anomaly also does
not vanish.

We have also provided a review of the standard lore about the η′ in ordinary QCD and
the dynamical origin of the axion potential, with emphasis on the large N expansion. As
part of this review we also presented a simple derivation of the axion mass for an arbitrary
number of avors. In most cases the axion mass is not generated by instanton eects, hence
trying to derive the axion mass formula by closing up legs on ’t Hooft operators is not
very useful.
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A N -dependence of the holomorphic scale

The two-loop expression for the RGE invariant scale Λc dened with the canonical coupling
gc is constant in the large N limit. This can be easily seen from the explicit expression

Λc = µ


b0g2

c (µ)
8π2

−b1/(2b2
0)

exp


− 8π2

b0g2
c (µ)


, (A.1)

where g2
c (µ) always appears with b0. For SQCD with F avors the one-loop and two-loop

beta function coecients are given by b0 = 3N −F and b1 = 6N2 −2NF −4F (N2 −1)/(2N).
However, the scale which appears in the superpotential is the holomorphic scale Λ

which contains the holomorphic coupling constant τ whose RGE evolution is one-loop exact,

Λ = µe
2πiτ(µ)

b0 , (A.2)

where µ is a holomorphic scale. In contrast to Λc the holomorphic scale has a non-trivial
N dependence [26, 41, 57]. The relation between the canonical and holomorphic coupling
can be derived from the non-trivial Jacobian arising from the transformation to canonical
gauge elds [58, 59]. This gives the Shifman-Vainshtein formula [60]

2πIm(τ ) = 8π2

g2
c

+ 2T (Ad) log gc +


i

T (i) log Zi , (A.3)

where the sum runs over the matter elds and T (i) are the Dynkin indices of representation
i. For SU(N) the Dynkin indices for the adjoint and fundamental are T (Ad) = N and
T (fund) = 1/2. With Zi(M, µ) = C(M)g(µ)−2(N2−1)/(b0N),17 where M is the cuto and
C(M) a cuto dependent constant, we obtain

|Λ| = C̃(M)gc(µ)−b1/b2
0µ exp


− 8π2

b0g2
c (µ)


= C̃(M)


b0

8π2

b1/(2b2
0)

Λc , (A.4)

where C̃(M) is a function of C(M). Since the theory is asymptotically free we can set
C(M) = C̃(M) = 1 if we take M large enough. This implies that for N ≫ F the
holomorphic coupling scales as |Λ| ∝ N1/3Λc while for F ∼ N ≫ 1 it scales as |Λ| ∝ N1/4Λc.
In the main text we also use Λphys which absorbs the numeric prefactor in front of Λc into
the denition of the scale but leaves the N dependence explicit. For F = 0 this implies
|Λ| = N1/3|Λphys|.

B Axion mass for F avors

In this appendix we outline the calculation of the leading order expression for the axion
mass in the presence of F massive quark avors. The starting point is eq. (4.4), i.e. the
potential for the axion and neutral GBs

Vaxion = −2αΛ2f2
π

F

i=1

mi

Λ


cos


 θ̄ + n a/fa

F
+

F −1

j=1
tj
i

πj

fπ




 , (B.1)

17This has been obtained from γi ≡ (µd/dµ) log Zi(M, µ) = g2
c

8π2
N2−1

N
+ O(g4) taken from [61].
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where we have reintroduced the pion and axion decay constant. Using the following
parameterization for the Cartan generators

tj = bj diag(1, . . . , 1  
j

, −j, 0, . . . , 0) , with bj =


2
j(j + 1) , (B.2)

the potential can be expressed as

Vaxion = −2αΛ2f2
π

F

i=1

mi

Λ


cos


 θ̄ + n a/fa

F
+

F −1

j=i

bj πj

fπ
− (i − 1)bi−1 πi−1

fπ




 . (B.3)

As was already mentioned in section 4 the potential is minimized for n a/fa = −θ̄ and
πj = 0. Thus we can expand the cosines to describe the quantum uctuations around this
minimum. Since fa ≫ fπ the pions are substantially heavier than the axion and can be
integrated out. As we are only interested in the axion mass it is sucient to expand the
potential to quadratic order in the elds. Thus the equation of motion for the pions is a
linear equation

−lml+1δi,l+1 +



i≤l

mi





−(i − 1)bi−1πi−1 +
F −1

k=i

πkbk


= −an

F

fπ

fa


−lml+1 +



i≤l

mi


 ,

(B.4)
or in matrix notation

A




π1/fπ

π2/fπ

...
πF −1/fπ




= n a/fa

F




m2 − m1
2m3 − m2 − m1

...
(F − 1)mF − mF −1 − . . . − m1




, (B.5)

with the matrix A given by

A =




(12m2 + m1)b1 −(m2 − m1)b2 · · · −(m2 − m1)bF −1

−(m2 − m1)b1 (22m3 + m2 + m1)b2 · · · −(2m3 − m2 − m1)bF −1

...
...

...
−(m2 − m1)b1 −(2m3 − m2 − m1)b2 · · · ((F − 1)2mF + mF −1 + . . . + m1)bF −1




.

(B.6)
For a given F the equation of motion can be solved analytically. Substituting the solution
into eq. (B.3) and expanding to quadratic order one nds the axion mass

f2
a m2

a = 2αΛn2f2
π

F
i=1 mi

m1 · m2 . . . · mF −1 + permutations . (B.7)
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