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Abstract — Nature is full of messy variation, which serves as the raw material for evolution.
However, in comparative biology this variation is smoothed into averages. Overlooking this
variation not only weakens our analyses but also risks selecting inaccurate models, generating
false precision in parameter estimates, and creating artificial patterns. Furthermore, the
complexity of uncertainty extends beyond traditional “measurement error,” encompassing
various sources of intraspecific variance. To address this, we propose the term “tip fog” to
describe the variance between the true species mean and what is recorded, without implying a
specific mechanism. We show why accounting for tip fog remains critical by showing its impact
on continuous comparative models and discrete comparative and diversification models. We
rederive methods to estimate this variance and use simulations to assess its feasibility and
importance in a comparative context. Our findings reveal that ignoring tip fog substantially
affects the accuracy of rate estimates, with higher tip fog levels showing greater biases from the
true rates, as well as affecting which models are chosen. The findings underscore the importance
of model selection and the potential consequences of neglecting tip fog, providing insights for

improving the accuracy of comparative methods in evolutionary biology.

Keywords: evolutionary rates, measurement error, intraspecific variation, tip fog,

macroevolution, hidden Markov model
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Introduction

True, one portrait may hit the mark much nearer than another, but none can hit it with any very
considerable degree of exactness. So there is no earthly way of finding out precisely what the
whale really looks like. And the only mode in which you can derive even a tolerable idea of his
living contour, is by going a whaling yourself; but by so doing, you run no small risk of being
eternally stove and sunk by him. —Herman Melville, Moby Dick

Messy variation is ubiquitous in nature, as Melville keenly observed. This variation provides the
raw material for evolution, while smoothed averages of it are crucial for phylogenetic
comparative methods. Typically, multiple individuals — or even one — are used to calculate a
mean, which is then used as the representative value for a species in trait evolution, correlation,
or diversification studies. While we acknowledge some scatter around this idealized value, we
often dismiss it as minor, believing it only slightly reduces the power of our methods, if at all.
However, ignoring this variation introduces more than just noise; it can fundamentally
undermine analyses. That is, it can change the models we choose as best fits to the data (e.g.,
Sylvestro et al., 2015), produce misleadingly precise parameter estimates (e.g., Ives et al., 2007),
and reveal seemingly compelling patterns that are entirely artificial (e.g., O’Meara & Beaulieu,
2024). Ignoring variance at the tips is not just muddying the waters, it is creating spurious new
islands towards which we set sail.

The sources of this variation are numerous and additive. First, every measurement carries
uncertainty, a concept ingrained in us from the early days of learning science with quizzes about
significant digits and finite resolution of tick marks on our meter sticks. Then there is biological
uncertainty, such as the exact length of a squid’s tentacle or the precise point where a leaf begins.

Sampling uncertainty arises when a subset is used to represent the entire group. Finally, true

intraspecific variability exists due to differing optimal conditions, genetic drift within
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populations, and phenotypic plasticity. Taken together, even the most precise measurement from
one population might not reflect the overall species mean.

In comparative biology, we often overlook the complexity of uncertainty. We might
consider “measurement error” as the standard error of the observed measurements for species,
but the common default is to assume this error is zero. Moreover, the array of factors
contributing to this uncertainty extends far beyond what we traditionally categorize as
measurement error. This intraspecific variance has been described with various terms, including
“specific variances” (Cheverud et al., 1985), “residual variation” (Lynch, 1991), “phenotypic
variation” (Felsenstein, 2008), and “measurement error” (Harmon & Losos, 2005; O’Meara et
al., 2006; Silvestro et al., 2015). Some of these terms suggest specific mechanisms. Other terms
are more descriptive but may have meanings outside our field that can cause confusion. To avoid
ambiguity, we propose a new term: “tip fog.” This term captures the variance that occurs at the
present between the true species mean derived from the evolutionary process and what an
experimenter records as a value, without being tied to any particular mechanism, and it applies to
characters that are discrete or continuous.

Here, we show why accounting for tip fog is critical by showing its impact on both
continuous and discrete comparative models. We rederive methods to estimate this variance and
assess its feasibility and importance in a comparative context. By highlighting the consequences
of ignoring tip fog, we urge the community to adopt these methods as default standards into all
comparative analyses to avoid the pitfalls of misleading model selection, inferring biased

parameter estimates, and interpreting artificial patterns.
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Estimating tip fog for continuous trait evolution

There has been extensive research on the importance of tip fog (under various names) in
continuous models, including approaches like independent contrasts (Felsenstein, 2008) and
univariate models where model parameters or the comparison of model fit are relevant (Harmon
& Losos 2005; Ives et al., 2007; Revell & Reynolds, 2012; Silvestro et al., 2015). All these
studies concluded that tip fog can significantly affect the results and recommend its inclusion in
analyses, a point particularly emphasized by Silvestro et al. (2015). However, its use remains
remarkably uncommon. Popular software packages, such as ouch (Butler & King, 2004), surface
(Ingram & Mabhler, 2013), and revBayes (Hohna et al., 2016), do not allow accounting for tip fog
in their Ornstein-Uhlenbeck models. Packages like OUwie (Beaulieu et al., 2012) and bayou
(Uyeda & Harmon, 2014) allow specifying tip fog as a model parameter but default it to zero; the
function fitContinuous in geiger (Pennell et al., 2014) also allows it to be inferred, though it also
assumes a default value of zero.

The reluctance to incorporate tip fog may stem from the difficulty of obtaining empirical
values of sample variance (which is a subset of tip fog) — it is challenging to acquire species
means for all traits, let alone the variance in that value. Additionally, any observed value is likely
to be an underestimate, capturing only some sources of variation. Estimating tip fog introduces
another free parameter into the model, so despite arguments for its potential utility, researchers
might opt for simpler models.

The way we parameterize tip fog in OUwie is rather straightforward and follows from
O’Meara et al. (2006) and Ives et al. (2007). For a standard Brownian motion model, the

evolution of a trait over time is modeled as a random walk, with the rate of evolution described
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95 by the rate parameter o2. The expected variance-covariance matrix, V, reflects the variances and
96  covariances of trait values among different species, based on their shared evolutionary history.
97 To incorporate tip fog, {., the within-species variance is added to the diagonal elements
98  of V, representing the additional variance in trait values due to factors specific to each species.
99  The modified variance-covariance matrix, V", is expressed as:
100 V'=V+{lI
101 where I is the identity matrix. Adding (. to the diagonal of V allows the model to account for
102 both the phylogenetic covariance among species as well as estimate the additional variance
103 within each species. It is possible to have a different ¢, for each individual species: the variance
104  in log length for a squishy squid is likely larger than the variance in log length for a crunchy
105  crustacean species, for example. One might imagine that a .. as a percentage of each species’
106  mean could also work. In our implementation here, we assumed all species had the same value
107 for tip fog when estimating it (but not necessarily when simulating).
108 For more complex models, such as those allowing the rate parameter o2 to vary and/or
109  allowing traits to evolve towards specific trait “optima” (i.e., like Ornstein-Uhlenbeck models)
110  based on a discrete regime, the addition of {,. follows the same formulation described above. The
111 only difference lies in how V is constructed. However, the impact of not accounting for tip fog
112 on evolution rates in such models is quite dramatic.
113 To illustrate, we conducted a set of simulations where the generating models were a
114  multiple-rate Brownian motion model (BMS) and a multiple-optima, multiple-rate Ornstein-
115 Uhlenbeck model (OUMYV). We first created an identifiable two-state regime mapping on a
116  randomly generated 200-tip phylogeny (birth rate set to 0.4 events Myr!, and death rate of 0.2

117 events Myr!) in TreeSim (Stadler 2011) with the root to tip length scaled to one. Under both
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118  generating models, we set the rate for the first regime to o = 1 units Myr™' and scaled the rate
119  for the second regime to take on either o7 = 1.25, 3, or 5 units Myr™. For the OUMYV model, we
120 set a global a parameter, which controls the rate of the “pull” towards individual trait means

121 (here we set 8, = 1, and 8, = 3), ensuring that the half-life corresponds to 50% the height of the
122 tree (i.e., @ = 1.39 units Myr?).

123 Tip fog was simulated by resampling each tip value from a normal distribution centered
124 at the individual species mean and with a standard deviation that was a percentage of the mean
125  for each species. We generated 100 data sets each, where the percentage varied 10%, 20%, 30%,
126  40%, and 50% of each individual species mean. Each data set was then evaluated under BM1,
127  BMS, OU1, OUM, and OUMYV models. Estimates for evolutionary rates were summarized as
128  weighted harmonic averages using Akaike weights, which is equivalent to weighted arithmetic
129  means of the wait times; estimates of trait means were based on a weighted arithmetic average.
130 All simulations were performed in the R package OUwie (Beaulieu et al., 2012).

131 The results of these simulations are presented in Figure 1 and Table S1. In general, not
132 accounting for tip fog substantially affects the estimates of evolutionary rates in complex models
133 with multiple rate regimes. As the level of fog increases, the evolutionary rates are increasingly
134 biased upward, regardless of the regime. For example, with just 30% fog under a BMS

135 generating model the average rate in regime 1 is 10- to 30-fold higher than the generating model.
136 In contrast, when {, is estimated as part of the model (+¢,), the evolutionary rates generally align
137 more closely with their true values (for the same models as above, 0.9 to 1.1 times the true

138 value). However, in the OUMYV model, at higher fog levels, the rates exhibit a downward bias in

139 regime 1 and an upward bias in regime 2, with the upward bias being substantially more



bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608647; this version posted August 21, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

140  pronounced. Nevertheless, incorporating tip fog into the model substantially improves the rate
141  estimates compared to not accounting for it.

142 For the OUMYV models, tip fog had a pronounced effect on estimates of the trait mean
143 (6,) for regime 2 only, regardless of the underlying rate or whether fog was included in the

144 model (Fig. S2). To better understand this, we conducted an additional simulation, assuming a
145 multiple-optima OU model (OUM) where the evolutionary rate was set equal across regimes
146 02 =2 and varied 0, to be 1.25x, 3x, and 5x on a pectinate tree with an identifiable two-state
147  regime mapping. Results from these simulations exhibited a similar pattern: in the presence of
148 fog, the estimates of theta for the second regime are increasingly underestimated as the amount
149 of'tip fog increases (Fig. 2). Examining the confidence regions surrounding estimates of 6,, a,
150  and o2 using dentist (Boyko & O’Meara, 2024) reveals that tip fog introduces greater

151 uncertainty in estimates of @ and a2, which incidentally impacts estimates of 8,, even when {, is
152 included in the model. This uncertainty is also reflected in model support; the presence of fog
153 leads to some support for models that include additional complexity, such as BMS and OUMV
154 (Table S1). Overall, these results suggest that any model fit should be interpreted with

155  consideration of the parameter estimates and the underlying uncertainty.

156

157  Impact of tip fog on discrete trait evolutionary models

158 The impact of character misassignments on the accuracy and reliability of continuous-time

159  Markov models remains largely unexplored outside of tree inference contexts (e.g., Felsenstein,
160  2004; Ho et al., 2007; Rambaut et al., 2009; Kuhner & McGill, 2014; Davis & Navin, 2016).
161  Misassignments, whether due to data collection errors or legitimate polymorphisms, introduce

162 uncertainty about the true state of a species and can lead to erroneous estimates of transition rates
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between states and exaggerated biological patterns (O’Meara & Beaulieu, 2024). Here we apply
a framework, first proposed by Felsenstein (2004), for continuous-time Markov models that
allows for the simultaneous estimation of character misassignments and state transition rates.
Conceptually, this approach is best understood as a type of hidden Markov model (HMM). In
such models, the true state is not directly observed, making it “hidden,” while the observed data
represent a noisy or misclassified version of these states (also see Jackson et al., 2003). The goal
of the model is to infer the underlying true states by estimating the likelihood of observing the
data given the true states. It is rather straightforward in that the general model remains
unchanged, except we alter the observed probabilities at the tips.

Suppose that 7 indexes 7 tips in a tree, and that S; represents the true underlying state of
tip i and that O; corresponds to the observed state for tip i. When these states are known exactly,
as is assumed by any standard continuous-time Markov model, we assume the state of each tip is
P(O; = o| Si=0) = 1. In the binary case, o might represent the presence or absence of a particular
character state (e.g., woody versus herbaceous plants, feathers versus no feathers). However,
when these observations are subject to uncertainty, as is often the case, we assume then that the
observed states, O;, are generated conditionally on the true states, S;. The probability of the
observed state o given that the true state is s can be expressed by P(O; = o| Si=s) =1 - {, ¢ where
{, s defines what we refer to as the “tip fog probability”. Thus, the probability at a given tip then
becomes 1 - {, ;for the observed state and {, ; for the alternative state. For an arbitrary number of
states when state 7 is observed, the probability of each alternative state (i.e., j # i) is {; ; with the
observed state being 1 — ¥, ;..; {; ;, where {; jrepresents the probability that the observed state is i

when the true state is ;.
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185 The likelihood of the model is obtained by maximizing the standard likelihood formula,
186 L=P(D|Q,T,C,), for observing character states, D, given the continuous-time Markov model,
187  Q, a fixed topology with a set of branch lengths (denoted by 7). Note that we have added an

188 additional free parameter in the formula, {4, that denotes a single tip fog probability for all

189  observed states. When {; = 0, the likelihood simply reduces to the likelihood of a standard

190  continuous-time Markov model. We implemented these “tip fog” models as part of the corHMM
191  package (Beaulieu et al., 2013; Boyko & Beaulieu, 2021), allowing for the specification of as
192 many tip fog probabilities, {;, as there are unique observed states in the data set.

193 We conducted a simulation study to assess the impact of ignoring tip fog, as well as the
194  overall behavior when estimating it. A 200-tip phylogeny was generated (birth rate set to 0.4

195  events Myr!, and death rate of 0.2 events Myr!) in TreeSim (Stadler 2011), which was used to
196  simulate 100 datasets assuming equal transitions rates of go; = g0 = 0.025 transitions Myr-1

197  between binary states. We varied the root age of the phylogeny to take on four ages: 5, 10, 15,
198  and 20 Myr. In a recent publication (O’Meara & Beaulieu, 2024) we showed that inaccuracies in
199 character state assignments significantly affect younger trees more due to shorter overall tree

200  lengths, and so varying clade age was meant to mimic this effect. To simulate tip fog, we

201  randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its
202 true state. For each simulation replicate, we fit two classes of models: 1) equal rates (ER, single
203 rate for all transitions) and all rates different (ARD, two independent rates) without estimating
204  tip fog probabilities (i.e., referred to as “Default”), and 2) ER and ARD with each estimating a
205  single {; parameter. Rate estimates within each of the model classes were then summarized by
206  calculating a weighted harmonic mean of each transition parameter using the Akaike weights

207 (w).
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208 As with continuous trait data, failing to account for tip fog dramatically inflates transition
209  rates. We found that the magnitude of the upward bias increases as the degree of tip fog also

210  increases (Fig. 3). Even a tip fog probability of 1%, which is expected to result in just two taxa
211 out of 200 being misassigned to the wrong state, substantially biased transition rates upward. As
212 expected, the magnitude of the effect did depend on clade age. For example, with 1% tip fog

213 probability in a 5 Myr tree, rates more than double their true value (go; = 0.049 and q;0 = 0.069
214  transitions Myr™!), while for a clade age of 20 Myr, rates are only slightly upward biased (go1 =
215 0.030 and qi0= 0.033 transitions Myr!). Nevertheless, when tip fog was 5% and higher, the

216  model-averaged rates were orders of magnitude higher than the true values regardless of clade
217 age (Fig. 3). When tip fog probability was estimated as part of the model (+{;), the transition
218  rates remain relatively stable across different fog levels (Fig. 3). Although younger clades still
219 show a slight upward bias, it does not systematically increase with increasing tip fog as it does in
220  the default model fits. Notably, estimates of {; are consistently centered on their true values,

221  indicating the model effectively infers the degree of tip fog present in these data sets (Fig. 3C).
222 We also found that failing to account for tip fog substantially impacts model weights.

223 With just 5% tip fog, the weight shifts almost entirely (>90%) to the ARD model, a pattern that
224 was consistent across all clade ages (Table S2). When the tip fog probability is estimated under
225 an ER generating model, the Akaike weights favor the generating ER model with the distribution
226  of the weights converging towards the null weight expected based solely on the penalty term

227  (Fig. 4). This indicates that uncorrected tip fog not only inflates rate estimates but can also

228  erroneously make the data choose models that are too complex.

229 To illustrate this further, we also included an HMM model that contained two distinct

230 rate classes (qo14 = q104 and qo13= q108) and an additional transition rate governing the transition
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231  among them (i.e., three transition rates total). When this model was included as part of the

232 default model set, the ARD and HMM models competed for the highest Akaike weight, with the
233 ER model showing very little support generally for tip fog values >1% (Fig. S3; Table S3).

234 Interestingly, the HMM consistently had the highest support in trees with clade ages >10 Myr
235 (Table S3). When the tip fog probability was estimated as part of the model, support for the

236 HMM consistently converged toward the null Akaike weight, which was substantially lower than
237  either the ER or ARD models (Fig. S3).

238 We were also curious about the performance of the +{; models when included as part of
239 abroader set that also included models that did not estimate {;. It may be that even though the
240  ER + {,fits well when compared to other +{; models, the added complexity of the additional
241  parameter reduces the power to detect tip fog when it is present. However, when we pooled the
242 default and tip fog model sets together and recalculated the Akaike weights, the ER + {; model
243 emerged as the best model across all fog values except {; = 1% (Fig. 4C; Table S2). In that case,
244 these results suggest that such low fog values are often difficult to distinguish from no fog,

245 which is expected.

246

247  Extending to state-speciation and extinction models

248 The approach for estimating tip fog from discrete traits extends naturally to state-speciation and
249  extinction models (SSE; Maddison et al., 2007; FitzJohn et al., 2009; Beaulieu & O’Meara,

250  2016). We parameterize the initial conditions for Dy (f) — the probability that a lineage observed

251  instate i at time ¢/ —to be 1 - {; ; for the observed state and ¢; ; for the alternative state. The initial

252 conditions for E(¢), the probability that a lineage in state i at time # would go completely extinct
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253 by the present, remains unaltered. The likelihood calculation then proceeds down the tree as

254 usual.

255 When the input tree represents a sample of all extant species within a focal clade, the

256 initial conditions for Dy (f) must also account for the sampling fraction, f;, which specifies the
257  probability that a species with true state i is sampled and included in the tree. For example, if a
258  tip is observed in state 0 at the present, the initial conditions for Du,o(=0) = fo (1 - {4) and

259 Dy i(=0) = f; {4 for the alternative state. The initial probability for Ey(0) remains the probability
260  of a lineage not being present in the phylogeny, either by going extinct or not being sampled, and
261  is therefore set as E{(#=0) = 1 — f. These modifications have been implemented in the hidden
262 state-speciation and extinction model in the R package hisse (Beaulieu and O’Meara 2016).

263 Unincorporated tip fog should have two effects on the estimation and interpretation of
264  parameters in an SSE model. First, tip fog should erroneously inflate transition rates, though not
265  to the degree that they are in continuous-time Markov models. This is because SSE models

266  jointly estimate speciation, extinction, and state transition processes, making it less likely for the
267  model to attribute too much to transition rates alone. Instead, character misassignments are more
268 likely to be absorbed as part of the variation in speciation and/or extinction rates. However, this
269  benefit comes with a trade-off: the model may homogenize diversification rates among observed
270  states, which can lead to increased support for models that assume some form of character-

271 independence. In other words, some of the tips observed in state () are actually in state /, and

272 vice versa, making the states seem more similar from a diversification standpoint than they

273 should be.

274 To investigate how SSE models behave with tip fog, we simulated scenarios where the

275  turnover rate (A4 + p) for state / was nearly double that of state 0. Specifically, we simulated 100
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276  trees with 1, = 0.22 events Myr™! and A; = 0.42 events Myr'!, with extinction rates set to 75% of
277  the speciation rates in both cases, and equal transition rates of 0.025 transitions Myr'!. Each tree
278  started in state 0 and evolved for 50 Myr, resulting in an average of about 200 taxa per tree. To
279 avoid patterns from simulation time bias or inflating the effect of tip fog by stopping at a fixed
280  number of taxa, which can result in a clade with zero length branches, we terminated simulations
281  at a pre-specified time. Tip fog was introduced by randomly altering the true state of 1%, 5%,
282 10%, 15%, or 20% of taxa to the incorrect state. For each simulation replicate, we fit two sets of
283 six models, including both character-independent (e.g., CID-2) and character-dependent models
284  (e.g., BiSSE), with either equal or asymmetric transition rates (see Table S3). Each model set
285  either ignored tip fog (referred to as “default”) or estimated its probability (+{;). We calculated a
286  weighted harmonic average of the transition rates across model fits using Akaike weights.

287  Estimates of turnover rates were summarized as a weighted harmonic mean of the rates

288  represented at the tips of the tree. That is, for each model, the marginal probability of each state
289  (and rate class for CID-2) was computed for every tip, and then computed as the weighted

290  harmonic mean across all models using the Akaike weights.

291 As expected, our simulations revealed that transition rates became increasingly inflated
292 with higher degrees of tip fog when not accounting for tip fog in the model (Fig. 5A). In

293 addition, as expected the magnitude of the rate inflation is muted compared to the continuous-
294 time Markov models for the same tip fog (Fig. 3). In contrast, when tip fog was estimated as part
295  of the model, the individual transition rates generally remained close to their true values as did
296  the estimates of the tip fog probability (Fig. 5C).

297 Unexpectedly, turnover rates tended to converge as the degree of tip fog increased,

298  regardless of whether tip fog was estimated (Fig. 5B). We suspect this pattern arises for two
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299  distinct reasons. First, in the default model set that does not include {;, the convergence appears
300  to be driven by an increasing model weight toward character-independent models as the level of
301 tip fog increases (Fig. 6A, Table S4). That is, there is increased support for models that do not
302  differentiate based on the observed character states, leading to more uniform estimates of

303  turnover rates across different states. In contrast, for the +{; models, support for character-

304  dependent models remained stable across different levels of simulated tip fog (Fig. 6B).

305 The convergence of turnover rates despite the stability in model support for character-
306  dependence within the +{; models is likely due to how tip rates are summarized when tip fog is
307  present. Consider a BiSSE model where the turnover rate is 0.35 events Myr! for state 0 and
308  0.70 events Myr! for state /. In the absence of tip fog, the rate for a given tip would simply be
309  the observed state since there is no uncertainty as to the true state. However, with the tip fog

310  probability being estimated a tip might be observed in say state /, but there is some uncertainty
311  as to whether it is state 0 instead. Thus, we must account for this when summarizing the rates
312 within a given model when tip fog probability is included, and this tends to homogenize

313 diversification rates as tip fog increases. For instance, if a model is estimated to have a 5% tip
314  fog probability, the tip rate for a taxon observed in state / for that model is calculated as a

315  weighted average such that (0.35 x 0.05) + (0.70 x 0.95) = 0.68 events Myr!. Now, if the tip fog
316  probability increases to say 20%, as we did in our simulations, the tip rate would adjust

317 downwards to (0.35 x 0.2) + (0.70 x 0.8) = 0.63 events Myr'!. This adjustment would also cause
318  the turnover rate for tips observed in state 0 to gradually increase, contributing to the overall

319  homogenization of turnover rates, even with clear support for the character-dependent models
320  included in the model set.

321
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Discussion

While the importance of tip fog in continuous traits has long been acknowledged, we were
surprised by how accurately it can be estimated from both continuous and discrete data directly.
This is significant because tip fog is not just simply adding another parameter — it represents the
extent to which tip data distorts or misrepresents the underlying reality. Given the feasibility of
estimating it and the detrimental effects of setting it to zero, we have updated all our software to
estimate tip fog by default, and we recommend others do the same [NB: only once this paper is
in press, as a peer review may find an issue we have missed so we do not want to enable this by
default until then]. Anyone converting biological variation into discrete data knows this
inevitably leads to fuzzy cases, and this fuzziness is even more pronounced with continuous
variation. Ignoring tip fog can result in confidently incorrect conclusions rather than mere
uncertainty. Even if practitioners are hesitant to increase model complexity by estimating an
additional parameter, selecting an arbitrary value of say, 10%, is likely more accurate than the
current practice of assuming tip fog is 0%.

Our implementation of tip fog is straightforward. For continuous traits, we use a constant
value across all tips, while for discrete traits, we follow a similar approach in our simulations,
though we also allow for varying error rates depending on observed states. For example, in traits
like parental care, it is more likely that species with this trait might be missed rather than
incorrectly reported as having it. However, there are opportunities to increase complexity. Tip
fog for continuous traits could be modeled as a proportion of the observed state instead of a fixed
standard deviation. Moreover, different amounts of fog could be estimated for species
categorized by factors such as observations from herbaria versus field studies, species with

extensive records versus those with fewer, and observations made by undergraduates versus
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345  faculty. Incorporating the number of observations per species could also refine estimates of

346  continuous tip fog. Exploring different regimes of tip fog across the phylogenetic tree offers

347  additional avenues for improvement (sensu Ives et al., 2007).

348 We hasten to acknowledge that tip fog is not the only source of uncertainty in

349  macroevolutionary studies. Uncertainty in topology and branch lengths, as well as

350  unincorporated heterogeneity in the evolutionary process, also likely play significant roles.

351  Properly incorporating tip fog does not negate the need to consider these other factors. However,
352 just as incorporating tree uncertainty by conducting analyses across a set of trees is essential, so
353 is incorporating tip fog.

354 The concept of tip fog presents an opportunity to revisit the basic principles of model

355  selection. Models with or without tip fog estimation can be compared using metrics such as AIC,
356  AlCc, or BIC, all of which account for model complexity. The model with the lowest score on
357  these metrics offers the best balance between complexity and fit. For instance, if a model that
358 includes tip fog estimation has a AAIC of 0, and a model that forces tip fog to zero has a AAIC of
359 1.4, the model estimating tip fog is superior. However, it is not uncommon to encounter model
360  choice being based on requiring that a more complex model outperform a simpler one by a

361  certain arbitrary margin before considering it (i.e., AAIC > 2). However, such an approach is

362 neither necessary nor appropriate (Burnham & Anderson, 2004).

363 We also note that tip fog is distinct from approaches that account for polymorphism in tip
364  data, although they are related. For instance, consider a character with states yellow, white, and
365  red, where one species exhibits polymorphism with some flowers being yellow and others white,
366  while most species in the clade are uniformly one of the three colors. In such a case, the

367  likelihood calculation would start with P(O; = yellow) = P(O; = white) = 1 for that species [rather
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368  than 0.5 for each, as noted by Felsenstein (2004)]. This differs from errors such as a researcher
369  misassigning a yellow specimen as white due to poor lighting. Despite this distinction, tip fog
370  can still be applied alongside polymorphism to improve model accuracy. In fact, this might be
371  particularly useful for models of biogeography where polymorphic scoring is a central feature
372 (Ree & Smith 2008; Baitscher & de Vos, 2024).

373 Our study focuses on tip fog within traditional macroevolutionary models, which

374  typically analyze one or a few characters. However, tip fog can significantly impact models that
375  handle multiple characters, such as those used for inferring phylogenetic trees and networks

376  (e.g., Kuhner & McGill). One major component of tip fog is sequencing error, which is likely
377  more substantial than is typically acknowledged. Incorporating tip fog as a default option in tree
378  inference is particularly sensible given the large volumes of data often available. Yet, popular
379  tree inference programs like RAXML-NG (Kozlov et al., 2019) and IQ-TREE (Minh et al., 2020)
380  currently lack this capability. The omission of tip fog is especially critical for branch length

381  estimates, as unaccounted-for tip fog tends to lengthen terminal branches (which make up over
382 half of a tree’s edges), thereby inflating overall substitution rates. This can lead to an inaccurate
383  estimation of tree age if a rate calibration is used. When using multiple fossils or other

384  calibrations, the effect on overall tree age is less predictable but generally results in an increased
385  ratio of terminal to internal branch lengths. In any event, while some models for cancer tumor
386  phylogenies incorporate error expectations (Davis & Navin 2016), sequencing error remains a
387  significant concern in traditional phylogenetic studies (see also Ho et al., 2005).

388 We note several important caveats. Our analysis has focused on predictable errors, such
389  as a species mean being off by 10% or a 20% chance of misassigning a species’ state as woody

390  instead of herbaceous. However, we have not addressed more extraordinary sources of error,
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391  such as entering a unitless mass in milligrams for one species while using grams for others,

392 confusing range data between a plant and an insect due to homonyms, omitting the sign for

393 longitude, or recording a missing value as -99, which is then incorrectly treated as a valid state.
394  Tip fog, as we incorporate it, is unlikely to address these types of errors effectively. While tip fog
395  can account for certain uncertainties, it relies on the data being fundamentally accurate.

396  Additionally, tip fog does not correct errors in tree or network topology or branch lengths — these
397  also remain important to incorporate. While our work uses likelihood and AIC, we expect similar
398  results using Bayesian methods or using model selection criteria beyond AIC. Even with

399  Bayesian methods, which deal quite well in uncertainty, existing approaches essentially put full
400  prior weight on the data being completely right, not allowing any exploration about the

401  possibility of nonzero tip fog (but see Revell & Reynolds, 2012). Either adding one or more tip
402  fog parameters or allowing a looser coupling between observed and actual states, would allow
403  Bayesian methods to incorporate this important factor.

404 Finally, several questions remain unanswered. For instance, empirical estimates of

405  variability at tips, such as the standard deviation of samples, might underrepresent tip fog

406  because they do not account for factors affecting all modern samples, such as environmental

407  plasticity. This issue has not been explored in our study; it remains uncertain whether estimating
408  tip fog directly is more effective than relying on empirical estimates of tip variability or if adding
409  an “additional” fog parameter to the model would be beneficial. While we have incorporated tip
410  fog into SSE models for discrete traits, we have not applied it to SSE models of continuous data
411 (e.g., QuaSSE; FitzJohn, 2010). We also have not explored multivariate models, as discussed by
412 Felsenstein (2008). Additionally, some simulation results were unexpected. For example, we

413 anticipated that tip fog would significantly improve estimates of 8 in an Ornstein-Uhlenbeck
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414  model, but the effect appears less pronounced than expected. The presence and impact of tip fog
415  in empirical studies are still unknown; analyzing existing datasets to estimate tip fog and assess
416  the consequences of ignoring it would be a valuable next step.

417

418  Conclusions

419  Melville warned that those who seek to understand whales must risk their boats being crushed.
420  Similarly, many comparative analyses are at risk of failing due to unrecognized variation from a
421  myriad of sources — what we term “tip fog.” However, this risk can be mitigated by

422 incorporating tip fog into our standard models, which will improve the accuracy of our

423 inferences and avoid the pitfalls of confidently incorrect conclusions. As we navigate the

424 complexities of biological data, making tip fog a standard consideration will provide more

425  reliability to our analyses.

426
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539

540  Figure 1. Uncertainty in estimating the evolutionary rate (62) as a function of tip fog, with the
541  generating model assuming various (A, B) multiple-rate Brownian motion (BMS) and (C, D)
542 multiple mean, multiple-rate Ornstein-Uhlenbeck (OUMYV) models. Panels (A) and (C) depict
543 cases where the rate for regime 2 is 1.25 times that of regime 1, while (B) and (D) show a rate 3
544  times that of regime 1. Tip fog was simulated by resampling each tip value from a normal

545  distribution centered at the individual species mean and with a standard deviation that was a
546  percentage of the mean. Data sets were then evaluated under BM1, BMS, OU1, OUM, and

547 OUMV models, with rates summarized using a weighted harmonic mean based on Akaike

548 weights (see text). Darker boxes indicate rate summarized across models excluding tip fog

549  (Default), which show an upward bias in evolutionary rates as fog levels increase, regardless of
550  the regime. The less saturated boxes represent rates summarized across models that estimate tip
551  fog (+(.), where evolutionary rates generally align more closely with true values. Dashed blue
552 and orange lines indicate the generating values for regimes 1 and 2, respectively.

553
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555  Figure 2. Uncertainty in estimating the trait means (8;) when the generating model is a multiple-
556  mean Ornstein-Uhlenbeck model (OUM), and the simulated data sets contained differing levels
557  of tip fog. (A) depicts a scenario where the trait mean for regime 2 is 3 times that of regime 1,
558  whereas (B) depicts a scenario where regime 2 is 5 times that of regime 1. Tip fog was simulated
559 by resampling each tip value from a normal distribution centered at the individual species mean
560  and with a standard deviation that was a percentage of the mean. Data sets were evaluated under
561  BMI1, BMS, OUI, OUM, and OUMYV models, with rates summarized using a weighted mean
562  based on Akaike weights (see text). Darker boxes indicate 8; summarized across models

563  excluding tip fog (Default); the less saturated boxes represent 8; summarized across models that
564  estimated tip fog (+(.). Dashed blue and orange lines indicate the generating values for regimes
565 1 and 2, respectively. In both scenarios, as the amount of tip fog increases, estimates for 6, are
566  increasingly underestimated, irrespective of whether tip fog was estimated.
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576  Figure 3. Uncertainty in estimating transition rates using an equal rates (ER) continuous-time
577 Markov model (go; = g10 = 0.025 transitions Myr™") with increasing levels of tip fog. Panels (A)
578  and (B) show rate uncertainty for clades aged 5 Myr and 10 Myr, respectively. Younger clades
579  show greater uncertainty due to shorter tree lengths (see main text). To simulate tip fog, we

580  randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its
581  true state. Data sets were evaluated under an equal-rates model (ER, single rate for all

582  transitions) and an all-rates different model (ARD, two independent rates). Rate estimates within
583  each of the model classes were then summarized by calculating a weighted harmonic mean of
584  each transition parameter using the Akaike weights. Darker boxes indicate transition rates

585  summarized across models excluding tip fog (Default); the less saturated boxes represent

586  transition rates summarized across models that estimated tip fog (+{,;). Dashed blue and orange
587  lines indicate the generating values for state 0 and state /, respectively. (C) depicts uncertainty in
588 (4 estimates across all clade ages, with the dashed red line indicating the true ;.
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593
594  Figure 4. Summaries of model support based on Akaike weight (w) for equal rates (ER) and all

595  rates different (ARD) continuous-time Markov models fit (A) without tip fog and (B) fit

596  including tip fog as a parameter, or (C) pooled together as part of an inclusive model set. The

597  generating model for these simulations was an equal rates (ER) continuous-time Markov model
598  (qo1 = qi0=0.025 transitions Myr!) with increasing levels of tip fog. To simulate tip fog, we

599  randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its
600  true state. Dashed lines in (A) and (B) represent the null expectation of the Akaike weight as the
601  average Akaike weight if we assume an equal likelihood across all models.
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609  Figure 5. Uncertainty in estimating (A) transition rates and (B) turnover rates under a state-

610  speciation and extinction model with increasing levels of tip fog. The generating model was a
611  character-dependent model (CD), where state / to have turnover rate (4; + p; = 0.735 events
612 Myr) that was nearly 2x the rate of state 0 (1o + o = 0.385 events Myr™!), with state

613  transitions between 0 and [ set at 0.025 transitions Myr!; extinction fraction was set at 0.75 for
614  both regimes. To simulate tip fog, we randomly altered the observed state of 1%, 5%, 10%, 15%,
615  or 20% of taxa to be the reverse of its true state. Data sets were evaluated two sets of six models,
616  including both character-independent (e.g., CID-2) and character-dependent models (e.g.,

617  BiSSE), with either equal or asymmetric transition rates (see Table S3) Each model set either
618  ignored tip fog (Default) or estimated its probability (+;). Rate estimates within each of the

619  model classes were then summarized by calculating a weighted harmonic mean of each rate

620  parameter using the Akaike weights. Darker boxes indicate transition rates summarized across
621  models excluding tip fog (Default); the less saturated boxes represent transition rates

622  summarized across models that estimated tip fog (+(;). Dashed blue and orange lines indicate
623  the generating values for state () and state /, respectively. (C) depicts uncertainty in {; estimates,
624  with the dashed red line indicating the true {j.
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627

628  Figure 6. Summary of the cumulative support for character-dependence (CD; turnover rate

629  depends on the state) and character-independence (CID; turnover rates do not depend on the

630  state) when the generating model is a character-dependent model that contains increasing levels
631  of tip fog. Panel (A) shows how support for character-independence increases with increasing tip
632  fog when tip fog is ignored (Default), whereas (B) when tip fog is estimated as part of the model
633  (+{,) support for character-dependent models remains stable across different levels of simulated
634  tip fog.
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