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Abstract 3 Nature is full of messy variation, which serves as the raw material for evolution. 1 

However, in comparative biology this variation is smoothed into averages. Overlooking this 2 

variation not only weakens our analyses but also risks selecting inaccurate models, generating 3 

false precision in parameter estimates, and creating artificial patterns. Furthermore, the 4 

complexity of uncertainty extends beyond traditional <measurement error,= encompassing 5 

various sources of intraspecific variance. To address this, we propose the term <tip fog= to 6 

describe the variance between the true species mean and what is recorded, without implying a 7 

specific mechanism. We show why accounting for tip fog remains critical by showing its impact 8 

on continuous comparative models and discrete comparative and diversification models. We 9 

rederive methods to estimate this variance and use simulations to assess its feasibility and 10 

importance in a comparative context. Our findings reveal that ignoring tip fog substantially 11 

affects the accuracy of rate estimates, with higher tip fog levels showing greater biases from the 12 

true rates, as well as affecting which models are chosen. The findings underscore the importance 13 

of model selection and the potential consequences of neglecting tip fog, providing insights for 14 

improving the accuracy of comparative methods in evolutionary biology. 15 

 16 

Keywords: evolutionary rates, measurement error, intraspecific variation, tip fog, 17 
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Introduction 25 

True, one portrait may hit the mark much nearer than another, but none can hit it with any very 26 

considerable degree of exactness. So there is no earthly way of finding out precisely what the 27 

whale really looks like. And the only mode in which you can derive even a tolerable idea of his 28 

living contour, is by going a whaling yourself; but by so doing, you run no small risk of being 29 

eternally stove and sunk by him. 4Herman Melville, Moby Dick  30 

 31 

Messy variation is ubiquitous in nature, as Melville keenly observed. This variation provides the 32 

raw material for evolution, while smoothed averages of it are crucial for phylogenetic 33 

comparative methods. Typically, multiple individuals 4 or even one 4 are used to calculate a 34 

mean, which is then used as the representative value for a species in trait evolution, correlation, 35 

or diversification studies. While we acknowledge some scatter around this idealized value, we 36 

often dismiss it as minor, believing it only slightly reduces the power of our methods, if at all. 37 

However, ignoring this variation introduces more than just noise; it can fundamentally 38 

undermine analyses. That is, it can change the models we choose as best fits to the data (e.g., 39 

Sylvestro et al., 2015), produce misleadingly precise parameter estimates (e.g., Ives et al., 2007), 40 

and reveal seemingly compelling patterns that are entirely artificial (e.g., O9Meara & Beaulieu, 41 

2024). Ignoring variance at the tips is not just muddying the waters, it is creating spurious new 42 

islands towards which we set sail. 43 

The sources of this variation are numerous and additive. First, every measurement carries 44 

uncertainty, a concept ingrained in us from the early days of learning science with quizzes about 45 

significant digits and finite resolution of tick marks on our meter sticks. Then there is biological 46 

uncertainty, such as the exact length of a squid9s tentacle or the precise point where a leaf begins. 47 

Sampling uncertainty arises when a subset is used to represent the entire group. Finally, true 48 

intraspecific variability exists due to differing optimal conditions, genetic drift within 49 
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populations, and phenotypic plasticity. Taken together, even the most precise measurement from 50 

one population might not reflect the overall species mean. 51 

In comparative biology, we often overlook the complexity of uncertainty. We might 52 

consider <measurement error= as the standard error of the observed measurements for species, 53 

but the common default is to assume this error is zero. Moreover, the array of factors 54 

contributing to this uncertainty extends far beyond what we traditionally categorize as 55 

measurement error. This intraspecific variance has been described with various terms, including 56 

<specific variances= (Cheverud et al., 1985), <residual variation= (Lynch, 1991), <phenotypic 57 

variation= (Felsenstein, 2008), and <measurement error= (Harmon & Losos, 2005; O9Meara et 58 

al., 2006; Silvestro et al., 2015). Some of these terms suggest specific mechanisms. Other terms 59 

are more descriptive but may have meanings outside our field that can cause confusion. To avoid 60 

ambiguity, we propose a new term: <tip fog.= This term captures the variance that occurs at the 61 

present between the true species mean derived from the evolutionary process and what an 62 

experimenter records as a value, without being tied to any particular mechanism, and it applies to 63 

characters that are discrete or continuous. 64 

Here, we show why accounting for tip fog is critical by showing its impact on both 65 

continuous and discrete comparative models. We rederive methods to estimate this variance and 66 

assess its feasibility and importance in a comparative context. By highlighting the consequences 67 

of ignoring tip fog, we urge the community to adopt these methods as default standards into all 68 

comparative analyses to avoid the pitfalls of misleading model selection, inferring biased 69 

parameter estimates, and interpreting artificial patterns.  70 

 71 

 72 
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Estimating tip fog for continuous trait evolution 73 

There has been extensive research on the importance of tip fog (under various names) in 74 

continuous models, including approaches like independent contrasts (Felsenstein, 2008) and 75 

univariate models where model parameters or the comparison of model fit are relevant (Harmon 76 

& Losos 2005; Ives et al., 2007; Revell & Reynolds, 2012; Silvestro et al., 2015). All these 77 

studies concluded that tip fog can significantly affect the results and recommend its inclusion in 78 

analyses, a point particularly emphasized by Silvestro et al. (2015). However, its use remains 79 

remarkably uncommon. Popular software packages, such as ouch (Butler & King, 2004), surface 80 

(Ingram & Mahler, 2013), and revBayes (Hohna et al., 2016), do not allow accounting for tip fog 81 

in their Ornstein-Uhlenbeck models. Packages like OUwie (Beaulieu et al., 2012) and bayou 82 

(Uyeda & Harmon, 2014) allow specifying tip fog as a model parameter but default it to zero; the 83 

function fitContinuous in geiger (Pennell et al., 2014) also allows it to be inferred, though it also 84 

assumes a default value of zero.  85 

The reluctance to incorporate tip fog may stem from the difficulty of obtaining empirical 86 

values of sample variance (which is a subset of tip fog) 4 it is challenging to acquire species 87 

means for all traits, let alone the variance in that value. Additionally, any observed value is likely 88 

to be an underestimate, capturing only some sources of variation. Estimating tip fog introduces 89 

another free parameter into the model, so despite arguments for its potential utility, researchers 90 

might opt for simpler models. 91 

The way we parameterize tip fog in OUwie is rather straightforward and follows from 92 

O9Meara et al. (2006) and Ives et al. (2007). For a standard Brownian motion model, the 93 

evolution of a trait over time is modeled as a random walk, with the rate of evolution described 94 
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by the rate parameter �!. The expected variance-covariance matrix, V, reflects the variances and 95 

covariances of trait values among different species, based on their shared evolutionary history. 96 

To incorporate tip fog, �", the within-species variance is added to the diagonal elements 97 

of V, representing the additional variance in trait values due to factors specific to each species. 98 

The modified variance-covariance matrix, V*, is expressed as: 99 

V* = V + �"I 100 

where I is the identity matrix. Adding �" to the diagonal of V allows the model to account for 101 

both the phylogenetic covariance among species as well as estimate the additional variance 102 

within each species. It is possible to have a different �" for each individual species: the variance 103 

in log length for a squishy squid is likely larger than the variance in log length for a crunchy 104 

crustacean species, for example. One might imagine that a �" as a percentage of each species9 105 

mean could also work. In our implementation here, we assumed all species had the same value 106 

for tip fog when estimating it (but not necessarily when simulating). 107 

For more complex models, such as those allowing the rate parameter �! to vary and/or 108 

allowing traits to evolve towards specific trait <optima= (i.e., like Ornstein-Uhlenbeck models) 109 

based on a discrete regime, the addition of �" follows the same formulation described above. The 110 

only difference lies in how V is constructed. However, the impact of not accounting for tip fog 111 

on evolution rates in such models is quite dramatic.  112 

To illustrate, we conducted a set of simulations where the generating models were a 113 

multiple-rate Brownian motion model (BMS) and a multiple-optima, multiple-rate Ornstein-114 

Uhlenbeck model (OUMV). We first created an identifiable two-state regime mapping on a 115 

randomly generated 200-tip phylogeny (birth rate set to 0.4 events Myr-1, and death rate of 0.2 116 

events Myr-1) in TreeSim (Stadler 2011) with the root to tip length scaled to one. Under both 117 
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generating models, we set the rate for the first regime to �#
! = 1 units Myr-1 and scaled the rate 118 

for the second regime to take on either �!
! = 1.25, 3, or 5 units Myr-1. For the OUMV model, we 119 

set a global � parameter, which controls the rate of the <pull= towards individual trait means 120 

(here we set �# = 1, and �! = 3), ensuring that the half-life corresponds to 50% the height of the 121 

tree (i.e., � = 1.39 units Myr-1).  122 

Tip fog was simulated by resampling each tip value from a normal distribution centered 123 

at the individual species mean and with a standard deviation that was a percentage of the mean 124 

for each species. We generated 100 data sets each, where the percentage varied 10%, 20%, 30%, 125 

40%, and 50% of each individual species mean. Each data set was then evaluated under BM1, 126 

BMS, OU1, OUM, and OUMV models. Estimates for evolutionary rates were summarized as 127 

weighted harmonic averages using Akaike weights, which is equivalent to weighted arithmetic 128 

means of the wait times; estimates of trait means were based on a weighted arithmetic average. 129 

All simulations were performed in the R package OUwie (Beaulieu et al., 2012). 130 

The results of these simulations are presented in Figure 1 and Table S1. In general, not 131 

accounting for tip fog substantially affects the estimates of evolutionary rates in complex models 132 

with multiple rate regimes. As the level of fog increases, the evolutionary rates are increasingly 133 

biased upward, regardless of the regime. For example, with just 30% fog under a BMS 134 

generating model the average rate in regime 1 is 10- to 30-fold higher than the generating model. 135 

In contrast, when �" is estimated as part of the model (+�"), the evolutionary rates generally align 136 

more closely with their true values (for the same models as above, 0.9 to 1.1 times the true 137 

value). However, in the OUMV model, at higher fog levels, the rates exhibit a downward bias in 138 

regime 1 and an upward bias in regime 2, with the upward bias being substantially more 139 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.19.608647doi: bioRxiv preprint 



pronounced. Nevertheless, incorporating tip fog into the model substantially improves the rate 140 

estimates compared to not accounting for it. 141 

For the OUMV models, tip fog had a pronounced effect on estimates of the trait mean 142 

(�!) for regime 2 only, regardless of the underlying rate or whether fog was included in the 143 

model (Fig. S2). To better understand this, we conducted an additional simulation, assuming a 144 

multiple-optima OU model (OUM) where the evolutionary rate was set equal across regimes 145 

�!	= 2 and varied �! to be 1.25x, 3x, and 5x on a pectinate tree with an identifiable two-state 146 

regime mapping. Results from these simulations exhibited a similar pattern: in the presence of 147 

fog, the estimates of theta for the second regime are increasingly underestimated as the amount 148 

of tip fog increases (Fig. 2). Examining the confidence regions surrounding estimates of �!, �, 149 

and �! using dentist (Boyko & O9Meara, 2024) reveals that tip fog introduces greater 150 

uncertainty in estimates of � and �!, which incidentally impacts estimates of �!, even when �" is 151 

included in the model. This uncertainty is also reflected in model support; the presence of fog 152 

leads to some support for models that include additional complexity, such as BMS and OUMV 153 

(Table S1). Overall, these results suggest that any model fit should be interpreted with 154 

consideration of the parameter estimates and the underlying uncertainty. 155 

 156 

Impact of tip fog on discrete trait evolutionary models 157 

The impact of character misassignments on the accuracy and reliability of continuous-time 158 

Markov models remains largely unexplored outside of tree inference contexts (e.g., Felsenstein, 159 

2004; Ho et al., 2007; Rambaut et al., 2009; Kuhner & McGill, 2014; Davis & Navin, 2016). 160 

Misassignments, whether due to data collection errors or legitimate polymorphisms, introduce 161 

uncertainty about the true state of a species and can lead to erroneous estimates of transition rates 162 
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between states and exaggerated biological patterns (O9Meara & Beaulieu, 2024). Here we apply 163 

a framework, first proposed by Felsenstein (2004), for continuous-time Markov models that 164 

allows for the simultaneous estimation of character misassignments and state transition rates. 165 

Conceptually, this approach is best understood as a type of hidden Markov model (HMM). In 166 

such models, the true state is not directly observed, making it <hidden,= while the observed data 167 

represent a noisy or misclassified version of these states (also see Jackson et al., 2003). The goal 168 

of the model is to infer the underlying true states by estimating the likelihood of observing the 169 

data given the true states. It is rather straightforward in that the general model remains 170 

unchanged, except we alter the observed probabilities at the tips.  171 

Suppose that i indexes n tips in a tree, and that Si represents the true underlying state of 172 

tip i and that Oi corresponds to the observed state for tip i. When these states are known exactly, 173 

as is assumed by any standard continuous-time Markov model, we assume the state of each tip is 174 

P(Oi = o| Si = o) = 1. In the binary case, o might represent the presence or absence of a particular 175 

character state (e.g., woody versus herbaceous plants, feathers versus no feathers). However, 176 

when these observations are subject to uncertainty, as is often the case, we assume then that the 177 

observed states, Oi, are generated conditionally on the true states, Si. The probability of the 178 

observed state o given that the true state is s can be expressed by P(Oi = o| Si = s) = 1 - �$,& where 179 

�$,& defines what we refer to as the <tip fog probability=. Thus, the probability at a given tip then 180 

becomes 1 - �$,&for the observed state and �$,& for the alternative state. For an arbitrary number of 181 

states when state i is observed, the probability of each alternative state (i.e., j b i) is �',( with the 182 

observed state being 1 2 3 �',(()' , where �',(represents the probability that the observed state is i 183 

when the true state is j.  184 
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The likelihood of the model is obtained by maximizing the standard likelihood formula,  185 

L = P(D | Q, T, �*), for observing character states, D, given the continuous-time Markov model, 186 

Q, a fixed topology with a set of branch lengths (denoted by T). Note that we have added an 187 

additional free parameter in the formula, �*, that denotes a single tip fog probability for all 188 

observed states. When �* = 0, the likelihood simply reduces to the likelihood of a standard 189 

continuous-time Markov model. We implemented these <tip fog= models as part of the corHMM 190 

package (Beaulieu et al., 2013; Boyko & Beaulieu, 2021), allowing for the specification of as 191 

many tip fog probabilities, �', as there are unique observed states in the data set.  192 

We conducted a simulation study to assess the impact of ignoring tip fog, as well as the 193 

overall behavior when estimating it. A 200-tip phylogeny was generated (birth rate set to 0.4 194 

events Myr-1, and death rate of 0.2 events Myr-1) in TreeSim (Stadler 2011), which was used to 195 

simulate 100 datasets assuming equal transitions rates of q01 = q10 = 0.025 transitions Myr-1 196 

between binary states. We varied the root age of the phylogeny to take on four ages: 5, 10, 15, 197 

and 20 Myr. In a recent publication (O9Meara & Beaulieu, 2024) we showed that inaccuracies in 198 

character state assignments significantly affect younger trees more due to shorter overall tree 199 

lengths, and so varying clade age was meant to mimic this effect. To simulate tip fog, we 200 

randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its 201 

true state. For each simulation replicate, we fit two classes of models: 1) equal rates (ER, single 202 

rate for all transitions) and all rates different (ARD, two independent rates) without estimating 203 

tip fog probabilities (i.e., referred to as <Default=), and 2) ER and ARD with each estimating a 204 

single �* parameter. Rate estimates within each of the model classes were then summarized by 205 

calculating a weighted harmonic mean of each transition parameter using the Akaike weights 206 

(wi). 207 
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As with continuous trait data, failing to account for tip fog dramatically inflates transition 208 

rates. We found that the magnitude of the upward bias increases as the degree of tip fog also 209 

increases (Fig. 3). Even a tip fog probability of 1%, which is expected to result in just two taxa 210 

out of 200 being misassigned to the wrong state, substantially biased transition rates upward. As 211 

expected, the magnitude of the effect did depend on clade age. For example, with 1% tip fog 212 

probability in a 5 Myr tree, rates more than double their true value (q01 = 0.049 and q10 = 0.069 213 

transitions Myr-1), while for a clade age of 20 Myr, rates are only slightly upward biased (q01 = 214 

0.030 and q10 = 0.033 transitions Myr-1). Nevertheless, when tip fog was 5% and higher, the 215 

model-averaged rates were orders of magnitude higher than the true values regardless of clade 216 

age (Fig. 3). When tip fog probability was estimated as part of the model (+�*), the transition 217 

rates remain relatively stable across different fog levels (Fig. 3). Although younger clades still 218 

show a slight upward bias, it does not systematically increase with increasing tip fog as it does in 219 

the default model fits. Notably, estimates of �* are consistently centered on their true values, 220 

indicating the model effectively infers the degree of tip fog present in these data sets (Fig. 3C). 221 

We also found that failing to account for tip fog substantially impacts model weights. 222 

With just 5% tip fog, the weight shifts almost entirely (>90%) to the ARD model, a pattern that 223 

was consistent across all clade ages (Table S2). When the tip fog probability is estimated under 224 

an ER generating model, the Akaike weights favor the generating ER model with the distribution 225 

of the weights converging towards the null weight expected based solely on the penalty term 226 

(Fig. 4). This indicates that uncorrected tip fog not only inflates rate estimates but can also 227 

erroneously make the data choose models that are too complex.  228 

To illustrate this further, we also included an HMM model that contained two distinct 229 

rate classes (q01A = q10A and q01B = q10B) and an additional transition rate governing the transition 230 
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among them (i.e., three transition rates total). When this model was included as part of the 231 

default model set, the ARD and HMM models competed for the highest Akaike weight, with the 232 

ER model showing very little support generally for tip fog values >1% (Fig. S3; Table S3). 233 

Interestingly, the HMM consistently had the highest support in trees with clade ages >10 Myr 234 

(Table S3). When the tip fog probability was estimated as part of the model, support for the 235 

HMM consistently converged toward the null Akaike weight, which was substantially lower than 236 

either the ER or ARD models (Fig. S3).  237 

We were also curious about the performance of the +�* models when included as part of 238 

a broader set that also included models that did not estimate �*. It may be that even though the 239 

ER + �*fits well when compared to other +�* models, the added complexity of the additional 240 

parameter reduces the power to detect tip fog when it is present. However, when we pooled the 241 

default and tip fog model sets together and recalculated the Akaike weights, the ER + �* model 242 

emerged as the best model across all fog values except �* = 1% (Fig. 4C; Table S2). In that case, 243 

these results suggest that such low fog values are often difficult to distinguish from no fog, 244 

which is expected.  245 

 246 

Extending to state-speciation and extinction models 247 

The approach for estimating tip fog from discrete traits extends naturally to state-speciation and 248 

extinction models (SSE; Maddison et al., 2007; FitzJohn et al., 2009; Beaulieu & O9Meara, 249 

2016). We parameterize the initial conditions for DN,i(t) 3 the probability that a lineage observed 250 

in state i at time t 3 to be 1 - �',( for the observed state and �',( for the alternative state. The initial 251 

conditions for Ei(t), the probability that a lineage in state i at time t would go completely extinct 252 
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by the present, remains unaltered. The likelihood calculation then proceeds down the tree as 253 

usual.  254 

When the input tree represents a sample of all extant species within a focal clade, the 255 

initial conditions for DN,i(t) must also account for the sampling fraction, fi, which specifies the 256 

probability that a species with true state i is sampled and included in the tree. For example, if a 257 

tip is observed in state 0 at the present, the initial conditions for DN,0(t=0) = f0 (1 - �*) and     258 

DN,1(t=0) = f1 �* for the alternative state. The initial probability for E0(0) remains the probability 259 

of a lineage not being present in the phylogeny, either by going extinct or not being sampled, and 260 

is therefore set as Ei(t=0) = 1 2 f0. These modifications have been implemented in the hidden 261 

state-speciation and extinction model in the R package hisse (Beaulieu and O9Meara 2016). 262 

 Unincorporated tip fog should have two effects on the estimation and interpretation of 263 

parameters in an SSE model. First, tip fog should erroneously inflate transition rates, though not 264 

to the degree that they are in continuous-time Markov models. This is because SSE models 265 

jointly estimate speciation, extinction, and state transition processes, making it less likely for the 266 

model to attribute too much to transition rates alone. Instead, character misassignments are more 267 

likely to be absorbed as part of the variation in speciation and/or extinction rates. However, this 268 

benefit comes with a trade-off: the model may homogenize diversification rates among observed 269 

states, which can lead to increased support for models that assume some form of character-270 

independence. In other words, some of the tips observed in state 0 are actually in state 1, and 271 

vice versa, making the states seem more similar from a diversification standpoint than they 272 

should be. 273 

To investigate how SSE models behave with tip fog, we simulated scenarios where the 274 

turnover rate (� + �) for state 1 was nearly double that of state 0. Specifically, we simulated 100 275 
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trees with �+ = 0.22 events Myr-1 and �# = 0.42 events Myr-1, with extinction rates set to 75% of 276 

the speciation rates in both cases, and equal transition rates of 0.025 transitions Myr-1. Each tree 277 

started in state 0 and evolved for 50 Myr, resulting in an average of about 200 taxa per tree. To 278 

avoid patterns from simulation time bias or inflating the effect of tip fog by stopping at a fixed 279 

number of taxa, which can result in a clade with zero length branches, we terminated simulations 280 

at a pre-specified time. Tip fog was introduced by randomly altering the true state of 1%, 5%, 281 

10%, 15%, or 20% of taxa to the incorrect state. For each simulation replicate, we fit two sets of 282 

six models, including both character-independent (e.g., CID-2) and character-dependent models 283 

(e.g., BiSSE), with either equal or asymmetric transition rates (see Table S3). Each model set 284 

either ignored tip fog (referred to as <default=) or estimated its probability (+�*). We calculated a 285 

weighted harmonic average of the transition rates across model fits using Akaike weights. 286 

Estimates of turnover rates were summarized as a weighted harmonic mean of the rates 287 

represented at the tips of the tree. That is, for each model, the marginal probability of each state 288 

(and rate class for CID-2) was computed for every tip, and then computed as the weighted 289 

harmonic mean across all models using the Akaike weights. 290 

As expected, our simulations revealed that transition rates became increasingly inflated 291 

with higher degrees of tip fog when not accounting for tip fog in the model (Fig. 5A). In 292 

addition, as expected the magnitude of the rate inflation is muted compared to the continuous-293 

time Markov models for the same tip fog (Fig. 3). In contrast, when tip fog was estimated as part 294 

of the model, the individual transition rates generally remained close to their true values as did 295 

the estimates of the tip fog probability (Fig. 5C).  296 

Unexpectedly, turnover rates tended to converge as the degree of tip fog increased, 297 

regardless of whether tip fog was estimated (Fig. 5B). We suspect this pattern arises for two 298 
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distinct reasons. First, in the default model set that does not include �*, the convergence appears 299 

to be driven by an increasing model weight toward character-independent models as the level of 300 

tip fog increases (Fig. 6A, Table S4). That is, there is increased support for models that do not 301 

differentiate based on the observed character states, leading to more uniform estimates of 302 

turnover rates across different states. In contrast, for the +�* 	models, support for character-303 

dependent models remained stable across different levels of simulated tip fog (Fig. 6B).  304 

The convergence of turnover rates despite the stability in model support for character-305 

dependence within the +�* models is likely due to how tip rates are summarized when tip fog is 306 

present. Consider a BiSSE model where the turnover rate is 0.35 events Myr-1 for state 0 and 307 

0.70 events Myr-1 for state 1. In the absence of tip fog, the rate for a given tip would simply be 308 

the observed state since there is no uncertainty as to the true state. However, with the tip fog 309 

probability being estimated a tip might be observed in say state 1, but there is some uncertainty 310 

as to whether it is state 0 instead. Thus, we must account for this when summarizing the rates 311 

within a given model when tip fog probability is included, and this tends to homogenize 312 

diversification rates as tip fog increases. For instance, if a model is estimated to have a 5% tip 313 

fog probability, the tip rate for a taxon observed in state 1 for that model is calculated as a 314 

weighted average such that (0.35 x 0.05) + (0.70 x 0.95) = 0.68 events Myr-1. Now, if the tip fog 315 

probability increases to say 20%, as we did in our simulations, the tip rate would adjust 316 

downwards to (0.35 x 0.2) + (0.70 x 0.8) = 0.63 events Myr-1. This adjustment would also cause 317 

the turnover rate for tips observed in state 0 to gradually increase, contributing to the overall 318 

homogenization of turnover rates, even with clear support for the character-dependent models 319 

included in the model set. 320 

 321 
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Discussion 322 

While the importance of tip fog in continuous traits has long been acknowledged, we were 323 

surprised by how accurately it can be estimated from both continuous and discrete data directly. 324 

This is significant because tip fog is not just simply adding another parameter 4 it represents the 325 

extent to which tip data distorts or misrepresents the underlying reality. Given the feasibility of 326 

estimating it and the detrimental effects of setting it to zero, we have updated all our software to 327 

estimate tip fog by default, and we recommend others do the same [NB: only once this paper is 328 

in press, as a peer review may find an issue we have missed so we do not want to enable this by 329 

default until then]. Anyone converting biological variation into discrete data knows this 330 

inevitably leads to fuzzy cases, and this fuzziness is even more pronounced with continuous 331 

variation. Ignoring tip fog can result in confidently incorrect conclusions rather than mere 332 

uncertainty. Even if practitioners are hesitant to increase model complexity by estimating an 333 

additional parameter, selecting an arbitrary value of say, 10%, is likely more accurate than the 334 

current practice of assuming tip fog is 0%. 335 

Our implementation of tip fog is straightforward. For continuous traits, we use a constant 336 

value across all tips, while for discrete traits, we follow a similar approach in our simulations, 337 

though we also allow for varying error rates depending on observed states. For example, in traits 338 

like parental care, it is more likely that species with this trait might be missed rather than 339 

incorrectly reported as having it. However, there are opportunities to increase complexity. Tip 340 

fog for continuous traits could be modeled as a proportion of the observed state instead of a fixed 341 

standard deviation. Moreover, different amounts of fog could be estimated for species 342 

categorized by factors such as observations from herbaria versus field studies, species with 343 

extensive records versus those with fewer, and observations made by undergraduates versus 344 
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faculty. Incorporating the number of observations per species could also refine estimates of 345 

continuous tip fog. Exploring different regimes of tip fog across the phylogenetic tree offers 346 

additional avenues for improvement (sensu Ives et al., 2007). 347 

We hasten to acknowledge that tip fog is not the only source of uncertainty in 348 

macroevolutionary studies. Uncertainty in topology and branch lengths, as well as 349 

unincorporated heterogeneity in the evolutionary process, also likely play significant roles. 350 

Properly incorporating tip fog does not negate the need to consider these other factors. However, 351 

just as incorporating tree uncertainty by conducting analyses across a set of trees is essential, so 352 

is incorporating tip fog. 353 

The concept of tip fog presents an opportunity to revisit the basic principles of model 354 

selection. Models with or without tip fog estimation can be compared using metrics such as AIC, 355 

AICc, or BIC, all of which account for model complexity. The model with the lowest score on 356 

these metrics offers the best balance between complexity and fit. For instance, if a model that 357 

includes tip fog estimation has a &AIC of 0, and a model that forces tip fog to zero has a &AIC of 358 

1.4, the model estimating tip fog is superior. However, it is not uncommon to encounter model 359 

choice being based on requiring that a more complex model outperform a simpler one by a 360 

certain arbitrary margin before considering it (i.e., &AIC > 2). However, such an approach is 361 

neither necessary nor appropriate (Burnham & Anderson, 2004). 362 

We also note that tip fog is distinct from approaches that account for polymorphism in tip 363 

data, although they are related. For instance, consider a character with states yellow, white, and 364 

red, where one species exhibits polymorphism with some flowers being yellow and others white, 365 

while most species in the clade are uniformly one of the three colors. In such a case, the 366 

likelihood calculation would start with P(Oi = yellow) = P(Oi = white) = 1 for that species [rather 367 
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than 0.5 for each, as noted by Felsenstein (2004)]. This differs from errors such as a researcher 368 

misassigning a yellow specimen as white due to poor lighting. Despite this distinction, tip fog 369 

can still be applied alongside polymorphism to improve model accuracy. In fact, this might be 370 

particularly useful for models of biogeography where polymorphic scoring is a central feature 371 

(Ree & Smith 2008; Bätscher & de Vos, 2024). 372 

Our study focuses on tip fog within traditional macroevolutionary models, which 373 

typically analyze one or a few characters. However, tip fog can significantly impact models that 374 

handle multiple characters, such as those used for inferring phylogenetic trees and networks 375 

(e.g., Kuhner & McGill). One major component of tip fog is sequencing error, which is likely 376 

more substantial than is typically acknowledged. Incorporating tip fog as a default option in tree 377 

inference is particularly sensible given the large volumes of data often available. Yet, popular 378 

tree inference programs like RAxML-NG (Kozlov et al., 2019) and IQ-TREE (Minh et al., 2020) 379 

currently lack this capability. The omission of tip fog is especially critical for branch length 380 

estimates, as unaccounted-for tip fog tends to lengthen terminal branches (which make up over 381 

half of a tree9s edges), thereby inflating overall substitution rates. This can lead to an inaccurate 382 

estimation of tree age if a rate calibration is used. When using multiple fossils or other 383 

calibrations, the effect on overall tree age is less predictable but generally results in an increased 384 

ratio of terminal to internal branch lengths. In any event, while some models for cancer tumor 385 

phylogenies incorporate error expectations (Davis & Navin 2016), sequencing error remains a 386 

significant concern in traditional phylogenetic studies (see also Ho et al., 2005). 387 

We note several important caveats. Our analysis has focused on predictable errors, such 388 

as a species mean being off by 10% or a 20% chance of misassigning a species9 state as woody 389 

instead of herbaceous. However, we have not addressed more extraordinary sources of error, 390 
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such as entering a unitless mass in milligrams for one species while using grams for others, 391 

confusing range data between a plant and an insect due to homonyms, omitting the sign for 392 

longitude, or recording a missing value as -99, which is then incorrectly treated as a valid state. 393 

Tip fog, as we incorporate it, is unlikely to address these types of errors effectively. While tip fog 394 

can account for certain uncertainties, it relies on the data being fundamentally accurate. 395 

Additionally, tip fog does not correct errors in tree or network topology or branch lengths 3 these 396 

also remain important to incorporate. While our work uses likelihood and AIC, we expect similar 397 

results using Bayesian methods or using model selection criteria beyond AIC. Even with 398 

Bayesian methods, which deal quite well in uncertainty, existing approaches essentially put full 399 

prior weight on the data being completely right, not allowing any exploration about the 400 

possibility of nonzero tip fog (but see Revell & Reynolds, 2012). Either adding one or more tip 401 

fog parameters or allowing a looser coupling between observed and actual states, would allow 402 

Bayesian methods to incorporate this important factor.  403 

Finally, several questions remain unanswered. For instance, empirical estimates of 404 

variability at tips, such as the standard deviation of samples, might underrepresent tip fog 405 

because they do not account for factors affecting all modern samples, such as environmental 406 

plasticity. This issue has not been explored in our study; it remains uncertain whether estimating 407 

tip fog directly is more effective than relying on empirical estimates of tip variability or if adding 408 

an <additional= fog parameter to the model would be beneficial. While we have incorporated tip 409 

fog into SSE models for discrete traits, we have not applied it to SSE models of continuous data 410 

(e.g., QuaSSE; FitzJohn, 2010). We also have not explored multivariate models, as discussed by 411 

Felsenstein (2008). Additionally, some simulation results were unexpected. For example, we 412 

anticipated that tip fog would significantly improve estimates of � in an Ornstein-Uhlenbeck 413 
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model, but the effect appears less pronounced than expected. The presence and impact of tip fog 414 

in empirical studies are still unknown; analyzing existing datasets to estimate tip fog and assess 415 

the consequences of ignoring it would be a valuable next step. 416 

 417 

Conclusions 418 

Melville warned that those who seek to understand whales must risk their boats being crushed. 419 

Similarly, many comparative analyses are at risk of failing due to unrecognized variation from a 420 

myriad of sources 4 what we term <tip fog.= However, this risk can be mitigated by 421 

incorporating tip fog into our standard models, which will improve the accuracy of our 422 

inferences and avoid the pitfalls of confidently incorrect conclusions. As we navigate the 423 

complexities of biological data, making tip fog a standard consideration will provide more 424 

reliability to our analyses. 425 

 426 
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539 

Figure 1. Uncertainty in estimating the evolutionary rate (�!) as a function of tip fog, with the 540 

generating model assuming various (A, B) multiple-rate Brownian motion (BMS) and (C, D) 541 

multiple mean, multiple-rate Ornstein-Uhlenbeck (OUMV) models. Panels (A) and (C) depict 542 

cases where the rate for regime 2 is 1.25 times that of regime 1, while (B) and (D) show a rate 3 543 

times that of regime 1. Tip fog was simulated by resampling each tip value from a normal 544 

distribution centered at the individual species mean and with a standard deviation that was a 545 

percentage of the mean. Data sets were then evaluated under BM1, BMS, OU1, OUM, and 546 

OUMV models, with rates summarized using a weighted harmonic mean based on Akaike 547 

weights (see text). Darker boxes indicate rate summarized across models excluding tip fog 548 

(Default), which show an upward bias in evolutionary rates as fog levels increase, regardless of 549 

the regime. The less saturated boxes represent rates summarized across models that estimate tip 550 

fog (+�"), where evolutionary rates generally align more closely with true values. Dashed blue 551 

and orange lines indicate the generating values for regimes 1 and 2, respectively. 552 

 553 

1e201

1e+00

1e+01

1e+02

1e+03

0.1 0.2 0.3 0.4 0.5

Ã
2̂

M
yr
2

1
A

1e201

1e+00

1e+01

1e+02

1e+03

0.1 0.2 0.3 0.4 0.5

B

1e201

1e+00

1e+01

1e+02

1e+03

0.1 0.2 0.3 0.4 0.5
Fog as % of mean

Ã
2̂

M
yr
2

1

C

1e201

1e+00

1e+01

1e+02

1e+03

0.1 0.2 0.3 0.4 0.5
Fog as % of mean

D

Rate Type: Ã1
2 + ·cÃ1

2 Default Ã2
2 Default Ã2

2 + ·c

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.19.608647doi: bioRxiv preprint 



 554 

Figure 2. Uncertainty in estimating the trait means (�') when the generating model is a multiple-555 

mean Ornstein-Uhlenbeck model (OUM), and the simulated data sets contained differing levels 556 

of tip fog. (A) depicts a scenario where the trait mean for regime 2 is 3 times that of regime 1, 557 

whereas (B) depicts a scenario where regime 2 is 5 times that of regime 1. Tip fog was simulated 558 

by resampling each tip value from a normal distribution centered at the individual species mean 559 

and with a standard deviation that was a percentage of the mean. Data sets were evaluated under 560 

BM1, BMS, OU1, OUM, and OUMV models, with rates summarized using a weighted mean 561 

based on Akaike weights (see text). Darker boxes indicate �' summarized across models 562 

excluding tip fog (Default); the less saturated boxes represent �' summarized across models that 563 

estimated tip fog (+�"). Dashed blue and orange lines indicate the generating values for regimes 564 

1 and 2, respectively. In both scenarios, as the amount of tip fog increases, estimates for �! are 565 

increasingly underestimated, irrespective of whether tip fog was estimated.    566 
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 575 

Figure 3. Uncertainty in estimating transition rates using an equal rates (ER) continuous-time 576 

Markov model (q01 = q10 = 0.025 transitions Myr-1) with increasing levels of tip fog. Panels (A) 577 

and (B) show rate uncertainty for clades aged 5 Myr and 10 Myr, respectively. Younger clades 578 

show greater uncertainty due to shorter tree lengths (see main text). To simulate tip fog, we 579 

randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its 580 

true state. Data sets were evaluated under an equal-rates model (ER, single rate for all 581 

transitions) and an all-rates different model (ARD, two independent rates). Rate estimates within 582 

each of the model classes were then summarized by calculating a weighted harmonic mean of 583 

each transition parameter using the Akaike weights. Darker boxes indicate transition rates 584 

summarized across models excluding tip fog (Default); the less saturated boxes represent 585 

transition rates summarized across models that estimated tip fog (+�*). Dashed blue and orange 586 

lines indicate the generating values for state 0 and state 1, respectively. (C) depicts uncertainty in 587 

�* 	estimates across all clade ages, with the dashed red line indicating the true �*. 588 
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 592 

 593 

Figure 4. Summaries of model support based on Akaike weight (w) for equal rates (ER) and all 594 

rates different (ARD) continuous-time Markov models fit (A) without tip fog and (B) fit 595 

including tip fog as a parameter, or (C) pooled together as part of an inclusive model set. The 596 

generating model for these simulations was an equal rates (ER) continuous-time Markov model 597 

(q01 = q10 = 0.025 transitions Myr-1) with increasing levels of tip fog. To simulate tip fog, we 598 

randomly altered the observed state of 1%, 5%, 10%, 15%, or 20% of taxa to be the reverse of its 599 

true state. Dashed lines in (A) and (B) represent the null expectation of the Akaike weight as the 600 

average Akaike weight if we assume an equal likelihood across all models. 601 
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 608 

Figure 5. Uncertainty in estimating (A) transition rates and (B) turnover rates under a state-609 

speciation and extinction model with increasing levels of tip fog. The generating model was a 610 

character-dependent model (CD), where state 1 to have turnover rate (�# +	�# = 0.735 events 611 

Myr-1) that was nearly 2x the rate of state 0 (�+ +	�+ = 0.385 events Myr-1), with state 612 

transitions between 0 and 1 set at 0.025 transitions Myr-1; extinction fraction was set at 0.75 for 613 

both regimes. To simulate tip fog, we randomly altered the observed state of 1%, 5%, 10%, 15%, 614 

or 20% of taxa to be the reverse of its true state. Data sets were evaluated two sets of six models, 615 

including both character-independent (e.g., CID-2) and character-dependent models (e.g., 616 

BiSSE), with either equal or asymmetric transition rates (see Table S3) Each model set either 617 

ignored tip fog (Default) or estimated its probability (+�*). Rate estimates within each of the 618 

model classes were then summarized by calculating a weighted harmonic mean of each rate 619 

parameter using the Akaike weights. Darker boxes indicate transition rates summarized across 620 

models excluding tip fog (Default); the less saturated boxes represent transition rates 621 

summarized across models that estimated tip fog (+�*). Dashed blue and orange lines indicate 622 

the generating values for state 0 and state 1, respectively. (C) depicts uncertainty in �* estimates, 623 

with the dashed red line indicating the true �*. 624 
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 627 

Figure 6. Summary of the cumulative support for character-dependence (CD; turnover rate 628 

depends on the state) and character-independence (CID; turnover rates do not depend on the 629 

state) when the generating model is a character-dependent model that contains increasing levels 630 

of tip fog. Panel (A) shows how support for character-independence increases with increasing tip 631 

fog when tip fog is ignored (Default), whereas (B) when tip fog is estimated as part of the model 632 

(+�*) support for character-dependent models remains stable across different levels of simulated 633 

tip fog.634 
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