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We calculate the decay rates for ηc → γγ, J=ψ → γηc and J=ψ → ηceþe− in lattice QCD with u, d, s and
c quarks in the sea for the first time. We improve significantly on previous theory calculations to achieve
accuracies of 1–2%, giving lattice QCD results that are now more accurate than the experimental values. In
particular our results transform the theoretical picture for ηc → γγ decays. We use gluon field configurations
generated by the MILC collaboration that include nf ¼ 2þ 1þ 1 flavors of highly improved staggered sea
quarks at four lattice spacing values from 0.15 fm to 0.06 fm and with sea u/d masses down to their physical
value. We also implement the valence c quarks using the highly improved staggered quark action. We find
Γðηc → γγÞ ¼ 6.788ð45Þfitð41Þsyst keV, in good agreement with experimental results using γγ → ηc →

KK̄π but in 4σ tension with the Particle Data Group global fit result [R. L. Workman (Particle Data Group),
Prog. Theor. Exp. Phys. 2022, 083C01 (2022)]; we suggest this fit is revisited. We also calculate
ΓðJ=ψ → γηcÞ ¼ 2.219ð17Þfitð18Þsystð24Þexptð4ÞQED keV, in good agreement with results from CLEO,

and predict the Dalitz decay rate ΓðJ=ψ → ηceþe−Þ ¼ 0.01349ð15Þlattð15Þexptð13ÞQED keV. We use our

results to calibrate other theoretical approaches and to test simple relationships between the form factors and
J=ψ decay constant expected in the nonrelativistic limit.
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I. INTRODUCTION

Decay rates of mesons via annihilation to photons, or
radiative transitions with emission of a photon, can in
principle provide stringent tests of our understanding of the
internal structure of these mesons from strong interaction
physics. The strong interaction effects are parametrized by a
decay constant or a form factor and these can be calculated
from first principles using the techniques of lattice QCD.
The decay rates are free from the uncertainties that arise in
weak decay processes from sometimes poorly known
Cabibbo-Kobayashi-Maskawa matrix elements. This means
that the combination of accurate lattice QCD and exper-
imental results can directly test both QCD and the Standard

Model. An example is that of the leptonic decay rate of the
J=ψ meson via a photon. The decay constant of the J=ψ was
recently calculated with an uncertainty of 0.4% (including
effects from the electric charges of the valence c quarks)
giving a value for ΓðJ=ψ → eþe−Þ accurate to 0.9% [1].
The lattice QCD result agrees well with the experimental
average which has an uncertainty of 1.8%. Here we study
two further processes of this kind for ground-state charmo-
nium mesons, ηc → γγ and J=ψ → γηc.

There are a few experimental results for the decay width
for J=ψ → γηc [2–5]; the Particle Data Group (PDG) [6]
gives a branching fraction of 1.7(4)% as an average of
results from the Crystal Ball [2] and CLEO [3], with the
uncertainty increased by a factor of 1.5 to allow for the
tension between them. The average corresponds to a partial
decay width, ΓðJ=ψ → γηcÞ, of 1.57(37) keV.

Following early work in lattice QCD in the quenched
approximation [7] and including u=d quarks in the sea [8,9],
a result with a more realistic nf ¼ 2þ 1 quark sea was
obtained [10]. Despite the varying numbers of sea quarks
the lattice QCD calculations consistently give values for the
partial decay width that are higher than the PDG average [6]
of the experimental results. Here we aim to shed further light
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on this issue by improving the accuracy from lattice QCD
and including now u=d, s and c quarks in the sea.

For ηc → γγ the experimental and theoretical picture is
less clear. The PDG [6] combines multiple sets of products
of branching fractions involving ηc → γγ to obtain a fit
value for that branching fraction with a 7% uncertainty
[1.61ð12Þ × 10−4]. Individual experimental results are typ-
ically much less accurate than this, however. The fitted
branching fraction corresponds to a partial decay width of
5.15(35) keV.

Lattice QCD calculations for ηc → γγ also show an
uncertain picture on the theoretical side. Early results in
the quenched approximation [11] and subsequent results
including u=d quarks in the sea [12,13] gave results for the
decay rate with a central value much less than the PDG fit
value above. Further recent results from lattice QCD
including u=d sea quarks [14,15] give larger values for
the decay rate in agreement with the PDG fit value [14] or
exceeding it [15]. Here we significantly improve the
theoretical understanding of this decay rate by performing
the first 1%-accurate lattice QCD calculation of it, and we
include a realistic sea quark content (u=d, s and c).

The accurate determination of Γðηc → γγÞ here, along
with HPQCD’s previous accurate determination of
ΓðJ=ψ → eþe−Þ [1], allows us to test the relationship
between these two quantities expected at leading order
(LO) in nonrelativistic QCD (NRQCD). The ratio of rates
in NRQCD is [16]

ΓðJ=ψ → eþe−Þ
Γðηc → γγÞ ¼ 1

3Q2
c
ð1þOðαsÞþOðv2=c2ÞÞ≈ 3

4
: ð1Þ

Here Qc is the electric charge of the c quark in units of e.
Such a simple formula is possible because the hadronic
parameters, here the “wave function at the origin” cancel
out at leading order. Sizeable radiative and relativistic
corrections could be expected to this ratio but there is
evidence in [16], calculating through Oðα2sÞ, that there is
some cancellation between these corrections. Here we can
determine the ratio of these two decay rates accurately and
fully nonperturbatively, including the complete relativistic
dynamics of the c quarks inside the mesons, using lattice
QCD. This allows us to assess how closely the relationship
of Eq. (1) is followed in full QCD.

For J=ψ → ηc decay our lattice QCD calculation involves
calculating a form factor as a function of the 4-momentum
transfer, q, between parent and daughter mesons. The value
of the form factor at q2 ¼ 0 is the appropriate one for the
radiative decay of a J=ψ to ηc accompanied by a real
photon. Here we calculate the form factor across the full q2

range and so can also provide predictions for the case with
an off-shell photon, i.e. J=ψ → ηceþe−. The rate for the
equivalent process for the Ds meson, D

s → Dseþe− has
been measured experimentally [17]; these decays provide an

additional test of our understanding of meson structure
in QCD.

A further simple leading-order relationship between
ΓðJ=ψ → γηcÞ, ΓðJ=ψ → eþe−Þ and Γðηc → γγÞ was sug-
gested many years ago by Shifman in [18], based on the
approximation of J=ψ dominance of the vector cc̄ current.
He gives

ΓðJ=ψ → γηcÞ ¼
Γðηc → γγÞ

ΓðJ=ψ → eþe−Þ
2αM4

J=ψ

9M3
ηc

×


1 −

M2
ηc

M2
J=ψ


3

ð1þOðαsÞÞ: ð2Þ

By combining the J=ψ → ηcγ and ηc → γγ results we obtain
here with HPQCD’s earlier values for ΓðJ=ψ → eþe−Þ [1],
we can also test how well this works in full QCD.

We are able to perform these calculations accurately in
lattice QCD because we use the highly improved staggered
quark (HISQ) discretization of the Dirac equation [19]. The
HISQ action has particularly small discretization effects and
this means that c quark physics can be handled accurately in
lattice QCD on lattices with moderate values of the lattice
spacing [1,10]. This in turn means that a wide range of
lattice spacings can be covered for accurate extrapolation to
the continuum a → 0 limit. We use gluon field configura-
tions generated by theMILC collaboration that include u=d,
s and c quarks in the sea with lattice spacing values ranging
from 0.15 to 0.06 fm.

The paper is laid out as follows. In Sec. II we discuss the
calculation of the rate for ηc → γγ using our lattice QCD
determination of the amplitude. This includes first a dis-
cussion of the method, followed by a description of the
lattice calculation with HISQ quarks and then a discussion
of our results, including comparison to earlier lattice
calculations and to experiment along with tests of expect-
ations in the nonrelativistic limit. In Sec. III we follow the
same path through the calculation of the rate for J=ψ → γηc
and J=ψ → ηceþe−. Section IV summarizes our results and
gives our conclusions.

II. CALCULATING Γðηc → γγÞ
A. Method

To determine the decay rate of the ηc to two photons, we
need to calculate the matrix element between the ηc and two
on-shell photons (each with squared 4-momentum, q2 ¼ 0).
The procedure for the calculation is similar to that for a
meson-to-meson transition form factor except that we must
take a weighted integral over the time insertion point for one
of the vector currents to fix the energy of the final state to
that of the required photon.

We start from a standard lattice QCD 3-point function
constructed from c quark propagators on each gluon field
configuration and averaged over the ensemble, see Fig. 1,
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Cμνðtγ1 ; tγ2 ; tηcÞ ¼ h0jj̄μðq1; tγ1Þjνð0; tγ2ÞŌηcðtηcÞj0i: ð3Þ

Here

j̄μðq1; tγ1Þ≡ a3
X

x

eiq1·xjμðx; tγ1Þ;

ŌηcðtηcÞ≡ a3
X

x

Oηcðx; tηcÞ ð4Þ

project out 3-momenta q1 and 0, respectively, and a is the
lattice spacing. jμ and jν are lattice vector currents, c̄γμc and
c̄γνc, and Oηc is a pseudoscalar or temporal axial current
operator that couples to pseudoscalar charmonium states.

We can couple an external photon field to j̄μ by
multiplying by a photon propagator [20,21] so that

h0jAμðq1; t0Þjνðtγ2ÞŌηcðtηcÞj0i
¼ a

X

tγ1

Dðtγ1 − t0ÞCμνðtγ1 ; tγ2 ; tηcÞ: ð5Þ

Dðtγ1 − t0Þ ¼
e−ω1ðtγ1−t0Þ

2ω1

ð6Þ

is the photon propagator in Euclidean time for a photon with
3-momentum q1, where ω1 ¼ jq1j. The sum in Eq. (5) is
over all tγ1 on the lattice. The construction of Eq. (5) yields a
3-point function between a tower of ηc states (at rest) created
byOηc at tηc and a photon at t0 induced by a vector current at
tγ1 . The 4-momentum transferred by the current is con-
strained by energy-momentum conservation. If we choose

jq1j ¼ ω1 ¼
Mηc

2
; ð7Þ

where Mηc is the ηc mass, then for the ground-state ηc this
3-point function encapsulates an ηc → γγ transition with
two real photons in the final state. The ground-state
contribution to the 3-point function is

e−ω1ðtγ2−t0Þ

2ω1

F μνðηc → γγÞhηcjOηc j0i
e−Mηc ðtηc−tγ2 Þ

2Mηc

: ð8Þ

F μν is the matrix element between ηc and γγ states that will
allow us to determine the decay rate.

To obtain F μν from the 3-point function it is convenient
to first peel off the final-state photon by dividing by the
left-most factor in Eq. (8). Instead of Eq. (5) we construct
in practice

C̃μν ¼
a
P

tγ1
e−ω1ðtγ1−t0Þ=ð2ω1ÞCμνðtγ1 ; tγ2 ; tηcÞ

e−ω1ðtγ2−t0Þ=ð2ω1Þ
;

¼ a
X

tγ1

e−ω1ðtγ1−tγ2 ÞCμνðtγ1 ; tγ2 ; tηcÞ: ð9Þ

C̃μνðtγ2 ; tηcÞ is now a 2-point function. Note that tγ1 − tγ2
varies from −Nt=2 to þNt=2 as tγ1 is varied. At the same
time we construct the standard 2-point function

Cηcðt; tηcÞ ¼ h0jŌηcðtÞŌηcðtηcÞj0i: ð10Þ

By fitting C̃μν and Cηc simultaneously we can determine the
contribution of the ground state ηc to both 2-point functions
and use this to obtain F μνðηc → γγÞ.

The fit form for Cηc can be written as

Cηcðt; tηcÞ ¼
X

n

a2nfðEn; t − tηcÞ; ð11Þ

where

fðE; tÞ ¼ e−Et þ e−EðNt−tÞ ð12Þ

and the ground-state energy, corresponding to n ¼ 0, is
E0 ¼ Mηc . The ground-state amplitude,

a0 ¼
hηcjOηc j0iffiffiffiffiffiffiffiffiffiffi

2Mηc

p : ð13Þ

Likewise

C̃μνðtγ2 ; tηcÞ ¼
X

n

anbnfðEn; tγ2 − tηcÞ ð14Þ

with [see Eq. (8)]

b0 ¼
F μνðηc → γγÞffiffiffiffiffiffiffiffiffiffi

2Mηc

p : ð15Þ

For n > 0, the bn correspond to matrix elements between
excited ηc states and one on-shell and one off-shell photon.

FIG. 1. Schematic diagram of the connected 3-point correlation
function between Oηc and two vector currents, see Eq. (3). The
lines between the operators represent c quark propagators. We do
not include any quark-line disconnected correlation functions in
our calculation.
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Using parity and Lorentz invariance we can define a
transition form factor Fðq21; q22Þ by1

F μν ≡ ϵμνρσp
ρ
ηcq

σ
1F: ð16Þ

This equation makes clear that a nonzero result will only be
obtained (for an ηc at rest) if there is a component of the
(equal-and-opposite) spatial momentum of the two photons
that is orthogonal to the polarization vectors of both photons
(which must themselves be orthogonal). The specific con-
figurations of momenta and polarizations that we use will be
described below. Here we are interested in determining
Fð0; 0Þ (i.e. with two on-shell photons) and so the kinematic
factors in Eq. (16) mean that F is obtained from b0 via

Fð0; 0Þ ¼ b0
2

ffiffiffiffiffiffiffiffiffiffi
2Mηc

p

M2
ηc

: ð17Þ

The decay amplitude is given by

Mðηc → γγÞ ¼ 2e2Q2
cε


1 · F · ε2;

¼ e2Q2
cM2

ηc jε1 × ε2jFð0; 0Þ; ð18Þ

allowing for interchange of the two photons and inserting
electric charge factors (Qc ¼ 2=3 for the c quark) and
polarization vectors. The decay rate is then

Γðηc → γγÞ ¼ 1

2

X

spins

Z
dΩ

jMj2
64π2Mηc

;

¼ πα2Q4
cM3

ηcF
2: ð19Þ

The factor of 1=2 above avoids double counting the
identical photons and there are two spin combinations
for the final state, both with jε1 × ε2j ¼ 1.

In the next section we give more details of how we set up
our lattice calculation to determine Fð0; 0Þ.

B. Lattice calculation

1. Ensembles and parameters

We use ensembles with Nf ¼ 2þ 1þ 1 flavors of
dynamical HISQ sea quarks from the MILC collaboration
[22,23]. Details of the ensembles are tabulated in Table I.
The six ensembles that we use give us four different lattices
spacings, a ≈ 0.06, 0.09, 0.12 and 0.15 fm. The sea u and d
quark masses are taken to be the same and denotedml (l for
light). Two ensembles, sets 2 and 4, have l quarks in the sea
with the physical mass, ml ¼ ðmu þmdÞ=2, and the other
four have heavier-than-physical light quarks. This allows us
to test the dependence of our results on the mass of the sea
light quarks.

On these ensembles we calculate correlation functions
constructed from valence c quark propagators, also using
the HISQ formalism. The valence c quark mass values that
we use here are the same as those given in Table I of [1].
These masses are more accurately tuned than those of the c
quark in the sea. The tuning is done by comparing the result
for the mass of the J=ψ meson obtained on each ensemble
to its physical mass from experiment, as discussed in [1].

TABLE I. Parameters for the MILC ensembles of gluon field configurations. The sets are numbered but also given a “handle” to
distinguish them in the second column. The lattice spacing is determined from the Wilson flow parameter, w0 [24], and values of w0=a
are given in column 4, following the gauge coupling, β, in column 3. The physical value w0 ¼ 0.1715ð9Þ fm was fixed from fπ in [25].
Sets 1 and 2, 3 and 4, 5, and 6 have a ≈ 0.15; 0.12; 0.09; 0.06 fm, respectively. The number of lattice points in space, Nx, and time, Nt,
are given in column 5. Sea quark masses in lattice units are given in columns 6, 7 and 8. All the configuration sets have equal-mass u and
d quarks withmu ¼ md ¼ ml. Sets 1, 3, 5 and 6 have heavier-than-physical massml such thatms=ml ¼ 5 and sets 2 and 4 haveml close
to the physical average of u and d quark masses. As described in the text, we use valence c quark masses, given in column 9, that differ
from the sea c quark masses, being more closely tuned to the physical value. The ϵNaik parameter that accompanies amval

c in the HISQ
action [19,26] are given in the next column. On set 3 we also include results from a deliberately mistuned valence c quark mass of 0.654,
and denote this calculation as “3A.”We use 1000 gluon field configurations from each set, with two time sources on each configuration
to increase statistics, except for set 6 where we include only one time-source per configuration.

Set Handle β w0=a N3
x × Nt amsea

l amsea
s amsea

c amval
c ϵNaik

1 Very-coarse 5.80 1.1119(10) 163 × 48 0.013 0.065 0.838 0.888 −0.3820
2 Very-coarse-physical 5.80 1.1367(5) 323 × 48 0.00235 0.0647 0.831 0.863 −0.3670
3 Coarse 6.00 1.3826(11) 243 × 64 0.0102 0.0509 0.635 0.664 −0.2460
3A Coarse 6.00 1.3826(11) 243 × 64 0.0102 0.0509 0.635 0.654 −0.2402
4 Coarse-physical 6.00 1.4149(6) 483 × 64 0.00184 0.0507 0.628 0.643 −0.2336
5 Fine 6.30 1.9006(20) 323 × 96 0.0074 0.037 0.440 0.450 −0.1250
6 Superfine 6.72 2.8941(48) 483 × 144 0.0048 0.0240 0.286 0.274 −0.0491

1Note that [7] uses a normalization for F that differs by a factor
of Mηc.
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2. Correlation functions Cμν and Cηc

On the ensembles of Table I we calculate 2-point and
3-point correlation functions, as described in Sec. II A. The
3-point correlation function is that between a source current
that couples to the ηc and its excitations and two vector
currents, depicted in Fig. 1. Note that we construct only one
combination of quark propagators on the lattice and
determine F from that; the factor of 2 for interchanging
the photons is allowed for in Eq. (18). We include only the
quark-line connected diagram of Fig. 1. There are quark-
line disconnected diagrams (quark loops connected only by
gluons) that contribute but we expect their contribution to
be small because the c quark mass is large. We will estimate
the systematic uncertainty from neglecting quark-line
disconnected diagrams in Sec. II B 7.

The correlation function Cμνðtγ1 ; tγ2 ; tηcÞ [Eq. (3)] is
calculated using the standard sequential source technique.
On timeslice tηc , we set up a random wall source [27] from
which two c quark propagators are calculated. The first
propagator, evaluated at timeslice tγ1 and multiplied by γμ,
is used as the source vector for another c quark propagator
calculation. The result of this calculation, the extended/
sequential propagator, is contracted with the second c
quark propagator from tηc , inserting a γν before summing
over indices, to obtain the 3-point function. The second c
propagator from tηc is calculated with an additional γtγ5
multiplying the random wall source to achieve the quan-
tum numbers of the ηc when contracted. The 3-point
correlation functions obtained are averaged over all gluon
fields in the ensemble. We use two time sources for tηc on
each configuration (except for set 6) to improve statistical
accuracy. We take μ; ν ¼ z, x and take the photon
momentum (discussed below) to be in the y direction to
satisfy the requirements for a nonzero result from Eq. (16).

Because we are using HISQ valence c quarks, the γ
matrices in the paragraph above become spatial-position-
dependent phases with which the sources and sinks are
patterned to achieve the required spin. We also have to
consider operator “taste” [19], also represented by γ
matrices, and we must choose tastes for the different
operators such that the product of the taste γ matrices gives
1, for a nonzero correlation function. We want the spin-taste
representation of the two vector currents to be the same
(except for z ↔ x) for symmetry, and we want to avoid
point splitting of the vector currents along the y direction in
which the spatial momentum flows. Our preferred setup
uses a temporal axial current for Oηc with spin taste in the
standard notation (see, for example, [19]) γ5γt ⊗ γxγz and
vector currents with spin-taste γx ⊗ γx and γz ⊗ γz. In this
case the two vector currents are local and this has the
advantage that they have no tree-level discretization errors.
The temporal axial current is one-link point split in the y
direction. Use of the temporal axial current (rather than the
pseudoscalar current) avoids any temporal point splitting.

We will call this the “LOCAL” setup because of the nature
of the vector currents used. An alternative, that we will use
as a test on a subset of ensembles (sets 1, 3 and 5) is to take
all of the operators to be “tasteless” i.e. with spin-tastes
γ5γt ⊗ 1, γx ⊗ 1 and γz ⊗ 1. Now the vector currents have
a one-link point splitting along the x and z directions,
respectively, and the temporal axial current has a 3-link
point splitting (from one corner to the opposite of a cube).
This is the “ONE-LINK” setup.

Calculating HISQ c quark propagators is numerically
relatively inexpensive and so we cover the full range of
values of tγ1 by calculating Cμν [Eq. (3)] for tγ1 from tηc to
tηc − Nt=2, obtaining the other values by periodicity. This
allows us to test the behavior of the integral/sum over tγ1 in
Eq. (9). Results at all values of tγ2 are obtained in the final
contraction of the sequential propagator with that from tηc .
This amount of calculation is not in fact necessary, as we
discuss below.

In ηc → γγ decay each photon carries away spatial
momentum with magnitude Mηc=2 in the ηc rest frame.
In our calculation spatial momentum is inserted into the c
quark propagator that connects the operators at timeslices tγ1
and tγ2 (the sequential propagator, see Fig. 1) using twisted
boundary conditions [28,29]. This enables us to choose any
value of the spatial momentum, q1, using a twist angle θ.
One photon will have momentum q1 and the other −q1.
Given our vector current polarizations, q1 must have a y
component and we simply take q1 to be in the y direction.
Its value is then related to θ by

aqy1 ¼
θπ

Nx
; ð20Þ

where Nx is the number of lattice points in a spatial
direction. The kinematics that are specified in Eq. (7) then
require a twist angle of

θ ¼ aNxMηc

2π
: ð21Þ

Since ω1 ¼ jq1j and both of these quantities are set in
lattice units, photon 1 will be exactly on shell. It is harder
to arrange for photon 2 to be exactly on shell and there will
inevitably be a slight mistuning of the on shell condition
for this photon. Its spatial momentum has magnitude ajq1j
and its energy is aMlatt

ηc − aω1 in lattice units, where Mlatt
ηc

is the mass of the ηc obtained on that ensemble from the
lattice calculation. Photon 2 will only be on shell if aω1 is
exactly aMlatt

ηc =2.
The mistuning depends on what value of Mηc is used in

determining the twist angle for q1. Various approaches that
are equivalent in the continuum limit are possible. Here, for
the LOCAL setup, we choose to fix theMηc value used in q1

[Eq. (21)] to the value we obtain from connected correlation
functions in lattice QCD in the physical continuum limit,
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since this corresponds to the value to which our ηc masses
will converge in that limit. This value was obtained by
calculating the charmonium hyperfine splitting in [1] for
both pure QCD and QCD plus quenched QED. Here we use
the pure QCD result,

Mphys;latt
ηc ¼ 2.9783ð11Þ GeV: ð22Þ

This mass differs slightly (by 5.6 MeVor 0.2% of the mass)
from the experimental value [6]. The most likely explan-
ation for this is that it represents the impact of quark-line
disconnected correlation functions (not included in the
lattice calculation) that allow the ηc to mix with lighter
flavor-singlet mesons such as the η and η0. The twists from
Eqs. (20) and (22) used on each set are given in Table II (top
section). For the ONE-LINK setup we chose to test a
different tuning, equivalent in the continuum limit. In that
case we determined aMlatt

ηc for that taste of ηc on that
ensemble in a separate calculation and then used that value
in our choice for θ [Eq. (21)], so that both photons 1 and 2
should be exactly on shell for each ensemble. The values for
the twists used in that case are given in the lower section of
Table II.

The accuracy with which photon 2 is tuned to the
on-shell point will be discussed further in Sec. II B 5.
The mis-tuning is small in both cases here (very small for
the ONE-LINK case) but we will take account of it in our
continuum/chiral extrapolation for Fð0; 0Þ. We will also
estimate and include an error associated with the fact that
Mphys;latt

ηc is not equal to the experimental value.
As well as Cμν [Eq. (3)] we also calculate the 2-point

correlation function Cηc [Eq. (10)] constructed from the

sameOηc operator used in Cμν. Fitting Cηc and C̃μν [derived
from Cμν, see Eq. (9)] simultaneously allows us to deter-
mine the form factor for ηc → γγ.

3. Vector current renormalization

We use a local vector current, γi ⊗ γi in our LOCAL
setup and a 1-link γi ⊗ 1 current in our ONE-LINK setup.
Neither of these currents is conserved, so we must multiply
both by their multiplicative renormalization factors to
match them to their continuum counterparts. Since the
vector current appears twice, this means multiplying the
raw lattice data for Cμν by Z2

V before determining C̃μν.
We use ZV values calculated in the symmetric MOM

scheme (RI-SMOM) in [30]. These are calculated for
groups of ensembles with the same value of β (rather than
individually for each set) and are reproduced in Table III.
The values are very close to 1 for the HISQ action and are
obtained with an uncertainty of less than 0.4%.

4. Determining C̃μν

The 2-point function C̃μνðtγ2 ; tηcÞ is constructed from a
weighted sum over all lattice time slices of Cμν as given in
Eq. (9), using aω1 ¼ aqy1 as discussed in Sec. II B 2. It is
normalized so that the lattice vector currents match those in
the continuum as discussed in Sec. II B 3. In Fig. 2 we plot
a quantity proportional to the summand of Eq. (9) to
illustrate how the sum works. The quantity plotted is

TABLE II. Twist θ used for the sequential propagator in Cμν

[Eq. (3) and Fig. 1] from which ηc → γγ form factor is extracted.
The corresponding 3-momentum component is given by aqy1 ¼
θπ=Nx and given in column 4. For the LOCAL setup (local vector
currents, top table) the twist is chosen to achieve qy1 ¼ Mphys;latt

ηc =2

with Mphys;latt
ηc given in Eq. (22). For the ONE-LINK setup (one-

link vector currents, lower table) the twist was chosen so that
aqy1 ¼ aMlatt

ηc =2, i.e. half the ηc meson mass on that ensemble.

LOCAL Set θ aqy1

1 5.928 1.1640
2 11.598 1.1386
3 7.151 0.9361
4 13.976 0.9147
5 6.936 0.6809
6 6.833 0.4472

ONE-LINK Set θ aqy1

1 6.0759 1.1930
3 7.2399 0.9477
5 6.9866 0.6859

TABLE III. Vector current renormalization constants, ZVðμÞ,
using the RI-SMOM scheme. Values are taken from Tables III
and VI in [30] where they were calculated in pure QCD for each β
value corresponding to a group of ensembles in Table I. We use
the values given at μ ¼ 2 GeV but note that the small μ
dependence in this quantity is purely a lattice artifact, vanishing
in the continuum limit. Here we give values for each set (listed in
column 1), but those with the same β value are the same. Zγi⊗γi

V
(column 3) is the renormalization constant for the local current
used in the LOCAL setup and Zγi⊗1

V (column 4) is the 1-link
current renormalization needed for the ONE-LINK setup. Note,
in the latter case, that this is for the 1-link tadpole-improved
current constructed with a “thin-link” included. The tadpole-
improvement factor u0, given by the mean value of the gluon field
Uμ in Landau gauge, is listed in column 5. Since we use a 1-link
vector current that is not tadpole-improved, the renormalization
factor for the ONE-LINK case is Zγi⊗1

V =u0.

Set β Zγi⊗γi
V Zγi⊗1

V u0

1 5.80 0.95932(18) 0.93516(16) 0.81960
2 5.80 0.95932(18) 0.93516(16) 0.82042
3 6.00 0.97255(22) 0.94966(20) 0.83461
4 6.00 0.97255(22) 0.94966(20) 0.83505
5 6.30 0.98445(11) 0.96695(11) 0.85248
6 6.72 0.99090(36) 0.97996(34) 0.87094
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Rμνðtγ1 ; tγ2Þ ¼
e−ω1ðtγ1−tγ2 ÞCμνðtγ1 ; tγ2 ; tηcÞ

a0e
−Mηc ðtηc−tγ2 Þ

: ð23Þ

This is plotted as a function of the time separation between
vector current operators for a fixed value of tηc − tγ2 of
Nt=4. We divide by expð−Mηcðtηc − tγ2ÞÞ to remove the
time dependence related to the ηc mass expected from
Eq. (14). The ηc mass used here is the one from the fit toCηc

[Eq. (11)] (i.e. Mlatt
ηc ). We also divided by a0, which is the

ground-state amplitude from this fit. This means that the
integral of Rμν is equal to b0 [Eq. (14)] up to excited-state
contamination, which is very small at this large value for
tηc − tγ2 . Indeed the figure is unchanged over a wide range
of tηc − tγ2 values since excited state contamination falls off
on distance scales of Oð0.5 fmÞ and Nt=4 ≈ 2 fm.

We see from Fig. 2 that Rμν is strongly dominated by the
region of tγ1 very close to tγ2 . This is because, once a
photon is emitted from the ηc, the resulting system is far
off shell and decays exponentially fast in t. The region in
jtγ1 − tγ2 j for which the integrand is nonzero is less than
about 0.5 fm.

Because we use staggered quarks the integrand has a
component that oscillates in time. On summing/integrating,
however, this component reduces to an a2 discretization
effect, because the oscillations get closer together on finer
lattices, as we show in Appendix A. Discretization effects
of this kind are allowed for in our extrapolation of our
results for F to the a → 0 continuum limit.

We construct C̃μνðtγ2 ; tηcÞ for all values of tηc − tγ2 and
then fit it as described in the next section, in conjunction
with Cηc , to determine b0. Our fits take full account of
excited-state contamination.

5. Fitting the correlators C̃μν and Cηc

We fit C̃μν and Cηc simultaneously to standard staggered-
quark fit forms for two-point correlation functions. These
are the same as those given in Eqs. (11) and (14) except that
there are additional terms that oscillate in time. The fit form
for Cηc becomes

CηcðtÞ ¼
XNn

n

a2nfðEn; tÞ − ð−1Þt
XNo

o

a2ofðEo; tÞ; ð24Þ

with fðE; tÞ given in Eq. (12). The oscillating terms arise
from opposite parity states, all of which are heavier than
the ground-state ηc and decay faster in the large-time limit.
The fit-form for C̃μν given in Eq. (14) is likewise extended
to include oscillating terms from the same opposite parity
states.

We use the CORRFITTER package [31] to fit our two-point
correlation functions, taking as parameters the logarithms of
the energy differences (to keep the energy levels ordered)
and the logarithms of the amplitudes. We take the prior on
the energy differences to be 0.5(2) GeV and the prior width
on the amplitudes an to be 20% and bn [see Eq. (14)] 50%.
All prior widths are orders of magnitude larger than the
uncertainties returned by the fit for ground-state values. We
find χ2=dof ≲ 1 for all fits.2 Our final fits use 4 exponen-
tials, i.e. Nn ¼ No ¼ 4 in Eq. (24). We do not include
results for values of t below tmin in our fits where tmin=a
varies between 6 and 9 depending on lattice spacing for C̃μν

and is Nt=8 for Cηc.
The aim of the fits is to determine the ground-state

parameters corresponding to n ¼ 0: E0, a0 and b0. From
b0 we can determine the form factor for ηc → γγ using
Eq. (17). This equation is derived from Eqs. (15) and (16)
and assumes that both photons are exactly on shell. As
discussed in Sec. II B 2, photon 1 is exactly on shell but
photon 2 is not. We must therefore modify our determi-
nation of F from b0 to take account of this, following
Eq. (16). Instead of Eq. (17) we must use

Flattð0; q22Þ
a

¼ b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aMlatt

ηc

q

aMlatt
ηc aq

y
1

; ð25Þ

where q22 is the q2 value for photon 2 and b0 is in lattice
units. aMlatt

ηc is the value of the ηc mass in lattice units given
by E0.

Table IV gives our results for aMlatt
ηc and Flattð0; q22Þ=a on

each set of gluon field configurations and for both the

FIG. 2. Rμν, defined in Eq. (23), as a function of tγ1 − tγ2 . We
use a fixed value for the separation between tηc and tγ2 of Nt=4.
Results are given for the LOCAL setup and plotted in physical
units for two values of the lattice spacing, corresponding to very
coarse (set 1: a ≈ 0.15 fm) and superfine (set 6: a ≈ 0.06 fm).
Integrating Rμν gives b0 and hence F [see Eq. (17)]; note the
narrow width of the region of support for the integral. Oscillations
are a result of using staggered quarks. Their impact on the integral
is a discretization effect—see Appendix A.

2We apply a standard procedure to avoid underestimating the
low eigenvalues of the correlation matrix and hence the un-
certainty. This is described in Appendix D of [32] which also
discusses how to determine χ2 reliably in that case by including
additional noise; we apply that method for χ2 here.
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LOCAL and ONE-LINK setups. The results also include
those for a mistuned valence c mass on set 3, denoted set
3A. Notice the small statistical uncertainties, well below
1% in F=a and aMηc , typical of lattice QCD calculations
with heavy quarks. We include values for the off shellness
of photon 2, q22, given by

q22 ¼ ððMlatt
ηc Þ2 − qy1Þ2 − ðqy1Þ2 ¼ Mlatt

ηc ðMlatt
ηc − 2qy1Þ: ð26Þ

q22 is very close to zero in all cases, being at most 2% ofM2
ηc

on the coarsest lattices for the LOCAL setup. We will
discuss how we fit the results for F (allowing for the off
shellness q22) to obtain a value for Fð0; 0Þ in the physical
continuum limit in Sec. II B 6.

First we demonstrate that results can be obtained with a
subset of the correlation functions that we have calculated
here. Figure 3 shows the results for F if we restrict the
range of integration over tγ1 to a time distance of twidth
either side of tγ2 . In keeping with Fig. 2, we see that the
result for F reaches its final value very quickly as a function
of twidth (in less than 1 fm). The sum over tγ1 could be
truncated in this case with no loss of accuracy. We perform
the full sum here, however.

In Appendix B we further show that we can restrict the fit
of the two-point function C̃μνðtÞ to a set of specific t≡
tγ2 − tηc values rather than fitting the full t range. Here,
however, we use the results from our full fit.

As discussed in Sec. II B 2, we use different staggered
spin-taste representations for the mesons in different parts

of our calculations. Here we test that the different repre-
sentations agree in mass in the continuum limit. We use an
interpolating operator with spin taste γ5γt ⊗ γxγz for the
pseudoscalar ηc meson in our LOCAL setup and γ5γt ⊗ 1
for our ONE-LINK setup. In the study of J=ψ → γηc, we
instead take a γ5 ⊗ γ5 (Goldstone) interpolator for the ηc
meson. This latter spin taste corresponds to the lightest ηc
in the taste multiplet and the one used, for example, in [1].
In Fig. 4, we compare the masses of the different ηc tastes
determined from our fits to the suite of correlation functions

TABLE IV. Results for Flattð0; q22Þ and Mηc in lattice units
obtained from our correlator fits [Eqs. (24) and (25)]. The top table
shows results from our LOCAL setup (with local vector current),
the lower table those from the ONE-LINK setup (with 1-link
vector current). Column 5 gives the value for q22 (q

2 for photon 2)
in lattice units from Eq. (26) (these values are close to zero for the
ONE-LINK setup from the way that the momentum twists were
chosen). Set 3A for the LOCAL case corresponds to a deliberately
mistuned valence c quark mass (see Table I). We fit the correlators
for sets 3 and 3A simultaneously so that correlations between
them are fully taken into account.

LOCAL Set Flattð0; q22Þ=a aMlatt
ηc a2q22

1 0.11294(24) 2.36833(41) 0.0964
2 0.115433(94) 2.321816(62) 0.1036
3 0.14031(19) 1.888089(94) 0.0300
3A 0.14096(20) 1.868562(95) −0.0067
4 0.143704(93) 1.845042(31) 0.0288
5 0.19163(22) 1.369825(55) 0.0110
6 0.29303(54) 0.897086(57) 0.0024

ONE-LINK Set Flattð0; q22Þ=a aMlatt
ηc a2q22

1 0.08416(21) 2.38605(24) 0.0002
3 0.11649(22) 1.89533(13) −0.0001
5 0.17396(36) 1.371840(93) 0.0000

FIG. 3. Fitted results for Flattð0; q22Þ=a obtained from C̃ðt≡
tηc − tγ2Þ as a function of twidth, the half-width of the region of
time integration over tγ1 either side of tγ2 . Results are given for the
LOCAL setup on set 1 (very coarse, a ≈ 0.15 fm, fitting time
range t ¼ 6 → 20), set 3 (coarse, a ≈ 0.12 fm, t ¼ 7 → 27) and 5
(fine, a ≈ 0.09 fm, t ¼ 9 → 40). Note the steep rise of the results
to a plateau.

FIG. 4. Mass differences between different tastes of charmo-
nium mesons. The green squares show the difference between the
ηc meson used in our ONE-LINK setup for ηc → γγ and the
“Goldstone” (spin-taste γ5 ⊗ γ5) meson used in our J=ψ → γηc
calculation. The blue circles show the same difference for the ηc
used in our LOCAL setup. We also show in red triangles the mass
difference between the J=ψ interpolated by γxγt ⊗ γ5γz (used for
J=ψ → γηc, see Sec. III) and the J=ψ interpolated by γz ⊗ γz
whose mass in lattice units we obtain from [1]. In all cases the
mass differences are small (less than 2% of the meson mass) and
fall to zero as a → 0 as a discretization effect.
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that we have. The plot shows that the mass differences
between the different tastes are very small, at most a few
tens of MeV for a meson with mass of 3 GeV. The mass
differences vanish in the continuum limit as expected for a
discretization effect. In the next section we show the impact
that the different spin-taste setups have on the determi-
nation of Fð0; 0Þ as a function of lattice spacing.

6. Taking the physical-continuum limit

To obtain a physical result for the form factor Fð0; 0Þ, we
fit our lattice data for Fð0; q22Þ from Eq. (25) (given in
Table IV and plotted in Fig. 5) to a function that accounts
for discretization effects and mistunings of the sea and
valence quark masses, as well as allowing for the small
amount by which photon 2 is off shell. The data is fit using
the Lsqfit package [33] and our fit form is

FðtÞ
lattð0;q22Þ

a
¼ Fð0;0Þ

1− q2
2

M2
pole



1þ

Ximax

i¼1

κði;tÞaΛ ðaΛðtÞÞ2i

þ κval;cδ
val;cþ κsea;cδ

sea;cþ κð0Þsea;udsδ
sea;uds

×
n
1þ κð1;tÞsea;udsðaΛ̃Þ2þ κð2;tÞsea;udsðaΛ̃Þ4

o
; ð27Þ

where FðtÞ
lattð0; q22Þ is the lattice data with superscript t

denoting the taste, i.e. either the LOCAL (local vector) or
ONE-LINK (1-link vector) cases. Fð0; 0Þ is the form factor
in the limit of vanishing lattice spacing and physical masses

that we wish to determine. The factor of ð1 − q22=M
2
poleÞ

allows us to adjust for the amount by which photon 2 is off-
shell with a simple one-pole parametrization which was
tested in [7,12]. The pole form was found to work well,
with the pole mass Mpole taking a value around the J=ψ
mass. Here we will take Mpole as a fit parameter, with prior
3.0(3) GeV. As discussed in Sec. II B 4, our q22 values are
close to zero here (see Table IV) and the pole factor only
has a small effect, at most 2% on our coarsest lattices in the
LOCAL setup and less than 1% in other cases.

Equation (27) takes discretization effects into account,
mainly through the first nontrivial term in the square
brackets. These discretization effects arise from the HISQ
action but also through the trapezoidal integration used to
determine C̃μν and the oscillating term contribution to that
integral (Appendix A). We allow for the size of these
discretization effects to be set by scale Λ and include terms
up ðaΛ2imaxÞ. Since we want to fit both the LOCAL and
ONE-LINK cases with the same fit form, although they
differ significantly in their discretization effects (see Fig. 5),
we give them different Λ parameters and choose ΛðtÞ using
the Empirical Bayes criterion. This means varying ΛðtÞ in

fits to the two cases (with independent fit parameters, κði;tÞaΛ )
and taking the values that maximize the Bayes factor [34].
We also allow for discretization effects coming from the sea
in the final term, including terms up to ðaΛ̃Þ4. We take
Λ̃ ¼ 1 GeV in both cases but use independent fit param-

eters, κð1=2;tÞsea;uds.
We allow for mistuning of sea and valence quark masses

in Eq. (27) with the terms containing δ. The mistunings of
the c valence and sea quark masses and the u, d and s sea
quark masses are expressed as

δval;c ¼ amval
c − amtuned

c

amtuned
c

; ð28Þ

δsea;c ¼ amsea
c − amtuned

c

amtuned
c

; ð29Þ

δsea;uds ¼ 2amsea
l þ amsea

s − 2amtuned
l − amtuned

s

10amtuned
s

; ð30Þ

respectively.
To tune the valence and sea c quark mass, we take

amtuned
c to be

amtuned
c ¼ amval

c

 
Mexpt

J=ψ

MJ=ψ

!
1.5

; ð31Þ

where Mexpt
J=ψ ¼ 3.0969 GeV from [6], and lattice values for

aMJ=ψ are obtained from Table III in [1]. The power of 1.5

FIG. 5. Data points show our lattice QCD results for the ηc → γγ
form factor, in red for the LOCAL setup (with local vector current)
and green for the ONE-LINK setup (with 1-link vector current).
The LOCAL points have been corrected for the slight off shellness
of one photon (see text). The LOCAL points include one at a
deliberately mistuned c quark mass (open red square). The blue
and pink bands show our chiral/continuum fit to the points,
applying Eq. (27) simultaneously for the LOCAL and ONE-LINK
points. The fit bands are plotted as a function of a at the physical
quark mass point. The physical result in the continuum limit is
then shown by the black star.
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is empirically chosen, based on the results from [1] (the
power is not 1, because of the binding energy inside
the J=ψ).

The tuned s quark mass is given by

amtuned
s ¼ amval

s

 
Mphys

ηs

Mηs

!
2

ð32Þ

from leading-order chiral perturbation theory. amtuned
l is

found by dividing the value for mtuned
s in Eq. (32) by the

ratio [35]

mphys
s

mphys
l

¼ 27.18ð10Þ: ð33Þ

For all except set 5 we use δmsea
uds=ms values from Table I

of [36]. For set 5 in Table I, values in lattice units for Mηs
are taken from [37] and the “physical” value of the ηs
meson, 688.5(2.2) MeV, is taken from [25]. The ηs is an
unphysical pseudoscalar ss̄ meson whose mass can never-
theless be determined in terms of π and K masses in lattice
QCD. This gives a δsea;uds value of 0.0297(17) for set 5.

Since the dependence of Fð0; 0Þ on quark masses is a
physical effect it should be the same (up to discretization
errors) for the LOCAL and ONE-LINK cases. We therefore

take the κsea;c, κval;c and κ
ð0Þ
sea;uds parameters to be the same in

the two cases when fitting them simultaneously.
The parameters to be determined by the fit areMpole, κ

ðiÞ
aΛ

for i ¼ 1 to imax, κsea;c, κval;c and κðjÞsea;uds for j ¼ 0, 1, 2. As
discussed above, we take the parameters to be independent
for our two setups when they correspond to discretization
effects, but otherwise take them to be the same. For priors,

we use Fð0; 0Þ ¼ 0.1ð1Þ,Mpole ¼ 3.0ð3Þ GeV, κðiÞaΛ ¼ 0ð1Þ
[except for i ¼ 1 for the ONE-LINK case where we take the
prior to be 0(2) from inspection of Fig. 5], κval;c ¼ 0ð2Þ
(from comparison of results from sets 3 and 3A), κðkÞsea;uds ¼
0ð1Þ and κsea;c ¼ 0.0ð1Þ (since we expect the effect of c in
the sea to be minor). For our final fit we take the largest
coefficient for discretization effects, imax ¼ 3. Our pre-
ferred fit is a joint fit to the LOCAL and ONE-LINK data,
but we obtain almost identical results from fitting simply
the LOCAL results.

Figure 5 shows our lattice results (now in physical units)
for both the LOCAL and ONE-LINK setups as a function
of squared lattice spacing. The lattice results have been
adjusted to correspond to the Fð0; 0Þ on-shell point, i.e.
Flattð0; q22Þ has been multiplied by the pole term
ð1 − q22=M

2
poleÞ. The uncertainty on the lattice results is

dominated by the correlated uncertainty in the value of the
lattice spacing. Also shown is our continuum fit using
Eq. (27) to both sets of data simultaneously. Notice that the
discretization effects are much larger in the ONE-LINK

case than in the LOCAL case. Using the Empirical Bayes
criterion [34] we find that the optimal Λ is 0.10 GeV for
LOCAL and 0.49 GeV for ONE-LINK. The larger dis-
cretization effects for ONE-LINK are not surprising
because the vector currents in that case are 1-link operators
with tree-level discretization errors. The LOCAL case, in
contrast, uses local vector current operators that have no
tree-level errors at any order in a. The bands plotted on
Fig. 5 correspond to the fit at tuned sea masses as a function

of lattice spacing, i.e. Fð0; 0Þ½1þPi κ
ði;tÞ
aΛ ðaΛðtÞÞ2i [see

Eq. (27)], with imax ¼ 3.
The result we obtain for Fð0; 0Þ in the continuum limit

from the joint fit to the LOCAL and ONE-LINK results is
Fð0; 0Þ ¼ 0.08793ð29Þ GeV−1 with a χ2=d:o:f: of 0.8. This
confirms that the LOCAL and ONE-LINK results can
readily be fit to a common continuum value, providing a
test that HISQ taste effects are purely lattice artifacts. The
result from fitting LOCAL alone is very similar, not
surprisingly because we have the best coverage of lattice
spacing and sea masses in that case and discretization effects
are smaller than for the ONE-LINK case. In Sec. II C we
will discuss additional sources of systematic error that must
be accounted for in our final result.

First we discuss the stability of our fitted value for
Fð0; 0Þ as we change details of our fits. This is shown in
Fig. 6, where we plot the value of Fð0; 0Þ in the physical/
continuum limit on changing some aspect of either the
correlator fits or the chiral/continuum fit. The preferred
(base) fit described above is given on the left. Variations
include making all the priors a factor of 2 smaller or larger
and dropping datasets at either end of the lattice spacing

FIG. 6. The value of Fð0; 0Þ in the limit of vanishing lattice
spacing and physical quark masses obtained from variations to
our base fit. These include (from left to right) dropping the
coarsest and finest datasets, changing all the prior widths in our
correlator fits, changing all the prior widths in our chiral/
continuum fits and adding an additional normal and oscillating
exponential to our correlator fits. Note that the values for Λ in
Eq. (27) are fixed (see text) under these fit variations.
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range. We see very little variation in the final answer under
any of these variations, showing that our result is robust.

7. Additional systematic uncertainties

As discussed in Sec. II A our lattice QCD calculation
does not include quark-line disconnected contributions or
QED effects. Here we estimate the size of these and include
an additional systematic uncertainty to allow for them.

In [1] the small difference between the mass of the ηc
obtained from a lattice QCD calculation including con-
nected correlation functions only and the mass found in
experiment was interpreted as the effect on the mass of
missing quark-line disconnected correlation functions. The
Wick contractions for the disconnected correlation functions
include the annihilation of the ηc into gluons and allow
mixing between the ηc and other flavor-singlet pseudoscalar
states. The difference found in [1] amounted to 0.2% of
the ηc mass. A reasonable estimate of the impact of these
disconnected diagrams on the ηc wave function (which can
be related to the decay amplitude to γγ in the nonrelativistic
limit) would then also be 0.2%, giving a 0.4% uncertainty in
the decay width. That this is reasonable is confirmed by
our fit, which includes the dependence of Fð0; 0Þ on the
ηc mass and returns a coefficient for κval;c close to 1. This
dependence is visible in Fig. 5 and Table IV, comparing
values for tuned and mistuned mc.

We can also consider the impact of another class of
quark-line disconnected diagrams in which the ηc radiates a
photon before annihilating to gluons. The quark loop
generated from the gluons then also annihilates to a photon.
The impact of this diagram should be very small, because

of suppression both by powers of αs and by quark mass
effects since the sum of the electric charges of the light
quarks in the sea is zero. We therefore expect a contribution
smaller than a relative size of α2sm2

s=m2
c ≈ 0.2%. This does

not then modify our estimate of the uncertainty from
missing disconnected diagrams as 0.2% from above.

The impact of the c quark’s electric charge on the decay
amplitude (also missing in our calculation) can be esti-
mated from the impact of QED on the ηc decay constant,
determined in [1]. This effect was 0.17%, so we allow an
additional uncertainty of 0.2% in Fð0; 0Þ for this. Further
QED corrections to the decay width coming from addi-
tional radiation are tiny since there are no electrically
charged particles in either the initial or final states. By
charge conjugation, the ηc cannot decay to γγγ, so QED
corrections to the decay rate would come from ηc to γγγγ.
This would be suppressed by a further 2 powers of α, and
thus negligible.

Adding these two 0.2% systematic uncertainties in
quadrature gives an additional uncertainty of 0.3%
in Fð0; 0Þ and 0.6% to the decay rate.

C. Results

We take our final result for the form factor for ηc → γγ
from the joint fit to the LOCAL and ONE-LINK cases,
giving

Fð0; 0Þ ¼ 0.08793ð29Þfitð26Þsyst GeV−1; ð34Þ

which has a total uncertainty of 0.4%. The second
uncertainty in Eq. (34) comes from the additional system-
atic uncertainties that we estimate in Sec. II B 7.

The error budget for this result is given in Table V. We
see that the dominant uncertainty is that from fixing the
lattice spacing using w0. The next most important uncer-
tainties come from statistics and from systematic errors
from missing quark-line disconnected diagrams and QED
effects.

We use our value for Fð0; 0Þ in Eq. (34) and the formula
in Eq. (19) to find the decay width Γðηc → γγÞ. For the ηc
mass in Eq. (19), we use the experimental value Mexp

ηc ¼
2.9839ð4Þ GeV (the average from [6]) since this is a purely
kinematic factor. We also take 1=α ¼ 137.036 from [6],
noting that the momentum scale for this decay is a
relatively low one. We obtain the decay width with an
uncertainty of 0.9% as

Γðηc → γγÞ ¼ 6.788ð45Þfitð41Þsyst keV: ð35Þ

Using the experimental value for the ηc total width of 32.0
(7) MeV [6], this corresponds to a branching fraction of

Bðηc → γγÞ ¼ 2.121ð14Þfitð13Þsystð46Þexpt × 10−4: ð36Þ

TABLE V. Error budgets for our results for Fð0; 0Þ and V̂ð0Þ
(discussed in Sec. III C). The top seven entries come from our fits
to Eqs. (27) and (49) respectively. The uncertainty labeled “q2

dependence” arises from the tuning to q2 ¼ 0 in the Fð0; 0Þ case
and from capturing the q2 dependence in the V̂ð0Þ case. The
lowest two entries are additional systematic uncertainties from
missing quark-line disconnected correlations functions and QED
effects. These are discussed in Sec. II B 7 for Fð0; 0Þ and in
Sec. III B 3 for V̂ð0Þ, where the two sources of uncertainty are
combined together.

Fð0; 0Þ V̂ð0Þ
Statistics 0.17 0.29
w0=a 0.05 0.01
w0 0.25 0.07
a2 → 0 0.08 0.23
Valence mistuning 0.01 0.03
Sea mistuning 0.05 0.05
q2 mistuning 0.01 0.10
Missing “disconnected” correlators 0.2 0.4
Missing QED 0.2 -

Total 0.43 0.56
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The third uncertainty here is from the experimental total
width and it dominates over the lattice QCD uncertainties.

D. Discussion

Figure 7 compares our result for Γðηc → γγÞ from
Eq. (35) with earlier lattice QCD results obtained on gluon
field configurations that include sea quarks. It is more
natural to compare results for Fð0; 0Þ from lattice calcu-
lations but some of the earlier results do not include
this information. The values plotted come from [15]
(MFLWZ21), [14] (LMZ20) and [13] (CLQCD20) that
all work with twisted mass quarks on nf ¼ 2 gluon field
configurations (i.e. including u and d quarks in the sea but
no s quarks) at two or three values of the lattice spacing. We
do not include the earlier value from CLQCD in [12] that is
superseded by [13]. CLQCD20 does not include a con-
tinuum extrapolation; we take the value as that quoted for
their finest lattice. The uncertainty quoted does not include
systematic errors. We plot the continuum results for the ηc →
γγ decay rate quoted by MFLWZ21 and LMZ20, with
systematic uncertainties combined in quadrature. Because
the sea content is unphysical for the nf ¼ 2 case, those
results will not necessarily agree with ours; no uncertainty is
included in CLQCD20, LMZ20 or MFLW21 for missing s
quarks in the sea. Our result is larger than the two earlier
values with a tension exceeding 3σ, but it agrees well with
that from MFLWZ21. We note that the three nf ¼ 2 results
do not agree well with each other, however. Our value
is obtained on nf ¼ 2þ 1þ 1 gluon field configurations

(i.e. with a realistic sea quark content) at four values of the
lattice spacing and includes systematic errors for missing
quark-line disconnected diagrams and QED. Our total
uncertainty is smaller than that of the earlier values.
Further lattice calculations with a full sea quark complement
and uncertainties comparable to ours are needed.

Figure 8 compares our result for Γðηc → γγÞ to results
from experiment. There is a lot of experimental information
that has a bearing on Γðηc → γγÞ, generally obtained as
products of branching fractions depending on the method of
ηc production and the decay mode observed. The PDG [6]
combines this information to yield a fit value for Γðηc → γγÞ
of 5.15(35) keV. This is shown by the blue band in Fig. 8. It
is lower than our lattice QCD result by 4.6σ, where we have
combined lattice and PDG fit uncertainties in quadrature (the
PDG fit uncertainty dominates) to obtain σ. This denotes
very significant tension between the Standard Model and
experiment, which could be taken as an indication of new
physics. The PDG fit returns a large χ2 of 118 for 81 degrees
of freedom [6], however, and this calls into question the
reliability of both their central fit value and its uncertainty.
We note that an alternative global fit of ηc data which does
not include any pre-1995 results, has a better χ2 and gives a
larger partial width for ηc → γγ decay of 5.43þ0.41

−0.38 keV [38].
This shows a reduced, but still sizeable, tension of 3.3σ with
our lattice QCD result.

FIG. 7. A comparison of full lattice QCD results for the width
for ηc → γγ decay. The result obtained here is denoted
“HPQCD23” (red asterisk, error bar same size as symbol) and
uses gluon field configurations that include nf ¼ 2þ 1þ 1 sea
quark flavors at four values of the lattice spacing to determine a
physical result. Earlier results use nf ¼ 2 gluon field configu-
rations at two values of the lattice spacing (orange filled circles)
or three values (orange filled triangle). The points denoted
“MFLWZ21” from [15] and “LMZ20” from [14] are from
determinations of the rate in the continuum limit including an
estimate of systematic errors, although no error for missing s
quarks in the sea is included. The point denoted “CLQCD20”
corresponds to the value quoted at the finest lattice spacing used
in [13] with no extrapolation to the continuum limit. The red band
carries our result down the plot for comparison.

FIG. 8. A comparison of our lattice QCD result (HPQCD23,
red asterisk and red band) for the decay width Γðηc → γγÞ to
experimental values taken from [6]. Blue circles denote deter-
minations of the product Γðηc → iÞΓðηc → γγÞ=ΓtotalðηcÞ, where
the decay channel i is listed on the right. The values plotted are
derived from either single experimental results or PDG average
values from several experiments for the product above, divided
by the branching fraction BðiÞ, again using either a single result
or the PDG average. Uncertainties are combined in quadrature.
The blue square denotes a determination from the product of
branching fractions for J=ψ → γηc and ηc → γγ from BESIII [39]
combined with the PDG average for the branching fraction
BðJ=ψ → γηcÞ. The blue band shows the result of the PDG fit
to the experimental data shown here along with other results (e.g.
for ratios of branching fractions). The fit has a χ2 of 118 for
81 degrees of freedom [6], reflecting the inconsistencies in the
experimental data seen above.
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Individual experimental results have much larger uncer-
tainties and a large spread of central values. Figure 8 shows
values derived from results listed in [6]. The blue circles use
values quoted in the section headed “ΓðiÞΓðγγÞ=ΓðtotalÞ,”
where the ηc is produced via two-photon fusion in eþe−

collisions and detected through its decay to channel i listed
on the right of Fig. 8. These values are determined without
reference to the PDG fit. They use either the PDG average
value (where one is given) or the single experimental value
(if there is no average) for the product above. We then
divide by the branching fraction for channel i again using
either the PDG average or the single experimental value
quoted, if there is no average. Uncertainties are combined
in quadrature. We see a large spread of experimental values
in Fig. 8, several of which are in significant (4σ) tension
with the PDG fit result. This is not surprising given the χ2

value for the fit. Some of the low values for Γðηc → γγÞ
seen are in disagreement with our result; the values from the
ϕϕ and KþK−πþπ− channels differ by an amount exceed-
ing 6σ. On the other hand, the experimental result using the
KK̄π channel is in good agreement with our value, within
2σ. The KK̄π channel has been studied by several experi-
ments because it has a relatively large branching fraction.
The value plotted comes from an average of 8 different
experimental results for the product of rates (the average is
dominated by results from CLEO [40] and BABAR [41])
and 10 for the branching fraction (where the average is
dominated by results from BESIII [42]). This gives a final
result for Γðηc → γγÞ of 5.90(58) keV. The 10% uncertainty
is the smallest relative uncertainty for any channel.

We conclude that the experimental picture of ηc decay is
not yet a very coherent one. Further experimental results,
with small uncertainties, will be needed to resolve the issue
of whether or not there is tension between experiment and
lattice QCD/the Standard Model for ηc → γγ decay.

The filled blue square in Fig. 8 comes from a determi-
nation of the product of branching fractions for J=ψ → γηc
and ηc → γγ by BESIII [39] combined with the PDG
average for the branching fraction BðJ=ψ → γηcÞ [6].
The value agrees with our result, but has a large uncertainty.
The PDG gives an average value for the branching ratio of
ηc → γγ by combining this result with an earlier one for the
same product of branching fractions from CLEO [43].3 This
gives an average branching fraction of 2.2þ0.9−0.6 × 10−4 [44].
This also agrees with our value within its large uncertainties.
We will discuss these results further in Sec. IV.

We can also explore what our results imply about the
nonrelativistic nature of the c quarks inside the ηc. As
discussed in Sec. I there is a very simple relationship
between Γðηc → γγÞ and ΓðJ=ψ → eþe−Þ in LO
NRQCD [Eq. (1)]. In Fig. 9 we compare this LO result,
shown as a green dashed line, to our lattice QCD value (red
asterisk). The central value for the LO result (7.5 keV) uses

ΓðJ=ψ → eþe−Þ ¼ 5.637ð49Þ keV from lattice QCDþ
QED [1] [this lattice QCDþ QED result agrees well with
the experimental average of 5.53(10) keV [6] but has a
smaller uncertainty]. The LO NRQCD central value is then
10% above our lattice QCD result. Figure 9 shows a 30%
error band in green around the LO NRQCD central value to
allow for subleading corrections. The lattice QCD result,
incorporating the full relativistic dynamics of the c quarks,
falls well within this 30% band showing that the LO
nonrelativistic approximation works well here.

The green points with error bars show results from two
different calculations in continuum NRQCD, going
beyond LO. In CM01 [16] higher-order QCD and rela-
tivistic corrections to Eq. (1) were added. The authors find
substantial Oð30%Þ corrections from the two sources but
also see a large amount of cancellation between them.
They conclude with an estimate of a 10% upward shift of
Γðηc → γγÞ compared to the LO expression, with a 5%
uncertainty. They warn, however, that missing higher-
order corrections might be substantial. The comparison
with our result in Fig. 9 shows this to be the case because
their 10% shift has taken them in the wrong direction from
the LO result and their 5% uncertainty is insufficient to
cover the gap. References [48,49] extend the analysis of

FIG. 9. A comparison of our lattice QCD result (HPQCD23, red
asterisk) for the decay width Γðηc → γγÞ to values obtained from
theory calculations using NRQCD. The green dashed line is the
leading order NRQCD result from Eq. (1), i.e. 4ΓðJ=ψ →
eþe−Þ=3 where we have taken the J=ψ leptonic width from
lattice QCD [1] (which agrees well with experiment). The
uncertainty in the LO NRQCD value from higher order correc-
tions is 30% and denoted by the green band. The green points
give results from higher-order calculations. CM01 is from [16],
determining QCD and velocity-expansion corrections to the ratio
of ΓðJ=ψ → eþe−Þ=Γðηc → γγÞ. FJS17 [45] calculates NNLO
QCD corrections to the ηc → γγ branching fraction through v2

order in the NRQCD velocity expansion. BC01 [46] and BCK18
[47] calculate the inverse branching fraction resumming QCD
corrections in the large nf limit. They give results from two
resummation methods, naïve non-Abelianization (NNA) and
background-field gauge (BFG). We use the PDG average [6]
for the ηc total width to convert their branching fractions into a
width for ηc → γγ. The blue band repeats the PDG fit result shown
in Fig. 8.

3Note that the CLEO result is incorrectly quoted in [6].
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this approach but do not quote final values, concluding
that the theoretical uncertainties are very large for the
charmonium case.

FJS17 [45] calculates next-to-next-to-leading-order
(NNLO) QCD corrections to the ηc → γγ branching frac-
tion through v2 order in the NRQCD velocity expansion
and concludes that NRQCD factorization does not work
well for this case, given the large value that they obtain for
the branching fraction. BC01 [46] and BCK18 [47] resum
QCD corrections to the inverse branching fraction in the
large nf limit each using two different approaches, and
allowing uncertainties for missing color-octet contribu-
tions. We use the PDG average [6] for the ηc total width
to convert their branching fractions into a width for
ηc → γγ. Given the large uncertainties they have, all of
their results agree and both are in reasonable agreement
with our value. It is clear, however, that accurate results for
Γðηc → γγÞ are only currently available using lattice QCD.

We can extend our comparison to the LO NRQCD
expectation by converting Eq. (1) into a relationship
between the hadronic parameters Fð0; 0Þ and the J=ψ
decay constant, fJ=ψ . Using

ΓðJ=ψ → eþe−Þ ¼ 4π

3
α2Q2

c

f2J=ψ
MJ=ψ

ð37Þ

along with Eqs. (1) and (19) we see that the LO NRQCD
result implies

fJ=ψ
Fð0;0ÞMηc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MηcMJ=ψ

p ¼1

2
ð1þOðαsÞþOðv2=c2ÞÞ; ð38Þ

independent of Qc. Since there is no distinction between
Mηc and MJ=ψ at this order in NRQCD, we can rewrite this
as

RfF ≡ fJ=ψ
Fð0; 0ÞM2

J=ψ

¼ 1

2
ð1þOðαsÞ þOðv2=c2ÞÞ: ð39Þ

RfF is now a simple combination of hadronic parameters
that we can calculate directly in lattice QCD.

Figure 10 shows our results for RfF as a function of
lattice spacing using Fð0; 0Þ values for the LOCAL setup
(which corresponds to our largest set of results in Fig. 5).
We take values ofMJ=ψ and fJ=ψ from [1], not including the
QED effects that are calculated there. We also determine
values for the mistunedmc case (set 3A) from those results.

We obtain a value for the ratio in the continuum
limit at physical quark masses by performing a fit of
the same form as that in Eq. (27) to our lattice results
for fJ=ψ=½ð1 − q22=M

2
poleÞFð0; q22ÞM2

J=ψ . The values show
strong lattice-spacing dependence coming from the decay

constant results. This is because the annihilation of a J=ψ
meson is a very short-distance process (shorter distance
than ηc → γγ where the energy is shared between two
photons). Using the Empirical Bayes criterion we find a
value for Λ for this fit of 0.86 GeV, larger than that seen in
either of the earlier fits shown in Fig. 5. Because of the
larger discretization effects we take imax ¼ 5 [see Eq. (27)]
for this fit. The result in the continuum limit does not
change between imax ¼ 4 or 5. Notice also that the results
vary little between the tuned and mistuned c quark mass in
contrast to what was seen in Fig. 5. From NRQCD we
expect the result for the ratio in Eq. (39) to depend on the
(heavy) quark mass only through subleading terms in the
velocity expansion.

The result for the ratio of Eq. (39) that we obtain in the
continuum limit and at physical quark masses is

fJ=ψ
Fð0; 0ÞM2

J=ψ

¼ 0.4786ð57Þfitð14Þsyst: ð40Þ

Here we have added a second uncertainty of 0.3% to allow
for additional systematic errors in Fð0; 0Þ as discussed in
Sec. II B 7, giving a total uncertainty of 1.2%. The χ2=d:o:f:
for the fit is 0.27. The result of Eq. (40) for RfF is (only)
4.5(1.2)% below the LO NRQCD value of 0.5 given
in Eq. (39).

This test of LO NRQCD is slightly different, although
equally valid, to that given in Fig. 9. This is why they both
result in a LO NRQCD value that is above the lattice QCD
result, even though the quantities tested are inversely
related to each other. The differences arise from small
effects that are ignored in LO NRQCD. These include the

FIG. 10. The ratio of J=ψ decay constant to Fð0; 0Þ multiplied
by the square of the J=ψ mass (red points) as a function of
squared lattice spacing using our Fð0; 0Þ values for the LOCAL
setup (with a local vector current) and results from [1] for fJ=ψ
and MJ=ψ . The values for F have been corrected for the slight off
shellness of one photon (see text). The blue band gives our
continuum fit (see text) and the black dotted line gives the LO
NRQCD result of 0.5 [Eq. (39)].
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differences in the scale of α used in ΓðJ=ψ → eþe−Þ4 and
Γðηc → γγÞ for the comparison in Fig. 9 and the simpli-
fication of the combination of meson masses in going from
Eqs. (38) and (39). Once both of these effects are taken into
account, the two comparisons in Figs. 9 and 10 are
consistent. Looking at either figure, we conclude that
LO NRQCD is better than might have been expected as
an approximation here. This only becomes clear with
accurate lattice QCD results.

III. CALCULATING ΓðJ=ψ → γηcÞ
A. Method

The J=ψ → γηc decay is an M1 electromagnetic meson-
to-meson transition. The rate is straightforward to deter-
mine in lattice QCD. Using 3-point and 2-point correlation
functions, to be discussed below, we can calculate the
matrix element of the c electromagnetic current, jμc ¼ c̄γμc,
between the initial J=ψ and final ηc states. Note that, in
keeping with Sec. II, we do not include a factor of the
electric charge in the current. The matrix element can be
parametrized by the form factor V̂ðq2Þ as

hηcðp0ÞjjμcjJ=ψðpÞi ¼
2V̂ðq2Þ

MJ=ψ þMηc

εμαβσp0
αpβϵ

J=ψ
σ ; ð41Þ

where ϵJ=ψσ is the polarization of the J=ψ meson and
q ¼ p − p0 is the 4-momentum transfer.

The decay width is then given by [7]

ΓðJ=ψ → γηcÞ ¼ αQ2
c
16

3

jkj3
ðMηc þMψ Þ2

jV̂ð0Þj2; ð42Þ

where V̂ is evaluated at q2 ¼ 0 for an on-shell photon. jkj
takes the value

jkj ¼ ðMηc þMJ=ψÞðMJ=ψ −MηcÞ
2MJ=ψ

ð43Þ

corresponding to the spatial momentum of the ηc (or
photon) in the J=ψ rest frame at q2 ¼ 0.

It is convenient for us to use V̂ðq2Þ rather than the more
conventional Vðq2Þ≡ 2V̂ðq2Þ because in our lattice QCD
calculation we will compute only one of the two diagrams
that contribute identically. A photon can be emitted by
either the c or c̄ constituent quarks of the initial J=ψ meson
and we will evaluate one of these two cases.

Whilst the decay width to a real photon is a function of
V̂ðq2 ¼ 0Þ, we can also map out the q2 dependence of V̂ up
to q2max ¼ ðMJ=ψ −MηcÞ2. This is needed to compute the

width of the Dalitz decay ΓðJ=ψ → ηceþe−Þ. We do this by
defining the ratio

Reeγ ¼
BðJ=ψ → ηceþe−Þ
BðJ=ψ → ηcγÞ

: ð44Þ

The derivative of Reeγ with respect to q2, the squared 4-
momentum of the virtual photon in J=ψ → ηceþe−, can be
written in terms of the form factor V̂ðq2Þ as [50]

dReeγ

dq2
¼ α

3πq2


V̂ðq2Þ
V̂ð0Þ


2

1−

4m2
e

q2

1
2


1þ2m2

e

q2



×


1þ q2

M2
J=ψ −M2

ηc


2

−
4M2

J=ψq
2

ðM2
J=ψ −M2

ηcÞ2
3

2

: ð45Þ

By multiplying Reeγ by ΓðJ=ψ → γηcÞ [determined
through Eq. (42)], we can then also find the decay
width ΓðJ=ψ → ηceþe−Þ.

B. Lattice calculation

We use the same gluon field ensembles and quark mass
parameters for this calculation as for ηc → γγ. These are
given in Table I.

1. Correlation functions

The matrix element given in Eq. (41) can be obtained by
computing an appropriate 3-point correlation function on the
lattice. This correlation function, summarized diagrammati-
cally in Fig. 11, is similar in appearance to the correlator
given in Fig. 1 used in the calculation for ηc → γγ; the
difference is that one of the vector operators now couples to
a cc̄ vector meson. We consider only the connected
contribution to the decay J=ψ → ηcγ

ðÞ which comes from
an insertion of a c̄γμc current onto one of the two quark lines
between the initial and final states. There are two such
diagrams which contribute equally; we compute only one of
them.We expect quark-line disconnected contributions to be
very small here because of the large mass of the c quark [7].

FIG. 11. Schematic diagram for the connected 3-point corre-
lation function for the J=ψ transition to ηc via an electromagnetic
current. The lines between the operators represent quark propa-
gators at the mass of the charm quark.

4The lattice QCDþ QED result [1] for ΓðJ=ψ → eþe−Þ uses
α ¼ 1=134.02, taking the scale of α to be MJ=ψ , appropriate to
J=ψ annihilation. See [1] for a discussion of how the scale of α
affects the agreement with experiment.
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We will discuss the uncertainty associated with neglecting
these diagrams in Sec. III B 3.

Our 3-point functions have three operator insertions, two
vector and one pseudoscalar, just as in the 3-point function
in Sec. II B 2. We use different spin-taste combinations
here, however. We take the γ5 ⊗ γ5 interpolator for the ηc
meson, γxγt ⊗ γ5γz to interpolate the J=ψ meson, and the
local γz ⊗ γz operator for the electromagnetic vector
current insertion.5 As discussed in Sec. II B 3, this allows
us to use the very precise values from [30] for the
multiplicative renormalization ZV for the local HISQ-
HISQ vector current.

Spatial momentum is applied to the charm propagator
between the ηc operator and the vector current insertion to
give momentum to the ηc meson while the J=ψ meson is
always at rest on the lattice. As well as the three-momentum
necessary to achieve q2 ¼ 0, the case of an on-shell photon,
we calculate correlation functions for various other 3-
momenta of the ηc meson so that we obtain results for a
range of q2 values around q2 ¼ 0. In addition we calculate
2-point correlation functions corresponding to the operator
used for the J=ψ (at rest) and for the ηc (at the spatial
momentum values used).

As for ηc → γγ (see Sec. II B 2), we insert spatial
momentum by using a twist angle. The twist values used
for each set are tabulated in Table VI. The twists are chosen
to broadly cover the full range 0 ≤ q2 ≤ q2max ¼
ðMJ=ψ −MηcÞ2. Given that we have chosen x and z polar-
izations for the J=ψ and the vector current, respectively, then
Eq. (41) requires the spatial momentum to have a component
in the y direction. In fact we take the momentum to be
parallel to the y axis.

We calculate 3-point correlation functions for several
different values of the source-sink separation, T ¼ tJ=ψ −
tηc (see Fig. 11). This improves the determination of the
ground-state to ground-state matrix elements that we are
interested in by giving a better handle on the excited states
present in the correlation function. The values of T that we
use are also listed in Table VI.

As in Sec. II B 2, we fit the 2-point correlation functions
to the form in Eq. (24). The 3-point functions (for all T and
momenta) are simultaneously fit to the standard form

C3ptðt ¼ tγ − tJ=ψ ; T ¼ tJ=ψ − tηcÞ

¼
XNn;Nn

i;j

aγxγt⊗γ5γz
i e−EitVija

γ5⊗γ5
j e−EjðT−tÞ ð46Þ

with the addition of terms that oscillate in time and involve
opposite parity states [10] that are not shown here. The
energies of the states with overlap onto γxγt ⊗ γ5γz (the
J=ψ and its excitations) are indexed by i, and the energies

of the states with overlap onto γ5 ⊗ γ5 (the ηc and its
excitations) are indexed by j. The energies and the
amplitudes ai=j are also parameters for the 2-point corre-
lator fits and this enables us to extract the parameters Vij.

Our fits account for four normal vector and pseudoscalar
charmonium states in Eq. (46) (i.e. Nn ¼ 4) and four
additional oscillating states for each. As for the fit to
Cηc described in Sec. II B 5, we drop 2-point correlator data
below tmin=a ¼ Nt=8 when fitting. We also drop 3-point
correlator data below a tmin=a [and ðT − tÞmin=a] value of
between 2 and 4, increasing as the lattice spacing falls.

The ground-state to ground-state matrix element that
characterizes the J=ψ → ηc transition is related to the
parameter V00 of Eq. (46) via

hηcjjμcjJ=ψi
2

¼ ZV

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mlatt

J=ψ

q ffiffiffiffiffiffiffiffiffiffi
2Elatt

ηc

q
V00; ð47Þ

where Mlatt
J=ψ ≡ Ei¼0 and Elatt

ηc ≡ Ej¼0 and the
p

factors are
the relativistic normalizations of the states jJ=ψi and jηci
respectively. ZV is the multiplicative renormalization factor
for the local γz ⊗ γz vector current. The factor of 1=2
present on the left-hand side above accounts for the second
Wick contraction (that contributes equally) where the
vector current insertion is placed onto the other quark line
connecting the initial and final states.

V̂ðq2Þ is then obtained from V00 using

V̂ðq2Þ ¼
Mlatt

J=ψ þMlatt
ηc

Mlatt
J=ψq

y ZV

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mlatt

J=ψ

q ffiffiffiffiffiffiffiffiffiffi
2Elatt

ηc

q
V00; ð48Þ

where qy is the component of the ηc momentum in the y
direction, orthogonal to both the vector current and J=ψ
polarizations (see Table VI for the values used).

TABLE VI. Parameters for the correlation functions for the
decay J=ψ → γηc. The second column gives the set of twists θ
used for each lattice implementing twisted boundary conditions
in the ð0 1 0Þ direction. The corresponding 3-momentum com-
ponent is given by qy ¼ θπ=aNx [see Eq. (20)]. Given the x and z
polarizations chosen for the J=ψ and vector currents, respec-
tively, this gives a nonzero matrix element in Eq. (41). The twists
are chosen to cover the kinematic range from zero recoil to
q2 ¼ 0. The third column gives the different time separation
between source and sink (T ¼ tJ=ψ − tηc , see Fig. 11) of the
3-point correlation function.

Set θ T

1 0.1750, 0.3031, 0.3914, 0.4631 15, 16, 17
2 0.6406, 0.9060, 1.1097 13, 14, 15, 16
3 0.2111, 0.2986, 0.3657, 0.4223, 16, 17, 18, 19, 20, 21

0.4721, 0.5172, 0.5586, 0.5972
4 0.7719, 1.0918, 1.3373 17, 18, 19, 20
5 0.2423, 0.3427, 0.4197, 21, 24, 27, 30

0.4846, 0.5418, 0.5936
6 0.3774, 0.5338, 0.6538 33, 36, 39, 42

5See [10] for a comparison of different taste configurations for
this calculation.
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Table VII lists the values of the J=ψ and ηc masses in
lattice units given by our correlator fits on each ensemble.
These are the values used to determine V̂ in Eq. (48). In
Fig. 4 we compare the mass of the γxγt ⊗ γ5γz J=ψ meson
that we use for the study of J=ψ → γηc (from Table VII)
with the J=ψ mass from the γz ⊗ γz interpolator from [1].
The mass splitting between these two different tastes of J=ψ
is small (less than 20 MeVeven on the coarsest lattices) and
disappears in the continuum limit, with the mass of the

γxγt ⊗ γ5γz J=ψ being larger. Figure 4, also compares the
masses of the different tastes of ηc used for our calculations.
The J=ψ → γηc study uses the γ5 ⊗ γ5 (Goldstone) ηc and
the ηc → γγ analysis uses two different tastes, both of which
are heavier. Here the taste splittings are 2–3 times larger
than for the vector meson but again disappear rapidly as
ðamcÞ2 falls towards to the continuum limit.

Table VIII then gives our results for V̂ðq2Þ on each
ensemble and for each value of the spatial momentum
inserted. In the next section we describe how we fit these
results to obtain the function V̂ðq2Þ in the a → 0 continuum
limit at physical quark masses.

2. Taking the physical-continuum limit

We fit our lattice results for V̂, which we denote V̂ latt
(see Table VIII), to the following function:

V̂ lattðq2Þ ¼
X2

k¼0

AðkÞ


q2

ðMlatt
J=ψÞ2


k

1þ

Ximax

i¼1

κði;kÞaΛ ðaΛÞ2i

þ κðkÞval;cδ
val;c þ κðkÞsea;cδsea;c þ κð0;kÞsea;udsδ

sea;uds

×
n
1þ κð1;kÞsea;udsðΛ̃aÞ2 þ κð2;kÞsea;udsðΛ̃aÞ4

o
: ð49Þ

TABLE VII. Results for the masses of the J=ψ and ηc mesons
from our combined 2- and 3-point correlator fits aimed at
determining the form factor for J=ψ → γηc decay. The ηc meson
here has spin-taste γ5 ⊗ γ5 and so has a different mass to the
values given in Table IV.

Set aMlatt
J=ψ aMlatt

ηc

1 2.43418(38) 2.331959(86)
2 2.38671(15) 2.287729(36)
3 1.94525(21) 1.876352(68)
3A 1.92625(21) 1.857007(69)
4 1.90225(7) 1.833910(22)
5 1.41616(13) 1.366980(46)
6 0.92973(12) 0.896714(42)

TABLE VIII. Our lattice results for V̂ lattðq2Þ on each ensemble from Table I and at each value of the momentum
used. The corresponding values of q2 are also listed in lattice units. q2 is calculated from ðMlatt

J=ψ − Elatt
ηc Þ2 − q2,

where the ground-state J=ψ mass and ηc energy, Mlatt
J=ψ and Elatt

ηc , are obtained from the correlator fits and q2 is

determined from the twist angles imposed (see Table VI). Mlatt
J=ψ and Mlatt

ηc values are given in Table VII.

Set 1
a2q2 0.009220(74) 0.006762(74) 0.004301(74) 0.001843(73)

V̂ lattðq2Þ 1.834(38) 1.834(23) 1.833(18) 1.831(15)

Set 2
a2q2 0.005680(28) 0.001564(28) −0.002551ð27Þ   

V̂ lattðq2Þ 1.858(12) 1.8520(91) 1.8478(76)   

Set 3

a2q2 0.003956(27) 0.003165(26) 0.002374(26) 0.001583(26)
V̂ lattðq2Þ 1.887(53) 1.881(38) 1.878(31) 1.875(27)
a2q2 0.000793(26) 0.000001(26) −0.000789ð26Þ −0.001580ð26Þ

V̂ lattðq2Þ 1.873(25) 1.872(23) 1.870(21) 1.869(20)

Set 3A

a2q2 0.004002(27) 0.003211(27) 0.002419(27) 0.001628(27)
V̂ lattðq2Þ 1.888(54) 1.880(38) 1.877(32) 1.874(28)
a2q2 0.000837(27) 0.000045(27) −0.000745ð27Þ −0.001536ð26Þ

V̂ lattðq2Þ 1.872(25) 1.870(23) 1.869(21) 1.867(20)

Set 4
a2q2 0.0020259(86) −0.0006190ð85Þ −0.0032636ð84Þ   

V̂ lattðq2Þ 1.8558(47) 1.8530(34) 1.8501(29)   

Set 5

a2q2 0.001833(12) 0.001247(12) 0.000661(12) 0.000075(12)
V̂ lattðq2Þ 1.854(14) 1.856(10) 1.8565(83) 1.8562(73)
a2q2 −0.000510ð12Þ −0.001097ð12Þ      

V̂ lattðq2Þ 1.8555(66) 1.8547(62)      

Set 6
a2q2 0004578(76) −0.0001746ð75Þ −0.0008068ð74Þ   

V̂ lattðq2Þ 1.873(13) 1.8723(93) 1.8704(79)   
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This takes the same form as that for Fð0; 0Þ in Eq. (27),
except that we must allow here for dependence on q2. We
do this through a truncated Taylor series in q2=M2

J=ψ ,MJ=ψ

being the appropriate mass for a form factor induced by a
cc̄ vector current. The coefficients AðkÞ for each term allow
the fit to adjust the mass away from MJ=ψ if required. The
q2 range is very small here (relative toM2

J=ψ ), so we expect

the form factor to be very flat as a function of q2 and do not
need many terms in the polynomial. We include terms up to
q4. The J=ψ mass used in the q2=M2

J=ψ term is that obtained
from the fit (see Table VII). The fit form allows for
independent discretization effects and quark mass mistun-
ing terms for each power of q2=M2

J=ψ (denoted by k). The
form of these terms is the same as in the fit function for
Fð0; 0Þ in Eq. (27) and definitions for δ can be found in
Eqs. (28)–(30).

We take priors of AðkÞ ¼ 2ð1Þ. The choice is informed by
leading-order NRQCD where the rate for the radiative
transition depends on the wave function overlap between
J=ψ and ηc modulated by a Bessel function. For small
momentum transfer and ignoring relativistic corrections that
generate spin-dependent differences in the wave function,
this wave function overlap is 1. Then we expect V̂ð0Þ ≈ 2
from comparing Eq. (5) of [51] to Eq. (42) and taking
mc ≈Mηc=2 ≈MJ=ψ=2. Our lattice QCD calculation
includes relativistic effects fully so it will give a much
more accurate result for V̂ð0Þ than this leading-order non-
relativistic argument. How different the result is, we will see
below. The priors for Aðk>0Þ encompass q2 dependence
following a pole form ð1 − q2=M2

J=ψ Þ−1.
As with the fit of Fð0; 0Þ in Sec. II B 6, we test the size of

discretization effects using the Empirical Bayes approach.
We do not expect large discretization effects here based on
the nonrelativistic arguments above which tell us that
discretization effects can only enter through the small
momentum transfer between J=ψ and ηc and through small
spin-dependent effects on the wave function overlap. We
find that the Bayes factor is maximized by Λ ¼ 0.12 GeV.
This is close to the largest jqj value in the kinematic range
of the decay and so seems a reasonable value to set the scale
for discretization effects.

Following Sec. II B 6 we take the priors κði;kÞaΛ ¼ 0ð1Þ,
κðkÞval;c ¼ 0ð1Þ (little difference is seen between our results on
sets 3 and 3A), κðkÞsea;c ¼ 0.0ð1Þ and κðj;kÞsea;uds ¼ 0ð1Þ for
j ¼ 0, 1, 2. Our preferred fit takes the number of discre-
tization terms included, imax ¼ 3.

In the limit of vanishing lattice spacing and physical
quark masses, the form factor is then given by

V̂ðq2Þ ¼
X2

k¼0

AðkÞ


q2

M2
J=ψ


k
: ð50Þ

The value of MJ=ψ used here is that from experiment [6].
Note that our c quark mass is tuned so that our J=ψ masses
match that value [see Eq. (31)]. In particular the form factor
at q2 ¼ 0 needed to determine ΓðJ=ψ → γηcÞ via Eq. (42),
V̂ð0Þ, is simply given by the parameter Að0Þ.

In Fig. 12, we plot our lattice results for V̂ lattðq2Þ from
Table VIII against q2 for each ensemble (upper plot). The
results show little dependence on q2, as expected. Note that
the statistical uncertainties on the points are smaller for
values at low q2 in comparison to those at zero recoil. The
statistical noise of the ηc correlators increases with spatial
momentum, but this is offset by the increased value of V00

so that its relative uncertainty falls. We also show the fit
band in gray that corresponds to the fit of Eq. (49)
evaluated in the continuum limit with physical quark
masses [see Eq. (50)].

The lower plot of Fig. 12 shows the lattice results
interpolated to q2 ¼ 0 on each ensemble and plotted against
the square of the lattice spacing. The interpolation in q2 is

FIG. 12. Upper plot: lattice results for V̂ðq2Þ plotted against q2.
The different colors denote the different ensembles used (see
Table I). The gray band gives the result, with1σ error bars, from
the fit to Eq. (49) evaluated in the continuum limit at physical
quark masses. The dashed line corresponds to the maximum
physical q2 value, ðMJ=ψ −MηcÞ2. Lower plot: lattice results on
each ensemble interpolated to q2 ¼ 0 using the continuum fit
result. The gray band gives the result from the fit to Eq. (49) as a
function of lattice spacing at physical quark masses.
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done using the continuum result for the q2 dependence of V̂.
The figure shows, again as expected, very little dependence
on the lattice spacing.

The value that we obtain from our fit in the continuum
limit and at physical quark masses is

V̂ð0Þ ¼ 1.8649ð73Þ; ð51Þ

with an uncertainty of 0.4%. The fit has a χ2=dof value of
0.19. Our result is clearly distinguishable from the leading-
order NRQCD expectation of 2, indeed it differs by 7.2
(4)%. Before discussing additional systematic uncertainties
that need to be included, we first discuss the stability of our
result for V̂ð0Þ under changes to the parameters of our fits.

We plot the impact on the value of V̂ð0Þ of changes to
either our correlator and continuum/chiral fits in Fig. 13.
Our preferred (base) fit described above is given on the left.
Variations include dropping datasets and changing the
priors by factors of 0.5 or 2.0. We see very little variation
in the final answer under any of these variations, confirm-
ing that our result is robust.

3. Additional systematic uncertainties

In Sec. II B 7 we estimated the additional systematic
uncertainty on Fð0; 0Þ for ηc → γγ from missing quark-line
disconnected correlation functions and from missing QED
effects. Here we do the same for V̂ðq2Þ.

As discussed in Sec. II B 7, the missing disconnected
correlation functions mean that there is a 7.3 MeV mis-
match between the ηc mass determined on the lattice in the
continuum limit (tuning the c quark mass so that the J=ψ

mass is correct) and that determined in experiment [1]. In
Sec. III B 2 we described how leading-order NRQCD gives
a result of 2 for V̂ð0Þ because it ignores the spin-dependent
differences between the J=ψ and ηc wave functions. Our
results, using a fully relativistic approach, show that V̂ð0Þ
differs from 2 by 7.2(4)%. However, the missing discon-
nected correlation functions mean that we are missing a
small part of the effects that generate a difference between
the J=ψ and ηc (and result in their “wave function overlap”
differing from 1). The 7.3 MeV shift is 6% of the mass
difference between the J=ψ and ηc mesons (the hyperfine
splitting). We might therefore expect that the missing
disconnected correlation functions could generate a shift in
V̂ of 6% of the 7.2% difference from 2, i.e. a 0.4% shift
of V̂.

An additional effect to be considered is the identification
of the value at q2 ¼ 0. Because the lattice ηc mass does not
exactly match that in experiment, the q2 ¼ 0 point will
correspond to a slightly (6%) incorrect value for the ηc
spatial momentum, jqj. The q2 dependence of V̂ is so
small, however, that shifting the q2 value at which we
determine V̂ has negligible effect. Note also that our results
on sets 3 and 3A for V̂ (see Table VIII) show almost no
difference when we change the ηc mass by 1% (see
Table VII). A 1% shift in ηc mass is much larger than
the 0.2% shift coming from missing quark-line discon-
nected correlation functions.

We conclude that a 0.4% systematic uncertainty in V̂
from missing quark-line disconnected correlation functions
is reasonable. This systematic uncertainty includes the effect
of the fact that the c quarks in charmonium carry an electric
charge. The hyperfine splitting was calculated in [1] in
lattice QCDþ QED and the 7.3 MeV shift between the
lattice and experimental hyperfine splittings quoted above
includes this QED effect. The impact of final-state QED
interactions should be negligible for ΓðJ=ψ → γηcÞ because
there is no electric charge in the final state. We allow an
additional uncertainty of Oðα=πÞ ¼ 0.2% for higher-order
QED corrections when calculating ΓðJ=ψ → γηcÞ.

The systematic uncertainty from missing quark-line
disconnected correlation functions discussed above will
be largely independent of q2, since V̂ðq2Þ is such a flat
function over the kinematic range of the decay. This means
that it will cancel almost entirely in the ratio Reeγ of
Eq. (44). When we come to consider ΓðJ=ψ → ηceþe−Þ,
however, we must allow a systematic uncertainty for final-
state QED interactions because of the charged particles
produced. We will take an OðαÞ ≈ 1% systematic uncer-
tainty for this.

C. Results

Combining our fit result of Eq. (51) with the additional
systematic error discussed in Sec. III B 3 we obtain a final
result of

FIG. 13. The value of V̂ð0Þ in the limit of vanishing lattice
spacing and physical quark masses obtained from variations to
our base fit. These include (from left to right) dropping the
coarsest and finest datasets, changing all the prior widths in our
correlator fits, changing all the prior widths in our chiral/
continuum fits and adding an additional normal and oscillating
exponential to our correlator fits. Note that the values for Λ in
Eq. (49) are fixed (see text) under these fit variations.
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V̂ð0Þ ¼ 1.8649ð73Þfitð75Þsyst: ð52Þ

The total uncertainty here is 0.56%. The error budget is
given in Table V and can be compared to that previously
discussed for Fð0; 0Þ. The main sources of uncertainty are
somewhat different reflecting the fact that this is a dimen-
sionless quantity, less sensitive to w0, but with larger
statistical errors from fitting three-point correlation func-
tions and larger uncertainties from a2 and q2 dependence.
The relative total uncertainty is similar in the two cases.

We can use this value in Eq. (42) to determine the decay
width. For the kinematic factors of masses on the right-
hand side of the equation we use experimental average
values from [6]. These give jkj ¼ 110.9ð4Þ MeV. Taking
α ¼ 1=137.036 [6], appropriate to the low moment-transfer
here, we obtain

ΓðJ=ψ → γηcÞ ¼ 2.219ð17Þfitð18Þsystð24Þexptð4ÞQED keV:

ð53Þ

The third error here is from the experimental hyperfine
splitting that appears in jkj. Since jkj is raised to the third
power in Γ this gives the largest single uncertainty in the
final answer. The fourth uncertainty is from additional QED
effects in the rate, as discussed in Sec. III B 3. Our total
uncertainty on Γ is 1.6%, adding the four contributions in
quadrature. Taking the total J=ψ width as 92.6(1.7) keV
from [6] gives a branching fraction of

BrðJ=ψ → γηcÞ ¼ 2.40ð3Þlattð5Þexpt%: ð54Þ

We have combined the two lattice uncertainties (from the fit
and from the additional systematics) into the first uncer-
tainty here. The second comes from the experimental
hyperfine splitting, the additional QED uncertainty and
from the J=ψ total width, combined in quadrature. It is
dominated by the error in the J=ψ total width.

Turning now to J=ψ → ηceþe−, we plot the expression
in Eq. (45) for dReeγ=dq2 as a function of q2 in Fig. 14,
taking out the normalizing factor of 3π=α. The integrand is
very singular at low q2 values and requires some care to
integrate. It is cut off at the lower kinematic end point, 4m2

e.
We find the integrated value to be (using α ¼ 1=137.036)

Reeγ ¼ 0.00607958ð34Þ: ð55Þ

From Fig. 12, we know that the form factor V̂ is very flat
with respect to q2 and we find that the integrand is virtually
indistinguishable if we replace the factor of V̂ðq2Þ=V̂ð0Þ
with 1.0. If we integrate Eq. (55) setting V̂ to a constant we
obtain a value of 0.006078421(43) which differs from that
above in Eq. (55) by 0.02%.

Combining our results for ΓðJ=ψ → γηcÞ and Ree in
Eqs. (53) and (55), respectively, we find the decay width

ΓðJ=ψ → ηceþe−Þ ¼ 0.01349ð15Þlattð15Þexptð13ÞQED keV:

ð56Þ

The first uncertainty comes from the combined “fitþ syst”
lattice uncertainty on ΓðJ=ψ → γηcÞ from Eq. (53) and the
second uncertainty from the experimental contribution to
that. The third uncertainty is the additional systematic error
from QED effects such as final-state interactions discussed
in Sec. III B 3. Combining the value from Eq. (56) with the
J=ψ total width gives a branching fraction

BrðJ=ψ → ηceþe−Þ ¼ 1.457ð16Þlattð15ÞQEDð31Þexpt × 10−4:

ð57Þ

The third, experimental, uncertainty is dominated by that
from the J=ψ total width.

D. Discussion

Figure 15 compares our final result from Eq. (52) for the
form factor V̂ð0Þ needed to determine the rate for J=ψ →
γηc decay to earlier lattice QCD calculations including
different numbers of flavors of sea quarks. Our result is a big
improvement in accuracy over the earlier calculations, as
well as having the most realistic sea quark content with u, d,
s and c quarks in the sea. We also show, as a shaded blue
band, the value of V̂ð0Þ of 1.57(18) inferred from the
average branching fraction for J=ψ → γηc of 1.7(4)% and
J=ψ width of 92.6(1.7) keV [6] using Eq. (42). We see good
agreement between the lattice results but they are all higher
than the value for V̂ð0Þ inferred from the experimental rate.
The experimental average branching fraction has a large
uncertainty, inflated by a scale factor of 1.5 because of
poor agreement between experiments. This means that the

FIG. 14. 3π=α × dReeγ=dq2 from Eq. (45) plotted against q2.
Note the log scale on the y axis. The vertical dashed lines
mark the kinematic end points of the integral at 4m2

e and
ðMJ=ψ −MηcÞ2. The integrand for the case where V̂ðq2Þ is set
equal to V̂ð0Þ, i.e. the form factor is taken to be completely flat in
q2, is visually indistinguishable from this.
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tension with our lattice QCD result is 1.6σ where σ comes
from the experimental value.

We show more detail of the experimental picture in
Fig. 16. There we plot our result for ΓðJ=ψ → γηcÞ [from
Eq. (53)] along with the three most recent experimental
results, from KEDR [4], CLEO [3] and Crystal Ball [2].
Uncertainties quoted on the experimental values are
combined in quadrature. We also include the PDG average
value [6] which is an average of the branching fractions
from CLEO and Crystal Ball (that we multiply by the

average total J=ψ width). We see that the Crystal Ball
result is the lowest, over 3σ below our value from lattice
QCD. The KEDR result is much higher, 2σ above our
value. The KEDR analysis includes some model depend-
ence and they quote their result as Γ0

γηc , which is the value
we plot in Fig. 16. The CLEO result is in between and in
good agreement (within 1.5σ) with our result.

Figure 17 shows a comparison between our lattice result
for ΓðJ=ψ → γηcÞ and a selection (not intended to be
exhaustive) of earlier theoretical results using different
techniques. It is clear that lattice QCD is able to provide a
much more accurate result for this decay width than
previous approaches. A comparison is nevertheless useful
to allow an assessment of these other approaches for use in
cases that are not as amenable to lattice QCD calculations.
Indeed here the experimental picture is not at all clear and
lattice QCD results can substitute for an accurate exper-
imental value in this assessment, as for Γðηc → γγÞ in
Sec. II D.

We see in Fig. 17 that theory results for ΓðJ=ψ → γηcÞ
have covered a wide range (compared to the lattice QCD
results of Fig. 15). A traditional approach has been to use a
nonrelativistic potential, but often these results are quoted
with no error bars. In Fig. 17 we give two results from
nonrelativistic potentials. One, from [51], takes the wave
function overlap between J=ψ and ηc to be 1, and the

FIG. 15. A comparison of values of V̂ð0Þ from lattice QCD. The
result from the work here is labeled “HPQCD23” (red asterisk)
and includes u, d, s and c quarks in the sea with results at multiple
lattice spacing values. The results with u, d and s quarks are
denoted with purple filled triangles. “HPQCD12” used HISQ c
quarks on gluon field configurations including sea asqtad
staggered quarks and two values of the lattice spacing [10].
“Hadspec23” used clover quarks on anisotropic lattices at one
value of the lattice spacing but include an estimate of systematic
errors in their quoted uncertainty. “ETM12” (filled orange circle)
used the twisted mass formalism with gluon field configurations
including u and d sea quarks only and four values of the lattice
spacing [9]. The blue band shows the value for V̂ð0Þ inferred from
the average experimental branching fraction [6]. The red band
carries our result down the plot for comparison.

FIG. 16. A comparison of our result for ΓðJ=ψ → γηcÞ from
lattice QCD to values from experiment. The result from the work
here is labeled “HPQCD23” (red asterisk). The filled blue circles
are results from individual experiments: “CBALL85” is from the
Crystal Ball [2], “CLEO08” is from CLEO [3] and “KEDR14” is
from KEDR [4] (plotting the quantity denoted Γ0

γηc ). The blue
band shows the average of the CLEO and Crystal Ball results [6].
The red band carries our result down the plot for comparison.

FIG. 17. A comparison of our result for ΓðJ=ψ → γηcÞ from
lattice QCD to a selection of values from other theoretical
approaches. The result from the work here is labeled “HPQCD23”
(red asterisk). The left-pointing green triangle labeled sum rules is
an early result with this method from [52]. Three values are given
in the row labeled “potentials” to encompass the range of results.
The rightmost point (green triangle) is from [51], the middle point
(green circle) is the starting point for a pNRQCD analysis
from [53]. The numbers plotted for these two cases have been
updated to use the current value for jkj (see text). The leftmost
point (green square) is from a relativistic quark model [54]. Two
pNRQCD analyses are shown; the lower value (green diamond) is
from [55] using the weak-coupling limit and the upper one (green
circle) from [53] including corrections through α2s and v2 (this
value has also been corrected to use the current value of jkj). The
right-pointing green triangle labeled “LCSR” is a recent result
using light-cone sum rules from [56]. The blue band shows the
experimental average of the CLEO and Crystal Ball results [6].
The red band carries our result down the plot for comparison.
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other, from [53], is the leading-order result for a potential
Non-Relativistic QCD (pNRQCD) analysis. To make a
fair comparison with our value, we have corrected both of
these results to use the value for jkj (see Eq. (43) obtained
from current average experimental masses [6] rather than
the values they used from earlier PDG reports. Since the
experimental average hyperfine splitting has changed by
several percent over time and jkj appears cubed in Γ, this
has some impact. These two nonrelativistic potential model
results differ by 20%, bracketing our value, and this reflects
reasonably the range of results (compare, for example, more
recent values in [57]). The pNRQCD approach systemati-
cally adds correction terms to this [53,55]. We can see how
this works most clearly in the result of [53] since the size of
corrections through Oðα2sÞ and Oðv2Þ are tabulated. The v2
corrections are large but of opposite sign to those at OðαsÞ
and Oðα2sÞ. Disappointingly we see, by comparing the two
green circles in Fig. 17, that the net effect of these
corrections is to move the result further from our value
rather than towards it. Higher-order corrections are still
likely to be sizeable and the good news is that the
uncertainty estimates attached to the pNRQCD results
means that they are in good agreement with our value. In
contrast a recent result from light-cone sum rules [56] has
significant tension, over 3σ, with our value. The result from
a relativistic quark model [54] also looks in disagreement.

We now turn to a test of the relationship between
ΓðJ=ψ → γηcÞ, Γðηc → γγÞ and ΓðJ=ψ → eþe−Þ sug-
gested by Shifman many years ago and given in Eq. (2).
The accurate results that we now have from lattice QCD
for these decay widths enables us to see how well this
approximate relationship works. It is easiest to do this by
converting the expression of Eq. (2) into a connection
between the hadronic parameters, V̂ð0Þ, Fð0; 0Þ and fJ=ψ .
Equation (2) becomes

V̂ð0Þ ¼ Fð0; 0Þ
2fJ=ψ

MJ=ψ ðMJ=ψ þMηcÞð1þOðαsÞÞ: ð58Þ

In terms of the ratio RfF defined in Eq. (39) this reduces to

V̂ð0ÞRfF ¼ MJ=ψ þMηc

2MJ=ψ
ð1þOðαsÞÞ: ð59Þ

Our results for V̂ð0Þ from Eq. (52) and RfF from
Eq. (40) yield

V̂ð0ÞRfF ¼ 0.893ð5ÞV̂ð11ÞRfF
: ð60Þ

The expectation from the ratio of masses on the right-hand
side of Eq. (59) gives 0.982 using experimental averages
from [6]. This differs from our result for V̂ð0ÞRfF by 10%,
which is well within the leeway provided on the 0.982 by
possible OðαsÞ corrections. In the nonrelativistic limit, the

mass ratio would simply be 1.0, and 0.982 is a slight
improvement on this, in terms of being closer to the full
lattice QCD value that we obtain in Eq. (60). Going further
in the nonrelativistic direction, Eq. (59) would reduce to
the expectation that V̂ð0Þ ¼ 2 (when RfF is assumed to
take the value 1=2), which in fact works just as well in
comparison to our results (since 2.0 differs from our value
for V̂ð0Þ by 7%).

We conclude from the comparison of our results to other
theory values that nonrelativistic approaches to J=ψ → γηc
work at the 10–20% level at leading order, but it is hard to
improve on this by adding corrections.

Finally, we note that our result for Reeγ in Eq. (55)
agrees with that given in [58] using a simple ψ 0 pole model
for V̂ðq2Þ. This is not surprising since, as discussed in
Sec. III C, the result is insensitive to details of V̂ðq2Þ over
the short q2 range of the decay.

IV. CONCLUSIONS

We give improved lattice QCD results for the hadronic
matrix elements needed to determine Γðηc → γγÞ,
ΓðJ=ψ → γηcÞ and ΓðJ=ψ → ηceþe−Þ, These results
include u, d, s and c quarks in the sea for the first time.
The HISQ action gives us small discretization errors and we
use a wide range of lattice spacing values and sea u=d quark
mass values for good control of the physical-continuum
limit. Our lattice QCD results now have smaller uncertain-
ties than the corresponding experimental values. This
means that new experimental results with improved uncer-
tainties could have considerable impact as stringent tests
of QCD.

Our results for ηc → γγ transform the theoretical picture
for this decay. Our determination of the hadronic form
factor Fð0; 0Þ, defined in Eq. (16), is [repeating Eq. (34)]

Fð0; 0Þ ¼ 0.08793ð29Þfitð26Þsyst GeV−1: ð61Þ

This gives a decay width of

Γðηc → γγÞ ¼ 6.788ð45Þfitð41Þsyst keV; ð62Þ

repeating Eq. (35). The first uncertainty comes from the
lattice calculation and the second is from remaining
systematic errors (see Sec. II B 7) from missing quark-line
disconnected diagrams and QED effects.

As discussed in Sec. II D, our result has 4.6σ tension with
the PDG fit result of 5.15(35) keV [6]. The PDG fit has a
poor χ2 and the difficulty of determining a reliable fit value
and uncertainty from the wide range of indirect experimen-
tal results that exist is clear in Fig. 8. We believe that this fit
needs to be revisited. Instead our result for the decay width
agrees within 2σ with the value for the width of 5.90
(58) keV obtained from the PDG average [6] of a more
restricted set of experimental results, those for ηc production
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via 2-photon fusion using the ηc decay mode to KK̄π. This
channel also has the advantage of having the smallest
relative uncertainty.

Our results, along with earlier 0.4%-accurate HPQCD
calculations of the J=ψ decay constant [1], allow us to test
how well earlier expectations using NRQCD work when
confronted with the results from a fully relativistic QCD
calculation. Leading-order NRQCD gives a simple rela-
tionship between Fð0; 0Þ for ηc → γγ decay and the J=ψ
decay constant given in Eq. (38). We determine the ratio
[repeating Eq. (40)]

RfF ≡ fJ=ψ
Fð0; 0ÞM2

J=ψ

¼ 0.4786ð57Þfitð14Þsyst: ð63Þ

The leading-order NRQCD expectation of 0.5 is not far
from this number, suggesting that there is significant
cancellation of the NRQCD higher-order corrections,
expected to be individually of order 30% [16,48,49].
The comparison of NRQCD calculations to our result is
shown in Fig. 9.

The relative success of the leading-order NRQCD
expectation for the ratio above suggests that it may also
be used to predict ηb → γγ. We therefore expect that

Γðϒ → eþe−Þ
Γðηb → γγÞ ¼ 1

3Q2
b

ð1þOðαsÞ þOðv2=c2ÞÞ ≈ 3: ð64Þ

Using HPQCD’s lattice QCD results for Γðϒ → eþe−Þ of
1.292(37)(3) keV [59] we obtain the prediction

Γðηb → γγÞ ¼ 431ð12Þð86Þ eV: ð65Þ

The second uncertainty allows for 20% variation from
missing higher-order radiative and relativistic corrections.
For the b case we expect the Oðαs ≈ 0.2Þ corrections to be
larger than the relativistic corrections [Oðv2 ≈ 0.1Þ] and the
cancellation of these may then not work as well as in the c
case. Indeed the authors of CM01 [16] are quoted in [60] as
determining a width Γðηb → γγÞ ¼ 570ð50Þ eV including
corrections through α2s in continuum NRQCD to Eq. (64).
A more recent analysis [49] gives a similar central value but
larger uncertainty, with a decay width of 540(150) eV. This
would represent a larger correction to the leading-order
NRQCD result than seen in the c case but going in the same
(positive) direction. We saw from Fig. 9, however, that the
full lattice QCD result for Γðηc → γγÞ is below the LO
NRQCD result rather than above.

Ultimately the Standard Model (SM) value for Γðηb →
γγÞ will be resolved by an accurate calculation in lattice
QCD. Now that we have demonstrated the accuracy
possible for the ηc calculation using HISQ quarks we
envisage increasing the mass up towards the b and applying
the techniques used in [59] to do this. A prediction ahead of
possible experimental results from Belle II would be timely.

Our results for the form factor for the M1 radiative
transition J=ψ → γηc also represent a step up in accuracy
over previous lattice QCD results. We find a value for the
form factor at q2 ¼ 0, repeating Eq. (52),

V̂ð0Þ ¼ 1.8649ð73Þfitð75Þsyst: ð66Þ

This gives a decay width, repeating Eq. (53)

ΓðJ=ψ → γηcÞ ¼ 2.219ð17Þfitð18Þsystð24Þexptð4ÞQEDkeV:
ð67Þ

The first uncertainty here comes from the lattice fit, the
second from additional systematic errors from missing
quark-line disconnected correlation functions, the third
uncertainty is from the experimental average hyperfine
splitting that enters the kinematic factors converting the
squared form factor into a decay width [see Eq. (42)] and
the fourth from additional QED effects in the rate. For the
related Dalitz decay, J=ψ → ηceþe− we predict

ΓðJ=ψ → ηceþe−Þ ¼ 0.01349ð15Þlattð15Þexptð13ÞQED keV;

ð68Þ

repeating Eq. (56).
Our result for ΓðJ=ψ → γηcÞ joins earlier lattice QCD

values in being higher than the experimental average
value [6] obtained from averaging results from Crystal
Ball [2] and CLEO [3]. The small uncertainty of our result
makes the tension more compelling than before. Our result is
in 3σ tension with that from Crystal Ball but agrees within
1.5σ with that from CLEO. See Fig. 16 for the comparison.

We can use our results to calibrate other theoretical
approaches (see Fig. 17) and also to test the suggested [18]
simple relationship between V̂ð0Þ, Fð0; 0Þ and fJ=ψ , by
determining [repeating Eq. (60)]

V̂ð0ÞRfF ¼ 0.893ð5ÞV̂ð11ÞRfF
: ð69Þ

This is to be compared with 0.982 from Eq. (59), or 1.0 in
the nonrelativistic limit. Once again we find that the simple
expectations work fairly well, at the ∼10% level, but this
does not of course provide the kind of accuracy available
now from lattice QCD, as we have shown here.

Finally, for an alternative perspective on the experimental
situation, we multiply together the branching fractions we
have determined for J=ψ → γηc and ηc → γγ [in Eqs. (36)
and (54)] and compare to direct experimental determination
of this product by CLEO [43] and BESIII [39]. This
comparison is shown in Fig. 18. We see good agreement
between the lattice QCD result and the experimental values,
particularly that from BESIII. The experimental determi-
nations have large uncertainties at present but improvements
here to provide more stringent tests against lattice QCD
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would be very useful, as we have stressed throughout
this paper.
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APPENDIX A: TRAPEZOIDAL INTEGRATION
AND OSCILLATING CONTRIBUTIONS

Here we discuss the accuracy of representing the integral
over tγ1 in the continuum with a sum over lattice times in
Eq. (9) and the impact on this of the presence of oscillating
terms arising from the use of a staggered quark formalism.

We want to approximate the integral

Z
∞

−∞
fðtÞdt ðA1Þ

with a sum

a
Xn¼þ∞

n¼−∞
ðfðnaÞ þ ð−1ÞngðnaÞÞ ðA2Þ

that includes a term oscillating in time through the factor
ð−1Þn. f and g are smooth functions, continuous at t ¼ 0,
that vanish in a well-behaved way as t → ∞.

For the sum over f Eq. (A2) is using the standard
trapezoidal rule, which has a2 errors. For the sum over g we
combine three adjacent terms, reducing the sum to even
values of n only,

a
Xn¼þ∞;n even

n¼−∞;n even

gðnaÞ − 2gðnaþ aÞ þ gðnaþ 2aÞ
2

¼ a
Xn¼þ∞;n even

n¼−∞;n even


a2

2
g00ðnaþ aÞ þ…


: ðA3Þ

Splitting the sum into two pieces, for positive and negative
n, we have for positive n

a
Xn¼þ∞

n¼0;2;4


a2

2
g00ðnaþ aÞ þ…


¼ a2

4

Z
dtg00ðtÞ;

¼ −
a2

4
g0ð0þÞ; ðA4Þ

if g and g0 vanish at t → ∞. Negative n gives a similar
result, with opposite sign, so that we have a total for the
sum over g in Eq. (A2) of

a2

4
½g0ð0−Þ − g0ð0þÞ: ðA5Þ

The result is a discretization effect, proportional to the
discontinuity in the derivative of g at t ¼ 0 but vanishing as
a → 0 as a2.

We conclude that summing over lattice time slices to
obtain C̃μν [Eq. (9)] as an approximation to the time integral
that sets the photon on shell introduces discretization errors
proportional to a2 at leading order. These come both from
the trapezoidal integration implied by the sum and from the
oscillating terms in the correlation function that arise from
the use of staggered quarks. Such discretization errors are
taken into account by our fit to the results for the form
factor as a function of lattice spacing and removed in our
result for Fð0; 0Þ in the continuum limit.

A toy model illustrates this further. We take f and g
to be single exponentials, f ¼ expð−MnjtjÞ and
g ¼ expð−MojtjÞ. For f we have

FIG. 18. A comparison of our result for the product of
branching fractions BrðJ=ψ → γηcÞ × Brðηc → γγÞ from lattice
QCD to values from experiment. The result from the work here is
labeled “HPQCD23” (red asterisk). The filled blue circles are
from CLEO [43] (labeled “CLEO08”) and BESIII [39] (labeled
“BESIII13”). The blue band shows the average of the CLEO and
BESIII results [6]. The red band carries our result down the plot
for comparison.
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Z þ∞

−∞
dt e−Mnjtj ≈ a

Xþ∞

j¼−∞
e−aMnj;

¼ a

 
−1þ 2

X∞

j¼0

e−aMnj

!
ðA6Þ

on the lattice. The left-hand side of Eq. (A6) evaluates to
2=Mn. The sum on the right-hand side is a geometric
series, so we have

rhs ¼ a


−1þ 2

1 − e−aMn


;

¼ 2

Mn


1þ ðaMnÞ2

12
þOððaMnÞ4Þ


: ðA7Þ

As expected the integral obtained in this manner is
accurate up to ðaMnÞ2 errors.

We repeat this exercise for the oscillating exponential
to obtain

a


−1þ 2

X∞

j¼0

ð−1Þje−aMoj



¼ a


−1þ 2

1þ e−aMo



¼ 1

Mo

ðaMoÞ2
2

þOððaMoÞ4Þ

: ðA8Þ

As expected the impact of the oscillatory contributions
vanish in the continuum limit as a2 and the result matches
that from Eq. (A5).

We reach the same conclusions about discretization error
from the toy model as from the more general f and g
functions of Eq. (A2).

APPENDIX B: FITTING A SUBSET
OF ηc → γγ DATA

As remarked in Sec. II B 5, it is possible to obtain
accurate results for the ηc → γγ form factor with a lot less
numerical work than we have expended here. We showed,
in Fig. 3, that our results converge very rapidly to their final
value as a function of the twidth region over with the 3-point
function is integrated to obtain C̃μν. Here we provide
another test that significantly reduces the amount of
computation needed.

Figure 19 shows the results obtained if we restrict the fit
of the 2-point function C̃μνðtÞ to a set of specific t≡ tηc −
tγ2 values rather than fitting the full t range. The left-hand

point shows the full fit that we use here and the right-hand
points show the results from selecting 4, 5 or 6 specific t
values. We need a mix of even and odd t values for an
optimal fit because of the oscillating terms from opposite
parity states [see Eq. (24)]. We must also adjust the
separation in lattice units between t values as the lattice
spacing changes. On the very-coarse lattices a separation
of 1 is appropriate, whereas for coarse and fine lattices a
separation of 3 or 5 gives a better range of t to reproduce
the full fit. We conclude from Fig. 19 that we could obtain
similar uncertainties to our full fit by calculating corre-
lation functions at only 4 or 5 time separations tηc − tγ2 if
these were well chosen. This is possible because lattice
data is correlated as a function of t. Usually lattice 2-point
functions are calculated at all t values because there is no
significant time saving in making a t selection. Here,
because we actually calculate a 3-point function, working
with selected t values reduces the computational cost
considerably and we will make use of this in future. Here,
however, we use the results from our full fit.

FIG. 19. Fitted results for Flattð0; q22Þ, comparing values ob-
tained from our full fit with those that use a subset of time
separations, t, between source and sink in C̃μνðtÞ. Results are
given for the LOCAL setup on set 1 (very coarse, a ≈ 0.15 fm),
set 3 (coarse, a ≈ 0.12 fm, fit simultaneously with set 3A) and 5
(fine, a ≈ 0.09 fm); all values are in lattice units. The values on
the left give results from the full fit to all t values except those
discarded at early times (below tmin, see text in Sec. II B 5). The
values on the right give fit results for a selected 4, 5 or 6t values.
We see that uncertainties close to that of the full fit are possible
even with 4t values. Even and odd t values are needed and the
spacing between t values and range covered is adjusted as a
function of lattice spacing.

PRECISE DETERMINATION OF DECAY RATES FOR ηc → γγ … PHYS. REV. D 108, 014513 (2023)

014513-25



[1] D. Hatton, C. Davies, B. Galloway, J. Koponen, G. Lepage,
and A. Lytle (HPQCD Collaboration), Phys. Rev. D 102,
054511 (2020).

[2] J. Gaiser et al., Phys. Rev. D 34, 711 (1986).
[3] R. E. Mitchell et al. (CLEO Collaboration), Phys. Rev. Lett.

102, 011801 (2009); 106, 159903(E) (2011).
[4] V. V. Anashin et al., Phys. Lett. B 738, 391 (2014).
[5] Z. Haddadi, A study of the ground-state properties of

charmonium via radiative transitions in ψ 0 → γηc and
J=ψ → γηc, Ph.D. thesis, University of Groningen (main),
2017.

[6] R. L. Workman (Particle Data Group), Prog. Theor. Exp.
Phys. 2022, 083C01 (2022).

[7] J. J. Dudek, R. G. Edwards, and D. G. Richards, Phys. Rev.
D 73, 074507 (2006).

[8] Y. Chen et al., Phys. Rev. D 84, 034503 (2011).
[9] D. Becirevic and F. Sanfilippo, J. High Energy Phys. 01

(2013) 028.
[10] G. Donald, C. Davies, R. Dowdall, E. Follana, K.

Hornbostel, J. Koponen, G. Lepage, and C. McNeile, Phys.
Rev. D 86, 094501 (2012).

[11] J. J. Dudek and R. G. Edwards, Phys. Rev. Lett. 97, 172001
(2006).

[12] T. Chen et al. (CLQCD Collaboration), Eur. Phys. J. C 76,
358 (2016).

[13] Y. Chen, M. Gong, N. Li, C. Liu, Y.-B. Liu, Z. Liu, J.-P. Ma,
Y. Meng, C. Xiong, and K.-L. Zhang (CLQCD Collabora-
tion), Chin. Phys. C 44, 083108 (2020).

[14] C. Liu, Y. Meng, and K.-L. Zhang, Phys. Rev. D 102,
034502 (2020).

[15] Y. Meng, X. Feng, C. Liu, T. Wang, and Z. Zou, arXiv:
2109.09381.

[16] A. Czarnecki and K. Melnikov, Phys. Lett. B 519, 212
(2001).

[17] D. Cronin-Hennessy et al. (CLEO Collaboration), Phys.
Rev. D 86, 072005 (2012).

[18] M. A. Shifman, Z. Phys. C 4, 345 (1980); 6, 282(E) (1980).
[19] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. Lepage,

J. Shigemitsu, H. Trottier, and K. Wong (HPQCD UKQCD
Collaborations), Phys. Rev. D 75, 054502 (2007).

[20] X.-d. Ji and C.-w. Jung, Phys. Rev. Lett. 86, 208 (2001).
[21] X.-d. Ji and C.-w. Jung, Phys. Rev. D 64, 034506 (2001).
[22] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 82,

074501 (2010).
[23] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 87,

054505 (2013).
[24] S. Borsanyi et al., J. High Energy Phys. 09 (2012) 010.
[25] R. Dowdall, C. Davies, G. Lepage, and C. McNeile, Phys.

Rev. D 88, 074504 (2013).
[26] C. Monahan, J. Shigemitsu, and R. Horgan, Phys. Rev. D

87, 034017 (2013).
[27] C. Aubin, C. Bernard, C. E. DeTar, J. Osborn, S. Gottlieb, E.

Gregory, D. Toussaint, U. Heller, J. Hetrick, and R. Sugar
(MILC Collaboration), Phys. Rev. D 70, 114501 (2004).

[28] C. Sachrajda and G. Villadoro, Phys. Lett. B 609, 73 (2005).
[29] D. Guadagnoli, F. Mescia, and S. Simula, Phys. Rev. D 73,

114504 (2006).
[30] D. Hatton, C. T. H. Davies, G. P. Lepage, and A. T. Lytle

(HPQCD Collaboration), Phys. Rev. D 100, 114513 (2019).

[31] G. P. Lepage, CORRFITTER Version 8.2 (github.com/gple-
page/corrfitter), 10.5281/zenodo.5733391.

[32] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage,
C. J. Monahan, J. Shigemitsu, and M. Wingate, Phys. Rev.
D 100, 094508 (2019).

[33] G. P. Lepage, Lsqfit Version 12.0.3 (github.com/gplepage/
lsqfit), 10.5281/zenodo.5777652.

[34] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.
Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys. B,
Proc. Suppl. 106, 12 (2002).

[35] A. Bazavov et al., Phys. Rev. D 98, 074512 (2018).
[36] B. Chakraborty, C. Davies, B. Galloway, P. Knecht, J.

Koponen, G. C. Donald, R. J. Dowdall, G. P. Lepage, and
C. McNeile, Phys. Rev. D 91, 054508 (2015).

[37] E. McLean, C. Davies, A. Lytle, and J. Koponen, Phys. Rev.
D 99, 114512 (2019).

[38] H. Wang and C.-Z. Yuan, Chin. Phys. C 46, 071001
(2022).

[39] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 87,
032003 (2013).

[40] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. Lett.
92, 142001 (2004).

[41] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. D 81,
052010 (2010).

[42] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100,
012003 (2019).

[43] G. S. Adams et al. (CLEO Collaboration), Phys. Rev. Lett.
101, 101801 (2008).

[44] Particle Data Group (private communication).
[45] F. Feng, Y. Jia, and W.-L. Sang, Phys. Rev. Lett. 119,

252001 (2017).
[46] G. T. Bodwin and Y.-Q. Chen, Phys. Rev. D 64, 114008

(2001).
[47] N. Brambilla, H. S. Chung, and J. Komijani, Phys. Rev. D

98, 114020 (2018).
[48] A. A. Penin, A. Pineda, V. A. Smirnov, and M. Steinhauser,

Nucl. Phys. B699, 183 (2004); B829, 398(E) (2010).
[49] Y. Kiyo, A. Pineda, and A. Signer, Nucl. Phys. B841, 231

(2010).
[50] L. G. Landsberg, Phys. Rep. 128, 301 (1985).
[51] E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, Rev.

Mod. Phys. 80, 1161 (2008).
[52] A. Y. Khodjamirian, Sov. J. Nucl. Phys. 39, 614 (1984).
[53] A. Pineda and J. Segovia, Phys. Rev. D 87, 074024 (2013).
[54] D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67,

014027 (2003).
[55] N. Brambilla, Y. Jia, and A. Vairo, Phys. Rev. D 73, 054005

(2006).
[56] S.-P. Guo, Y.-J. Sun, W. Hong, Q. Huang, and G.-H. Zhao,

Nucl. Phys. B955, 115053 (2020).
[57] W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, Phys. Rev.

D 95, 034026 (2017).
[58] L.-M. Gu, H.-B. Li, X.-X. Ma, and M.-Z. Yang, Phys. Rev.

D 100, 016018 (2019).
[59] D. Hatton, C. T. H. Davies, J. Koponen, G. P. Lepage, and

A. T. Lytle, Phys. Rev. D 103, 054512 (2021).
[60] A. Heister et al. (ALEPH Collaboration), Phys. Lett. B 530,

56 (2002).
[61] MILC Code Repository, https://github.com/milc-qcd.

COLQUHOUN, COOPER, DAVIES, and LEPAGE PHYS. REV. D 108, 014513 (2023)

014513-26


