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ABSTRACT: Positivity bounds represent nontrivial limitations on effective field theories
(EFTs) if those EFTs are to be completed into a Lorentz-invariant, causal, local, and unitary
framework. While such positivity bounds have been applied in a wide array of physical
contexts to obtain useful constraints, their application to inflationary EFTs is subtle since
Lorentz invariance is spontaneously broken during cosmic inflation. One path forward is to
employ a Breit parameterization to ensure a crossing-symmetric and analytic S-matrix in
theories with broken boosts. We extend this approach to a theory with multiple fields, and
uncover a fundamental obstruction that arises unless all fields obey a dispersion relation that
is approximately lightlike. We then apply the formalism to various classes of inflationary
EFTs, with and without isocurvature perturbations, and employ this parameterization
to derive new positivity bounds on such EFTs. For multifield inflation, we also consider
bounds originating from the generalized optical theorem and demonstrate how these can
give rise to stronger constraints on EFTs compared to constraints from traditional elastic
positivity bounds alone. We compute various shapes of non-Gaussianity (NG), involving
both adiabatic and isocurvature perturbations, and show how the observational parameter
space controlling the strength of NG can be constrained by our bounds.
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Introduction

Effective field theories (EFTs) represent a modern, powerful method for efficiently specifying

the degrees of freedom and interactions relevant in some finite kinematic range in a way

that is both systematic and systematically improvable [1-8]. Upon identifying the relevant

external degrees of freedom, one first writes down all the operators that are consistent with

the symmetries. These operators capture the effects of degrees of freedom that cannot

be accessed as external, dynamical states, such as heavy particles. To obtain physical

predictions, one truncates to a finite subset of operators by implementing a power counting



rule for these operators in one or more small parameters — such as a derivative expansion
in units of the ultraviolet (UV) scale — with the power-counting expansion providing the
required number of operators to reach a given precision.

This Wilsonian EFT approach is very general and agnostic of the UV description of the
system. One might then naively think that any choice of parameters for the EFT operators —
the so-called Wilson coefficients — corresponds to some family of UV completions. However,
this is not the case, and certain choices of Wilson coefficients can be ruled out for any EFT
descended from a healthy UV that is causal, local, unitary, and Lorentz invariant [9]. In a
Lorentz-invariant EFT, such positivity bounds require the forward elastic scattering ampli-
tude A(s) to obey A”(s — 0) > 0,! with the prime indicating a derivative with respect to s.

This requirement can directly constrain signs of various quartic dimension-eight op-
erators in an EFT. A classic example is the operator £ D ¢ (9¢)*/A?* in a scalar EFT [9].
While from a purely bottom-up perspective ¢ can take either sign, demanding that the
operator arises from a healthy UV theory forces ¢ > 0. This idea of imposing positivity
bounds on EFT coefficients has been implemented in a variety of physical scenarios, with
early works [10-12] in the context of chiral perturbation theory. For a recent review of
these ideas, see ref. [13].

Inflationary EFTs represent a particularly interesting set of candidates from the point
of view of positivity bounds for a number of reasons. First, during inflation time translation
invariance is spontaneously broken by the inflaton background. Therefore, in the infrared
(IR) at energies of order the inflationary Hubble scale H, one cannot directly use a Lorentz-
invariant description of the system. Consequently, two-to-two scattering amplitudes depend
on additional kinematic variables beyond the standard Mandelstam s, ¢, u variables. Unless
these amplitudes are parameterized properly, the additional kinematic dependencies give
rise to spurious nonanalyticities of the S-matrix. Similar considerations apply to other EFTs
that break boosts, such as that describing a superfluid. Therefore, the study of positivity
bounds on inflationary EFTs can serve as a paradigmatic example for a wider class of EFTs.

Second, the observables giving access to inflationary dynamics are the non-Gaussianity
(NG) of primordial density perturbations. Such NG contributions are determined by the
expectation values of (iso)curvature perturbations at the end of inflation. Owing to this
fact, within the various EFTs of inflation discussed above NG can receive contributions
at linear order in their coefficients. At the same time, positivity bounds computed from
scattering amplitudes can also involve linear relationships among EFT coefficients. In this
sense, a direct connection exists between the parameter space probed by NG measurements
and positivity bounds. By imposing such bounds, it can also be checked whether certain
parameter regions or NG configurations that are difficult to probe observationally are in fact
forbidden. This linearity stands in contrast with observables that are sensitive only to the
squares of matrix amplitudes, such as cross sections. Such observables depend quadratically

' Throughout, we will use forward to mean equality of incoming and outgoing momenta for particles 1
and 3, and similarly for particles 2 and 4, irrespective of any additional quantum numbers. Requiring that
the total incoming two-particle state be identical to the outgoing state — both in momentum and in terms
of internal quantum numbers like flavor — will be referred to as both forward and elastic.



on the underlying Wilson coefficients, and accessing information related to positivity usually
requires the study of interference effects.
In this work, we consider four classes of inflationary EFTs.

(a) The Goldstone EFT of inflation [14];

(b) An EFT of multifield inflation [15] with a single effective degree of freedom leading to
adiabatic perturbations;

(¢) An EFT of multifield inflation [15] leading to isocurvature perturbations; and

(d) A Lorentz-invariant EFT of multifield inflation in the slow-roll regime, also giving rise
to isocurvature perturbations.

We clarify that for all the “multifield” scenarios mentioned above, we will be considering
situations where the homogeneous inflationary expansion is still driven only by the inflaton
field, while perturbations come from fluctuations of both the inflaton field and a second
spectator field. This is thus different from the multifield scenarios where multiple fields
drive the inflationary expansion itself. However, in the case of massless multifield inflation,
we can without loss of generality rotate the field definitions such that only a single field
sources the vev.

For cases (a) to (c), Lorentz invariance is broken spontaneously at the energy scales of
interest, and subtleties involving additional kinematic dependence of the S-matrix can arise,
as mentioned above. To address these, we employ the Breit parameterization of ref. [16].
This parameterization prescribes a way of writing down scattering amplitudes such that, in
principle, they are crossing symmetric and analytic everywhere in the complex plane except
the real s axis, even when boosts have been broken. Ref. [16] studied this formalism in
theories that involve a single field. Here we will extend the approach to two-field scenarios,
where a novel complication is that the two fields can propagate with different speeds of
sound cg. We will show explicitly that, when applying the Breit parameterization to such
theories, additional nonanalyticities can arise in the form of extra poles both on and off
the real s axis. The presence of complex poles undermines the conventional dispersive
arguments on which positivity is based. Even when the additional pole is on the real s axis,
we find that it comes with an opposite sign for the residue such that the standard dispersive
arguments cannot be applied directly to claim A”(s — 0) > 0. Therefore, throughout
we will restrict our analysis to cases where all the propagation speeds are parametrically
close to the speed of light. We emphasize that even when ¢ >~ 1, we have not merely
reduced the problem back to the conventional Lorentz-invariant scenario. The existence of
a preferred timelike direction allows for operators such as 73, where 7 is a fluctuation and
the overdot denotes a time derivative with respect to the preferred frame defined by the
inflaton, to appear in the Lagrangian of the EFT whose presence would be forbidden in a
Lorentz-invariant theory.

Along with elastic positivity bounds, we also consider bounds from the generalized
optical theorem. In particular, we consider two-field scenarios and demonstrate that the
bounds from the generalized optical theorem can be more constraining compared to standard



positivity bounds alone. For inflationary scenarios, more than one degree of freedom can
be present if there are surviving isocurvature perturbations. Therefore, as an example, we
consider the EFT for case (d) described above and derive the associated generalized optical
theorem bounds. We also consider a special case with a dihedral symmetry group relating
various EFT coefficients to draw a straightforward comparison between elastic positivity
bounds and those from the generalized optical theorem.

The bounds we derive in this work further constrains the parameter space currently
allowed by observations. We demonstrate this explicitly using the EFT for case (b) mentioned
above. As we will describe, in the presence of a Zo symmetry, such an EFT can dominantly
give rise to a nonzero four-point function (trispectrum) of curvature perturbations. We
can then impose the derived positivity bounds on the parameter space allowed by Planck
searches for the primordial trispectrum [18]. Converting our bounds on the EFT in case (d)

— where we apply the generalized optical theorem — to the observational parameter space is

more challenging. The primary difficulty arises because the current searches for isocurvature
NG assume the so-called local shape template [18] that peaks at squeezed momentum
configurations. On the other hand, the derivative interactions implied by EFT for case (d),
for example, give rise to isocurvature NG peaking at equilateral momentum configurations.
If an optimal search for these latter types of isocurvature NG with an appropriate template
is performed in the future, then we can readily impose the derived bounds from analyticity
and the generalized optical theorem on the resulting parameter space. To that end, we have
derived the shapes of various three-point functions in terms of the EFT coefficients.

As a final introductory remark, a few words are merited regarding a subtlety of what
we mean by analytic continuation of an amplitude from low to high energies, and the
assumptions associated with this implicit in our results. When considering a forward
amplitude A(s) with s ranging from UV to IR scales, one can be concerned that the degrees
of freedom in the EFT used to define the asymptotic states that are scattered could vary
with scale, for instance as we move through scales associated with symmetry breaking or
the transition to strong coupling. Indeed, there is even a degree of ambiguity for a well
defined theory: is the high energy equivalent of a quark in QCD also a quark, or instead a
quark with a soft dressing of gluons? Ultimately, amplitude type arguments which connect
the UV and IR implicitly assume there is a well defined map in the Hilbert space from the
one-particle degrees of freedom used to define A(s) in the IR to states in the UV from which
we can still construct a 2 — 2 amplitude. In theories with Lorentz invariance, the argument
is on firmer footing as we can always boost the IR states to high energy, which suggests
there exists a well defined path through the Hilbert space. Without boosts, however, the
situation is less clear and in principle the IR amplitude could map to an m — n amplitude
in the UV, for which the usual assumptions invoked in dispersive arguments may fail. In
any case, for reasons we outline in section 2, even in Lorentz-breaking EFTs, we will be
taking external particles for which the speed of sound is parametrically close to unity, for
which the boost of the external states themselves from the IR to the UV is less ambiguous.

For the above reasons, the results in the present work will always be contingent on
either, 1) the existence of an IR to UV mapping between the external states sufficient to
define a 2 — 2 amplitude in either limit; or 2) the appropriate amplitude we do map to



in the UV is sufficiently well behaved for the conventional dispersive arguments to hold.
To expand on the second possibility, in order for a Froissart type relation to hold, all that
we need is for the amplitude in the UV to scale as s27¢ for € > 0, or a small softening of
the amplitude in the UV. Given the requirement of the above assumption, there is also
motivation to explore what positivity bounds can be derived from completely different
starting points, such as the assumption that the UV flows to a conformal field theory, an
approach that has been developed in ref. [17].

This work is organized as follows. In section 2 we discuss how to implement positivity
bounds on theories with spontaneously broken Lorentz invariance that contain two light
degrees of freedom. Along the way, we discuss aspects of the Breit parameterization and
the novel challenges multiple fields introduce. We apply the generalized optical theorem
to write a general set of relations among various scattering amplitudes in such two-field
scenarios in section 3. In section 4, we describe in detail the four classes of inflationary
EFTs that we consider in this work. We use the generalized positivity bounds to constrain
these EFTs in section 5 and map them to the observational parameter space in section 6.
We discuss future directions and conclude in section 7. Appendix A contains some of the
details of the computation of three-point functions involving adiabatic and isocurvature
perturbations.

Notations and conventions. Our metric convention will be mostly plus, i.e., (—,+,+,+).
We will use natural units, c=h=1, and the reduced Planck mass, Mgl =1/(87Gx), where
Gy is the Newton constant. We denote the four-momentum components of particle i as
k' = (wi,k;). When considering the breaking of Lorentz symmetry, we parameterize the
breaking with a single timelike four-vector n* as in ref. [16]. The frame in which n#* = (1,0)
is the one in which quantities will be invariant under rotations and spatial translations
and the one in which we will implicitly always discuss specific energy and momentum
configurations.? The most general dispersion relation allowed under these assumptions is

w2 = cs(wi)z\ki\Q + m(wi)Z, (1.1)

)

with ¢s(w;) < 1. For the explicit UV completions we will consider, it will be sufficient to
take the simpler case of ¢ and m being constant and independent of w; (and hence k;),
in which case ¢5 can be taken to be the speed of sound for the nonrelativistic field under
consideration. For most discussions, we will also work in the massless limit, w > m, so the
dispersion relation will further simplify to w; = ¢s|k;|. This simplification is well motivated
since we will be studying the scattering of the inflaton and other light scalars at subhorizon
scales with s > H?.

Throughout this work, we will be interested in 2 — 2 scattering amplitudes with
the all-incoming momentum convention. We use the noncyclic labeling (1243) such that

k§74 — —k’fyz corresponds to taking the forward limit. As shorthand, we define w;; = w; +w;

2

and s;; = w;; — cZ|k; + k;|?. In the relativistic limit, on-shell amplitudes are functions of

*We could instead insist on working with the quantities k;-n and k! — (k;-n)n*, corresponding to w; and
(0,k;), respectively, in the n* =(1,0) frame. This would allow us to phrase all results in a frame-independent
manner, at the cost of making our expressions less transparent.



Mandelstam variables s = s12 = — (k1 + k2)? and t = s13 = — (k1 + k3)? only. On the other
hand, in the boost-breaking case with preserved rotational and translational symmetry
described above, amplitudes depend upon five variables, which we take to be wys = w9,
W = w13, Wy, = W14, S, and t. The Mandelstam variable u is defined as u = s14 = —(k; +k4)2.
In the massless limit of both the Lorentz-invariant and -violating cases, we have s+t+u = 0.

2 Two-field Lorentz-violating theories

In a theory violating Lorentz invariance, the scattering amplitudes are frame-dependent
and are written in terms of additional kinematic variables beyond the three Mandelstam
s,t,u. The additional variables can give rise to nonanalyticities of amplitudes away from the
real s axis, invalidating the standard arguments that lead to positivity bounds. Therefore,
we first review how to parameterize amplitudes in a way such that they are well behaved
in the forward limit and also are crossing symmetric. In particular, we review the Breit
parameterization advocated for in ref. [16]. As we do so, we will clarify and highlight
certain aspects of this parameterization that will be particularly relevant in scenarios where
multiple fields are present in the EFT. Subsequently, in section 3 we will derive various
bounds from analyticity and the generalized optical theorem using this parameterization.

2.1 Breit parameterization

In a Lorentz-invariant theory, 2 — 2 scalar scattering amplitudes can be written as a
function of just two kinematic parameters, A(s,t). If the UV theory that mediates this
interaction is causal,? then for fixed and not arbitrarily large ¢, the amplitude — analytically
continued to complex s — is an analytic function away from the real axis. Based on this
result, dispersion relations linking IR and UV values of the amplitude can be established.
This gives rise to sum rules and positivity bounds on the Wilson coefficients that specify
the IR amplitude, as we discuss in section 3.

Here we consider theories without full Lorentz invariance. Specifically, we treat the case
where boosts are no longer a good symmetry of the system, but general translations and
spatial rotations remain so. An immediate consequence of broken boost symmetry is that
scattering amplitudes are not fully determined by s and ¢ alone, and as established when
discussing our conventions, we choose the three additional kinematic variables required to
be ws, wy, and w,. To be completely explicit, as we change the external energy of states for
fixed s and ¢, or move between reference frames related by a boost, the scattering amplitude
will vary. The additional variables fundamentally complicate dispersive arguments. We
must now specify how the energies are to be varied as we analytically continue s, and a
poor choice can introduce obstructions. For instance, a natural starting point is to compute
amplitudes in the center-of-mass (CM) frame, an approach that was explored in ref. [23].

3If the UV completion is a field theory, then the classic results of refs. [19-21] demonstrate that causality
implies analyticity (for a recent review of these points, see ref. [22]). By analyticity, we mean the usual
assumption that there exist paths in Hilbert space between degrees of freedom in the IR and UV for which
the S-matrix, with external states chosen along this path, is an analytic function of s except at poles and
branch cuts.



In the CM frame, however, ws = /s, and as the amplitude can explicitly depend on ws, we
have introduced an additional nonanalyticity that must be accounted for.

An approach that avoids such challenges was proposed in ref. [16], called the Breit
parameterization. To implement the parameterization, regardless of what frame one is
working in, the energies are fixed according to*

s—u
ws +wy = 272 M,  ws—wy = O (2.1)
which then dictates the individual energies as follows:
1 s—u 1 1 u—s 1
wy =v2M + W W2 = oo oW, W= —~2M + Wt Wi = oo~ Swt. (2.2)

Through these relations we can trade ws and w, for the parameters M and ~, such that we
can represent any amplitude in terms of {s,t, w¢, M,~v}. The goal is of course to study the
analytic properties of forward amplitudes, for reasons that we will review in section 3. In
the forward limit, where one first takes w; — 0 and then ¢t — 0, the energies are specified by
w34 = —wi,2, and from the Breit parameterization wy = ’sz and we = s/4M. Importantly,
M and ~ are parameters that are held fixed as we analytically continue in s. As a result,
w1 is kept constant, whereas wo varies with s, but it does so without introducing additional
nonanalyticities.

We can also provide a physical interpretation for v and M. To do so, we will primarily
restrict our considerations to the forward limit. First, as the notation suggests, 72 is related
to a boost. To clarify, we introduce 42 = w?/s and 2 = w2 /u as the boosts required to move
from the frame in which the w; are defined to the CM frame of the physical s or w channel,
respectively. Using these variables and combining the two relations in eq. (2.1), we have®

2 2,2 2 2 2
,Y2 — (ws wu) _ (‘9/73 U’Yu) ) (23)
S—Uu S—Uu

We see that +2 is a weighted combination of the two boosts 75 and ,, chosen in such a
manner that it is manifestly s «» u crossing symmetric. Taking the forward limit, and
assuming that the external states satisfy w > m, eq. (2.3) simplifies to

7 = m e [1,00). (2.4)
Here 6 is the angle between the incident scattering states, k1 and ko, which will vary between
frames, as therefore will v. The minimum value is achieved for 8 = 7, so that the scattering
states are back-to-back. This is the configuration in the CM frame and clarifies why the re-
sults of ref. [16] reduce to the earlier relations found in ref. [23] for v = 1, as the latter worked
in the CM frame; we will review these results in section 5. Combined with the above expres-
sion for 7, the first condition in eq. (2.1) implies that in the forward limit and for w > m,

M = wysin?(0/2) € [0, w1]. (2.5)

Again the relation between M and w; varies between frames, but for antiparallel scattering
states (as in the CM frame), M = w;.

4The form we choose here matches ref. [24], which differs from ref. [16] by the replacement v — ~2.
5The second relation was also given in ref. [24], and we refer there for further discussion on the physical
interpretation of ~.



2.2 A violation of conventional analyticity

The Breit parameterization is a convenient formalism for analytically continuing amplitudes
in theories with Lorentz violation. Using eq. (2.1), in the forward limit we have wys =
(s/4M) + v2>M, which explicitly depends on s. As s-channel propagators involve wy, this
additional s dependence raises the possibility of an additional pole. In this section, we show
that not only is this possible, but if we consider the case of mm — 77 scattering mediated by
a second field o where ¢, > ¢, there are frames in which the poles move off the real s axis,
in manifest violation of the conventional statements of analyticity, where all nonanalyticities
satisfy Im(s) = 0.

While we demonstrate the appearance of analyticity-violating poles explicitly using the
Breit parameterization, a modification of the analytic properties of the S-matrix might also
be expected on physical grounds. In particular, in the conventional proofs of analyticity,
causality is invoked by requiring operators commute outside the lightcone. For theories with
Lorentz violation, the external states can have a maximum speed of propagation cjg < 1
and therefore a contracted causal cone. One would then immediately worry about the
possibility of states propagating with speeds in the range (cir, 1], as these objects could
lead to apparent causality-violating effects from the perspective of the external states, in
principle producing nonanalyticities. Indeed, this concern was discussed in ref. [16], where
for a single field those authors argued that analyticity in Lorentz-violating theories follows
nonperturbatively only when the maximal speed of propagation in the UV completion,
cuv, satisfies cyy < cir. This ensures that there can be no communication outside the IR
lightcone between the external, EFT states. Of course, in a typical dispersive model, one
instead expects cyy to be larger than the IR propagation speed. Indeed, we will see that in
Lorentz-violating theories with multiple degrees of freedom propagating at different speeds,
a significant obstruction arises.

Let us perform the explicit calculation for 2 — 2 scattering of m mediated by o, with
speeds cr . In order to isolate the additional poles, we will simply consider the s-channel
contribution as shown below, as the argument proceeds identically for the u-channel:

The amplitude will involve an s-channel propagator (suppressing the ie for simplicity),

1
(w1 + LUQ)2 — Cg(kl + k2)2 — mg'

(2.6)

The Mandelstam invariants are set by the external kinematics, and in particular we have
s = w%2 — cfr(kl + k2)2, so that we can rewrite the propagator as

1
w2+ (s —w?) —m

R (2.7)

where we have introduced = = c2/c2 as the ratio of the speeds.



Let us momentarily set m, = 0. Then the above propagator implies that there is
a pole in the S-matrix at s = w?(1 — 1/z). For Lorentz-invariant theories ¢, = ¢, = 1,
implying x = 1, this pole moves to s = 0, as expected for the exchange of a massless
state. However, for any x # 1, the location of this pole depends sensitively on how w; is
parameterized as we move in the complex s plane in the forward limit. In particular, if wy is
complex, the pole can move away from the real s axis, invalidating the standard arguments
underlying positivity bounds. To study the properties of the poles further, we need to adopt
a procedure for how w, will vary as we analytically continue s in the forward limit; however,
the above discussion identifies a challenge that will appear whenever ¢, # ¢ .

To proceed, let us restore m, and adopt the Breit parameterization, which instructs us
to take ws = (s/4M)-+~2M. Doing so, the propagator in eq. (2.7) has two poles, occurring at

AM

r—1

Sy = {(1—x)72M—|—2Mx:I:\/433M2(x—|—fyz(1—:U))—i—mg(l—x)}. (2.8)
As expected, an additional pole has emerged. If we again take ¢, = ¢, (ie., z = 1),
then the situation reduces to a single field problem, as far as the kinematics is concerned,
and we would expect the additional pole to decouple. Indeed, taking x = 1 + ¢, we find
s_ = m2 + O(e), the conventional pole, and s; = 16M?2/e — m2 — 8M?2(y% — 2) + O(e),
which for sufficiently small e will lie outside the range of validity of our EFT.

It is also instructive to consider the residues of eq. (2.7) on the two poles; they are
given by

Res A 2M
e = ~
s T T I (@ 20— 2) + 2l 2)

Hence the residue of the conventional pole s_ is indeed positive, although the residue

(2.9)

associated with the additional state is negative, indicating it is a ghost. As this calculation
corresponds to the residue of the propagator only, it ignores additional terms in the amplitude
coming from the structure of the interaction terms. However, these are positive for real
values of s and thus do not change the conclusions above.

More concerning, however, is that if the quantity under the radical is negative, then
both poles occur off the real axis. The condition for this to occur is

z—1 m?2
- <w2+ 4ng> > 1. (2.10)

As this condition depends on both v and M, the appearance of complex poles will depend

on the specific parameters of the scattering, as seen in section 2.1. Nevertheless, we observe
that as the expression in parentheses in eq. (2.10) is strictly positive, then if z < 1 (i.e.,
¢y < ¢r) the left-hand side is strictly negative and the poles are real. Thus, a necessary —
although not sufficient — condition for this process to develop complex poles in its scattering
amplitude is ¢, > c; .

To further simplify the condition, we again consider the case where m, is parametrically
small and can be neglected. Eq. (2.10) then simplifies to > 72/(y*—1). In the CM
frame, where the virtual ¢ is produced at rest, v = 1 and the condition cannot be satisfied
for any finite . But otherwise for any given choice of z > 1, there exists a v satisfying



x> v2/(y* — 1), or equivalently, ¥2 > /(2 —1), such that complex poles appear, obstructing
the procedure for obtaining positivity bounds.

The appearance of a second pole with negative residue, as well as the possibility of
poles away from the real axis, arose only once we adopted the Breit parameterization. Yet
as both challenges vanish when x = 1, the results are suggestive of a more fundamental
pathology associated with fast propagating modes mediating “acausal” interactions among
slower modes, which may persist to other parameterizations. Since states with negative
residue or poles off the real axis invalidate traditional dispersive arguments, for the present
work we will always restrict to z = 1. Further, we will always consider scenarios in which
the single, common speed is parametrically close to unity. Otherwise, one would anticipate
that UV-completing the theories of interest will introduce states with different speeds and
immediately regenerate the complex poles. Nevertheless, the fact that the two-field scenario
we consider can be UV-completed into a sensible Lorentz-invariant theory suggests that
there is nothing fundamentally sick, and possibly a modified dispersive technique can be
developed to handle the issues identified here, thereby allowing our approach to extend
beyond ¢, = ¢;. We do not pursue that possibility here, but note that it would be an
interesting and useful direction for future work.

3 Bounds from the generalized optical theorem on two-field theories

Having discussed the Breit parameterization and the conditions under which it leads to
forward scattering amplitudes that are analytic in s and crossing symmetric, we are now
in a position to employ positivity bounds from dispersion relations. We will first briefly
review the standard arguments leading to positivity bounds in the elastic case and then use
that formalism to obtain a stronger set of bounds on inelastic forward amplitudes using the
generalized optical theorem.

Traditional positivity bounds on operators in Lorentz-invariant theories arise from
performing a contour integral in the complex s plane to extract the relevant Wilson
coefficient(s), and then making use of the optical theorem — i.e., unitarity of elastic,
forward scattering — to bound the sign. With the Breit parameterization, we have seen that
at forward kinematics the amplitude depends on s alone, A = A(s). Therefore the distinction
between Lorentz-invariant and -violating theories is immaterial to the consideration of the
analytic properties of A(s), since A(s) is still analytic everywhere other than the real s axis
under our criteria mentioned in section 2.2.

By power counting, we will have A(s) o< s2 in the IR for an amplitude generated by
quartic dimension-eight contact operators in the EFT. However, rather than considering
a single scalar as in refs. [9, 16, 25], or even a superposition of states as in refs. [26-30],
we wish to extract the most general bounds possible. This can be done by making use of
the generalized optical theorem as in, e.g., refs. [31-34]. For our purposes — as we will
eventually be interested in the case of the inflaton and a spectator massless scalar — let
us focus on the scattering of two possible states, which for convenience we will label as ¢;
with flavor index ¢ = 1,2 (e.g., ¢1 could be the inflaton and 9 a massless spectator). Then
we can define an S-matrix for scattering arbitrary states ¢;(p1);j(p2) = wr(p3)pi(ps), with
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flavor indices i, j, k, [, and consider the analytic properties of A;;xi(s), which at low energies
will scale as s? times various Wilson coefficients in the two-scalar EFT, which we extract
via Mjjp = limgs_o 8§A¢jkl(s) + c.c. Given that M;ji; depends only on an energy-squared
s, it will be symmetric under swapping all incoming and outgoing states.® Using this
fact, combined with Bose symmetry under simultaneously swapping ¢ <+ j and k < [, one
concludes that a priori there are seven independent components: Mi111, Mosoo, M1212, Mi221,
Mi122, Mi112, and Mig0o. Further, again by Bose symmetry, Ajjri(s,t) = Aqg;(u,t), so we
have Mjo91 = fds A1221(S, 0)/83 + c.c. = fd(—s) A1122(—S, 0)/(—8)3 + c.c. = M990 after
relabeling the dummy variable —s — s, leaving a total of six independent terms in M;;z;.

Using analytic dispersion relations, we can relate M;;i; to information about the UV
and thereby use unitarity to place constraints on the Wilson coefficients. Though these
arguments appear elsewhere in the literature [31-33], we will briefly review them here
for completeness. First, we extract M;;, by performing a contour integral of Aj;jx(s)/ 53
around the origin, then use the analytic structure of the amplitude to deform the contour

to one running above and below the entire real s axis:”

1 [°ds . .
Mz‘jk:l = E A 8_3 [DISC Aijkl(s) + Disc Ailkj(S)] + c.c.
(3.1)
2 [>*ds
= ;/0 = [ImAijkl(s) + Im Ay (s) + ImA;;(s) + ImAkjil(s)].

Here we have used 1 <+ 3 crossing symmetry in the forward limit to set A;ju(s) =
Aiigj(—s) and Hermitian analyticity (37, 38] to equate Aj;jpi(s) = Ajyy,;(s™). Now, the
conventional optical theorem would, in the elastic case where (i, ) = (k, 1), allow us to use
unitarity to relate Im.A(s) to the cross section, enforcing positivity of the associated EFT
coefficients. Here, however, let us instead allow arbitrary i, j, k,[ and use the generalized
optical theorem [31],

2 (ImAjjr + ImAyaij) = D (Aijox Aj o x +c.c.). (3.2)
X

Here A;j_, x is the amplitude for ¢;(p1)¢;(p2) = X with X an arbitrary (possibly multi-
particle) intermediate massive state. Writing the real and/or imaginary parts of the various
A;;x as some collection of arbitrary real matrices m% | we thus have

M;jp = %/Ooo ? ; [mij(S)mkl(s) + mil(s)mkj(s)}, (3.3)

5This follows from assuming discrete T' symmetry, or equivalently, CP symmetry. We assume that the
breaking of Lorentz boosts engendered by the inflaton background does not in itself break C'P.

"The integral over the contour at infinity vanishes, since A;;xi(s) scales slower than s% in the deep UV on
general causality grounds [35] or alternatively by the Froissart bound (which applies to massive theories and
so would require giving 7 and o tiny masses). In any case, if the momentum scaling of the UV is improved,
from a perturbative unitarity standpoint, over the IR EFT scaling, this contour must vanish. Even though
there are massless particles in the theory and thus branch cuts in the amplitude extending to the origin, in
a weakly coupled UV completion, such diagrams will be formally subdominant in the couplings and loop
expansion and so can be ignored [36].
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where the sum is over all such matrices. That is, if we use a general index ¢ to represent a
sum over the matrix m and an integral over s, we can write the bound as [33]:

Miji = Z (mzjmlgl + mfllm’;j). (3.4)
q
Eq. (3.4) will be the primary result from which we will now derive the consequences of the
generalized optical theorem.
11— 022 o 012

> V=mg, w=m" and y = mgl. Then we have the vector

Let us define u = m =my", W = my*,

relations:

M1111 = QZmélmél = 2’11’2

q
Magos =23 m22m?2* = 2|v|?
q
Migg1 = Miigo =Y (mgmgl + mélm?) =w-y+tu-v
. 12, 12 2 2 (3:5)
Mig1z = Maigr = 2> mp*m? = 2|w|* = 2|y
q
Mz = Maunn =2 mi'm> =2u-w=2u-y
q
Miggs = Magor =2 mp*mZ> =2v-w=2v-y.
q
In particular, we have the positivity bounds,®
M1 >0, M >0, M2 > 0. (3.6)

The rest of the bounds implied by unitarity are in terms of three quantities given by the
(sums of) vector products u-v+w-y,u-w=u-y,and v-w =v-y. Let us define the
vectors

X=W+y, z=w-Y, (3.7)
in terms of which we have
My = 2|ul?
Maggg = 2|v|?

1 1
Mio91 = Z‘XF — Z‘Z‘Q +u-v
1 1 (3.8)
Mio12 = §\X’2 + 5‘2‘2
M2 =u-x

Miooo = v - x,

8We will characterize bounds derived from the optical theorem as strict inequalities, since cross sections
and norms of states are strictly positive. Of course, as noted in refs. [9, 25, 27, 36], if we are restricting
EFT amplitudes to a fixed order in couplings or the loop expansion, positivity bounds can soften to weak
inequalities, but we will simply write < or > throughout for clarity of notation.
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along with the constraints
u-z=v-z=x-z=0. (3.9)

Without loss of generality, we can take the three vectors u, v, x to lie in some three-
dimensional vector space. The vector z is orthogonal to this space, and it appears in the
’2

bounds only through the unknown positive real parameter |z|* = u. We can remove it by

considering the quantities Mlllla M2222, M1112, M1222, and

1 1
Mioo1 + —p = Z\xlz +u-v

o (3.10)
Mi212 — Sh = §\X|27
along with the requirement,
Mi919 > g (3.11)
We note that the three combinations, a, b, c given by
2Mi991 — Mi212+p u-v _
= = = cos b,
V Mi111 Mag90 lu||v]|
M .
b= 1112 = ‘u”x‘ = cos 6,
ul|x
\/Mnn (M1212 — %M) (3.12)
_ Mi222 A
c= V] — cos 0,
\/M2222 (M1212 %M)
define three angles, 0, .. Thus, we must have a, b, c between £1, i.e.,
(2M1991 — Misia + p)* < Mi111 Maogs
1
M?y5 < My <M1212 - 5#) (3.13)

M0y < Magao <M1212 - %N)
for some unknown p.

However, to fully characterize the necessary and sufficient bound, we must enforce that
Oq.p.c satisfy triangle inequalities. That is, let us define a unit-normalized vector & = u/|u|
and analogously for ¢ and Z. Then the lengths ¢, = |4 — 0|, ¢, = |4 — Z|, and ¢, = |0 — 2|
each form the base of a different isosceles triangle, in each of which the two equal sides are
of unit length. The angle of the vertex subtending the base of a given triangle is 6,, 6, or
0., respectively, which satisfy ¢, = 2sin(0,/2) = \/2(1 — a) and similarly for b and c¢. The
triangle inequality requires £, < £y + ¢, by < e+ €4, and £, < £, + £.. Hence,

Vi—a<V1i-b++V1-—¢,
Vi-b<V1—c++V1—a, (3.14)
Vi—c<vV1l—a++V1-0b.
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Figure 1. Region in (a, b, c) parameter space, defined in eq. (3.12), permitted by the generalized
optical theorem.

This is equivalent to the single requirement,
414 ab+bc+ca) > (1+a+b+c)?, (3.15)
depicted in figure 1. The remaining bound is thus
N (2Mh221 — Mi212 + 1) (M1112v/Magas + Mizoay/Miinn)\/ Mioio — %M
Mi111 Magg2 <M1212 - %H)

. Mi112M7222v/ M1111 M2222
Mi111 Mag22 <M1212 - %M)

(3.16)

2

1 2M - M + M M
: 14 12]2\14 ]\2212 roy 1112 . 1222
L1222 \/M1111 (M1212 - %M) \/M2222 <M1212 - %M)

Together, the existence of some p > 0 for which egs. (3.6), (3.11), (3.13), and (3.16) are
satisfied comprises the necessary and sufficient condition for the four-point scattering of the

two massless scalars to comply with unitarity and analyticity.

We can immediately see that the bounds from generalized unitarity are stronger
than those obtainable from elastic scattering (e.g., of definite superpositions of ¢; states)
alone. For example, the presence of u, a UV quantity invisible to the IR EFT, in the
bounds is indicative of the qualitative difference made by the generalized optical theorem
over traditional dispersive positivity bounds. If p takes its maximal value of 2Mi910, a
consequence is that the flavor-violating Wilson coefficients Mi112 and Mjg9s vanish, and
the bounds reduce to the statement that 4(Mjg91 + M1212)2 < Mi111Mao995. On the other
hand, if 4 = 0, then the flavor-violating terms have their weakest upper bound, e.g.,
Mi112 < /Mi111My212. Comparing the bounds in eq. (3.13) with eq. (3.16), it can be
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T Mpl __Mpl __Mpl T Mpl
—— X0 — [ 60H 1
— fr =~ 60H f A
€ —+ A, :
1A, Ax — |do| ~ 60H
T H 1 T H 1 T H 1 T H 1
- |H][? T |H]? - H[? T IH[?

(a) (b) (©) (d)

Figure 2. Hierarchy of scales for various EFTs. From left to right: (a) Goldstone EFT (section 4.1.1),
(b) EFT of multifield inflation with adiabatic perturbations (section 4.1.2), (¢) EFT of multifield
inflation with both adiabatic and isocurvature perturbations (section 4.2.1), (d) Lorentz-invariant
EFT of multifield inflation in the slow-roll regime (section 4.2.2). See text for the definitions of the
various parameters.

checked that the latter implies a stronger bound. However, if there is a ¢; — —¢; symmetry
that implies My222 = Mj112 = 0, and correspondingly, eq. (3.16) does not give any new
constraint over eq. (3.13).

What is the physical significance of u? It is straightforward to see that the p parameter
encodes the (s~3-weighted) spectral density of odd-spin states in the UV. By definition,
b= Symp? - mi)

d1(k)p2(p) — p2(k)p1(p) for some momenta p and k, and by Bose symmetry the coupling to

so nonzero pu corresponds to some UV state(s) X coupling to

X must go as an odd power of (p — k), which by Lorentz invariance requires X to possess
an odd number of spacetime indices.

4 Inflationary effective field theories

We now turn to the inflationary EFTs that we wish to constrain using the techniques from
the previous sections. For each EFT, we will write down all the leading operators up to
mass dimension eight. In section 5 we will discuss the analyticity and unitarity bounds on
these EFTs. We summarize the various scales in these EFTs in figure 2 and define them in
more detail in the respective subsections.

4.1 Theories with adiabatic perturbations
We begin our discussion by considering EFTs that describe purely adiabatic fluctuations;
subsequently, we will extend the discussion to include isocurvature fluctuations.

4.1.1 Goldstone EFT of single-field inflation

We start with a review of the classic Goldstone EFT of inflation, following ref. [14]. Here
our primary goal is to establish the notation that we use in the subsequent discussions.

In this EFT description, the inflaton perturbations are treated as Goldstone fluctuations
arising from spontaneous breaking of time translation symmetry. To derive the effective
action for the inflaton perturbations we can start on a fixed time slice, the “unitary gauge,”
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and write all the terms that are consistent with the unbroken three-dimensional spatial diffeo-
morphisms. These terms can be constructed from quantities such as {g%, gO”A“, K, t}.
Here A, is any vector and K, is the extrinsic curvature of the chosen time slice. To
restore the inflaton perturbation m(x), we can perform a time diffeomorphism t — ¢ + m(z),
which moves us away from the unitarity gauge fixed time slice. Since terms describing the
curvature of the hypersurface, such as K, contain extra derivatives, they are typically
subdominant and we do not consider them in the following.? Therefore at leading order in
derivatives, we can focus on terms made up of ¢, gOMA,L, t. The time diffeomorphism acts
on these quantities as

ft) = f(&) + f()m(),
g = (% + 0, (30 + ) g = g% + 26Dy + g OO, (4.1)
g A, — (30 +0,m)g" A, = A® + AFO, .

1/2 e can ignore mixing between m and

Since we will be interested in energies above |H|
metric perturbations 6g"”. Then we can just use the background metric g,, to reduce the

right-hand side of eq. (4.1) to

F(&) = f(t) + f(t)m (),
g — —1— 27 + g"9,m0,, (4.2)
gOMAM — (53 +0,m)g" A, = A0+ ArtO,m.

If we specialize to the case of single-field inflation, there is no vector field like A*
contributing to the action. Therefore the effective Lagrangian for inflaton fluctuations
is given purely as an expansion in (¢%° + 1)".!° Introducing 7= with the above time
diffeomorphism, we arrive at the adiabatic single-field (AS) Lagrangian,

27 2 My 21"
Las = MAH(9,m)? + 22 - [—27 + (9.m)?]", (4.3)
n=
where we have introduced the notation (9,7)? = g9, 79, , and where M, are arbitrary
couplings. The kinetic term arises from a term linear in ¢°° and can be fixed by demanding
an expansion around the correct de Sitter (dS) background [14]. Keeping up to fourth order
in fluctuations,

Las = MAH(0,m)* + M} {2#2 —2i(9,m) + %(aw)%a,,wﬁ

(4.4)

3
It is now manifest that unless Ms = 0, the speed of inflaton propagation ¢g will differ from

4 2
- Mj {gﬁ?’ - 27%2(8uw)2} + Mt

1, since there is no symmetry protecting that value. We can parameterize the deviation as
9 7
Mo H

“ T MZH —2M] (4:5)

9As an exception, in the limit where the speed of inflaton fluctuations becomes very small, such higher
derivative terms can become important [39].

10We will also work in the limit where the explicit time dependence of an EFT coefficient c(t) is suppressed,
ie., |¢(t)] < He(t).
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Using this parameterization we can define a canonically normalized inflaton mode, m. = f27
with f2 = (2M 21]H lcs)'/2. Written in terms of canonically normalized fields, the AS
Lagrangian becomes

171, 1

—1 1 ; 2 2
T (1 - c—g) [—mm SO0 10
_Z_l% 3 2]\43 2 2 M4 4

We note that even in the absence of M,~o operators, a sound speed ¢; < 1 induces a
dimension-six operator and gives rise to a strong coupling scale [14],
A

4 o244
Ap=smifis s (4.7)

Noting the fact that the magnitude of the scalar power spectrum fixes f; ~ 60H, a scenario
with ¢s < 1 corresponds to a strong coupling scale parametrically close to H itself. For
¢s parametrically close to 1, which will be our focus in the following discussion, we have
Ar > fr, and the EFT cutoff scale is instead determined by the operators with coefficients
M3 and My in eq. (4.6). We summarize this hierarchy of scales in figure 2(a) with A
determining the EFT cutoff above which the EFT needs to be UV completed. The relation
A, > H ensures that we can compute scattering amplitudes in a subhorizon regime while
Ar < fr ensures the validity of the Goldstone description. The hierarchy \H | < H? is
obeyed given our assumption of a quasi-dS background around which we are expanding the
perturbations.

It will be convenient to rewrite £ag once more, which we do by introducing dimensionless
coefficients ¢; defined via M7} = ¢, f2/c2"~! and rescaling X = x/c; [23], after which we
have

Las = —%(6%77(:)2 + ﬁ [—2027%0(5“%6)2 — (86% + %c;z,) wg’}
1 3 2 2 1 5 4
+ [(802 + 8cocs + —C4> e + (203 + 402) (aﬂwc) + —ca(Oume)”|, (4.8)
cifz 3 2
where we have grouped the interactions into mass dimension six and eight. Here co =
(1—c2)/4, and 9, is defined with respect to {t,%}. This variable change has restored a fake
Lorentz invariance into the Lagrangian that is convenient for studies of analytic properties
of the amplitudes. Although we have kept c¢s explicit in all expressions above, we emphasize
once more that at present the nonrelativistic dispersive tools we will deploy demand we

focus on scenarios where ¢s is parametrically close to 1, and therefore L£ag will simplify
accordingly.

4.1.2 EFT of multifield inflation with adiabatic perturbations

Next we consider a scenario where the adiabatic fluctuations are produced by a field (or
fields) that are different from those responsible for the background inflationary expansion.
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Examples include the case of multifield inflation (for reviews see [40, 41]) as well as the
scenario of the curvaton [42-45], whose fluctuations are converted to adiabatic perturbations
when it decays around or after the end of inflation.

In a multifield scenario, the (comoving) curvature perturbation ¢ can receive contribu-
tions from multiple light fields [40, 41] which we denote by x;. To ensure that these fields
generate superhorizon curvature perturbations, they must all be light. A natural way to
ensure this is through symmetry. For example, in ref. [15] such EFTs were constructed by
protecting the lightness of the y; fields with a shift symmetry or an approximate supersym-
metry. The full EFT involving all y; can contain various terms, depending on the governing
symmetry. However, to describe the leading NG signature from such shift-symmetric,
adiabatic multifield (AM) EFTs we can focus on a simplified parameterization along the
lines of ref. [46],

€1

A

1 . € . es3
Lam = —5(3/002 + X+ FXQ(@‘X)Z + A—4(3¢X)47
X X X
el +ex+es .,  ea+2e3 o (4.9)

= —%(%X)Q X T X0 + X_i(auX)4-
X X X

Here eq, €9, e3 are EFT coefficients, and we have also imposed a Zs symmetry on x. The
scale A, determines the cutoff scale for the EFT. With this additional symmetry we will
be able to connect the positivity bounds that we derive to observational constraints on the
primordial trispectrum derived from Planck data [18], which was obtained using the EFT
in eq. (4.9). To be more general, however, we will relax the assumption of the Zg symmetry
in section 4.2.1 when we consider the presence of isocurvature perturbations.

As an example of the above EFT, we can consider the curvaton scenario [42-45]. We
imagine the perturbations of the inflaton field to be very small during inflation. On the
other hand, the y field, while subdominant in terms of homogeneous energy density, acquires
isocurvature perturbations of order H/(mxg) ~ 1075, Here g is a typical “misaligned” value
of the homogeneous x field during inflation. After the end of inflation, the x field dilutes like
matter and eventually dominates the energy density of the universe. It subsequently decays
into standard model (SM) particles. As a result, the SM bath inherits perturbations of the
x field, and thus isocurvature perturbations are converted into adiabatic perturbations.

We summarize the various scales involved in figure 2(b). The assumption of quasi-dS
spacetime still implies |H| < H?. The EFT cutoff A, controls the interaction of the
curvaton fluctuations and can be parametrically small compared to xg without violating
EFT power counting.

4.2 Theories with isocurvature perturbations

Above we considered EFTs that described scenarios where the late-time perturbations were
purely adiabatic. We now extend the discussion to theories where in addition to the adiabatic
perturbations, isocurvature perturbations are also generated by a second light field o, and
these isocurvature perturbations leave imprints on the cosmic microwave background (CMB).
Similar to x, we will consider ¢ to be a spectator field during inflation, and it will therefore
possess a subdominant energy density compared to the inflationary background. However,
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whereas y could decay into SM states, and thereby erase the isocurvature fluctuations, we
imagine that o persists and thereby gives rise to isocurvature perturbations at late times.
A classic example is when o is an axionlike particle and constitutes the dark matter (DM).
The isocurvature fluctuations in ¢ would then manifest as DM isocurvature [47], which is
subject to various CMB constraints [48]. Similarly to the discussion above, we will assume
that there is a shift symmetry protecting the mass of o, and therefore we expect it to couple
derivatively to itself and to the adiabatic fluctuations.

4.2.1 EFT of multifield inflation with isocurvature perturbations

To describe isocurvature perturbations, we begin with a scenario that contains two dynamical
degrees of freedom: the inflaton fluctuations and a spectator scalar o, which sources
isocurvature perturbations. While we refer to this scenario as “multifield inflation,” we
reemphasize that it is only the inflaton that drives the homogeneous expansion, for which o
does not play any major role. We will remain agnostic as to the origin of this homogenous
expansion, and therefore model the inflaton fluctuations by the Goldstone degree of freedom
7 exactly as in the Goldstone EFT of inflation reviewed in section 4.1.1. An EFT containing
both 7 and o can then be constructed in a fashion similar to the treatment above. However,
we now have two additional components from which we can construct interactions, go“aua
and (0,0)?, in addition to g% = ¢% + 1, which we used previously. Using these objects,
we can schematically write down all possible operators up to mass dimension eight in the
isocurvature multifield (IM) EFT,!!

Liv = Las + Lio + Log + L3o + Lao. (4.10)

Here we have organized the various terms as an expansion in the number of ¢ fluctuations
present, and we have further restricted ourselves to only work up to L4, as our focus for
positivity will be on tree-level 2 — 2 scattering, making higher-point interactions irrelevant.
As before, we will work in the limit where the speeds of fluctuations for both 7w and o are
parametrically close to unity, given the discussion in section 2. Therefore, our starting point
is eq. (4.8) with ¢g ~ 1,

1 1 . 4 .
Las = —5(3Mﬂc)2 + f_ﬁ {—2027%(8#7&:)2 - (803 + 503) WS]

1 2 1
+ 7 [(80% + 8cacz + §C4> e + (203 + 403) 72 (Oume)® + 562(8#7%)4 C@n)
m

Note that taking the speed parametrically close to unity implies that we must have cy < 1
given ¢p = (1 —c2)/4.

To include the isocurvature fluctuations, we must consider the full set of terms generated
from the additional building blocks g°8,0 and (8,0)?, working order by order in o. Up to

1yWe will ignore terms involving extrinsic curvature and work at the leading order in the derivative
expansion as before, both for simplicity and as such terms are expected to be subdominant.
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quartic order in the interactions, these terms are:
Lo = dif7(69%) (9" 0,0) + d2f7(59™)* (¢* Do) + ds f7(39™)* (9™ 8,0)
Loy = da(9*0u0)* + d5(39™) (9" 0u0)? + ds(69™)* (9™ Do)
+ d7(69%)(00)* + ds(5g™)? (o)

Lys = f2<°”a o)’ + f2<0“8 0)(00)* + Cje (39")(g"Op0r)? (4.12)
+ SR (66)(50,7) (00"
d d d

Lir = 2 (6" 0u0)" + 167 0,0)%(00)° + Z7(00)".

Here we have normalized all the operators with f, = (2M2 |H|co)V/* ~ (2M2 |H|)'/* ~ 60H,
the mass scale we specified previously, and have defined dimensionless coefficients d;. To
reveal the interactions between 7 and o, we transform goﬂaua to unitary gauge,

¢ 0,0 — —(1+ 7)o + alm") o. (4.13)

Furthermore, since our goal is to compute various 2 — 2 amplitudes, it is convenient to
arrange terms in Lpy by the order of the interactions, Liv = Lim,quadratic + L£1M,cubic +
LM quartic- At the quadratic level we have!?

1 . .. .
LM quadratic = Mle(a;ﬂT) — 5(8 0) 2M§7r2 + 2d1f7%7ra + dy6?
1 : (4.14)
~ 5 (Oume)? = 5(0u0)* + 2092 + 2dy5c6 + dad”.

Here 7, = f2r is the canonically normalized inflaton fluctuation as before. In order to
diagonalize the kinetic term, if we assume that co, dq,d4 are EFT coefficients independent
of the fields themselves, we can perform an orthogonal rotation, 7. = m. cos & + o sin @ and

6 = —mcsin a + o cos a. Moving to the rotated basis, we have
1, . 1, - -
EIM,quadratic = _5(8;17%)2 - 5(6#0')2 + dﬁﬂg + ngQ, (415)
where 1
dro =5 (262 +dy F \/4c§ +4d? — 4cody + di) (4.16)

with —(+) sign corresponding to dr(s). The rotation angle can be determined explicitly as

2d
tan a = ! . (4.17)

2c9 — dyq — \/4d% + dz21 —4dyco + 403

We next summarize the cubic and quartic interaction terms following from eq. (4.12)
in tables 1 and 2, respectively. To clarify the form of the terms appearing, the tables are
organized so that each row contains the vertices with the same number of ¢ fields. Further,
for simplicity we have denoted (9m¢)? = (9,7c)?%, (9me)* = (0,mc)?(D,7c)? and analogously
for operators involving only o, along with the notation (9. - do) = 0 w0 0.
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7o (Ome)? 7

—2My/f7 | —5M5/f7

(Ome)?6 726 7o (Ome - D)
—dy/f2 | —4dg/f2| —2di/f?
7. (00 )? 702 (Om - Oo)o
—2d7/f7 | —2d5/f7 | —2di/f7

o3 (00)%5
—do/ f3 | —dio/ [2

Table 1. Cubic interactions among the canonically normalized inflaton perturbation 7, and the

spectator field perturbation o, following from eq. (4.12). Given the symmetry structure, some
of the coefficients controlling the cubic interactions also control the quartic interactions among
these perturbations. To illustrate this, we have used the same color to denote specific coefficients
appearing both here and in table 2.

(Ome)* 7'72(87rc)2 7'rff
sM3/f8 | 2Mg/f8 | 3/ 18

(0me)2 (07 - O0) | 72(Omc - O0) | 7o (Ome)? | 7o

C

di/fz Ady/ 2 Ady/f; | 8ds/f7
(Ome - 00)? | 7e6(Ome - Oa) | (Ome)?62 | 7262 | (Ome)*(00)? | #2(D0)?
dy/ f 4ds/ I ds/f} | 4de/fz | do/f7 | 4ds/fz
62(0me - 0o) | (07 - 00)(00)? | 763 | 7o (00)?
3do/ f1 dio/ f2 2d11/ fE | 2d12/ fr

gt | 6%(00)? | (90)*
diz/fr | dua/fr | dis/fr

Table 2. Quartic interactions among the canonically normalized inflaton perturbation 7. and the
spectator field perturbation o, following from eq. (4.12). As in table 1, we have used the same color
to denote specific coefficients that appear both here and in table 1.

Here, for simplicity, we have suppressed the higher-dimension interactions of both
and o by the same scale f;. While for O(1) values of the coefficients ¢; we expect the 7
sector to have an EFT cutoff close to fr, in principle, the o sector could have an EFT cutoff
parametrically different than f.. Nonetheless, such a difference can still be captured by

1 . . .

2As we are working for ¢s ~ 1, almost everywhere we take ¢; = 1, except in places where it would cause
an operator coefficient to identically vanish, as is the case for ce. In other words, here we consider scenarios
with nonzero but small ca < 1, ensuring cs ~ 1.
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the appropriate coefficients d;, except that those coefficients then would not be O(1). We
also note that the interactions between 7. and o can also naturally give rise to similar EFT
cutoff scales. As an example, in the presence of a 725/ f2 interaction, an interaction of the
type 63 /(1672 2) would be generated at one loop with a similar suppression scale ~ 47 f.
We summarize the situation in figure 2(c), where we have denoted the EFT scales for 7. and
o sectors as A, and A,, respectively. For O(1) values of ¢;, d;, we expect Ay ~ Ay ~ fr.

All terms in tables 1 and 2 are derived in the unrotated basis. However, it can be
checked that a field rotation will only change the coefficients of various terms but not
generate any new operator. Therefore, with a slight abuse of notation, we will continue to
use the same coefficient as in the tables but assume a field rotation has been performed
such that there is no kinetic mixing term between m and o. We further note that in parts of
the following discussion, we will also focus on a case where there is a Zo symmetry acting
on o. This symmetry, along with reducing the parameter space in a controlled way, will
also remove the kinetic mixing.

4.2.2 Lorentz-invariant EFT of multifield inflation in the slow-roll regime

The EFT described by Ly is quite general. However, this generality comes at a cost in the
form of a large number of coefficients to consider. Given this profusion, it is convenient
to also consider a simplified EFT that accounts for the homogeneous component of the
inflaton ¢ that drives the inflationary expansion, along with the spectator field o. This will
allow us to reduce the large parameter space while still retaining enough structure such
that nontrivial consequences from positivity bounds will appear. We begin with an EFT
that contains the following dimension-eight operators at the leading order in derivatives in
increasing powers of o,

Lov =500~ 5 (00 +53(0,0)2(0,0)+ 15 (0,6 (0" 60,0)

K K K K
+ 31 (0u0)? (0,0)* +77(0,00"0)* 4+ 150" $0,0) (0,0)* + 11 (9,0)* (0,0,

(4.18)

where the k; terms are various dimensionless couplings. We label this Lagrangian as Lyv,
as this is a UV extension of the previous Lorentz-violating EFT (4.10), restoring Lorentz
invariance above |¢g|'/2.

Manifestly, Lyy has a significantly reduced number of interactions than Ly, but we
can relate the two descriptions. To do so, we decompose ¢ into a spatially homogeneous
and fluctuating component, ¢(t,x) = ¢o(t) + £(¢,x). The fluctuations encoded in £(¢,x)
are related to the 7(¢,x) considered above by a multiplicative factor, ¢ = . = f27 with

2= by for ¢s ~ 1. The interaction terms at different orders are given by

Lyy D % {—(4515 + k20) (0€)% — 2(ko€ + K46)(OMEDL0) — (2K3€ + ,{5(})(00)2}
F o [m(é’f)“ + 12(0€)%(0"£0,0) + K3(0€)*(00)? + K4(0"£D,0)? (4.19)

A4
+r5(0"€0,0)(00)? + Hﬁ(aa)ﬂ .
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As written, the EFT in eq. (4.19) can be compared to the Goldstone EFT by noting
that 6g% is related to (9¢)? in the slow-roll approximation,

(99)? = 8] -1 — 27 + (077 (4.20)
and go"@#o is related to 0*00,¢ by
Madup = ¢o (—(; — 76 + é@m@m). (4.21)

With this connection between the two notations, we see that among all the M, and d;
coefficients, only six correspond to dimension-eight operators in the Lorentz-invariant UV
theory. After matching all such cubic and quartic interactions, the theories are related by

8 4 4 4 4 4
4 _ _ _ _ _ _
M,y —2/€1A—1, dq —KQA—Z, d4—/€4A—Z7 d7—/€3A—Z, dlo—/isA—z, d15—I€6A—Z.
(4.22)

In other words, the remaining Wilson coefficients appearing in L\ must arise from operators
in this particular Lorentz-invariant UV EFT with dimension higher than eight. For example,
the operator di36* would arise independently from (9c)*, and in fact originates from a
dimension-sixteen term, (¢ - do)*. In this sense, this simple UV EFT selects a leading
six-dimensional coefficient space where we can place useful positivity bounds from analyticity
and the generalized optical theorem.

Following the same logic as in section 4.2.1, we have used the same EFT cutoff scale A
for both the ¢ and the o sector. Since the homogeneous inflaton dynamics is a part of the
EFT description, we have A > ]<b0|1/ 2. This hierarchy of scales is summarized in figure 2(d).

5 Full bounds

Drawing on the four classes of EFTs described in section 4, we can now compute various
2 — 2 amplitudes involving 7, and o. With these amplitudes in hand, we can then apply
the positivity bounds derived in section 3 to obtain constraints on the corresponding EFTs.
The bounds that result can then be applied to the parameter space considered in searches
for NG, as we will demonstrate in section 6.

5.1 Warm-up: positivity bounds on Lag

We start by considering the EFT in eq. (4.8) with ¢s ~ 1, an example that was considered
in ref. [16], and we will reproduce their results below. The theory contains a single field,
and the physical process relevant for deriving positivity bounds is w 7. — 7.7 scattering.
To simplify the notation, as in ref. [23] we define:

4 2
Q1 = —803 - §63 b1 = 803 + 8cocy + 504
ag = 2¢p By = —2c3 — 4¢3 (5.1)
C2
ﬁ3 = 5
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To express the amplitude in terms of {ws, wt, wy, s,t}, we relate the energies,

1
w1:§(ws+wt+wu)a W2:§(W5_wt_wu)a
1 (5.2)
w3 = 5 (~ws +wr —wu), wi = 5 (~ws — wr +wa),
and use the Breit parameterization (2.1),
1 1
wg = W(S_U+SM272)’ Wy = 8W(—s—|—u—|—8M272). (5.3)

We will further make use of energy conservation ), w; = 0, along with s +¢ 4+« = 0 as
appropriate for the scattering of massless particles.

Using these relations, we can compute the forward limit of the w.m. — 7.7 scattering
amplitude by taking w; — 0 and then ¢ — 0. The result is given by

2

s
Mucsoormnc(5) = 777 (1605 +8(8 = 208)7° + 681 — danaz)y’ ~9ad°). (54)
K
Demanding M7 . (s) > 0 then gives the positivity bound,
1685 + 8(B2 — 202)7% + 6(f1 — dajan)y? — 902~ > 0. (5.5)

As noted in ref. [16], for v = 1 this reproduces the bound from ref. [23]. However, this is
unsurprising. As explained in section 2, v = 1 corresponds to the CM frame, within which
the calculations of ref. [23] were performed.

We can rewrite the bound in terms of the coefficients c¢; as

2y — 4(6¢2 + ¢3)72 + (10863 + 28cacs + c4)vt — 4(6¢2 + ¢3)%4% > 0. (5.6)

In particular, demanding ¢s ~ 1 forces |co| < |cs], |c4|, and correspondingly the positivity
bound simplifies to
exy? > des(1 4 esy?d). (5.7)

5.2 Positivity bounds on Lan

Next, we take the theory where adiabatic fluctuations arise from a field x that is distinct
from the inflaton, as described by eq. (4.9). Taking the amplitude for xx — xx scattering
in the forward limit yields

2

s
Myyosyx = AT [863 — 4(eg 4 2e3)72 + 3(e1 + €2 + 63)’74} . (5.8)
X
As before, we demand MY, _,, (s) > 0 to arrive at the positivity bound,
8es — 4(e2 + 263)’}/2 +3(e1 +e2+ 63)’)/4 > 0. (5.9)

A consequence of the assumed Zy symmetry acting as x — —x is that this bound involves
only three coefficients. Furthermore, as we will see in section 6, two of these coefficients give
overlapping trispectrum shapes. Therefore, this positivity constraint allows for a powerful
restriction on the two-dimensional trispectrum parameter space.
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5.3 Positivity bounds on L

We next consider the two-field theory that can generate isocurvature perturbations, as
described in eqs. (4.10) and (4.12) and summarized in tables 1 and 2. Invariably, the
associated positivity bounds will involve more parameters. We focus on the bounds that can
be derived from the conventional optical theorem, so that we start with the computation of all
two-to-two scatterings with an elastic forward limit: w 7. — w.7e, 00 — o0, and 7.0 — 7W.0.
Along the way, we will also briefly mention which of the Wilson coefficients can be potentially
constrained using the current Planck data. At the same time, we will describe the observables
that, if constrained, would allow us to impose all the derived positivity bounds.

TeTe — TeT scattering. The relevant vertices that generate this amplitude are given
by two 72 interactions (suppressing derivatives) with a 7. exchange, two 720 interactions
with a o exchange, and the contact 7+ interactions. The positivity bound from the scattering

amplitude in the forward limit is given by
4eg — 8(cz 4 4c + d2)y? + 2(cq + 16¢ac3 + 8dida)y* — 8(c3 + d3)7% > 0. (5.10)

We note that ¢, c3,cq control the adiabatic three- and four-point functions, and di, ds
control three-point functions involving one isocurvature and two adiabatic fluctuations.
Since both classes of NG have been searched for using Planck data, albeit with the local
shape, the above bound can be imposed on the observational parameter space.

oo — oo scattering. Similarly to above, in this case the relevant vertices are given

2

by two o3 interactions with a o exchange, two o2, interactions with a 7, exchange, and

contact o interactions. Correspondingly, the positivity bound is given by

16dy5 — 4(4d3y + 2d14 + [dy + 2d7])*)~>

4 2 21,6 (5.11)
+ 2(3d13 + 4dyds + 8dsd7 + 12d9d10)’y — (4d5 + 9d9)"}/ > 0.

We note that if 7. is absent from the spectrum and we were to impose a Zy symmetry
o — —o, then the above constraint reduces to

85 — 41(1Z14’}/2 + 3d13’y4 > 0. (5.12)
This exactly matches the bound in eq. (5.9) upon identifying d13 — e1+es+e3, dig — e2+2e3,
and di5 — e3. We can further derive the positive bound in the absence of ., but without
imposing the Zs on o, in which case eq. (5.11) reduces to

16d15 — 8(2d3y 4 d14)7? + 6(dy3 + 4dodyo)y* — 9d3~° > 0. (5.13)

The coefficient di5 only controls the isocurvature four-point function, which has not yet
been observationally constrained. Therefore we cannot apply this positivity bound directly.
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w.o — mco scattering. For the final amplitude, in addition to contact terms, the
scattering can now be mediated by either a 7. or o exchange. Accounting for all possibilities,
the positivity bound is

dy—2(2d2 +d%+ds+2dyd7 )y + (8d1da 4 3dyds +dg 4 2dsd7 )y — (4d5+d2)7° > 0. (5.14)

In a similar vein as above, we note that the coefficient dg controls only a four-point function
involving two adiabatic and two isocurvature modes. This interaction has also not been
searched for in the data. Therefore, once again we cannot apply the positivity bound directly.

The relations in egs. (5.10), (5.11), and (5.14) involve fourteen of the eighteen parameters
that describe L. In particular, ds, dg, di1, and di2 appear nowhere. Of these, dg does in
fact mediate m.o — m.o, but the corresponding amplitude is proportional to Mandelstam ¢
and therefore vanishes in the forward limit, so bounding it would require beyond-forward
methods, e.g., refs. [49, 50]. The remaining three missing d; are contact interactions with an
odd number of 7w, and o, and therefore do not contribute to elastic scattering. In principle,
we could access these coefficients by drawing on the power of the generalized optical theorem.
Instead, in the next subsection, we will highlight the power of the generalized optical theorem
by considering the simplified version L1y of introduced in section 4.2.2.

5.4 Positivity bounds on Lyv

Finally, we consider the reduction of Ly introduced in section 4.2.2. While Lyy may be
less general, its structure affords us the opportunity to study several additional aspects of
the positivity bounds. First, it allows us to consider bounds from the generalized optical
theorem and to demonstrate explicitly that they are stronger than those accessible purely
from elastic forward amplitudes. Second, as we know a UV extension of eq. (4.19) — indeed,
we derived it directly from one — we can study explicitly the fate of our bounds in the
Lorentz-invariant UV.

Positivity in the UV. To begin, we consider scattering with £ > |q50|1/ 2. Accordingly,
we can work with the full inflaton field ¢, and the appropriate description is the Lagrangian
in eq. (4.18). Interactions in the theory are mediated solely by contact terms, and the
positivity bounds simplify accordingly.

If we study ¢ — ¢, oo — oo, and ¢o — ¢o, then the three bounds are

k1 > 0, ke > 0, kg > 0, (5.15)

respectively. Note that while the amplitude for purely ¢ and o scattering only depend on a
single Wilson coefficient, for ¢o scattering the amplitude is

1 1
M¢g_>¢g = P :‘£3t2 + 5%4(82 + UQ) . (516)

We see the appearance of k3, but as it only enters proportional to ¢2, it cannot be constrained
from a forward amplitude.
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Positivity in the IR. We next consider the same theory at lower energies. In particular,
we imagine scattering with external states having energies that satisfy H < F < ](;50]1/ 2,
To this end, we can write ¢(t,x) = ¢o(t) + £(¢,x), which gives a set of cubic and quartic
interactions that were summarized in eq. (4.19). We can then use the bounds on Ly
derived in egs. (5.10), (5.11), and (5.14), which when keeping only the terms that do not
vanish in Lyy become

1
co > 2(4c3+d1)y?,  dis > (d%o + 4 (dat 2d7)2> V2, dy > 2(2d3 4 d3 + 2dyd)yR. (5.17)
After applying the translation given in eq. (4.22), these bounds become

2 r4
Y /x (16/1% + n%)

1
Kg > L (/{% + — (kg + 2/@3)2) (5.18)

1
V2 fa
A4

Kq > (4/‘1% + 2/'@21 + 4%3%4).

The expression on the right-hand side of the first two relations in eq. (5.18) are positive
definite, implying that the bounds on k1 and kg are strictly stronger than those in eq. (5.15),
which were derived in the UV. Initially, this result may seem surprising. It suggests the
consistency conditions encoded in positivity become stronger at low energies, and therefore
a consistent theory in the UV could flow to an inconsistent one in the IR.

As a first point, we note that for v ~ 1, the corrections to the UV bounds are
parametrically small. The validity of the UV EFT requires A > |¢g|'/2 ~ fr ~ 60H '3
so that effects at O(f2/A*) are small. This is to be expected since in eq. (4.18) we have
truncated the EFT expansion at mass dimension eight. We note that if we parametrically
increase v beyond an O(1) value, this can be interpreted as lowering the cutoff of the
EFT to A — A/~4", where the precise power n is dependent on the derivative structure of
the terms that contribute to the amplitude. This can be understood from the origin of
7 in the Breit parameterization in eq. (2.1) as follows. In the forward limit 4wjws = ¥2s.
Therefore, even for fixed s, increasing ~ implies that the states have energies larger than
V/s. Correspondingly, whenever these energies become of order the EFT cutoff, the EFT
can break down even if s < A%2. Therefore, EFT consistency suggests that we do not expect
the IR corrections in eq. (5.18) to be parametrically large.

Given that the correction is expected to be parametrically small, we now consider
whether it should be satisfied in the UV. Consider the first bound in eq. (5.18) derived from
¢p — ¢¢ scattering. As a first possibility, imagine that we are studying a theory where
there is an additional Zs symmetry satisfied by o, so that we can forbid the interaction
given by ko. In such an event, the bound becomes

2 r4
K1 (1 _ s 16/-;1) >0, (5.19)

A4

13The equation of motion for the homogeneous inflaton field implies ¢g = QMSIH ~ f2 for cs >~ 1.
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or equivalently,
A4

0< k< W' (5.20)
The additional IR condition is translated into an upper bound on x;. However, perturbative
unitarity for the EFT in Lyvy already imposes the condition that k1 cannot be parametrically
larger than unity, which is what would be required to violate the condition eq. (5.20).
Accordingly, the condition is straightforwardly satisfied in the UV. If we restore ks to the
UV, then one could imagine a scenario where we tune k1 = 0 but k9 # 0, and a violation
of the first constraint in eq. (5.18) appears possible. The violation, however, would occur
at O(k?), and at this same order we can generate x; at one loop via a bubble diagram
involving a m and ¢ in the loop. The diagram is UV divergent, but if we cut the loop
momenta off at A then the divergence will exactly compensate the suppression we get
from having an additional dimension-eight interaction. Parametrically, we then expect to
generate k1 ~ k3/1672, so that even in this tuned scenario, so long as 1/1672 > v2f2 /A%,
the UV will again satisfy the IR bounds.

For the reasons above, it appears that the additional constraints that appear in the IR
are in fact straightforwardly satisfied in the UV. We emphasize that this does not imply
the restrictions are without content. The bounds in eq. (5.18) were derived without any
knowledge of the UV. Further, we were able access information in the IR using tree-level
calculations that are only satisfied in the UV once loops are included. That this occurred
can be traced back to the symmetry breaking at the heart of the nonrelativistic theories:
once we have a background value of ¢ to expand around, we can convert quartic contact
interactions to three-point operators, and therefore allow new interactions to contribute to
the forward amplitude. The ability to vary the order of the interactions and therefore the
constraints appears to be one of the key powers of this approach.

Extension to include the generalized optical theorem. As an example of the power
of the generalized optical theorem, here we demonstrate how our UV positivity bounds
K1, k4, ke > 0 can be extended using the formalism derived in section 3. We first compute
the associated M;;;. Based on the EFT in eq. (4.18), they are given by

2K1 8K
Aunn = N L(s2 412+ u?) = My = A_41
K2 2K
A1z = 2A4(S + ¢+ u?) = Mo = A_42
K3 K4 9 263 + Kq
_ 4 s Mypgy = BN
Atz = A4 2+ 2A4( +u?) 1122 Al (5.21)
2Ky ’
Aj212 = A4 >+ W(S +u?) = Mig1z = N
2K
A2 = 2A4(S + ¢+ u?) = Miggo = A_45
8K
Azzge = A4( 2+ 12+ u®) = Magy = A_46'

The positivity bounds in eq. (3.6) coincide with those in eq. (5.15), as they should. Therefore,
we focus on the remaining bounds consisting of egs. (3.11), (3.13), and (3.16). For simplicity
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we define, &; = #;/A*. Then eq. (3.11) gives

Rg > %. (5.22)

Next, eq. (3.13) yields

(473 + p)* < 641 K6
R2 < Ry (4Rg — p) (5.23)
RE < R (4Rq — p) .

Finally the triangle inequality eq. (3.16) requires

1— + [1-

8V/R1ke \/81%1 (2;%4 - %,u) \/8’;”6 (2’;”4 - %”)

\/1 ARt g 2o 25

<

1— 2/%2 1— 21265 +\/1_4[{3+H
\ \/81?61 (2/?;4 — %,u) \/8’%6 (2,%4 _ %/J) 8V Kk1ke (5.24)

2R 4k 2

1- 5 < \/1—8'\@/3%+ 1- e .
- - R1R - -

\/8146 (2/4 — %,u,) 176 \/8n1 (2/44 — %,u,)

An equivalent condition to these inequalities can be written as

_1
(40 v 025 (o= 80)

b 16Kk1kg (2/@' — %u) 2K1Kg (2/1 — %u)

2 (5.25)
k3 + 1 K2 K5

+ +
BVkIRG \/2/@1 (2/@4 — %M) \/2/% <2H — %u)

These additional constraints impose strictly stronger requirements on the theory, as we will

>11+
4

demonstrate next.

Theory with dihedral symmetry. The discussion above has focused on a theory with
arbitrary interactions k; among the spectator field ¢ and inflaton ¢. In order to visualize the
impact of the generalized optical theorem, it is illustrative to reduce the parameter space to a
more manageable number of Wilson coefficients, while still retaining the nontrivial structure
we found in section 3. We can do so by considering a model in which the fundamental theory
enjoys a set of discrete symmetries among ¢ and o generated by (¢,0) — (o, —¢) and
(¢p,0) — (MT;’ %) In geometric language, these symmetries together generate the octic
group, i.e., the order-eight dihedral group D4. While we can require that the full Lagrangian
possess these symmetries, this does not prevent us from considering initial conditions that
break them, namely, an inflaton vev in ¢ alone. The dihedral symmetry requires three
constraints among the six k; of eq. (4.18), k4 = 2Kk1 — K3, k5 = —k2, and kg = K1, leaving
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Figure 3. Region in the (k1, ke, k3) parameter space, for a Dy-symmetric theory, permitted by
the generalized optical theorem (blue), compared with the (larger) region permitted by considering
merely elastic scattering of arbitrary superpositions (green).

us with a three-dimensional parameter space. The generalized optical theorem bound in
eq. (5.25), along with the weaker bound one would obtain from applying the standard
optical theorem to the elastic scattering of arbitrary superpositions of ¢ and o, is depicted
in figure 3. Those we obtain from the generalized optical theorem are strictly stronger.

We could apply the same generalized optical theorem technology to the boost-breaking
EFT as in eq. (4.10) without obstruction, and would obtain a similar qualitative strength-
ening beyond elastic positivity bounds, albeit in a much larger parameter space.

6 Observational constraints on non-Gaussianities

Positivity bounds imply nontrivial restrictions on primordial NG since the same parameters
¢, d;, k; that we constrained in section 5 also determine the strength of NG for various
kinematic configurations. In refs. [16, 23], such observational constraints were considered in
the context of single-field inflation with adiabatic perturbations, including an exploration
of the implications of positivity within £ag. However, as we have seen in section 5, once
multiple fields are present, the bounds can change considerably, in addition to having
relevance for probes of isocurvature perturbations. We therefore focus our discussion in
this section on scenarios where more than one field is present during inflation.

6.1 Constraints on Lam

In this subsection we consider the EFT in eq. (4.9) for which we effectively have a single
source of fluctuations x contributing to primordial perturbations. Therefore, subtleties
regarding causality and analyticity due to multiple sound speeds do not arise, and at the
same time, our positivity bounds can be imposed on the parameter space allowed by current

constraints on NG.
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To compute the NG of the curvature perturbation ¢ based on eq. (4.9), we use the
linear relationship ¢ = \/24¢x/H between ¢ and x fluctuations. Here the normalization is
fixed by the power spectrum P (k) = A¢/ k3. The four-point functions sourced by e, es, e3
can be computed as [46]

iy, = Ak
ALK Tk
(| 462A2 kt+3(k‘3+k4)kt+12k3k4(k s -
= Aglc kikok3kiky 3-k4)+5 perms. (6.1)
86314% 2kt —2k2 S K2 Ak S kS H12TT ks

(k1-ko)(ks-kq)+2 perms. |.

(€M ]es =
A ki Tliea K

Here ky = k1 + ko + ks + k4 with k; = |k;|, and the sums and products run over i = 1,2, 3, 4.

The quantity (¢4 is defined by (¢(k1)C(ka)((ks)C(ka)) = (¢ (2m)35 (ks + ko + K + ).

The observatlonal constraints from the Planck data can be described in terms of three
52(90)? (9o)*

parameters g%L, 9N and gy’ - These are related to eq, es, e3 as [46],
" 25 e1 H* 52(90)? 325 eoH! (90)* 2575 esH*
— A = ——— Ar = —— . (6.2
Rdc=gsar e I AT g ar e o AT ggrggar e (62)

However, the trispectrum shapes mediated by these three operators are correlated with
each other. Therefore the parameter space can be described in terms of only two of these

parameters, which can be chosen to be gf{fi and gl(\IL) The effect of gNL(aa) can then be
absorbed to give rise to effective coefficients [18, 46],
.4 62 oo 2
it et = 0.597g5,07° g0 & = 0.09144%,©7" (6.3)

*(90)?

These two relations determine how much the shape generated by g‘7 term overlaps

4
with the shapes generated by gNL and gl(\IL) .

Now, to impose the positivity bound in eq. (5.9), we first rewrite it as

20736 (ag) 9 420912 520902 43 - 768
8—8y*+3 4y? = 3yt —— > 0. 6.4
( 7+7)2575 np (477 =37 55N L ot (6.4)
In particular, setting v = 1, i.e., working in the CM frame, we obtain
3-20736 (9o)t 6912 s2(95)2 3768 s4
9575 INL 305 INL o5 INL > 0. (6.5)

Using the effective contributions in eq. (6.3), we arrive at our final positivity bound,

20736 69121 (90
(8 — 8y2 + 3vH) T2 4+ 0.0914(442 — 374) —= } (90)*
2575 325 (6.:6)
3. 768 69127 .4 '
4 o
42 — .
5% + 0.597(4~? 37)325]9NL>0
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We illustrate the constraint of eq. (6.6) in figure 4, where we take the WMAP 1o and 20
constraint from ref. [46] and use the Fisher matrices in ref. [18] to derive the corresponding
bounds for the Planck data. We show the bounds for v = 1 and v = 10 in order to illustrate
how this parameter space is affected by changing the Breit parameterization. As mentioned
above, we cannot raise vy arbitrarily while retaining a valid EFT expansion. Even if one
were to consider such a possibility, in the limit of v > 1, the relation in eq. (6.6) becomes
independent of 7 since all the coefficients scale as v* and factor out of the bound. Therefore,
the result shown for v = 10 would continue to approximate the result for v > 1.

Since applying positivity bounds require a hierarchy between H and A,, in figure 4
we show the parameter space for which A, > H. To obtain this result we have used the
expressions for gﬁ{i and 91(\181? " in eq. (6.2) and set e; = e3 = 1. We see that while our
positivity bound can meaningfully constrain parts of the parameter space where A, > H,
some parts of the Planck contours lie outside the gray region. With future improvements in
the constraints on the trispectrum, these contours may eventually be completely contained
inside the gray region and therefore be fully sensitive to scenarios with A, > H.

We now discuss a simple UV completion where these dimension-eight operators arise
with a Lorentz-invariant structure. Let us consider a complex scalar field ® = (f, +
p/V2) exp [za/(\/ﬁfa)} whose radial mode is denoted by p and the Goldstone mode by a.
Then the kinetic term for ® gives rise to the following interactions:

2

09 = %(0,0)2 + %(aa)2 + \/gfa (9a)® + 4”73(5@)2. (6.7)

Adding a potential V(®) = m2(|®|* — f2)?/4f7 generates a mass m,, for p with no tadpole.

Integrating out the radial mode p at tree level generates a dimension-eight operator [9],

1
——(0a)*. 6.8
7 0 (6.8)
Therefore, for this Lorentz-invariant example, e; = e3 = —e2/2 > 0 in the notation of

V4
eq. (4.9) with a replaced by x. In terms of the gnp, coefficients, this implies 91(\1013 =

(27/103)91(\185)4 > 0. This is shown via the cyan line in figure 4.

6.2 Constraints on Lyvy

We now focus on a two-field scenario where both adiabatic and isocurvature perturbations
arise. We will connect our positivity bounds to observational constraints involving both
adiabatic and isocurvature perturbations, which we denote by ¢ and S, respectively. While
this scenario can be realized using Ly in eq. (4.10), we choose to focus on Lyy in eq. (4.19)
for simplicity.

We first use the results of appendix A to compute the various three-point functions
involving ¢ and S. For this purpose, we need to relate the field fluctuations of the inflaton
& and the spectator field do to ¢ and S, respectively. We note that here we refer to the
spectator field as do rather than o as earlier, as now we expand the spectator about a
misaligned value oy > do, which it obtains at the time of horizon exit of Jo.
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Figure 4. Positivity bounds on the trispectrum parameter space derived from unitarity, for
representative values of the v parameter, compared with the region allowed by WMAP (blue) and
Planck (green) constraints. The simple sigma-model UV completion discussed in text generates NG
along the cyan line. The gray rectangular region shows the parameter space for which A, > H, as
obtained from eq. (6.2) by setting various e; = 1.

We assume that the inflaton dominates the energy density during inflation and sources
a superhorizon curvature perturbation ¢ ~ —H¢&/¢g, where as before H is the Hubble scale

1/2 is the slow-roll velocity of the inflaton. Here have used the

during inflation and |¢y|
spatially flat gauge [51] to relate the inflaton perturbation to the curvature perturbation.

The adiabatic power spectrum is then given by

, H* 1
(C(k)C(=k)) = Pc(k) = P (6.9)
The measured CMB anisotropies fix |¢g|'/? ~ 60H [48].

While the energy density in the spectator field ¢ is subdominant during inflation, it
acquires (almost) scale-invariant isocurvature fluctuations. For concreteness, we assume
o sources dark matter perturbations at later times, and consequently such fluctuations
manifest as uncorrelated dark matter isocurvature fluctuations. In terms of .S and at the
linear order, these can be parameterized as S = 2d0 /0. The isocurvature power spectrum

is then given by

2
(S0S(-)) = Ps(k) = o1 (6.10)
0

For simplicity, in the following we will assume that the spectral tilt of Pg(k) is the same as
that of P¢(k). With these relations at hand, we can compute various three-point functions,
which are explicitly described in appendix A. In particular, we can use egs. (A.10) to (A.13)
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and define k;j...,, = k; + kj + -+ - 4 ky, to write

(C(k1)¢ (ko) (ks))’
= — 2,/€1H8 zk%?]f%k% _ (ky- ks)ki (1 s _ijk?’) + 2 perms., (611
A4¢%k%k§k§) k123 k123 K123 k123
(S(k1)¢ (ko )¢ (k3))’
_ K2‘H7 2/{3%]{3514332) _ (kg . kg)k% (1 " ]{723 2]6‘2]{3)
2N o0dok3k3k3 | Ky k123 ki2s  Kfog
roH' 2kik3k; (ko - ki)k3 (1 L Rz 2k1k2> (6.12)
2A400¢0k$%]{}%k‘§ k21323 k123 k123 k%23
+ (k2 <~ kg)},
(S (k1) S (k)¢ (ks))’
_ mgHO 2kik3kS (ki -ko)k3 (1 k1o 2k1k:2>
MNBRIR3KS | kiys k123 kios ks
_ rgHS 2kik3k3 (ki - ka)k3 (1 N k13 N 2k:1k:3> (6.13)
2N o2 k3 k3 k3 k3 k123 kios  kfo
+ (k1 < kQ)},
and
(S (k1)S (k) S (ks))’
L 175 27.21.2 ) 2 6.14
_ _rsooll [ 2HkEKS (ko - ks)k? (1 L o 2k22k:3> 2 perms. (6.14)
2N ogkiksks | Ko k123 kiaz  kigs

Since these three-point functions originate from derivative interactions in eq. (4.19), the
resulting NG is generated during the horizon-crossing times of the modes. Consequently
for comparable k;, the above three-point functions peak at the “equilateral” momentum
configuration ki ~ ko ~ ks.

To compare, we consider the Planck search for isocurvature NG, which is based on the
templates [52],

(X7 (k1) X7 (ko) X ¥ (k3))’

. - - 6.15
= i ™ Pe(ko) Pe(ks) + f Pe(k1) Pe(ks) + fap'” Pe(k1) Pe(ks). (6:19)

The indices I, J, K each can denote an adiabatic (a) or an isocurvature fluctuation (7), i.e.,
I,J,K = a,i with X¢ = ¢ and X* = S. While the Planck collaboration has constrained
the parameters fﬁfc, ~1§I’ES, fgfc, Nﬁffs, ~£’L<S, Nf\gnjg S, we cannot directly use those bounds
in the present context. This is because the associated three-point functions in eq. (6.15)

peak at the “squeezed” momentum configuration, where one momentum is much smaller
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than the other two, k3 < ki, ko. Therefore, the template in eq. (6.15) is not well suited to
constrain the shapes given by egs. (6.11) to (6.14), and a dedicated analysis would be more
appropriate.

Given this obstacle, we here take a simple approach to illustrate the positivity bounds.
For the adiabatic-only scenario, we can evaluate (((ky)((kz2)¢(ks))" in the equilateral limit
and demand that it obeys the bounds of equilateral NG parameter fﬁ%m constrained by
Planck [18]. Extending that condition to include other perturbations, we define the following

quantities, keeping eqgs. (6.11) to (6.14) in mind:

fl%%(,lequi - Pg(k)z

faoi (C(k)¢(k)S(k))’

NL,equi Pc(k‘)2 (6 16)
i (095()S(0) |
NL,equi Pg(k)2

il (5(k)S(k)S(k))’

NL,equi Pg(k?)z

We consider a benchmark of Pg(k) = 1072P;(k), consistent with current searches for
uncorrelated dark matter isocurvature [48]. This corresponds to H/og ~ 1.5 x 1075. Then
the above set of fNI,equi can be computed as

28 I€1H4 gf.)g I€1H4
flgf(i?equi = _gvﬂ—a ~—-1.2x 108 . T
i 7K2H4 H Q‘53 HQH4
fl%(f},equi = gTU_UF% ~ 1.6 X 106 . T
j 6.17
o Wlmtm)HY G B2 oo e (st R HY (6.17)
NL,equi — 9 A4 s Ug ~ . A4
7rsH* ¢(5) H? 3/<5H4
i equi = 53— 715 —3 ~ 4.7 % 10
,equl 3 A4 Hlo ol A4

With a dedicated search for the NG shapes described in egs. (6.11) to (6.14), one can bound
the set of fN1,equi Parameters and consequently, the various coefficients ;. The bound from
the generalized optical theorem given in eq. (5.25) can then be used to further constrain
the same parameter space.

7 Conclusions

Positivity bounds represent nontrivial restrictions on EFTs and can dictate which effective
actions can be UV-completed into a Lorentz-invariant, causal, unitary theory. An important
ingredient in the derivation of such positivity bounds is analyticity of the S-matrix, which
follows from causality in Lorentz-invariant EFTs. This is precisely one reason why the
application of positivity bounds in theories where Lorentz invariance is spontaneously
broken is subtle.
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In this work, we have focused on one such class of EFTs, namely, those that can describe
the inflationary Universe. During inflation, time translation symmetry is spontaneously
broken, and at energies below the symmetry-breaking scale, the EFT typically would not
have a manifestly Lorentz-invariant description. Consequently, fluctuations in the EFT
can propagate at speeds different from the speed of light. More importantly, if there are
multiple propagating fluctuating modes, some will generically propagate faster than the
rest. This case can then give rise to scenarios where the faster-moving fluctuations mediate
interactions between the slower-moving modes that are apparently “acausal” from the
perspective of the slow degrees of freedom. We have seen this phenomenon happen explicitly
when working in the Breit parameterization in a two-field scenario where such interactions
can give rise to poles of the S-matrix away from the real s axis, invalidating the standard
prescription for deriving positivity bounds using analyticity.

Given this pathology, we have focused on multifield scenarios where all the fluctuations
propagate at speeds parametrically close to the speed of light. While in such scenarios
the S-matrix is analytic, one can still have nontrivial restrictions on theories originating
from Lorentz-breaking effects. To illustrate these bounds, we have focused on four types of
inflationary EFTs, including both adiabatic and isocurvature perturbations. By applying
conventional elastic bounds as well as more stringent constraints from the generalized
optical theorem, all the while employing the Breit parameterization, we have obtained new
positivity bounds on various Wilson coefficients of the inflationary EFTs.

Interestingly, these coefficients also give rise to NG of primordial perturbations that can
be searched for using CMB and large-scale structure observations. Therefore, our positivity
bounds can nontrivially constrain the parameter space relevant for such searches. As an
illustration, we have focused on a Planck trispectrum search with adiabatic fluctuations
and demonstrated how positivity bounds can disfavor large parts of the parameter space
that is otherwise viable. Similar conclusions can be obtained in the context of NG searches
when both adiabatic and isocurvature perturbations are present. While the current Planck
constraints from isocurvature NG are not directly applicable to our predicted shape of
the bispectrum, we have computed such shapes and derived the associated positivity
bounds. Along the way, we have also shown how, in a multifield scenario, bounds from the
generalized optical theorem can give a stronger constraints over standard elastic positivity
bounds alone.

Looking forward, arguably the most pressing open question is to determine whether
positivity arguments can be constructed in theories with multiple distinct speeds of sound.
Resolving this issue is not merely a technical requirement for multifield EFTs, but rather a
challenge for studying nonrelativistic EFTs more generally. Even for single-field theories,
if ¢s < 1, the UV can introduce additional states propagating outside this cone, and the
apparent acausality returns, modifying the analytic properties of UV amplitudes and thereby
undermining the dispersive arguments that lead to positivity when working in the Breit
parameterization. Whatever form of modification to the conventional approach is required
to achieve this generalization, the result would open the power of positivity to the enormous
range of EFTs that do not exhibit Lorentz invariance.
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A Computation of bispectrum shapes

In this appendix, we present various details associated with the computation of various
three-point functions in the context of the Lagrangian in eq. (4.19). We follow the notation
in ref. [53] and refer the reader to ref. [54] for a review of primordial non-Gaussianity.

We treat both & and o as massless fields during inflation. To write down their
inflationary mode functions, we first parameterize the inflationary spacetime metric in
conformal coordinates as

ds?

2 2
= (A + &), (A1)

Here H is the Hubble scale during inflation, which we take to be approximately constant. For
simplicity, we will now work in units where H = 1 and later reintroduce H by dimensional
analysis. The mode functions for massless scalar fields follow after canonical quantization,
and we can write them as

O(n,k) = fr(n)af + fe(n)a_x, (A2)

where ® can be either £ or o, and k is the comoving momentum of the fluctuating mode.
The mode functions fx(n) are given by

1 .
= 1 — ikn)e™,
Ti(n) = == m)

(A.3)

-3

fe(n) = o

Using these mode functions, we can compute the relevant three-point functions using

(1 + ikn)e ™,

the “in-in” formalism (see, e.g., ref. [55]). This computation determines the expectation
value of an observable O(t) at time ¢; as

(O(ty)) = O|U (ts, t:) O1(ts)U (ty,1:)|0)

(A.4)

t;——oo(1—ie€)

where

Uty t;) = T exp (—i /t _tf dt H}nt(t)> : (A.5)

(3
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is the time evolution operator with H(t) the interacting part of the Hamiltonian evaluated
in the interaction picture. Thus, the cosmological correlation functions involve both the
time-ordering operator T and the anti-time-ordering operator T (via UT), contrary to a
computation of the S-matrix. Other than this difference, the computation of expectation
values can be carried out by expanding the exponentials in eq. (A.4) along with Wick
contractions, as in a standard flat-space computation. In particular, we take the operator
O;(ty) in eq. (A.4) to be Or(ty) = ®(no — 0,k1)P(no — 0,k2)P (10 — 0,ks) since we are
interested in a computation of the three point function. Here 7y denotes a conformal time
towards the end of inflation, corresponding to ty in eq. (A.4), where the expectation value
is evaluated.

Looking at egs. (4.19) and (A.4), we observe that to compute the three-point functions
at leading order in couplings and at tree level, we need to calculate only the time-ordered
contribution. We can then obtain the full answer by adding its complex conjugate, corre-
sponding to the anti-time-ordered piece. Furthermore, eq. (4.19) has both temporal and
spatial derivatives acting on the fluctuations. Therefore, we need only two types of Wick
contractions (at the leading order in perturbation theory),

. n2k2 )
(@0 = 0, k)@ (n, —k)) =~ " (A.6)
(@ (10 = 0, K)D,B(17, —k)) = %(41@)(1 — ik)eikn,

from which we can build the rest of the correlator. We also rewrite here the first line of
eq. (4.19) for convenience,

Lyy D % [—(4,{15 + k20) (9€)? — 2(ko€ + K46)(0M€D,0) — (2K3€ + 14350")(80)2]. (A7)

(€£€) correlator. The inflaton three-point function receives a contribution from the x;
term in eq. (A.7) and is given by

(€(k1)&(ka)E(ks))
2-diky ¢o [ AN, 5 9[04 | 2 - 2\] ik
BN /OOF(U /ﬁ)[kz/fgﬂ + 7 (k2 - k3)(1 — ikagn — kaksn )]6 2 (A.8)

+ c.c. + perms.
As in the main text, we have denoted k;;...,,, = k; + kj + - -- + ky,. To compute the above
integral, we can use the relation,

0 ” Z‘l—l-a
/_ dnn®e™ = ~iTa I'(l+a). (A.9)

After further simplification, this leads to

(€(k1)&(ka)é (k3))

_ 261 o[ 2KR3R (ko - ks)kT (1+ ka3 +2k2k3>
K3k3k3 AL

(A.10)

+ 2 perms.

k3os k123 kias  kiyg
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(o&€) correlator. This correlator has the same structure as above since both o and £ are
massless fields, except we need to account for the two terms proportional to ko in eq. (A.7).
The result is still given by

(o(k1)€(k2)¢(ks))
Ky o |2kFR3RS (ko - ka)k? (1+ kas n 2k2k3>
a kTSRS AL kg k123 k123 k3oq (A.11)
Ko o [2k3K3K3 (ko - ki)k3 ( k1o 2k1k2)
- — 1 k ki) ».
" {Qk%kg’kg’ At [ ka3 k123 * k123 * k?yq + (k2  ka)

(o) correlator. The structure remains same as above, except the individual contribu-
tions are controlled by 3 and k4:

(o(k1)o(k2)E(ks))
k3 do [2kPK3RS (ki - ko)k3 <1+ k12 +2k1k2>
ORSKSRS At | Koy K123 kias — k%gg (A.12)
ki Qo | 2kk3IK3 (kl-kg)k§< k13 2k1k3)
= — 1 ki <> ko) .
+{2k§k§k§; A4l ks K123 T s T Ky, )| T o ke)

(coo) correlator. This case is identical to the (£££) correlator, except that 4k is
replaced by ks5:

(o(k1)o(ka)o(ks))
] 2k2k2k2 ko - k k2 k 2kok A.13
_ 3553 3¢_2[ 1323_(2 3)1(1Jr 2 223) +9 perms. (A-13)
2k7ksks At | kfyg k123 ki2z  Fias
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