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We present evidence for a duality between Jackiw-Teitelboim gravity minimally coupled to a free
massive scalar field and a single-trace two-matrix model. One matrix is the Hamiltonian H of a holographic
disorder-averaged quantum mechanics, while the other matrix is the light operator O dual to the bulk scalar
field. The single-boundary observables of interest are thermal correlation functions of O. We study the
matching of the genus zero-, one- and two-boundary expectation values in the matrix model to the disk and
cylinder Euclidean path integrals. The non-Gaussian statistics of the matrix elements of O correspond to a
generalization of the eigenstate thermalization hypothesis ansatz. We describe multiple ways to construct
double-scaled matrix models that reproduce the gravitational disk correlators. One method involves
imposing an operator equation obeyed by H and O as a constraint on the two matrices. Separately, we
design a model that reproduces certain double-scaled Sachdev-Ye-Kitaev correlators that may be scaled
once more to obtain the disk correlators. We show that in any single-trace, two-matrix model, the genus
zero two-boundary expectation value, with up to one O insertion on each boundary, can be computed
directly from all of the genus zero one-boundary correlators. Applied to the models of interest, we find that
these cylinder observables depend on the details of the double-scaling limit. To the extent we have checked,
it is possible to reproduce the gravitational double-trumpet, which is UV divergent, from a systematic
classification of matrix model ‘t Hooft diagrams. The UV divergence indicates that the matrix integral
saddle of interest is perturbatively unstable. A nonperturbative treatment of the matrix models discussed in

this work is left for future investigations.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) is an
ansatz for the statistical properties of the matrix elements of
simple operators between high-energy microstates in quan-
tum chaotic and thermalizing systems [1,2]. In a given
system that exhibits level repulsion of an exponentially
dense spectrum, such matrix elements are expected to be
pseudorandom, and an ensemble can be formed by aver-
aging within narrow energy bands. Alternatively, the
randomness may be understood as referring to an ensemble
of systems sharing the same simple thermal correlation
functions.
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We will embed the ETH in a matrix model framework.
This will make the ansatz more precise, extend its regime of
validity, and clarify how to compute thermal higher-point
functions. In the examples we will consider, the matrix
model will reproduce correlation functions at time scales
ranging from prethermalization to postscrambling. Matrix
models of the type we define would not be expected to
reproduce behavior at ultrashort times in theories with a
free UV, or at exponentially long times that depend on the
specific fine-grained microstates.

Perhaps surprisingly, the matrix models that describe
thermal mean field theory are strongly non-Gaussian. Thus
the standard Gaussian ETH ansatz does not agree with
higher-point functions at leading order, even in systems
for which the thermal correlators factorize into one and
two-point functions. This observation resonates well with
the non-Gaussian generalizations of the ETH ansatz put
forward in [3] capable to accommodate nontrivial
OTOCs [4-8]. Despite these complications, one of the
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models we consider will turn out to be integrable in a
certain sense.

A two-matrix model provides a unified framework for
the ETH and the Wigner-type matrix model for the
Hamiltonian H that defines the spectrum. In this paper,
we will demonstrate this for the quantum mechanics dual to
Jack-Teitelboim (JT) gravity with propagating matter. With
O the operator dual to a free massive scalar field in the bulk,
we will define double-scaled two-matrix models for H and
O, generalizing the Saad-Shenker-Stanford (SSS) matrix
model [9] and its deformations [10,11]. The genus expan-
sion will now be decorated by O graphs, which are
associated to geodesic worldlines.

Unlike pure JT gravity, which is exactly solvable and
finite, JT gravity with propagating matter can at best be
regarded as an effective field theory due to its UV
divergences. As was mentioned in Sec. 6.1 of [9] and
Sec. 5 of [12], these divergences arise from long, thin
wormholes. We find that it is possible to reproduce these
divergences using matrix-model perturbation theory.
Because a nonperturbative treatment of the matrix integral
is not necessary to study the bulk effective field theory,
we may refer to our matrix models as “effective matrix
models.”

To be precise, we are interested in two-matrix models
with a single-trace potential. These matrix integrals take
the form

/ dO dH e~ VH.0), (1.1)

where V(H,©) is an arbitrary (and generically infinite)
linear combination of words made with the letters O and H.
In contrast, the SSS matrix model is a single-trace model of
a single matrix, H. Single-trace models (with any number
of matrices) admit a genus expansion where each order in
the expansion corresponds to a sum over ‘t Hooft double-
line graphs with a given topology. Furthermore, each trace
present in an expectation value corresponds to a boundary.
In the SSS model, the leading-order result for the partition
function of H is given by a sum over ‘t Hooft graphs with
disk topology':

N>
(Tr e Py . = G% D . (12)

'(-) refers to the expectation value defined using the matrix
integral. The “disk” subscript refers to the topology of the
‘t Hooft diagrams.

This matrix-model computation is equivalent to a disk
gravitational path integral in pure JT gravity. In our
two-matrix models, we can construct thermal n-point
correlators using the matrices O and H. To leading order
in the genus expansion, the thermal two-point function in
the matrix model is again given by a sum over planar
diagrams:

(Tr e 7O P10

The red double-line is a propagator of the O matrix, while
the black double-line is a propagator of the H matrix. In JT
gravity minimally coupled to a free massive scalar field,?
the corresponding disk two-point function is computed
using the extrapolate dictionary applied to a Euclidean
black hole background.

The main technical objective of this paper is to explore the
duality between single-trace, two-matrix models and JT
gravity with matter. We are interested in correlators with
additional O insertions, additional boundaries, and addi-
tional handles. Our technical results may be summarized as
follows:

(1) In Sec. VII, we provide an algorithm for construct-
ing a potential V(H, O) for which the planar matrix
model n-point functions [namely, the higher-point
analogs of (1.3)] equal the disk n-point functions of
O in JT gravity. This establishes the duality at the
level of the disk. Explicitly determining V(H, O) is
tedious in practice. The algorithm introduces a
fictitious parameter € and weights each of the
various terms that contribute to a gravitational n-
point correlation function by some power of €, such
that (roughly speaking) higher-point correlators are
weighted by higher powers of €. The potential
V(H,O) is organized as a series expansion in e.
The last step in the algorithm is to set € — 1. We
consider two specific schemes for e-deforming the
gravitational correlators, which we call the “Selberg
regulator” and the “g-deformed regulator.” We have
not proven that the series representation of V(H, O)
is convergent, so strictly speaking the existence of
these matrix models is conjectural.

2Going forward, we may refer to this theory as “JT gravity” or
“JT gravity with matter” out of convenience. The theory without
matter will always be called “pure JT gravity.”
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(i) In Sec. VIII, we argue that the matrix model defined
using the g-deformed regulator can be generalized
into a three-parameter model (where € is one of the
parameters) for which the disk correlators equal the
correlators that were studied in [13] in the double-
scaled Sachdev-Ye-Kitaev (SYK) model. It was
shown in [13] that these correlators can be scaled
once more to obtain those of JT gravity with matter.
To the extent that we checked, the three-parameter
matrix model has a symmetry that may be predicted
using the framework of [13]. In our calculations, the
appearance of this symmetry is highly nontrivial and
provides further support for the claim that the model
is well-defined.

(iii) In Sec. III, we provide another argument for the
existence of two-matrix models that reproduce the
desired gravitational disk correlators. This argument
is more explicit about the form that V(H, O) takes.
We first point out that in any ensemble-averaged
theory whose correlators are exactly given by the
disk correlators of JT gravity with matter (such as
the SYK model in the appropriate scaling regime),
the operators O and H obey an operator equation.
In the semiclassical (or high-energy) limit,” where
the correlators become conformally invariant [with
conformal group PSL(2,R)], this operator equation
becomes the condition that the scaling dimensions
of the primary operators appearing in the OO
operator product expansion (OPE) are in the set
{1} U{2A +2n:n € Z,,}. Using the 1D con-
formal field theory (CFT) bootstrap, one may prove4
that this condition, together with associativity of the
OPE and conformal invariance, guarantees that all of
the n-point correlators of O agree with those of a
bosonic generalized free field (GFF). Although we
are generally interested in JT gravity away from the
semiclassical limit, this result nonetheless motivates
us to construct a two-matrix ensemble by squaring
our operator equation and adding it to the matrix
potential with a large coefficient such that it is
enforced as a constraint. Note that associativity of
the OPE is guaranteed in our model because we are
representing the operators O and H using matrices,
and matrix multiplication is associative. This model

By “semiclassical limit,” we are always referring to the
Gy — 0 limit. Equivalently, this is the limit in which the
coefficient of the Schwarzian action, which we may call ¢,
goes to infinity. By dimensional analysis, ¢, has units of length,
and is the only scale in the Schwarzian theory. Because all inverse
temperatures are naturally measured in units of ¢,, the semi-
classical limit may be thought of as a high-energy limit.
Furthermore, in this limit, the wiggly AdS boundaries become
rigid, so the conformal invariance of boundary correlation
functions is restored.

See Appendix D for the proof. See [14,15] for further 1D CFT
bootstrap results.

@iv)
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is a single-trace matrix model and we conjecture that
it correctly computes all of the disk correlators in JT
gravity with matter. In Sec. VI, we support this
conjecture by showing that a large class of
Schwinger-Dyson equations in this model are solved
by the gravitational n-point correlators. To verify the
Schwinger-Dyson equations, we need to use certain
integrability relations. One of these is only available
in the double-scaling limit.

Our next results concern the two-boundary, genus
zero correlators in the matrix model. These are
computed by summing over ‘t Hooft diagrams with
cylinder topology. In Sec. IX, we show that in any
single-trace, two-matrix model, the connected two-
boundary correlators

(Tre PrHTre/rH) (1.4)

cylinder

and

(TrOe i TrOePri) (1.5)

cylinder

may be determined directly from the disk correlators
even if the matrix potential V(H, ©) is unknown.
Roughly speaking, our strategy is to cut into pieces
the ‘t Hooft diagrams that contribute to the disk
amplitudes and reassemble the pieces to form dia-
grams with cylinder topology, which we systemati-
cally classify. Our result is reminiscent of recursion
in one-matrix models, where higher-genus and
higher-boundary correlators may be recursively
computed from lower-genus and lower-boundary
correlators.” For a ‘t Hooft-scaled model (where
the matrix potential is proportional to N, the number
of eigenvalues of each matrix), our algorithm for
computing the cylinder correlators yields unambigu-
ous results. However, for the double-scaled matrix
models that are dual to JT gravity at the level of the
disk, our algorithm only returns an unambiguous
answer once the scheme for taking the double-
scaling limit is specified. We obtain results using
the aforementioned Selberg and g-deformed regu-
lators. As explained in the first point above, these
regulators are part of the definition of the matrix
models.

Using the Selberg regulator, we match the matrix-
model cylinder computations to their analogous
double-trumpet calculations in JT gravity (either
the empty double-trumpet or a double-trumpet with

*We are hopeful that there exists a general formulation of
two-matrix model recursion, but finding it is beyond the scope of
this work.
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one O inserted on each boundary). In JT gravity,
these quantities receive contributions from the par-
tition function of the scalar field on the rigid double-
trumpet, which is given by

) e—nAb
Zocata(b) = ; (I—eP)(1=e ). (1=e)
(1.6)
1
= e (1.7)

where b is the length of the closed geodesic that
wraps the double-trumpet and A encodes the mass of
the scalar. We have explicitly matched the contri-
butions from the first four terms above to the first
four classes of ‘t Hooft diagrams that appear in our
infinite classification of cylindrical ‘t Hooft dia-
grams. We conjecture that the sum over all the
‘t Hooft diagrams reproduces the full double-
trumpet result. We further conjecture that our
method for computing the sum over cylinder dia-
grams can be extended to compute the sum over
diagrams with any topology, and we expect that the
result will match the gravitational path integral with
the same topology (including the matter-determinant
factor).

Using the g-deformed regulator, the results for
the cylinder correlators are the same as in the
Selberg model, except the partition function is
replaced by

Z(b) = ; (16_ = (1.8)
1—e?
-—— 5 (1.9)

Curiously, this partition function has a Hagedorn
temperature because the denominator goes to zero
for sufficiently small . Finding an independently
defined bulk theory that reproduces this result is an
interesting question which is beyond the scope of
this paper.

Note that the gravitational duals of (1.4) and (1.5)
are ill-defined because the gravitational path integral
includes an integral over b, and this integral is either
nonconvergent (in the Selberg model) or simply ill-
defined (in the g-deformed model) due to the small-
b behavior of the above partition functions. As
mentioned above, we can still reproduce Z .y, (b)
for all b using the Selberg matrix model by writing
the result as an infinite series of terms that are
individually well-defined. In Sec. IX D, we explain

that our two-matrix models are necessarily non-
perturbatively unstable. To illustrate this point, we
consider a single-matrix multitrace matrix model for
H [which could arise by integrating out O in (1.1)].
For simplicity, we consider a ‘t Hooft scaled matrix
model, where the n-trace® part of the potential is
weighted by N>7. We review that the partition
function (Tre™H) to leading order in N is deter-
mined by the saddle point of the integral over the
eigenvalues of H. We then show that the connected
two-boundary correlator (Tre#:HTre=#xf) to lead-
ing order in N is directly determined by the Hessian
of the matrix potential evaluated at the saddle. The
bad behavior of the double-trumpet is directly linked
to a perturbative instability of the saddle in the
eigenvalue integral.

Our final main result pertains only to JT gravity with
matter. It was shown in [16,17] that the disk n-point
correlators may be conveniently computed using a
set of Feynman rules. A graph drawn on a disk
represents a set of Wick contractions of the external
operators. We show in Sec. II that these Feynman
rules may be naturally extended to other topologies.
In particular, we draw graphs on genus zero surfaces
with two or three boundaries and show that the
naively extended Feynman rules yield sensible
results. This result supports many of the other results
in this paper but may also be of independent interest
to JT gravity experts.

We now outline the structure of the remainder of this
paper. In Sec. I, we review JT gravity with matter with an
emphasis on the disk and double-trumpet calculations that
will be compared against the matrix models. We also
conjecture how the gravitational Feynman rules which
were originally developed for disk computations can be
extended to arbitrary topologies. In Sec. III, we briefly
step away from JT gravity to discuss the ETH and its
relevance to holography in full generality. We then return
to JT gravity to discuss the operator equation relating O
and H that is used to construct a constrained matrix
ensemble. In Sec. IV, we introduce a toy model where
V(H,O) is Gaussian in . This model succeeds in
computing the holographic two-point function but fails
to correctly compute higher-point functions. The purpose
of introducing this model is to make the reader comfort-
able with two-matrix models, and also to introduce
notations and ideas that will be useful later in the paper.
Section V summarizes the most important points of
the remainder of the paper while avoiding most of
the technical details. In particular, we outline the defi-
nitions of the Selberg and g-deformed matrix models, and
we review the basic strategy of our double-trumpet

(vi)

6 ) .
“l-trace” corresponds to single-trace, “2-trace” corresponds
to double-trace, etc.
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computations. The reader who has no time can skip to the
discussion section after Sec. V. In Sec. VI, we show how
in the constrained matrix ensemble, a large class of
Schwinger-Dyson equations is solved by the disk corre-
lators of JT gravity with matter. In Sec. VII, we explain in
more detail our algorithm that allows one to start from the
answers for the holographic disk n-point functions and
work backwards to determine the potential V(H, O). In
Sec. VIII we carefully define the Selberg and g-deformed
matrix models and explain the connection between the
g-deformed model and the double-scaled SYK model,
using the results of [13]. In Sec. IX and Appendix F, we
discuss our computation of (1.4) and (1.5) in full detail.
We compare the matrix model results against their
gravitational counterparts. We also discuss the perturba-
tive instability in the matrix model that is dual to the UV
divergence in the double-trumpet. In the discussion
section we speculate on how our results may be gener-
alized to higher dimensions, and we compare our results
with other works that used the ETH to study JT gravity
with matter. The appendixes mostly contain derivations of
various special function identities as well as other
technical calculations.

II. JACK-TEITELBOIM GRAVITY
WITH MATTER

In this section we review JT gravity [9,18] minimally
coupled to a free massive scalar. Correlation functions on
the disk are determined by a set of Feynman rules [16].
Using the boundary particle formulation of JT gravity
[17,19,20], we also compute the two-point function on the
double-trumpet, including the matter 1-loop determinant.
The result is again described by the Feynman rules of [16],
suggesting that they generalize to correlation functions on
all genus g Riemann surfaces with n boundaries M, ,.

We consider JT gravity coupled to a scalar with the
Euclidean action

I{g. ¢, @] = =Sox + L;r[g. ] + L,]g. 9. (2.1)

Inlodl==3 | Vilre2= [ Vho(k-1). (2)

1
alaol =3 [ Vata o0+ mg?) 23

where y is the Euler characteristic of the two-dimensional
manifold, S is the entropy of an extremal black hole, ¢ is
the dilaton and ¢ is a scalar field with mass m. To compute
the path integral on M, ,, interpreted as (Z(f;)...Z(B,)) ;..
in the dual matrix model [9], we fix the regulated boundary
lengths of n asymptotically anti—de Sitter (AdS) regions to
be f3, /€, ...3,/€ and the dilaton ¢|,,, = y/€. We follow the

B2 B3

B 54

N o/

Be Bs

FIG. 1. An example of a Feynman diagram that contributes to
the thermal six-point O correlator. Each blue line is a Wick-
contraction through the bulk of two boundary operators with
scaling dimension A. The correlator is a sum over all ways of
contracting the operators. Each disk-shaped region is labeled by
an s parameter that is integrated in the range s € (0, o) to obtain
the value of the correlator. The Euclidean-time separation
between the external operators is indicated by the f, ..., fs
parameters. We adopt a convention where a blue bulk line always
has scaling dimension A.

conventions of [9] and sety = 1/ 2." For the scalar field 17
we take either Dirichlet of Neumann boundary conditions,
such that the dual boundary operator O has the scaling

dimension
1 1
A=_44/-+m’
5 1 +m

The choice of sign depends on which of the two standard
boundary conditions we choose for ¢. Given any A > 0,
there is a unique choice of the sign and m?> > _}T such that
(2.4) holds.

(2.4)

A. Correlation functions on the disk

Disk correlators of (O have been computed in
[16,17,19-21], which we now review. In the absence of
gravity, the correlators of O are those of a GFF. The two-
point function at zero temperature is (O(7) O(0)) g = 7724
and higher correlators are computed by Wick contractions.

To include the gravitational corrections, one must
reparametrize the GFF correlators and then integrate over
all reparametrizations with the Schwarzian action,

(Tre P O(1,)...0(7,)) aisk

o Df / A /
= m(f (z0)2 .. (f (za))2
x (O(f(11))...0(f (z,))) grre sV, (2.5)

"We use a different convention for the overall normalization of
the density of states, see below.

066015-5
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where f(7) is a reparametrization field that determines the
embedding of the boundary curve into the hyperbolic disk.
The notation on the left-hand side of (2.5) indicates that the
gravitational correlator is not normalized by the partition
function (Tre?H).

The disk correlator of an arbitrary number of O operators
can be computed exactly, and the result resums all the
perturbative gravitational corrections. In particular, [16]
devised an elegant set of Feynman rules that assigns a

(i) For each O insertion, we include a factor of

A

finite-dimensional integral to each Wick contraction of the
@) operators.8 For example, a Feynman diagram that
represents a particular six-point Wick-contraction is
depicted in Fig. 1.
The value of each Feynman diagram is set by the
following rules:
(i) For each boundary segment of length /3, we include a
factor of e#*", where s labels the disk-shaped region
that is adjacent to the boundary segment.

S2

51 B (F(Aj:islztiSQ))l/2 _ (FA)l/Q
- - 12 )

ToA (2.6)

where s; and s, are associated to the two regions adjacent to the operator, and 4+ means that we take a product of gamma
functions for all four choices of the signs.9 Here, the normalization of operators is chosen to be such that at short distances
the two-point function is (Tre 7?7 O(7)O(0)) 4y ~ 22 (Tre 1) i, 7 — 0.

(iii) For each crossing of two lines, we include a factor of

A Ag
52
S1 S3

S4

which is the 6j-symbol of the 8[(2,R) algebra.'
The parameters A; and A, represent the scaling
dimensions associated to the two crossing lines. The
parameters sy, ..., 54 represent the four disk-shaped
regions that surround the crossing. In the theory with
one scalar operator we set A; = A, = A. More
generally, if we had two different free scalar fields
in the bulk, we would use (2.7). The symmetries of
the 6j-symbol are the symmetries of its graphical
representation, e.g. reflections across A; or A, lines
and reflections across the horizontal or vertical axes.
The definition of the 6 j-symbol and its properties are
reviewed in Appendix A.

(iv) After including all of the appropriate factors as
specified above, we integrate over each s parameter

8An alternative derivation of these rules was given in [17],
which is based on a formalism developed in [19,20].

'That is T(A +is, & isy) = D(A 4 isy + isy)[(A + is;—
lSz)F(A - iSl + lSz)F(A - iSl - iSz).

%, symbols also appear in the computation of AdS ampli-
tudes in general dimensions, as was shown in [22].

. Al S1 So (27)
o AQ S3 5S4 ’

with the Schwarzian density of states [$°dsp(s),
where''

1
= sinh(2xs).

T 2al(2is) 72 (28)

p(s)
Sometimes we use the energy basis E = s> and the
corresponding density of states

po(E) = 2%2 sinh(2zVE) (2.9)

such that p(s)ds = py(E)dE.

1. Examples

To demonstrate how the rules described above work in
practice and also for later use, we explicitly write down a
few correlation functions.

""Our convention for the Schwarzian density of states is related
t0 [9]by p(s) = 2pere (5)- Equivalently, we use conventions of [9]
with a rescaling e%0 — 2¢%. We find this normalization more
convenient for computations involving 8[(2,R) 6j-symbols.

066015-6
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We start with the two-point function

51

(Tre P2O(T)O(0)) aiskc = = eSO/ dsydsy p(sy)p(sy) e~ (Preitrzsy)
0

Ba

where f; = 1,5,

(TeeP0(n) ... O(r))ise = By

fa

F(A + iSl + iSQ)
T(2A) ’

(2.10)

= f — 7. The four-point function has three terms corresponding to three different GFF Wick contractions

B2

B2 Ba
51 + Bg®5l - 53@51 (2.11)
Ba Ba

Awﬁ (dsip(s;)e ’)<F1A2r23rA )2 (2.12)
5(s1 —s3)  O6(sy—84) A 515
(et e o)) 213

where f; denote the time differences between operators.
Assuming 0 <7y <...<7) <f, we defined f;=
P—(t1=14).pr =71 — 12,3 =1y — 73,84 = 73 — 74. For
convenience, in the first two terms we introduced two
energies for the same region and included corresponding
delta functions to remove one of the energy integrals. In
Appendix B we check that the relative coefficient between
the first two terms and the third term is indeed as given in
(2.13). Later, we will also need diagrams contributing to the
six-point function and we will discuss them in due course.

For some Feynman diagrams we have a choice of where
to put the intersections of the bulk lines. Once we fix a
Wick-contraction, the result is independent of where we put
the intersections. This is guaranteed by the orthogonality
and Yang-Baxter equations. We express them pictorially as

A 51 A $1
A2k><j><211’2 -k _ [SNCAT)
AL
7 X

(2.15)

respectively. The expression for the orthogonality relation is
o Ay osy kY (A s K S(k—K
0 A, sy s Ay sy s p(k)

(2.16)
Similarly, one can write the Yang-Baxter equation from
(2.15). If we impose the condition that the bulk lines should
not have any voluntary crossings, then only the Yang-
Baxter equation is needed to ensure that the Feynman
rules are unambiguous. More identities satisfied by the
6j-symbol are described in Appendix A. In Sec. VIII we
will encounter a g-deformed set of Feynman rules where
the 6 j-symbol obeys the Yang-Baxter equation, but not the
orthogonality equation.

B. Correlation functions on the double-trumpet

We are also interested in correlation functions on the
double-trumpet. Here, we discuss the two simplest cases:
the double-trumpet with no O insertions, and the two-point
function on the double-trumpet, with one O on each
boundary. In both cases, we include the matter 1-loop
determinant.

1. Double-trumpet with 1-loop determinant

The path integral on the double-trumpet without O
insertions is

066015-7
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(Tre™PtHTre™PeH) |

= /oo dbb Ztr(ﬁL’ b)Ztr(ﬂRv b)Zscalar(b) (217)
0
=BL Br , (2.18)

where cyl indicates the cylinder topology. The partition
function of the scalar field on the double-trumpet is Z .
which we explicitly define in (2.23). If we omit the Zg .
term, we obtain the answer computed in [9] for pure JT
gravity. It is given as an integral over the moduli space of
hyperbolic manifolds with two boundaries, parametrized by
the length of the closed geodesic b. The “trumpet” partition
function Z(f3, b) represents the integral over the extrinsic
curvatures of a “wiggly” AdS boundary and is given by [9]

Zu(8,b) = B b (2.19)
- / ® s S808) g (2.20)

0 ¥
_ g (2.21)

PNE

To compute Z ., We may canonically quantize the
scalar field on the analytic continuation of the double-
trumpet to Lorentzian signature with the metric

ds* = dp* — cosh? pdr?, (2.22)
where p € (—o0, ) is the spatial coordinate, and 7 is time.
Each positive-frequency mode is labeled by n € Z,, and

has energy A + n. The partition function, computed with
periodicity b in the imaginary time direction, is thus

ZscalaI(b) = H 1— e_lb(A+n) (2'23)
n=0
oo e—nAb
- ; (I=—e?)(1=e2).. (1-e) (224)
© e—wa
= exp (; e e_wb)>, (2.25)

where we provided three equivalent expressions with
different interpretations. The first formula makes the
relation with the single particle spectrum manifest. In
the second formula (2.24), we can separate out the counting
of conformal primaries and descendants. For example, the
n =1 term

-A

eAb -
_ o—(A+k)b
— b E :
l1—e =

counts the primary state A together with its descendants.
The n =2 term

counts the double-trace operators (states) 2A + 2m, where
the factor

again accounts for the descendants. The n = 3 term counts
the primary states with dimensions 3A + 2m; + 3m, (for
my,my € Z5) and their descendants. The pattern contin-
ues for higher-trace operators. Finally, the third expression
(2.25) connects with the Selberg trace formula which we
discuss next."

An alternative way to compute the 1-loop determinant,
which is simpler to generalize to an arbitrary hyperbolic
manifold, is to use the Selberg trace formula. It relates
the spectrum of the Laplace operator on a hyperbolic
manifold M to the spectrum of closed geodesics (e.g.
see [23])

e /8 i b
V2t 57 o sinthb’

treV’ = f(1)A + (2.27)

In the rhs the sum is over all closed geodesics y and b, is the
length of this geodesic."” The sum over w can be thought of
as a sum over multiple windings of the “primitive”
(traversed once) geodesic y. In the first term in the rhs A
is the area of the manifold and f(z) does not depend on the
particular manifold and will not play a role in our
discussion."*

To compute the determinant we use the standard trick to
relate it to the heat kernel

2To relate (2.25) to (2.23) we first expand 1—e+”b =), e~
and then sum over w.
Here, our convention is that we sum over unoriented primitive
geodesics. o

14 /8
f(z) = Wfow ar =g
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Zaiar(M) = det(=V? + m?)~1/2 (2.28)
-1
=expr log(=V? + m?) (2.29)
1 o (242
= exptr/ AT ¢=5(-92+m?) (2.30)
2 ). T

up to a constant that diverges as we take ¢ — 0. After
inserting the Selberg trace formula (2.27) and integrating
over 7 we have

© e—wby(A—%)

1
ZscalaI(M) = exp (#A + EZ w_h,) . (231)

7 w=1 wsinh—

Strictly speaking, the Selberg trace formula applies to
compact hyperbolic manifolds. On the other hand, we
are interested in manifolds with infinite area. To deal with
this we use Gauss-Bonnet theorem to write A = —2zy +
Jou K and absorb this term into the renormalization of S
and y.

(Tre PO Ty e PrH O)

cyl =

To compute this quantity, we first compute the two-point
function on the rigid double-trumpet as a function of b,
integrate over boundary reparametrizations using the
Schwarzian action, multiply by Z..(»), and finally inte-
grate over b. The result may be expressed as an infinite sum
(2.36), where each term in the sum captures the contribution
t0 Zeatar (b) from a single term in (2.24). We use the boundary
|

(TrePH OTre P+HO) )

o
:/ dsydspp(sy)p(sg)e” Vil (TR, The) /2
0

%%Jr{i 51 SR}+i{2AA+2m 5

m=0

SpSL

On the double-trumpet there is a single primitive
geodesic and (2.31) agrees with (2.25). While on the disk
there are no closed geodesics and the 1-loop determinant
contributes only the area term that renormalizes S, y.

In the presence of matter the integral (2.17) has a UV
divergence at small'® b [9]. This can be seen by expanding the
Pochhammer symbol (e72%, e7") =[], (1 — e™?(4+m)
in (2.23) at small b. Alternatively we can note that in the UV
limit » — 0 the mass is not important and we can approxi-

mate by a massless free scalar on a strip with the partition
}!2 l!2
function dominated by the vacuum ~ent = €.

We consider this divergence as a reflection of the fact
that JT with matter should be considered as a low-energy
effective field theory. We will match this divergence in the
matrix model. In other words, we consider correlation
functions at fixed » and match them with a computation in
the matrix model.

2. Two-point correlator

The next observable we consider is the double-trumpet
with one O inserted on each boundary

O (2.32)

[

particle formalism [ 19] to do this computation in Appendix E.
The upshot is that the Feynman rules of [16] discussed in
Sec. II A still apply, but they are generalized to allow for
closed loops of a bulk line. The 6j-symbol governs the
intersection of all bulk lines, regardless of whether they form
closed loops or extend to the boundaries. For the two-point
correlator on the double-trumpet we have

(2.33)

(2.34)

(2.35)

"This is analogous to the “tachyon” divergence in string theory.

(2.36)
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Here, the gamma functions are as prescribed by the rule (2.6)
with[}, = % I'(A + 2is; ) and similarly for s. The three
explicitly shown terms in (2.36) correspond tothe n = 0, 1,2
terms in (2.24). In the first term, the identity operator (or
ground state) propagates on the closed geodesic and the
energies sy, s are the same. In the second term, a primary
operator O and its descendants propagate around the closed
geodesic. The closed geodesic is assigned a label equal to the
scaling dimension of O (which is A). The intersection of the
closed geodesic with the geodesic connecting the AdS
boundaries implies that we include a 6j-symbol. The third
term corresponds to the double-trace operators propagating
around the closed geodesic. They have scaling dimensions
2A 4 2m for m € Z5y. The general rule is that for each
primary operator (aside from the identity, which is treated as a
special case), we assign its scaling dimension to the closed
geodesic line and include a 6 symbol for the intersection. We
then sum over the terms we get for all the primary operators.
The second term above captures the lone single-trace
operator, while the third term captures the double-trace
operators. In particular, the sum over m in the third term
directly corresponds to the sum over m in (2.26). Similarly,
we can include triple-trace and higher operators, which we
denoted by ellipsis in (2.36).

C. Pair of pants and beyond

In the previous subsection we saw that the gravitational
Feynman rules that compute disk correlators may be
extended to compute the two-point function on the dou-
ble-trumpet. Here, we compute an amplitude involving the
pair of pants and find evidence that the Feynman rules may
be extended even further.

We are interested in the pair of pants geometry with three
AdS boundaries and a geodesic that winds in a figure-8
pattern contributing to the 1-loop determinant, see Fig. 2. In
the previous examples we considered, the bulk lines
divided the geometry into disk-shaped regions. Here, the
bulk lines divide the geometry into three cylinders. We may
extend the gravitational Feynman rules by declaring that for
each cylinder we define two parameters s, s’, one near
each boundary of the cylinder. And include a factor of
(p(s)p(s'))cyr in the integrand, the zero genus two-boun-
dary density-density correlator in the SSS model [9]. The
self-intersection of the bulk line corresponds to the 6;
symbol as usual. Using these extended Feynman rules, the
full amplitude for Fig. 2 is

e [7 Hds 0 B0 S SCEY

§3 Sp

To show this is correct we relate it to the contribution of the
closed geodesic to the 1-loop determinant (2.31). This is
done using an integral representation of the 6j-symbol
(A48) that we derive in Appendix A 5

B2

-

bo—
b

b1 B3

FIG. 2. The blue geodesic divides the pair of pants into three
regions with cylinder topology. The length of the blue geodesic B
is given in (2.39).

3 _
{A s sz} :l/ooH <dbjbj2COS<bij>> e A’jB’
A §3 S 2 0 =1 bj 1-e¢

(2.38)

where B = B(b;, b,, b3) is determined by

B b b
COShE = cosh?2 +2 coshjlcosh?3 (2.39)

It turns out that B is also the length of the blue geodesic in
Fig. 2 on the pair of pants with geodesic boundaries of
lengths by, by, b;. Inserting this into (2.37) and exchanging
integrals over b; and s; we have

—AB

e [ Hdbb 208,155 )en) 75

where we defined

(2.40)

2
x(b) = ETrcos(b\/ﬁ). (2.41)
Each factor (Z(#)x(b))cy = Z(p, b) is the trumpet parti-
tion function. We discuss this fact in more detail in

Sec. IV B. Without the factor 1~ this is the path integral

on the pair of pants (Z (ﬂl) (/32) (83)) g=0.n—3 computed
in [9]. ' Then the factor & = corresponds to the w =1

'*We have an extra 1 because our conventions for the density

of states correspond to [9] with a rescaling % — 2¢%, also
see (2.8).
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contribution to the determinant (2.31) on the pair of pants.
We therefore showed that (2.37) is indeed the contribution
of the “figure-8” geodesic in Fig. 2. Finally, it is easy to
generalize the above computation to any multitrace oper-
ator propagating on the figure-8 geodesic. We simply
substitute A by the dimension of the desired the multitrace
operator.

It is natural to conjecture that the gravitational Feynman
rules can be extended to compute amplitudes for arbitrary
genus topologies with an arbitrary number of boundaries
and O insertions. A general diagram consists of bulk lines
drawn on a Riemann surface with boundaries. The bulk
lines can end on AdS boundaries where O operators are
inserted, or the bulk lines can form closed geodesics, which
may represent contributions to the 1-loop determinant.
These lines divide the surface into subregions, and each
subregion is characterized by the number of boundaries n
and the genus g. For every boundary of every subregion, we
assign an s parameter. For each subregion, we get a factor
of (p(s1)...p(s,)),,» Which is the inverse Laplace trans-
form of Z,,(B;.....p,) defined in Eq. (127) of [9].
Wherever two bulk lines intersect, we get a 6j symbol
involving the four adjacent s parameters. Furthermore,
wherever there is a closed geodesic that does not intersect
other geodesics (including itself), we get a function of the
two adjacent s parameters:

cos(bs,), (2.42)

e 2 2
/) dbbl_ebbcos(bsl)b

where A’ is the dimension of the primary operator propa-
gating on the closed geodesic. This ensures that the closed

geodesic is weighted by fj_bb in the moduli space integral.
After integrating over all of the s parameters, the result is
equal to the sum/integral over all the gravitational con-
figurations (including the metric and the choice of non-
homotopic geodesics) that have the topology of the
diagram.

Another check of this conjecture comes from the two-
point function on the disk with a handle where the geodesic
connecting the two O insertions is nonself-intersecting.
This was computed in [24-26].

D. Gravitationally dressed OPE

The GFF correlators have SL(2, R) conformal symmetry
and can be decomposed into conformal blocks. For
example, the four-point function is

(O(21)O(73) O(73) O(14 )>GFF

=0t Tttt (2.43)

QA —2A z \* 2A
g T1_2 T§4 1 + : + Z , (244)

where 7;; = 7; — 7; and the cross-ratio is z = ’:z’” In the

OPE channel O(z)O(z,), the first term in (2.44) corre-
sponds to the exchange of the unit operator, while the other
two terms are due to double-trace operators. To see the
latter, we decompose [e.g. see Equations (4.14) and (4.15)
in [27]]

z \2& & (2A)2
— = E — , 2.45
(1 —z) 2 ui@a 1 n 1), 2t () (2:45)
= 2A)2

S o — 2.46
=DV g e, S (@ (246)

where the conformal block is defined by
gn(z) = 7", F(h, h,2h, 7). (2.47)

Let us assume 7; > ... > 74 as in (2.13). Now, if we
dress (2.44) with the Schwarzian mode as in (2.5), the result
is the three gravitational Feynman diagrams (2.13). Each of
the three terms in (2.13) correspond to the three terms in
(2.44). The first two are the uncrossed diagrams, while the
last one is the crossed diagram.

One might ask what happens with the OPE expansion
(2.45), (2.46) after we dress it with the Schwarzian mode. It
turns out that explicit expressions may be derived for each
of the individual terms on the rhs of (2.45), (2.46) after
dressing with the Schwarzian. These are the last two terms
in (2.13) expanded as

(2.48)

n % (523 81,53) P (4551, 83),

(2.49)

where P, is proportional to a Wilson polynomial. The
definition of P, and a more detailed discussion of these
identities can be found in Appendix A. These expressions
can be further integrated over s; as in (2.13) to obtain
formulas in Euclidean time 7;.

An important point that we will use later is that a system
of orthonormal polynomials P,, diagonalizes the 6 symbol
as a map between s,, s4. In Appendix C1 we take the
semiclassical limit of (2.48) and (2.49) and show that it
reduces to (2.45) and (2.46).

III. THE EIGENSTATE THERMALIZATION
HYPOTHESIS AS A MATRIX MODEL

Holographic CFTs have a large-N expansion and a
sparse spectrum of light operators [28]. By definition,
the scaling dimensions of and OPE coefficients involving
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the light operators only are well-defined in the large-N
limit. In contrast, the OPE coefficients that involve heavy
operators do not have a large-N limit. In particular, the
spectrum of black hole microstates becomes arbitrarily
dense for large N. For this reason, computing the exact
spectrum and OPE coefficients at some fixed, large value of
N is in general a hopeless task.

It is much easier to make a well-motivated guess for the
CFT data. That is, it is natural to conjecture that the scaling
dimensions of and OPE coefficients involving the heavy
operators look like a typical draw from some ensemble.'’
We will refer to this ensemble as the “ETH ensemble.” This
conjecture amounts to applying the ETH to holographic
theories, and it was previously studied in connection to
wormbholes and AdS/CFT in [29]. A key point is that self-
averaging observables (such as the black hole partition
function, or thermal correlators of an order one number of
light operators at sufficiently early times) are only sensitive
to the choice of the ensemble itself at large N. Thus, for a
judiciously chosen ensemble, the ensemble’s predictions
for self-averaging observables should be comparable to the
results of gravitational path integral calculations. The
ensemble should be chosen to correctly reproduce the
results of all the gravitational calculations that we know
how to perform at some given energy scale and some given
level of precision.'® Note that there are certain calculations
involving wormholes that we do not know how to perform.

To illustrate these points, consider the expectation value
of a light operator in a black hole microstate, which we will
write as (E|O|E). Let (E|O|E) refer to the average value of
this matrix element in a microcanonical window of width
OE centered around E, in the limit of large N and small §E,
(EIOIE) = lim lim e=5508) % © (E,|O|E,).  (3.1)

1, <2
where (9 is the number of states in the microcanonical
window. Note that when N is large and JE is small, we have
that eS(F-9F) = SEp(E), where p(E) is the large-N density
of black hole microstates, which may be computed from the
black hole saddle in the Euclidean path integral. We can

holographically determine (E|O|E) by taking the inverse
Laplace transform of the thermal one-point function
TreP# O, again computed from the black hole saddle
(we always assume that the temperature is above the
Hawking-Page transition). The result is a smooth function

"To be clear, for the present discussion we are considering
a single, nondisorder averaged theory.

"®Different calculations in the bulk should correspond to
different ensembles. For example, gravitational calculations that
incorporate the effects of irrelevant operators in the Lagrangian
should be more sensitive to the exact CFT spectrum. Hence, the
corresponding ensemble should be more fine-grained. Of course,
the effects of irrelevant operators are more important at greater
energy scales and higher levels of precision.

of E. In JT gravity coupled to a free massive scalar, this
smooth function is zero. For the remainder of this dis-

cussion, let us for simplicity assume that (E|O|E) vanishes
(this can be achieved by subtracting a multiple of the
identity from the bulk operator that O is dual to).

Computing  the  thermal two-point  function
Tre #7 Qe O in the same way, we can deduce another
self-averaging quantity,

(E1|O|Ey)|?

— T ; ~S(E|.0E)-S(E,,5E) 2

= lim lim ¢=5(" 0 HENOIE,)P. (3.2)
|Eq—Ey|<2E
\Eb-Ez\<5TE

Again, one may compute (3.2) by taking the inverse
Laplace transform with respect to f; and S, of the two-
point function evaluated from the black hole saddle, which
takes the form

/E dEp(E|)dEyp(E,)|(E,|O|Ey) [Pe P Ei-P2Ez (3.3)

0

where E is the black hole threshold.
Another statistical quantity of interest is the variance,

(EIOIE)® = lim lim ™98 % 7 (E,|O|E,)*. (3.4)

IEU_E|<§TE

Equation (3.4) is not to be confused with (3.2) evaluated for
E, = E, = E, which we will denote by

{EOIE 1, -, (3.5)
If the matrix elements of O in a given microcanonical
Hilbert space are independent and identically distributed
random variables (up to the Hermiticity condition for O),
then (3.4) and (3.5) will be equal. More generally, (3.4) and
(3.5) may differ, perhaps at a subleading order in N, due to
nontrivial correlations among these variables. Because
(3.5) and its finite N corrections should be computable
from the bulk black hole two-point function, (3.4) and its
subleading corrections must be computable from some
other bulk observable. Starting from the black hole two-
point function, one could try to obtain (3.4) by setting
pr=p+iT and p, =p—iT, integrating over T €
(—oo, 00) to set the two energies equal, and then taking
an inverse Laplace transform on 3, but the result will be the
same smooth function that one would have obtained by
performing separate inverse Laplace transforms on f; and
p>. The black hole two-point function does not have
enough information for us to determine both (3.5) and
(3.4) to all orders in N. The only other candidate for the
holographic dual to (3.4) is a two-point function on a
wormhole geometry that connects two asymptotically AdS
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boundaries, where one O operator is inserted on each
boundary.19

Euclidean wormhole amplitudes are challenging because
the size of the wormhole can become small in the off-shell
path integral. Where the wormhole is small, the local
temperature of the bulk fields is large, leading to a UV
divergence in the amplitude. For example, in JT gravity
minimally coupled to a CFT, the double-trumpet matter

partition function diverges as e% for small b. Hence, the
wormhole amplitude is undefined. This issue can be side-
stepped when the path integral has a saddle. For instance, if
the dimension of O scales as GLN, then by inserting an O on

each AdS boundary we can stabilize the wormhole at a
finite size. However, when the dimension is of order one,
there is no saddle. Hence, wormhole amplitudes reflect a
limitation on what the gravitational Euclidean path integral
can teach us about the ETH ensemble.

As illustrated above, the Euclidean path integral alone is
not able to entirely determine the ETH ensemble. Thus,
some additional principle is needed to motivate which
ensemble to use. The simplest guess is to follow the
original ETH literature [1,2,30] and draw the matrix
elements of O from a Gaussian ensemble,

(Ea|O|Ep) = (EG|OIE )80 + \/ [(E4|OIE})*Rap.  (3.6)
where R, is a random GUE matrix with zero mean and
unit variance. Unfortunately, a Gaussian ETH ensemble
does not correctly compute all of the thermal correlators.
For concreteness, let us specialize to the case of JT gravity
coupled to a massive scalar and use the conventions of
Sec. II. In the next section, we will find that the ansatz (3.6)
computes the correct two-point function only. For the four-
point function, the Gaussian ETH reproduces the two
gravitational Feynman diagrams where the bulk lines do
not cross [see Eq. (2.11)]. In the semiclassical limit at zero
temperature, the corresponding correlator is

(O(21)0(72)O(73)O(24))

= (T10734) 22 + (714723) 20 (3.7)

The main issue with (3.7) is that it is inconsistent with
crossing symmetry, which is the requirement that multipoint
O correlators ought to be invariant under permutations of the

T variables.”” The crossing-symmetric four-point function
that we wish to reproduce using the ETH ensemble is

See the discussion section of [24] for further comments.
Strictly speaking, this definition is correct when A is an integer.
More generally, there are branch cuts in the complex 7 plane that
introduce an ambiguity when continuing one operator past another.
A more general definition of crossing symmetry is that the
correlators should be invariant under permutations up to the phases
associated with continuing the operators past one another.

(O(71)O(72)O(73)O(14))

+ (t14723) 7 (3.8)

= (11p734) 7" + (113724) 72
This is the four-point function of a generalized free field
(GFF). In 1D CFT, a simple condition that fixes the
correlation functions of O to be those of a GFF is that the
only primary operators that appear in the OO OPE aside from
the identity have dimensions 2A + 2n for n € Zs,.”" In this

case, the OPE looks like

O(r)0(0) = 7722 + Z 21[00], + descendants  (3.9)
n=0

where [OO],, refers to a double-trace primary. Equation (3.9)
is equivalent to the following operator equation:

. 1 1
[OOI)’ O(Q)] = ll_{% |:(il‘12 + 6)2A - (”12 s

2isin(zA) -
— T sign(t; — t,),

(ziiil)! (_I)A_lé(ZA_l)(ﬁz), Ae VAN

)2A

A¢EZs,

(3.10)

That is, the commutator of two O operators separated in
Lorentzian time is proportional to the identity operator. It is
straightforward to check that (3.9) implies (3.10). To see that
(3.10) implies (3.9), note that if any primary operators with
dimensions not in the set {1} U{2A+2n:n € Z,,}
appeared on the rhs of (3.9), then they would make additional
contributions to the rhs of (3.10). Furthermore, it is simple to
show that (3.10) is obeyed by the GFF correlators.

In a typical instance of the Gaussian ETH ensemble, the
matrix O does not obey any simple operator equations. In
an ETH ensemble that reproduces the disk correlators of JT
gravity with matter, O should be constrained to obey (3.10)
in the semiclassical limit. We propose an ETH ensemble
where the analog of (3.10) away from the semiclassical
limit is manifestly obeyed. First, we must find the operator
equation that generalizes (3.10) away from the semiclass-
ical limit. We propose the following expression:

e—SOZ{A Sa Sb}[ OurOpe _5m]
e sl les
_|: Oadodc

So . /TA A _5“]’
e’ 1—‘adl—‘dc

where O, = (E,|O|E,) refers to matrix elements of O in
the energy eigenbasis, and s> = E relates the s parameters
to the energies. The sum is over all of the energy

(3.11)

*See Appendix D for an explanation.
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eigenvalues. Equation (3.11) holds within any correlator
(both at the disk level and, conjecturally, at higher genus) in
any ensemble-averaged theory that is dual to JT gravity
minimally coupled to a scalar.

For example, let us insert (3.11) into a correlator with
two other O insertions. The ensemble average of

Z e PEa e—/”zEee_So{ A Sa S } |:Oab0bc -0 ]
ac
a,b,c.d.e A Se Se e_SOQ /FaAbrlec

x e PEQO e PEaO,, (3.12)

is, at disk level,

/ " ds.p(s,)e e / " dsap(s)dsyp(sy)dsop(s.)dsg
0 0

X plsg)e e Pt e Pi(TATS, ) (3.13)

o o et O s v o)) e

= eZSO /oodsap(sa)dsep(se)dscp(sc)dsdp(sd)
0

x ei5t g Pasi g5t gask(PA TS Y12 (3.15)
A s, s o(sy —

« <{ d}+M>, (3.16)
A s, s, p(se)

where we have used the orthogonality of 6j-symbols
(2.14). This is the disk level expression in the ensemble-
averaged theory for

[ an OGC

Z e_ﬁlEae_ﬁZEe
e_SO \% FﬁeFeAL

a,c.d.e

_§aC:| e—ﬁzEcOCde—mEdOdw

(3.17)

It is straightforward to check that (3.11) holds in correlators
with more O insertions. Equation (3.11) is a natural
generalization of (3.10) away from the semiclassical limit
because it is the only operator equation that we are aware
of that is quadratic in O. Heuristically, the 6j-symbol
exchanges the order of the operators.

If we integrate both sides of (3.11) with respect to
P22 (543 5,,5.) defined in (A7), we may derive

ZPA SpsSas S c)[

ne€2Zsy+ 1. (3.18)
This can be interpreted as the statement that primaries with
weights 2A + n for odd n do not appear in the OO OPE.
Thus, in every member of the ensemble, O,,;, O, should be

equal to™ §,.¢~%0 (', T2 /2, which represents the identity
operator contribution in the OPE, plus a linear combination
of (TA,T)1/2P2% (54554, 5.) for even n, which represent
the blocks associated to primaries with dimensions 2A + n
for n even.”

We will construct a new ETH ensemble by imposing
(3.11) as a constraint. That is, let us define

1 A s, sy,
Mg, = e'So{ “ }—5 >
22( A s, sy b

b
~a..)

% ( Oabobc
e\ TasT b

The ensemble is then defined by the following matrix

integral:

(3.19)

/deOexp (—TrV

——ZMZCIZ) (3.20)

a,c.d

where A is a large parameter that enforces M?, = 0, or
(3.11), as a constraint. @ and H are Hermitian matrices with
the usual measure. The role of V(H) is to ensure that to
leading order in S, the spectrum of the Hamiltonian H
agrees with p(s). This is a two-matrix model with a single-
trace potential. One can define a genus expansion in terms
of ‘t Hooft ribbon diagrams (the diagrammatic rules are
given in (6.7) and (6.10). We propose that the disk
correlators of this matrix model agree with the disk
correlators of JT gravity minimally coupled to a scalar
field. In fact, (3.20) is a solvable model in the sense that the
disk correlators of JT gravity solve its planar Schwinger-
Dyson equations (to the extent that we checked).
Furthermore, the analytic expressions for ‘t Hooft diagrams
greatly simplify thanks to the unlacing rules in (2.14) and
(2.15). We will explain this in more detail in Sec. VI. Note
that the size of the matrices in (3.20) is formally infinite, so
(3.20) represents the end product of a double-scaling limit.
We discuss how one can back away from the double-
scaling limit in Sec. VIB. The manipulations in Sec. VI
will suggest that any matrix model that looks like (3.20) in
a double-scaling limit will compute the JT disk correlators.
Away from the double-scaling limit, the model is not
solvable because generically the unlacing rules would no
longer hold.**

Even though (3.20) is not solvable away from the
double-scaling limit, we can argue that in the double-

After averaging the E;, energy in a microcanonical window.

*Note that the P22 (s,: s,.s.) functions obey a completeness
relation. See (A30).

In a regulated model, the spectrum of H will have compact
support, so (2.16) will be replaced by an integral over a finite
domain. It is not possible for an integral over a finite domain to
produce a delta function.
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scaling limit it reproduces the desired gravitational corre-
lators at disk level. It is natural to then ask what the
multiboundary and higher genus correlators are. One of the
technical results of this paper is that the double-trumpet
correlators™ (and most likely all multi-boundary correlators
for any genus) of a single-trace model of two Hermitian
matrices can be directly determined from the disk corre-
lators without knowledge of the matrix potential itself.
However, the result depends on how the double-scaling
limit is taken. In particular, one needs to have regulated
expressions for the gravitational correlators. Although in
Sec. VIB we write an explicit matrix potential that
represents a regulated version of (3.20), we have not
determined the corresponding regulated expressions for
the six- and higher-point disk correlators.”® Thus, begin-
ning in Sec. VII, we consider different ways of regulating
the disk gravitational Feynman rules that a priori are
independent from the regulator in Sec. VI B, and we argue
that one can work backwards to determine the matrix
potential. We will consider two specific regulators that lead
to two specific models, and we will see in Sec. IX (at the
level of the empty double-trumpet and the double-trumpet
two-point function with one O on each boundary) that the
two bulk theories have the same correlators up to the matter
determinant factor [which for a massive scalar on the
double-trumpet is Zg.,1,. (), defined in (2.23)—(2.25)]. We
will also see that the bulk 1-loop determinant is sensitive to
how the matrix model is defined slightly away from the
double-scaling limit.

Having an ETH ensemble allows us in principle to make
sense of the otherwise ill-defined wormhole amplitudes. In
Sec. IX D, we show that the empty double-trumpet in the
matrix model is directly determined by the Hessian of the
matrix potential evaluated at the saddle point that defines
the perturbative expansion.27 The double-trumpet becomes
ill-defined precisely when the Hessian is not positive-
definite. Hence, the problematic UV behavior of worm-
holes is linked to a perturbative instability in the matrix
model. To make the wormholes well-defined, it would be
interesting to find a stable saddle that the unstable saddle
could decay to. We leave this question to future work.

IV. WARMING UP WITH A SOLVABLE
TWO-MATRIX MODEL

To gain intuition for how a two-matrix model can
compute the disk correlators of an arbitrary number of
O insertions, it is useful to first consider a solvable toy

25Strictly speaking, in this work we only explicitly investigate
the empty double-trumpet and the double-trumpet two-point
function with one O on each AdS boundary.

For the two- and four-point disk correlators, we conjecture
explicit expressions that obey a Schwinger-Dyson equation in the
double-scaling limit.

*'To be more precise, we integrate out O and then work with
the effective potential for H, which is multitrace.

model that only correctly computes the disk two-point
function. Later, we will generalize the model described in
this section to a more complicated model that correctly
computes all of the disk correlators.

Consider a two-matrix model with Hermitian matrices H
and O and a single-trace matrix potential V(H, Q). The
potential has a complicated dependence on H but is
quadratic in O. We use the standard flat measure for the
real and imaginary parts of the matrix elements of H and O.
The matrix integral of this toy model is given by

Zioy = / dHdOe™" ey (H.0) | (4.1)
Vtoy<H7 0) - Z(VSSS<Ea> + Vc.t.<Ea))
1
+ E ;F(Eav Eb>0aboba’ (42)

where F(E,, E,) = F(E,, E,) is a smooth function and E,,
refers to an eigenvalue of H. We have chosen to write this
single-trace potential in the eigenbasis of H, so the sums are
over all of the eigenvalues of H. The Vggg(H) term is the
matrix potential of the SSS model [9], which is dual to pure
JT gravity.

We have included a counterterm potential V., (H) that is
chosen to ensure that after integrating out O the disk
density of states for H is still e%0py(E), given in (2.9). This
is because in JT gravity coupled to the free scalar,
integrating out the scalar does not affect the disk partition
function, except for the renormalization of Sy,y. This
was discussed after (2.31). We will determine V., (H)
momentarily.

The last term in (4.2) is single-trace because we can write
an arbitrary function of two energies as F(E,, E,) =
> um ComEREY,  with each term being single-trace
TrH"OH"O.

Note that [9] did not provide an explicit formula for the
matrix potential in their model, because the details of how
the double-scaling limit is taken do not affect their results.
These details are also irrelevant for this section. In this
section, the number of eigenvalues is infinity and we are
working directly in the double-scaling limit. A more
rigorous treatment is provided in Sec. VIIIL.

To determine V., (H), we should first integrate out O.
The result is

Z = / dH e=TVsss )=V (H). (4.3)

V(H) = Y Vi (B + 5D log FE, Ey). (44)
a ab

The last term in (4.4) is a double-trace term, and it is
represented by a double-line loop in ‘t Hooft diagrams.
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After expanding the e V) term, we may diagramatically
compute corrections to the disk density of states for H, as
shown in Fig. 3. We should pick V,,. such that V(H)
becomes

V() =5 [ dEEpu(E) - eSpo(ED) pa(E)

— e%py(E,))log F(Ey, Es), (4.5)

where
pu(E) =Tr6(E—H) = > S(E—E,). (4.6)

The variation of (4.5) with respect to py (E) vanishes to first
order, when evaluated for py(E) = e%p,(E). Hence, the
addition of V to Vggg does not change the saddle-point
density of states, as desired. Note that adding a single-trace
counterterm TrV,, (H) is enough to ensure this.

A. Correlation functions on the disk

We next consider the disk two-point function of O in our

toy model. It is given by

SVE
/] ¢
& W«

FIG. 3. Top row: The left disk represents the disk computation
of (Tre™”M) in the SSS model [9]. One should imagine filling in
the disk with all possible planar ‘t Hooft diagrams of H. The
middle disk represents a correction from a single insertion of the
double-trace term in V(H) (in general, there could be arbitrarily
many insertions, which are all summed over). One should
imagine filling in the regions inside and outside the red
double-line loop with the ‘t Hooft diagrams of H in the SSS
model of disk and cylinder topology, respectively. In our
terminology, the red double-line loop in the center is an example
of an “O bubble diagram.” The right disk represents a correction
from the single-trace counterterm potential that is designed to
cancel the contribution from the O bubble diagram. The counter-
term is a single-trace term in the potential and hence is
represented by a single loop. Bottom row: we provide an example
of one of the infinitely many ways the diagrams in the top row can
be filled in with planar ‘t Hooft diagrams involving the H matrix.
A black double-line represents the propagator of the H matrix.

C
©

I/

NI
N/
NP %

'

/)

7D (U

~

e
0

%W

(Tre PH Qe P22 O) g
= 25 /0 " dE| dEse P ey (E))po(Es)F(Ey . Ea) ™
(4.7)

Comparing this with the gravity answer (2.10), we can
determine F(E,, E,)

F(E|,E,) = % <F(A + ir(\/i;: i‘/E_2)>_l. (4.8)

We express this match between the matrix model and
gravity computations of the two-point function pictorially

% ) | (4‘9)
where the lhs represents the sum over ‘t Hooft diagrams
computing the two-point function in the matrix model. The
red double-line is the propagator of the O matrix. Each
single red line represents an energy, and the two closed red
loops should be filled in like a disk (that is, with O bubble
diagrams and H double-lines in all possible ways). Filling
in a loop like a disk corresponds to integrating over the
corresponding energy with the disk density of states
e%py(E). The rhs is the Feynman diagram in JT gravity
coupled to a free scalar (2.10).

We can similarly compute the four-point function. In
(4.10) to (4.14) only, we imagine that the spectrum of H has

been fixed to some instance, and (...) refers to the expect-
ation value in the ensemble defined by the O matrix integral,

4
<Tr H e‘ﬂfH(9>
i1

= 3 L0, 00 Ot Oua) (4:10)
e
= 3 L (04,000 (Ousa, Oager)
e
+ (00,0010} Oure Ousar) (4.11)
(010,010} Our0 Ousa) (4.12)
= Y 2 PRR(E, E,)
» F(EE) (Buras + Sana) (4.13)
(4.14)

a
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We used Wick contractions above. The propagator in the
Gaussian model is (O, 4, Oua,) = 64 0,8a,0,F (Ea, Eqy) ™"

The last term (4.14) is nonplanar and we neglect it.
To get the disk four-point function in the double-scaled
two-matrix model, we use (4.8), we substitute &,, with
|

5§fp (E'?) and we substitute Y, with [dE,e5p,(E,). The

result is that we reproduce the first two terms of the gravity
answer (2.11)

4
<TrH e-/’fH0> =5 / H (dE;eiFipy(E;)) (4.15)
j=1 disk
I'(A+iVE, £iVE)T(A £iVE; +iVE,) (5(E1 - E3) 5(E2—E4)> (4.16)
r'(24) I'(24) po(Er) po(Ex) ) '

We therefore find a match between ‘t Hooft diagrams in the matrix model and gravitational Feynman diagrams in JT gravity

=)

Each O propagator in the matrix model may be interpreted
as a bulk line in the gravitational Feynman rules.

Note that the third term in (2.11) is not captured by our
toy model. This is because the third Wick contraction
(4.14) is nonplanar, while in (2.11) the third term contrib-
utes at the same order e%.

It should now be clear that the Gaussian in O matrix
model considered in this section captures correctly all
gravitational Feynman diagrams that do not have bulk line
intersections. While the Feynman diagrams with intersec-
tions (that depend on the 6j-symbols) are not reproduced.
To deal with this issue we will eventually add interactions
in the matrix model for O in Sec. VIIL.

B. Double-trumpet

Before adding interactions, we would like to consider the
double-trumpet in the Gaussian matrix model. This will
facilitate a similar discussion in the interacting case
later on.

We consider the connected correlator (Tre#tHTre=PrH)
in the toy matrix model. To leading order in the genus
expansion, this is computed by summing ‘t Hooft diagrams
of cylinder topology. In the SSS model, it was shown [9] that
that this sum correctly reproduces the gravity answer, i.e.
Eq. (2.17) without Z.,1,. (). Therefore, we naively want to
show that adding V(H ) in (4.3) is equivalent to inserting the
1-loop determinant Z,,. () in (2.17). This will turn out not
to be true, but it will be instructive to go through this
computation.

We will compute the effect of V(H) in (4.3) in a
perturbative expansion in the SSS matrix model. In order

(4.17)

sle)

to do so, it is convenient to use an integral representation
of V. We use that

—Ah 2 2
:/ dbb———cos(bk;)—cos(bk,) 4 const. (4.18)
0 1—e™ b b

The additive constant here is divergent and cancels the
b — 0 divergence of the integral, but it is independent of k1,
k,. More precisely

logT'(z+ 1)
© db
=- e -~ (1-2zb 4.19
et [Tyl -l @)
When we sum four such integrals to compute

logT'(A + ik, + ik,), the dependence on k;, k, drops
out everywhere except for the first term in the integral.
The potential (4.5) and (4.8) can now be written

X(b)? + const,  (4.20)

N 1 [ e~Ab
-V(H) == dbb
(H) 2 /0 1—e®
where we defined

X(b) = % (Trcos(b\/ﬁ) - /)oo dEepy(E) cos(bﬁ))

(4.21)

= Z(Trcos(bvVH) — (Trcos(bVH))gisk)- (4.22)

@‘II\J
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The reader might worry that these expressions look
divergent in the double-scaling limit. The important point
is that divergences in the two terms (4.21) cancel and
correlators of X(b) are finite.

Now we explain correlation functions of X(b) in the SSS
matrix model. We call X(b) a “geodesic loop,” the name
that will be justified momentarily. This observable was also
considered in [31].

Consider the correlators of resolvents in the SSS matrix
model [9] related to Weil-Petersson volumes V,,

27 1 1
W(z) =Tr =Tr + , (4.23
@ Z+H (z—i—i\/ﬁ z—i\/ﬁ> (4.23)
<W(Zl)' . 'W(Zn)>g,n _/0 H(dbjbje_bjzj)vg,n(bl 5. --’bn)'
j=1

(4.24)

To get V,, directly as correlators in the matrix model, we
can do the inverse Laplace transform

1 e+ico (f7
x(b) :Z/ . z—m_ebZW(z) (4.25)
= %Tr cos(bVH), (4.26)

where we closed the contour to the left and used (4.23) to
compute by the residue theorem. From (4.24) we now find
(x(by)..x(by))gn = Vgu(by,...nby).  (4.27)
The cases g =0,n =1, 2 (disk and double-trumpet) are
special. For the double-trumpet, Eq. (4.24) still holds if we
assume™ Vg (b, b') = 18(b — b'). Therefore,

1
(x(0)x(8)) ey = 5 (b = b'). (4.28)
The disk correlator (x(b)) 4 diverges and we subtract it
explicitly in (4.21)

X(b) = x(b) = (x(b))g
To properly define this difference, we imagine first com-
puting correlators of X(b) at large N, without the double-
scaling limit. For example, in a 1-cut matrix model with
finite support of the density of states (x(b))4q i finite.

And then we take the double-scaling limit. The result is that
the correlators of X(b) are finite

(4.29)

*In this case (W(z1)W(22)) yonez = J§° dbydbyby by X
e~b12=ba 3(bi=by) 1
by (z1+22)*

(X(b))aik = 0, (4.30)
(X(B)X(D'))ey = 7 0(b =) (4.31)
(X(b1)... X(b))gn = Vyu(bi,...iby).  (4.32)

Taking the inverse Laplace only on some of z; in (4.24)
we can compute mixed correlators of W and X. In particular

(W(2)X(B)) ey = /0 T db b eV, g, (b b)) (4.33)

— o2, (4.34)
< b) cyl — 2_7” ﬂw (\/W)X(b»cyl (435)
dw 1
= etV 4.36
f{ 27i¢ 2w (4.36)
= Z.(p, D), Z(B) = Tre=PH (4.37)
In the second computation we used e 7 = g—xweﬁ,. The

contour in (4.37) goes around the branch cut w € (—o0, 0]
of /w.

We now return to the potential (4.20). To leading order in
the genus expansion, we compute the connected two-
boundary correlator in the toy model perturbatively in V

< (ﬁL Z(ﬂR cyl

"Z(Pr))  (4.38)

S

. <z<ﬂL>X“;‘)2 O 250
(4.39)

z:io/omjﬁl<dbjbj __Mb> (4.40)

. '<X(bn—1)X(bn)>cyl

X <X(bn)Z(ﬁR)>cyl (441)

:/Owdbetr(ﬁL, tr ﬁva)Z(

Here, the correlator in the Ths (Z(8,)Z(fg)).y is in the toy
model (4.3), while all other correlators are in the SSS
model. In the third line we retained only the leading order in
genus expansion. The nth term in the sum corresponds to a

—Ab

>". (4.42)
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N

X (b1)

4

bn) X

FIG. 4. Two adjacent red line loops X (b;) represents the double-trace term in (4.20). These double-lines separate the double-trumpet
into n + 1 regions, and one should imagine filling in these regions with diagrams in the SSS model with cylinder topology. Any
diagrams that contain a contractible red double-line loop are canceled because (X(b))gg = 0.

diagram that looks like the Fig. 4 with n red double-
line loops.

Only the n=0, 1 terms in (4.42) agree with the
corresponding terms in (2.24). We will correct the matrix
model to reproduce (2.24) below.

C. Corrected effective potential

The double-trumpet in (4.42) does not agree with the
result in (2.17) and (2.23) from JT minimally coupled to a
scalar. However, having understood the computation
(4.38)—(4.42), it is not difficult to find the potential that
agrees with the gravity result. Instead of the potential
Vsss(H) + V(H) consider

/ dH exp (—VSSS (H)

+%/°° db b[1 — (=%, e‘b)m}X(bY). (4.43)

0

A computation similar to (4.38)—(4.42) shows

B2y
= [ v bzp 2 b) S 1~ )
(4.44)
= 1
= 7 b2 )2 )t (049

where the Pochhammer symbol is (e72?, e7?) =
[12,(1 — e™®(+m)). This agrees with the gravity result
(2.17) and (2.23). In the next section, we will explain how

one can incorporate the O matrix into (4.43).

V. OUTLINE OF THE REST OF THE PAPER

In the last section we considered a toy model that is
Gaussian in O. This model is undesirable for two reasons:
(1) The Gaussian model fails to correctly reproduce the
disk 2n-point functions for n > 2. Instead, its disk

correlators are given by sums over gravitational
Feynman diagrams with no intersections of the bulk
lines. While the disk correlators in JT gravity
minimally coupled to a scalar also include diagrams
where the bulk lines cross.

(2) The empty double-trumpet, given in (4.42), differs
from (2.17). If we insist that the Gaussian model is
dual to JT gravity minimally coupled to some matter
theory, then the partition function of this theory in
AdS, differs from that of a scalar field.

In this section, we summarize two strategies for finding
matrix models that do not suffer from the above issues. We
then comment on what these models can potentially teach
us about UV divergences in wormhole amplitudes.

A. A well-motivated guess for the matrix potential

Our first strategy is to make a well-motivated guess for the
matrix potential and then argue that it correctly reproduces
the gravitational correlators. This was discussed in Sec. III.
We identified an operator equation that is quadratic in O (but
has a complicated dependence on H) that holds in any disk
correlator. In the eigenbasis of H, this expression is given in
(3.11). It is reasonable to expect that in any instance of a
matrix ensemble that reproduces the correct gravitational
disk correlators, the two matrices should represent (to a good
approximation) an abstract operator algebra where the
operators O and H obey (3.11). Hence, we wrote in
(3.20) a model where (3.11) is manifestly obeyed in the
limit A = 0. In Sec. VI, we write down rules for con-
structing ‘t Hooft diagrams in this model. Because these
rules involve the 6j symbol, ‘t Hooft diagrams greatly
simplify due to the unlacing rule in (2.14). We use (2.14) to
show that a large class of Schwinger-Dyson equations is
solved by the correct gravitational disk correlators.

B. Solving for the matrix potential given the
gravitational correlators

Our second strategy is to start with the correct gravita-
tional disk correlators and work backwards to find the
corresponding matrix potential. To do this, we generalize
the gravitational correlators by introducing a parameter €
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such that the original correlators are recovered as ¢ — 1,
and the correlators of the Gaussian toy model are recovered
as € = 0. We think of ¢ as either a regulator or backing
away from the double-scaling limit. There are many
ways to define the regulated correlators for intermediate
values of ¢, and in Sec. VII we introduce two specific
regulators; the Selberg and the g-deformed regula‘tors.29
Given a regulator, we explain in Sec. VII that one may
algorithmically determine the matrix potential as a series
expansion in . After sending ¢ — 1, the matrix integral
takes the form

zZ= /dH dO exp (—Tr[Vsss (H) + V.. (H)]

F
_ eSUZ D ,sOpa + interactions). (5.1)

ab 2

The interaction terms, which include higher powers of O,
are designed so that the matrix integral produces the correct
gravitational disk correlators. As in the toy model, the role
of the counter-term V., (H) is to ensure that the density of
states of H is the same as in the SSS model.*' In analogy
with one-matrix models, we are fixing the model using only
the disk data.

Next, we would like to compute correlation functions
with more boundaries and/or handles and compare the

where a double-line with a red blob refers to the exact
planar two-point function, and the blob labeled “C” refers
to the sum over connected planar four-point diagrams. Each
diagram on the left side corresponds to a diagram on the
right side. It is also convenient to amputate the connected
four-point function and define a new blob labeled “A”
such that

*In Sec. VIII, we carefully define the regulators and show how
they correspond to a ‘t Hooft-scaled matrix model. The double-
scaling limit corresponds to removing the regulator.

We have not fully answered the question of whether this
expansion converges for |¢| < 1. We discuss this issue more in
Secs. VII and VIIL

3'The explicit formula for V.., (H) differs from that of the toy
model due to the interaction terms, which create new O bubble
diagrams whose disk contributions need to be canceled.

results with gravity. In Sec. IX A, we study the empty
double-trumpet, or the connected two-boundary correlator

(Tre PrHTrePrll) (5.2)

at leading order in the genus expansion. Surprisingly, we
find that despite the presence of the interaction terms in
(5.1), the empty double-trumpet agrees with the ¢ =0
answer (4.42). We could not find a simple reason for this, so
the interested reader is encouraged to read Sec. IX A for the
technical details. This result does not depend on whether
the g-deformed or Selberg regulator was used.

In Sec. IX B, we compute the double-trumpet two-point
function with one O inserted on each AdS boundary. The
result depends on whether the g-deformed or Selberg
regulator is used. We now briefly sketch some of the
ingredients that go into this computation, leaving the full
computation for Sec. IX B. Readers who are only interested
in the answer may jump to Sec. VB 2.

1. The double-trumpet two-point function

Consider the matrix model computation of the disk four-
point function, which is designed to agree with the
gravitational answer. In analogy to (4.17) in the toy model,
we represent this computation as follows:

(5.3)

)

The blobs labeled “C” and “A” refer to smooth functions of
four energies, where each energy corresponds to one of the
four single-lines shown in the above graphical representa-
tion.”” It is convenient to label an energy E with an s
parameter, where E = 5.

It looks like there are eight single-lines emanating from the
“C” or “A” blobs, but in planar diagrams they are connected to
each other in pairs through the blob. For example, the simplest
contribution to each of the two blobs is a tree four-point vertex.
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We can build a class of diagrams that contribute to the
double-trumpet two-point function by gluing together two
opposite propagators in (5.4) after removing one of the red
blobs. Explicitly, we have

Sa Sh

oo

Sa Sp :
O

where the vertical single-lines on the far left and far right of
the diagram represent the two traces in (5.2), and the top
and bottom ends of this diagram are identified to obtain the
cylinder topology. Removing the red blob is necessary to
avoid overcounting diagrams. Another way to write this is
as follows:

Sall Sb
N

g
)

where raising the red blob to the —1 power is another way
to express that a red blob should be removed from one of
the external propagators of the “C” blob before making the
identification. In practice, the red blob is a function of s,
and s, and we want to divide the “C” blob by this function.
The result is a function of the two energies E, = s2 and
E, = s7 that are associated to the two AdS boundaries.

So far, this discussion did not depend on whether the Selberg or g-deformed regulators were used. Now, we will build
another class of diagrams starting from the connected six-point function. As above, we will identify opposite propagators to
construct diagrams with cylinder topology. However, to avoid overcounting diagrams, we must remove certain subdiagrams
from the connected six-point function. The appropriate generalization of (5.6) is

Sa Sb
—1
Without the [- - -]~! insertions above, the process of identify-

ing the top two double-lines with the bottom two double-lines
would result in an overcounting of diagrams, as the compu-
tation would not only sum over diagrams but also sum over
the locations where the diagrams can be cut in two places to
obtain connected planar six-point diagrams. The two sub-
tractions are introduced so that (5.7) does not count any
diagrams that were already counted in (5.6).33 Unlike (5.6)

A more detailed explanation of our procedure for system-
atically classifying diagrams is provided in Sec. IX.

(00 ]

—1 —1

(00 ]

and (5.7) contains additional explicitly-shown closed single-
line loops aside from those associated with s, and s,. This
means that to remove the diagrams inside the brackets from
the blob labeled “C,” we must integrate one of the energies of
the “C” blob against the inverse of an appropriate “two-to-
two propagator” that we will return to shortly.

Explicit formulas for the blobs in (5.7) are known because
by construction, the matrix model disk correlators reproduce
the gravitational disk correlators [for example, we may use
(5.3) to obtain the explicit formula for the four-point “C”
blob]. We can thus convert (5.7) into an expression that may
be evaluated using the gravitational Feynman rules,
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(5.8)

The first set of brackets (without the —1 exponent) is meant to be expanded out into two terms, where each term is evaluated
using the gravitational Feynman rules. The blue lines attached to the black boundaries correspond to insertions of (T'4,)!/? and
(Fﬁb) 172 as per the Feynman rules. The diagrams contained in the second set of brackets (with the — 1 exponent) become, using

the Feynman rules,

We should think of (5.9) as a “two-to-two propagator” that
acts on a function of s, to produce a function of s,. The first
term (with the delta function, or the two parallel lines) acts as
the identity operator. The two-to-two propagator is a pro-
jector because it squares to itself, thanks to the unlacing
rule (2.14) and the fact that (5.9) is invariant under exchang-
ing the two top (or two bottom) endpoints of the blue lines.
The [---]~! term in (5.8) corresponds to the inverse propa-
gator. Having defined the two bracketed terms in (5.8),
the parameters s, and s, should be integrated over using the
density of states p(s). The s,, s, integrals are associated to
the additional internal single-line loops mentioned in the
previous paragraph. The two vertically separated bracketed
terms are conveniently interpreted as two operators that
are multiplied together, and the identification of the top
and bottom ends of the diagram corresponds to taking
a trace.

A subtlety arises because the two-to-two propagator is
not invertible, as it is a projector. This can lead to puzzles in
the evaluation of (5.8). For instance, the first bracketed term
is rescaled by a factor of two under the action of the two-to-
two propagator, as it is invariant under exchanging the top
two (or bottom two) endpoints. This naively suggests that
the inverse propagator in (5.8) may be replaced by a factor
of 4,

' =5 [
S %%

(5.10)

Another naive guess is that the inverse propagator undoes
the sum over the crossed and uncrossed vertical lines that
pass through the horizontal line in the first bracketed term,

) YT

+ X
Using the regulators mentioned above, the two-to-two propa-
gator becomes invertible and one can obtain definite answers.

Equation (5.10) is correct using the Selberg regulator, while
(5.11) is correct using the g-deformed regulator. The Selberg

= (5.11)
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result for (5.8) reproduces the third term in Eq. (2.36). The
result for the g-deformed regulator is the same except the sum
over dimensions 2A 4 2m for m € Z, becomes instead a
sum over dimensions 2A + m for m € Z,,.

In Appendix F 2, we explicitly compute one further class
of diagrams. Using the Selberg regulator, the analog of
(5.10) becomes

We further show in Appendix F that after identifying the
top and bottom energies of (5.12), we obtain a contribution
to the two-point function on the double-trumpet

© o0
3 / s odsp(s)p(s)ePPest (AT )12
0

n.m=0

X{3A—|—2n—|—3m Sa sb}' (5.13)
A Sy 84

This is indeed the gravity answer if we continued the
expansion (2.36) to the next term. Seeing a pattern, we
conjecture that using the Selberg regulator, the class of
‘t Hooft diagrams where the lowest number of double-line
propagators crossed by a left-right path is n returns the result

n lines
=

1

= + permutations

(5.14)

and that this term reproduces the nth term in the sum in
(2.36). Using the g-deformed regulator, the pattern is that
only the trivial permutation in (5.14) appears, with no
prefactor. This trivial permutation may be evaluated using
successive applications of the pentagon identity (A32),
which allows two vertical lines (crossing over a horizontal
line) to be fused into a sum over single vertical lines with
different dimensions, and the orthogonality relation of the
Wilson polynomials (see Appendix A for an introduction to
the relevant special functions and identities). The final result
after removing the regulator (or taking the JT limit) is the nth
term in the sum in (4.42).

(5.12)

2. Constructing the Selberg and gq-deformed
matrix models

The result of the computation sketched above is that the
connected correlator

(TrOe PLHTrOePrll) (5.15)

at leading order in the genus expansion is equal to a sum
over infinitely many ‘t Hooft diagrams in the matrix model
(5.1), which we have systematically classified. Each class
of diagrams may be summed to obtain an explicit formula.
The gravitational computation of the double-trumpet two-
point function may be written as an infinite series as in
(2.36), where the nth term computes the contribution from
the nth term in (2.24) to the final answer.* We explicitly
checked that using the Selberg regulator, the first four
classes of ‘t Hooft diagrams reproduce the first four terms
in (2.36). We conjecture that the full set of ‘t Hooft
diagrams reproduces all of the terms in (2.36).

Thus, the model (5.1) defined using the Selberg regulator
succeeds in reproducing the double-trumpet two-point
function of JT gravity minimally coupled to a scalar field.
However, the model does not reproduce the correct empty
double-trumpet. We can amend the matrix potential in (5.1)
to make the model compute the correct empty double-
trumpet without affecting the computation of (5.15). The
Selberg matrix model is defined by replacing (5.1) by

Z = / dHAO exp (—Tr[VSSS (H)+ V., (H)]  (5.16)
L[ Ab b et 2
+§A dbb([l—(e ,e >°°]_1—e‘b>x(b)
(5.17)
— esoz Fa O Opa + interactions) (5.18)
2 ab™~'ba s .

ab

*n (2.36) we only explicitly showed the n =0, 1, 2 terms,
leaving the rest in the - - -.
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which is the same potential up to the addition
of (5 .17).35 Because (5.17) does not depend on O, the
disk correlators of O are the same as in (5.1). In particular,
the saddle-point density of states for H is unaffected due to
the subtractions involved in the definition of X(b), (4.21).
If we neglected the interactions above [so that the potential
is that of the toy Gaussian model plus (5.17)] and integrated
out O, then from (4.3), (4.20), and (4.43), it is clear that the
model would reproduce the correct empty double-trumpet.
We pointed out above that the interactions in (5.1) do not
change the empty double-trumpet result from that of the toy
model. Hence, the Selberg model computes the correct
empty double-trumpet (2.17).

We conjecture that the Selberg model correctly computes
all higher genus and multiboundary correlators in JT
gravity minimally coupled to a scalar. This conjecture is
based on the success of the Selberg model in reproducing
the scalar partition function on the double-trumpet (to the
extent that we explicitly checked). We expect that the
correlators on general topologies may also be computed
from the disk correlators using similar methods to our
double-trumpet computation. We make some comments on
the pair of pants in Sec. IX C.

The double-trumpet two-point function using the
g-deformed regulator takes a form that resembles (2.36),
except the dimensions of the states/operators that propagate
around the closed geodesic differ. The partition function
that counts the states/operators that propagate in (2.36) is
given in (2.24). If we instead use the g-deformed regulator,
we find that the relevant partition function is

00 e—Ab n l_e—b
Z(b) = Z <1 _e—h> T b _hb-

n=0

(5.19)

As in the Selberg-regulated computation, we found this by
computing the n =0, 1, 2, 3 terms explicitly and con-
jecturing that the pattern continues for arbitrary n. This
partition function agrees with the partition function that
appears in (4.42). Hence, the g-deformed regulator seems
to compute amplitudes in JT gravity minimally coupled to a
scalar field up to a modification of the 1-loop determinant.
For this interpretation to hold, there is no need to add
additional double trace terms to (5.1), so we will define the
g-deformed matrix model to simply be (5.1), where the
interaction terms and counterterms are determined using
the g-deformed regulator.

An interesting feature of the bulk dual of the g-deformed
model is the modification of the matter 1-loop determinant

*The matrix model no longer appears to be single-trace
because (5.17) is a double-trace term. However, if we rescale
O, by a function of E, and E,, the transformation of the
measure dO causes a double-trace term to be added to the
potential. Hence, we can change variables in the O integral to
make the potential single-trace again.

in global AdS,. In particular, (5.19) has a Hagedorn
temperature, which is discussed more in Sec. IXD 1.
This is suggestive of the physics of strings, which would
then appear in the dual of the closely related double-scaled
SYK model.*® We will show that the g-deformed model
can be naturally defined away from the double-scaling
limit such that its disk correlators compute the SYK
correlators studied in [13]. This connection is detailed in
Sec. VIIIL.

C. Matrix model interpretation of UV divergences
in wormhole amplitudes

The double-trumpet amplitudes in both the Selberg and
g-deformed matrix models suffer from UV divergences. In

the Selberg model, Z.,,.(b) diverges as ¢ for small b. In
the g-deformed model, the partition function has a
Hagedorn temperature. Although these amplitudes are
ill-defined, we can reproduce them from the matrix model
because we can write each amplitude as an infinite sum
[such as in (2.36)], and we know which ‘t Hooft diagrams
reproduce each term in the sum. Hence, the sum over all ‘t
Hooft diagrams with cylinder topology does not converge.
This is a sign that the saddle point around which the
perturbative genus expansion is defined is unstable. In
Sec. IX D 2, we analyze the effective potential for H (after
integrating out ©O) and show that the empty double-trumpet
is directly determined by the Hessian of the matrix potential
evaluated at the saddle point of the eigenvalue integral,
similarly to how the disk is directly determined by the
location of the saddle point. In the g-deformed model,
the Hessian has negative eigenvalues, which implies
an instability. In the Selberg model, infinitely many
eigenvalues become arbitrarily close to zero in the dou-
ble-scaling limit, which effectively also amounts to an
instability.”’

Having a matrix model description of the UV divergen-
ces might allow us to understand how the gravitational
theory, viewed as an effective theory, can be nonperturba-
tively completed. By modifying the matrix potential far
away from the location of the saddle point, it should be
possible to make the model nonperturbatively well-defined.
Then, it would be interesting to find a stable saddle that the
unstable saddle can decay to. Note that the disk correlators
computed using this new hypothetical saddle could be very
different from the original disk correlators. Hence, a more
physical approach to understanding the model might

3%It would be interesting to relate this idea to the work of [32]
as well as [33-35].

The matrix model interpretation of these UV divergences is
different from the analysis of [36], which studied UV divergences
arising from dynamical end-of-the-world branes. Integrating out
the branes only modified the single-trace matrix potential. To
make the saddle unstable, one would need to modify the
intereigenvalue repulsive force associated to the Vandermonde
determinant.
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involve introducing new bulk modes/interactions that could
possibly render the original saddle stable.

Sufficiently far away from the double-scaling limit,
the saddle in the g-deformed model becomes perturbatively
stable. In Sec. VIII, we explain how the ¢g-deformed
model can be naturally generalized to a three-parameter
model,™ and in this model the double-trumpet can be
explicitly computed [see (9.29)]. Having a bulk interpre-
tation of this three-parameter model would allow us to
understand the physical mechanism that determines
whether there is a Hagedorn temperature or not. While
there are infinitely many ways to define the g-deformed
model (or any double-scaled matrix model) away from the
double-scaling limit, the three-parameter model is canoni-
cally defined by its relation to the double-scaled SYK
model computations in [13]. Unfortunately, we do not
have a canonical way to define the Selberg model away
from the double-scaling limit, so we do not have explicit
regulated formulas that could admit a nice physical
interpretation.

VI. CONSTRAINED MATRIX ENSEMBLE

In this section we analyze the model defined in (3.20) in
more detail. We will show that in the double-scaling limit
the disk amplitudes of JT gravity coupled to a scalar
(discussed in Sec. II) are solutions to a large class of planar
Schwinger-Dyson equations for this model. The orthogon-
ality relation (2.14) will play a key role. This section does
not contain any prerequisite material that is necessary for
understanding Sec. VII and beyond.

We will first work directly in the double-scaling limit and
give an argument that the JT disk correlators solve the
Schwinger-Dyson equations. The argument is based on
“unlacing” relations of the 6j-symbol. Some terms in the
Schwinger-Dyson equation turn out to be divergent at high
energies. These divergences arise because of the double-
scaling (low-energy) limit, where the right edge of the
spectrum is taken to infinity and the density of states is
supported on a semi-infinite interval. To properly deal with
these divergences, in the second part of this section we back
away from the double-scaling limit and consider a regu-
larized version of the matrix-model potential (3.20). The
regularized matrix model is related to a certain g-deforma-
tion of JT correlators [13], that will be discussed in more
detail in Sec. VIII. In the g-deformed model the density of
states has a finite support and high-energy divergences are
regulated.

A. Working directly in the double-scaling limit

First, we rewrite the part of the potential that depends on
O. We find it more convenient to work with the rescaled
matrix R,,, defined by

*In Sec. VIII, we call these parameters g, qg, and §.

0. =R e ST (A +iE, +iVE,)\/?
ab *— ab F(2A)

= (e7SI%,)1/2R . (6.1)

Note that the matrix elements of R depend on the
eigenvalues of H. For added simplicity we set S; = 0 in
this subsection.” We have that

A s,
%ZIMZCI%%ZZ({A ’ Sb}—éhn)

nac b Se Sn
X (RabRbc - 5ac)
A s, s,
X — Oyn
(IR
X (Rcdea - 5{16‘) (62)
A < A s, s
(22
4 ;Cd A s, sy
X (RabRbc - 5ac)(Rcdea - 5ac) (63)

1
=A <§ ZgabRabRba
ab

1
T ZgabcdRabRbcRcdea + const> . (6.4)
abced

where in the second equality we have used the orthogon-
ality relation (2.14).°° The couplings are

1 A s, s
w=—14+= 04 + 0 , 6.5
Yab 2;( hd){A . Sd} ( )

= Lo 46, {A ba Sb} (6.6)
gabcd_z ac bd A 5, 5y . .

From (6.4), we may determine the propagator and four-
point interaction vertex for the R matrix that is used to
compute ‘t Hooft diagrams. The propagator is

¥To restore the 5 factors, one should insert e~ next to every
6/ symbol, e% next to every p(s), and e~ next to every
5(s; — s,). This preserves the orthogonality relation (2.16).

“Before we use (2.14), we replace the sum ), by an integral
J dsap(sy). This is because we work at large N and consider
only disk amplitudes in this section. We will make similar
substitutions when we write down the diagrammatic rules of
this model.
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Sa 1
Sp A 2

where on the left-hand side, each index line in the double-
line propagator corresponds to an energy (this convention
was used in Sec. IV). On the right-hand side, the diagrams
should be evaluated using the gravitational Feynman rules.
That is,

Sa

Q.

Sb

\sa/
Sq
Se

7 e\

This integral actually diverges because at high energies (see
Appendix A)

A s, s
~ e, (s > o0), (6.9)
A s, s

while p(s) ~ ™ at large s. We will see however that such
divergences will formally cancel out of our final expres-
sions. We will deal with these divergences more carefully in
a regularized model in the next subsection.

The quartic interaction vertex for R is given by

.)

SCL Sa
Sp —

(6.10)

_s
2d

Se Se¢

where again the right-hand side should be evaluated using the gravitational Feynman rules. The first term on the right-hand

side is the 6 symbol. The last two terms are delta functions

8(sa—s.) S8(sp—s4)
P(sa) and /)]Zsb)d

respectively.

From the diagrammatic rules above we may compute planar correlators of the R matrix. Any closed loop corresponds to
an integral over the energy with measure dsp(s). Next, we introduce a Schwinger-Dyson equation that relates the couplings
in the matrix potential to the correlators. The equation is represented diagrammatically as follows:

The left-hand side represents the sum over all planar two-
point diagrams and is equal to (R, R}, ) 4i- The red blob on
the right-hand side represents the sum over all planar
(connected and disconnected) four-point diagrams and is
given by (RuRpeReaRua) i To understand the above

By (RuyRpcRoaRuy)giqe We are referring to the smooth
function of four energies that is obtained by performing inverse
Laplace transforms on the four-point function in the planar limit
of the matrix model. See Sec. VII for more comments.

+ (6.11)

|

equation, note that the leftmost double-line can either directly
connect to the rightmost double-line, or it can connect to a
vertex. The other three legs of this vertex and the rightmost
double-line become the external lines of the four-point red
blob, which accounts for all the remaining diagrams that
contribute to the left-hand side. The Schwinger-Dyson
equation (6.11) can also be derived from the identity

0
dR R, e V®) =0 6.12
[ R R ) (6.12)
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and is expressed as

(RaupRpa) gisk

1
= KQ;;} ~ b Zgabcd<RabRbcRcdea>disk» (6.13)
cd

where g, gupeq are defined in (6.5), (6.6).
We will now show that the gravitational correlators that
correspond t0 (RyyRpa)gisk and (RupRpcReaRaa)gisk sOIve

(Cpr

e _1_|_l Q _{_1

(6.11) or equivalently (6.13). Of the two terms on the right-
hand side of (6.13), the first is order A~!, while the second is
order one in the large A expansion. Hence, we may drop the
first term. To evaluate the second term, we replace the
interaction vertex by the sum over the three diagrams in
(6.10), and we replace the red blob by a sum over the three
four-point gravitational Feynman diagrams (two uncrossed
and one crossed), which correspond to the three terms in
(5.3)." We then find that —gup.q(RupRpeReaRaa)gia i
given by

In the lhs, a product of two diagrams means that we connect
the three lines in the middle, which corresponds to doing
the sum > _,. To get the rhs, we expanded the first line into
nine terms and simplified the algebra.

Now we would like to argue that the last three terms in
(6.14) cancel out. We know that 6 j-symbols obey “unlac-
ing” rules, such as the orthogonality relation (2.14). So
heuristically, one might expect that more unlacing relations
are obeyed, such that in the first term in the last line of (6.14)
we can move the circle away from the horizontal line. Then
the last three terms in (6.14) would cancel out. In practice, if
we compute the integral corresponding to the first term in the
last line of (6.14), we find a divergent result 5(0), delta

2 2

(6.14)

function at zero argument. This can be seen from the
orthogonality relation (2.14). The latter two terms are
proportional to a square of the delta function and therefore
contain §(0) as well. For now we assume that such unlacing
rules work and the last three terms cancel out. We will deal
with this more carefully in the next subsection. The
remaining terms in the second line of (6.14) are canceled
by g} in (6.13). giving one in total and Schwinger-Dyson
equation becomes (R,;,R;,) g = 1, which is the correct
result.

The next Schwinger-Dyson equation we consider is
diagrammatically represented as follows:

e e ces

where the blob with six external double-lines represents
the sum over all planar (connected and disconnected) six-
point diagrams. The blob labeled “C” on the left repre-
sents the sum over all connected four-point planar
diagrams. To understand this equation, note that the
leftmost double-line must be attached to a vertex, or else

*“The red four-point blob in (6.11) is by definition equal to the
sum of the three terms on the left-hand side of (5.3).

f
the resulting diagram cannot be both connected and
planar. The other three double-lines of the vertex to-
gether with the three double-lines on the right-hand
side should be connected using additional propagators
and vertices in all possible ways such that the entire
diagram is connected. There are some contributions
to the six-point blob that result in a disconnected dia-
gram, and so these contributions are subtracted off as
shown. Equation (6.15) can also be derived from the
identity

066015-27



DANIEL LOUIS JAFFERIS et al.

PHYS. REV. D 108, 066015 (2023)

0
dR—— (R, R, .R,,e”V®) = 0.
/ aRad( abT¥pclicq€ )

(6.16)

If we plug the gravitational correlators into the expres-
sions for the matrix model correlators, the “C” blob
becomes a 6j symbol, and the blob with six external
double-lines becomes a sum over 15 gravitational Feynman
diagrams, but 6 of those are subtracted off. The right-hand
side of (6.15) is order one in the large A limit. Plugging in
the diagrammatic rules (6.7) and (6.10), we may again
verify that (6.15) holds, assuming unlacing rules. This can
again be dealt with more carefully using the regularization
in the next section.

We can continue to write down more Schwinger-Dyson
equations where the left-hand side is analogous to the left-
hand side of (6.15), except with additional double-lines
emanating from the right side of the “C” blob. This entire
class of Schwinger-Dyson equations is solved by the
gravitational Feynman rules. This is evidence that (3.20)
correctly reproduces JT gravity minimally coupled to a
scalar at disk level.

B. Backing away from the double-scaling limit
and g-deformation

In the previous subsection we considered the matrix
model directly in the double-scaling limit and gave a
suggestive argument that JT correlators solve the
Schwinger-Dyson equations. However, some of the expres-
sions were not completely well-defined due to high-energy
divergences. This is to be expected in the double-scaling
limit. To give a more precise matrix model description, in
this section we consider a particular way to back away from
the double-scaling limit. The model will depend on the size
of matrices N and an extra parameter g. We will show that
in the double-scaling limit N — o0, ¢ — 1, while keeping a
particular combination (to be specified below) of N and ¢
fixed, this matrix model is solved by JT correlators.

Let us consider a quartic matrix model of N x N
matrices

1 1
V(R) =N <§ Zgab|Rab|2 + Z ZgabcdRabRbcRcdea> .
ab abed

(6.17)

To get ourselves oriented, let us first consider the usual
large-N limit (no double-scaling). At large N we take the
couplings to be order one; 9,5, gupcqa ~ 1, as it is common in
matrix models. We can again derive the planar N — o
Schwinger-Dyson equation from (6.12)

1

ﬁ:gabqRah ) aisk + Zgubcd<RathcRcdeu>disk' (6.18)
cd

At large N, the correlators scale in the standard way

1

<‘Rab|2>disk ~ a7

5 (6.19)

1

<RabRbcRcdea>disk ~ a3

7 (6.20)

For the four-point function the disconnected part

scales as <RabRbc><Rcdea>disk"’#5110 but the extra

Kronecker o,. can be thought of as effectively %

The scaling is such, that if we sum over all indices the
result is of order N: >, (|Rup|*) g ~ N* -+ =N and

> abea(RapRocReaRaa)gige ~ N* - 3= = N. This is indeed
what we expect for disk correlators.

Using the above scaling it is easy to check that all three
terms in (6.18) are of the same order and must be kept in the

large-N limit

17
N

Yab
~1 |

~

1

~—

N3

(IR ap)?) disk + E Gabed (RapRpeRcaR aa) gisk -
cd
~—~ ~I

N (6.21)

Now we turn to the double-scaling limit. In this case we
will see that the situation is different. In the limit that we
define below, the lhs of (6.18) can be dropped, while the
rest is solved by JT correlators.

To define the double-scaling limit we need to introduce a
certain g-deformation of JT correlators. This will be
described in much more detail in Sec. VIII A. Here we
give a few results necessary for this section. First, instead of
the Schwarzian density of states p(s) we consider its
g-deformation

(5) = 1 /n/loqu Sop. (s) = SN
PaS) = oar (x2is)” o PP = e
(6.22)
where Nq7 1S
1
N, = . (6.23)
T |logql(1—q)*(q:9)3

In particular, N, — oo as g — 1. The density of states
¢%p,(s) is supported on a finite interval (0, m), as in
a 1-cut matrix model. It is also normalized as shown above.
Therefore, it is natural to identify
N = ¢%N,. (6.24)
The double-scaling limit that we will consider is defined by
taking N — o0, ¢ — 1, while keeping 4~ = % finite.
q

In addition, we also deform the 6j-symbol to a

g-deformed one
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A s, s
Jabcd = { ’ } . (625)
A s osq)y,
The definition of the g-deformed 6j-symbol is given in
Appendix A. For now, we only need to know that in the

limit ¢ — 1 it gives back the classical 6 j-symbol appearing
in JT correlators. We take the exact correlators to be

R isk = — = e, 6.26
(RaplPha =32 = € (6.26)
<RabRbcRcdea disk — ( > ac +5bd
N, S, S
+ (—) { b} (6.27)
N A s osqly,
As,s
=e™2% (5ac+5bd+e_50{ b} >
As. sy q
(6.28)

It is interesting to note that the two-point function is
enhanced by a factor N, in comparison to the large-N
|

scaling (6.19).
correlators.

Now we would like to find the couplings g,;,, gupea SUCh
that in the double-scaling limit the Schwinger-Dyson
equation (6.18) is solved by correlators (6.26)—(6.28).
We first define a smeared delta function

Similarly for four-point and higher

S(k Ky 54.5:|q)

/| log g A s, k A s, K
= / dsp,(s) .
0 A s. sl LA s os),

(6.29)

In the limit ¢ — 1 this equation reduces to the orthogon-
ality relation of the classical 6j-symbols (2.16) and

Sk — k)
p(k)

But for 0 < g < 1 the function &(k, k' s,,, s.|¢q) is smooth
and finite. It is bell shaped and defines a smearing of the
delta function.

Now we are ready to define the couplings. We choose
them to be

11m5(k K'sq.5.|q) =
q—)

(6.30)

1
Gap = =€~ EZ[éacé(sb’ S Sas Selq) + 8pad(sa. Scs s 5419)] (6.31)
cd
e Sozjab6d< ac +6bd —e SO_[é(sa’sc>sb’sd|Q> +5(Sb’sd’sa7 |Q)]) (632)
cd
1 1
Yabed = Eé(sa’ ScsSps Sd|q) + 55(Sb’ Sda5S8a> SC|Q) - Jabcd- (633)

Several comments are in order. The powers of e% are
chosen to be such that if we substitute ¢% = I~ and take
q

N — o0, g—fixed limit, the couplings are of order 1. On
the other hand, in the double-scaling limit N — o0, g — 1
with e = ]{,V fixed we recover the couplings (6.5) and

q
(6.6) where we now restored factors of ¢%. To see the latter,
the Kronecker delta and discrete sums are substituted in the
double-scaling limit as
|

Zgahcd<RathcRcdea>disk =
cd cd

6—280 (5ac + 5})(1 + e_SOJabcd)

= _gah<|Rab|2>disk

1 1
Z(Eé(sa’ ScsSps Sd‘Q) + 55(5‘;,, Sd>Sas Sc|q) - Juhcd)

5ab

— 7/|logq|
L sa=sp). Zﬁ/ s eSp,(s). (634)
a 0

ep,(s,)

Now we can check that the Schwinger-Dyson equation is
satisfied in the double-scaling limit. First, the lhs of (6.18)
can be dropped. Some of the individual terms in the rhs are
in fact divergent in double-scaling limit, though of course
all divergences cancel, as we now show. We compute

(6.35)

(6.36)
(6.37)
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1
+em% 52[5“-5(% S¢iShs5alq) + Opad(sp. 543 Sar 51 q)] (6.38)
cd
— 6—3502 Py (6.39)
cd
= _gah<|Rab|2>disk' (640)

In the last equality we used that (6.38) and (6.39) cancel
out. This follows from the definition of the smeared delta
function (6.29), both give a smeared delta function at zero
argument. We thus showed that the Schwinger-Dyson
equation (6.18) is satisfied in the double-scaling limit with
the lhs dropped.

In the double-scaling (IR) limit, we showed that we can
drop the lhs of (6.18). This is equivalent to neglecting the
bare propagator of the free theory, first term in the rhs of
(6.11) and (6.13). It is interesting to note that this seems
similar to the way Schwinger-Dyson equation is solved in
the SYK model [37-40]. There in the low energy limit one
neglects the bare UV part of the two-point function.

The next Schwinger-Dyson equation is derived from
(6.16) and takes the form

1
N (8ac([Rap| P aisk + Oba{|Real®)disk)
= Gaad(RapRpeR caR ia) gisk
+ Zgadef <RathcRcdeeRefRfu>disk' (641 )
ef

In Eq. (6.16) there is an extra term from differentiating R,
giving 8,,8.4(R.,R.4).- However this contains too many
deltas and, after summing over all energy indices, this
would give a nonplanar contribution and is therefore
suppressed at large N. The two-point coupling g,, can
be excluded using the first Schwinger-Dyson equa-
tion (6.18). After some algebra we obtain

Zgadef <RuthcRcd ( < |Rad|2>disk
ef

- |Rda> <Rad|)RdeRefRfa>disk

1

= - N <RabRbcRcdea>disk,conn' (642)

In the lThs we have a six-point function up to subtractions.
The subtraction is the product of two four-point functions.
There are 15 chord diagrams contributing to the six-point
function. However, if two R’s in R R, R, are connected
by a chord, then such a term is canceled by the second term
in the lhs. Therefore the only remaining contributions in the

[

lhs are chord diagrams where all three R’s in R, R, R, are
connected to one of the R’s in Ry, R,sRy,. There are 3! = 6
such chord diagrams

0 ¢
& ©

+ @
+ @
(6.43)

We need to insert this and the coupling (6.33) into the
Schwinger-Dyson equation (6.42). In the double-scaling
limit we can drop the rhs in (6.42). The computation is
somewhat involved and is easier to do pictorially. We
checked that in the double-scaling limit ¢ — 1 it is indeed
satisfied. Crucially, one has to use the Yang-Baxter equa-
tion for the (g-deformed) 6;-symbol.

One can consider more general Schwinger-Dyson equa-
tions that involve higher-point correlators. They can be
derived similarly to (6.12) and (6.16).

VII. MATRIX MODEL POTENTIAL

We now return to the discussion of the matrix-model
potential and argue that it is determined by the disk
correlators. This is analogous to the statement that in a
one-matrix model, the disk density of states determines the
matrix potential and vice versa.

We will outline a systematic procedure for computing
non-Gaussian corrections to the potential of O, such that
the matrix model correctly computes disk correlators with
an arbitrary number of O insertions. In Sec. VIILF, we
explicitly compute the leading correction to the potential in
a regulated model.
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We write the matrix integral as follows:

Z= / dHdOe™"1:0)

= /deO exXp <—Z[Vsss (Ea) + Vc.t.(Ea)]

a

F
- SnE 0.0, -~
e s ab™~ba )

4)
G
+ e%o Z (Qab(I)bccgcdcodaM + - ) ’ (71)

4

a,b,c.d

where as usual we have chosen to work in the eigenbasis of

2

H. We define F, and GaIZ)Z...%, n € Zs,, to be smooth real

functions of the eigenvalues of H. That is, F,, =
F(E,.E,) and G%  =GW(E,.E,.E..E,). The

includes terms that are sixth and higher order in O
(we include even powers of O only so that the model
has a O — —O symmetry). The full set of coupling

constants is specified by Vggg and V., together with the

functions F,, and GE?]Z)Z...GZH for n € Z,. These functions

are invariant under cyclic shifts of their indices (e.g.

GE:L)L_ q= G;t)hc) as well as reversals [e.g. GS)L_ q= GS?,M].

As in the previous section, we are working directly in the
double-scaled limit, so the number of eigenvalues is
infinite. The factors of e% in the action ensure that
‘t Hooft diagrams have the correct factors of e% according
to their topology. In Sec. VIII C we will carefully consider a
regulated model where the number of eigenvalues is large
but finite.

As in the toy model, the requirement that the matrix
integral (7.1) correctly computes the correlator (Tre##) at
the level of the disk determines the counterterm potential
V. interms of the other coupling constants. If we integrate
out O, the resulting matrix potential for H becomes a sum
of multitrace terms. In analogy to Fig. 3, these multitrace
terms generate O bubble diagrams that correct the disk
partition function in the SSS model. We choose the
single-trace counterterm potential to cancel all of these
corrections.

Next, we consider the disk two-point function. Some
of the ‘t Hooft diagrams that contribute are shown
below:

The red blob is defined to be the sum over all planar
‘t Hooft diagrams with two external double-lines. As in
(4.9) and (4.17), we have declined to draw any O bubble
diagrams or double-lines of the H matrix. These are
automatically accounted for by the rule that each single-
line loop corresponds to an integral over the corresponding
energy with the measure dEe%p)(E). Mathematically,
(7.2) is represented by

<Tre_ﬂl HOe_ﬂ2H0>disk

- /dsadshesop(sa)eSOp(Sh)e_ﬂlsge_ﬁzxi<Ouh0ba>disk7

(7.3)

where p(s) was defined in (2.8)* and (0,,Op)qick 18 @
smooth function of s, and s, that is interpreted as a
microcanonical two-point function.** To be precise, we
define

<Oab0ba>disk
1 1
= TrP(s,)OP :
5SueS0p(sa) 5sheS0p(sh)< I (sa)(’) (Sb)0>dlsk?
(7.4)

where P(s,) is a projection onto a microcanonical window
centered around energy E, = s that has Js,e%p(s,)
eigenvalues (to leading order in e%). Taking inverse
Laplace transforms after the large-/N limit results in micro-
canonical-averaged correlators because the information
about the fine-grained details of the spectrum is washed
away at large N. We can only deduce the microcanonical-
averaged correlators from the gravitational path integral.
The requirement that the matrix model computes the
correct two-point function implies that

(0w Opa) sk = €75T5,. (7.5)

We next consider the disk four-point function, which
may be computed by summing ‘t Hooft diagrams with four
external O double-lines. These diagrams may be organized
into connected and disconnected diagrams, as shown in
(5.3), which we reproduce here,

“For comparsions with gravitational amplitudes, it is
more convenient to work with the s variables rather than
the energies E. They are simply related by E = s2.

“Note that (0,,0,,) i is the same object as (6.80) of [19] up
to factors of the density of states.
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30000 -

On the right-hand side we specify the gravitational four-
point function that the ‘t Hooft diagrams on the left-hand
side must reproduce. We may write

<Oab0bcocd0da>disk
_ S(sp = 54)
- <Oab0ba>disk <Obcocb>disk T Son(e
e>p(sp)
5(851 - sc)

+ (O Opa) disk (OadOa) disk

+ (005040 a) disk -

e%p(s,)
(7.7)

A correlator with the subscript disk, ¢ refers to a function of
the energies that represents the sum over connected planar
‘t Hooft diagrams only.45 Because the two-point function
has already been fixed in (7.5), the first two terms on the
left side of (7.6) reproduce the first two terms on the right-
hand side. It follows that

<Oab Obc Ochda > disk,c

A
—enyrprarg) o |

fa T } (7.8)

Se  Sq

Continuing in a similar fashion, we can compare the
matrix model ‘t Hooft diagrams with gravitational
Feynman diagrams as above and derive expressions for
the connected 2n-point functions (O, 4, - - Oy, 4, )aisk.c- It
follows from the Feynman rules in Sec. II that the
connected 2n-point function is given by a sum over all
connected gravitational 2n-point Feynman diagrams
(defined such that the bulk lines of the Feynman diagrams
form a connected graph).

Until now, we have assumed that for a suitable choice of
the couplings, the matrix integral correctly computes all of
the gravitational disk correlators. It follows that the sum over
all connected planar 2n-point ‘t Hooft diagrams is com-
pletely determined by the gravitational Feynman rules, as
illustrated above for n = 1, 2. We now show how this data
can be used to systematically determine the couplings.46
First, we modify the gravitational Feynman rules such that

“Here, we mean diagrams where the external © double-lines
are connected through the bulk.

'We will soon emphasize that there should be multiple ways
to choose the couplings such that the disk correlators of the
matrix model agree with the gravitational answers in the
appropriate scaling limit. Here, we just specify one way.

each crossing of two blue lines comes with an additional
factor of €, where 0 < € < 1. We may determine the matrix
potential order by order in €. In particular, we write

Voo (H) =3 v, (79)
m=0
F= i e"Fm), (7.10)
m=0
G =Y englan.m, (.11)
m=1
where we have omitted the indices on F,;, and ngl'.l.).az,l for

convenience. Note that (O, 4, - - O, 4, )disk.c 15 O(€"!) in
the e expansion. That is, any connected gravitational 2n-
point Feynman diagram must have at least n — 1 crossings.
When e = 0, the matrix potential must reduce to Z,, in
(4.3), which is why the sum in (7.11) starts from m = 1.
Working to first order in €, we set G- = 0 forn > 3.
Then, we choose G*-(1) to ensure that the matrix model
computes the correct connected four-point function, which
is order €. The only contribution is from a tree diagram,
eGH-()

ayaasay

FO RO FOLFY,

= <Oa1 a, Oaza3 Oa3a4 00411] >disk,c .

After choosing G(“)*(l), we note that the four-point vertex
appears in loop diagrams that contribute to the two-point
function at order e. We choose F(!) to cancel these
contributions. Next, note that both the four-point vertex
and the propagator contribute to (O bubble diagrams at
order e [and the result depends on F() and G*)(1)]. As in
Fig. 3, we choose Vﬁlt) to cancel the order € contributions of
O bubble diagrams to the disk density of states. This
defines the matrix potential to order €. See Fig. 5 for a list of
the diagrams that appear in this calculation to order e.*’

(7.12)

“Note that the loop integrations in these diagrams may
diverge. In Sec. VIII, we will show that the gravitational Feynman
rules can be further modified by a g-deformation such that the
g-deformed density of states has compact support, which implies
that the energies running in the loops are integrated over a finite
range so that all the loop integrations converge. We will properly
address this point in Sec. VIII. Until then, we ignore the issue of
divergent loop integrals.
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O -0639

(a)

:.:: + @

(b)

5= - X
(c)

FIG. 5. To compute the correct gravitational observables to order e, it suffices to let the quartic O coupling be the only interaction to
order . (a) O bubble diagrams that contribute to the disk partition function at order e. As in Fig. 3, these are canceled by counterterms in
V... (b) The ‘t Hooft diagrams that contribute to the two-point function. The order e correction to the quadratic O term is chosen to
ensure that these diagrams sum to the known gravitational answer for the two-point function. (c) The value of the quartic O coupling is
determined by matching the four-point tree diagram to the known gravitational answer for the connected four-point function.

We now outline the general procedure to determine the
matrix potential to any order in €. The basic idea is that to
any given order in €, there are a finite number of nonzero
connected planar 2n-point functions. Hence, we only need
to adjust finitely many terms in (7.11) to make the matrix
model correctly compute the gravitational correlators to a
given order in e. Thus, it is possible to systematically
determine the matrix potential order by order in e.

Let us explain the procedure in more detail. First, assume
that the matrix potential has been chosen to order e”~!
such that the matrix model correctly computes all of the
connected correlators to order e’~!. Assume also that the
couplings obey G?"-") =0 for n > 1+ m. As shown
above, these assumptions are true for p = 2, which we take
as the base case of an inductive argument. To determine the
couplings at order e”, we first choose G?"-(P) =0 for
n > p+ 1. Next, note that the only contribution from
G?r+2:(r) to the connected (2p 4 2)-point function at
order €? is in a tree-level connected (2p + 2)-point diagram
with a single (2p 4 2)-point vertex,

(2p+2).(p)
epGal dop+

—_ 7.13
Fsl(l))az e F51(2,>7+2111 ( )
We choose G2712)-(P) guch that the sum of (7.13) and all of
the other diagrams that contribute (which involve lower-
point vertices only) yield the correct order e¢” result for
(Ouay - Oupinar )aisk - Next, we consider the connected
2p-point function at order e¢”. This cannot depend on
G:(P) for n < p because any diagram with a (2n)-point
vertex with n < p must have at least one other vertex, and
every vertex is at least order e. Hence, the only order e”
terms in the matrix potential that contribute to the (2p)-
point function at order e” are G27)-(P) and G?7+2)-(P) and
GP)(P) only contributes as part of a tree diagram. We
choose G(>7)-(P) such that the sum of this tree diagram and
all the other diagrams yields the correct result for the (2p)-
point function. We may continue to choose G")-(P) for

successively lower values of n together with F(?) to ensure
that the matrix model correctly computes all of the

connected 2n-point functions at order e”. Finally, we

choose VE’_? to cancel the corrections from (O bubble

diagrams to the disk density of states. Thus, it is possible
to choose the couplings to all orders in € such that the
matrix model agrees with the gravitational answers at disk
level. After determining the matrix potential to all orders in
€, we can take € — 1 at the end of any calculation.

We expect that there are many ways to define a double-
scaled matrix model whose disk correlators agree with
those of the gravitational theory. While we have described
above a specific procedure for determining a suitable set of
couplings, there could be other ways to determine the
couplings. For instance, in the previous paragraph we
modified the gravitational Feynman rules by including
an additional factor of € whenever two blue lines cross. We
will refer to the associated matrix model as the “g-
deformed matrix model” for reasons that will become clear
in the next section. Another way to modify the gravitational
Feynman rules is to weight each connected 2n-point
function with a factor of €"~!. The inductive argument
outlined above can still be used to write the matrix potential
in an ¢ expansion. The associated matrix model will be
referred to as the “Selberg matrix model.” The ¢ — 1 limit
corresponds to the double-scaling limit of the matrix
model. We use the term “regulated matrix model” to refer
to either of these models away from the double-scaling
limit. The g-deformed and Selberg matrix models are
double-scaled in different ways, but their disk correlators
agree. However, as we will see later, their connected two-
boundary (or double-trumpet) correlators disagree. Thus, it
is important to distinguish between the two different
double-scaling limits.

An important question for either the g-deformed or
Selberg matrix models is whether the potential, written
as a power series expansion in e, actually converges for
0 < e < 1. We want the matrix potential to be defined for €
in this range, so that the € — 1 limit defines a scaling limit
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of a well-defined matrix model. We do not have a rigorous
proof that the sums in (7.9)—(7.11) converge for 0 < e < 1.
However, in the next section, we will provide highly
nontrivial evidence in favor of the conclusion that the
sums converge for the g-deformed matrix model. This
evidence follows from the relationship between the
g-deformed matrix model and the double-scaled SYK
model, which was studied in [13]. We do not have an
analogous argument for why the matrix potential converges
in the Selberg matrix model. However, in the remainder of
this paper, we will assume that the Selberg matrix model
potential is well-defined for 0 < e <1 so that we can
compute the double-trumpet in this model.

Even if the matrix potential is well-defined in the
regulated models, these models may be nonperturbatively
ill-defined. As an analogy, note that the potential V(x) =
x*> — x* has a local minimum at x = 0, which implies that
the associated single-matrix model has a perturbatively
stable saddle with a single-cut density of states centered on
x = 0. However, the matrix integral itself is nonperturba-
tively ill-defined because the potential is unbounded below.
We note here that the matrix model in [9] is nonperturba-
tively ill-defined (at least when the eigenvalue contour is
R), and the regulated matrix models we consider also
appear to be nonperturbatively ill-defined. It would be
interesting to find nonperturbatively well-defined models
with the same genus expansion as the regulated models, in
analogy to [41-49] but for two-matrix models.

VIII. THE REGULATED
TWO-MATRIX MODELS

In the previous section we showed that it is possible to
systematically determine the coupling constants of single-
trace, two-matrix models that compute the disk correlators
of JT gravity minimally coupled to a scalar field. When
computing ‘t Hooft diagrams in these models, one encoun-
ters divergent loop integrals due to the noncompact support
of the disk density of states p(s). In order for the correlators
to be finite in the double-scaling limit, the coupling
constants cannot be well-defined in the double-scaling
limit. This is simply because counterterms are needed to
cancel the loop divergences.

We introduced two different regulated matrix models
whose double-scaling limits reproduce the gravitational disk
correlators. We referred to these models as the g-deformed
model and the Selberg model. However, we did not explain
how the divergent loop integrals should be regulated in these
models. In this section, we begin by carefully defining the
g-deformed matrix model. We will explain how the con-
struction of the Selberg model differs. Then, we present a
nontrivial calculation in support of the conclusion that the
matrix potential of the g-deformed model is well-defined.

The reader who is mainly interested in the ‘t Hooft
diagram computations in Sec. IX can skip most of this
section without loss of continuity. To understand the results

in Sec. IX (aside from part of Secs. IX A 1 and IX D 1), the
only important point from this section is that the special
functions appearing in the gravitational Feynman rules may
be deformed by a parameter g € [0,1] (where g =1
corresponds to the original, undeformed Feynman rules).
We use these g-deformed special functions to regulate the
aforementioned loop divergences. These special functions
are defined in Appendix A.

A. Summary of chord diagram combinatorics

The g-deformed model has close connections with the
results of [13], which we review in this subsection. The
authors of [13] studied the SYK model in the double-scaled
limit. If we write the SYK Hamiltonian as

Hey ="

i<ij <»--<zp§N

Jiliz--~ipWi1 Wi, (8.1)

then the double-scaled limit is a large-N limit where

2p2
A=—— 8.2
> (32)
is held fixed. If we define
q fry e_j'7 (8.3)

then [13] showed that the moments of Hgykx only depend
on g and may be computed by summing chord diagrams. A
2n-point chord diagram is defined to be a circle with 2n
labeled points on the circumference and n chords. Each
chord connects two points and each point is attached to
exactly one chord. An example of a chord diagram is given
in Fig. 6. Each chord diagram is assigned a value of ¢”,
where 7 is the number of involuntary chord crossings [we
always assume that ¢ € [0,1)]. The authors of [13]
computed an elegant formula for the sum over all 2n-point
chord diagrams:

sum over all 2n-point chord diagrams

7 do g 2cosf\ 2
= [ (g, 2, . (84
| aatae q>°°<m) &4

DN

FIG. 6. An example of a six-point chord diagram. Pairs of
points are connected with chords. This diagram is assigned the
value g because there is one crossing.
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Note that if one replaces 2n in (8.4) with an odd number,
then (8.4) vanishes.

The authors of [13] also considered chord diagrams with
two chord species. A two-species chord diagram is defined
to be a circle with some number of labeled points on the
circumference, and each point is either of type A or type B.
All of the points are attached to a chord, and each chord
connects exactly two points of the same type. If there are an
odd number of either type-A or type-B points, then it is not
possible to pair up all of the points and the diagram is
assigned a value of zero. Otherwise, the diagram is assigned
a value of ¢ g7 §™, where n; is the number of involuntary
crossings of A-type chords, n, is the number of involuntary
crossings of B-type chords, and n; is the number of
involuntary crossings between an A-type and B-type
chords. Another result of [13] is that the sum over all
two-species chord diagrams with a fixed configuration of
points on the circle and a fixed configuration of B-type
chords may be computed using a set of Feynman rules that
mirror the rules described in Sec. Il A.*® Figure 7 represents
a sum over such chord diagrams.

We will often set g4 = q,§ = g*. The chord-diagram
Feynman rules are as follows (special functions are
explained in Appendix A):

(i) For each boundary segment labeled by n, we include

a factor of
<2cos9)”
V1I—-gq ’

where @ labels the disk-shaped region that is
adjacent to the boundary segment.

(i) For each B-type point (given by a blue dot in Fig. 7),
we include a factor of

< (0**:0)os )”2
(qui(ieliez);q)m

=(1-¢)* |10gQ|N /2 (T, (Axis) £isy)\ /2
I-q * r,(24)

(8.5)

(8.6)

logq] 2
— (- q>A<—Nq (T8 )2,

iy (8.7)

where 0; = s;|log g| are associated to the two disk-
shaped regions adjacent to the blue dot and we
introduced for later convenience

1

 |logq|(1-q)*(q:9)3,°

N, (8.8)

48Technically, [13] only proved this result for diagrams with up
to one intersection of B-type chords. For general two-species
chord diagrams, this result is a well-motivated conjecture.

no n3

8

nq Ny

N 01/

Ng ns

FIG.7. The B-type points of this two-species chord diagram are
labeled in blue. The labels n|, n,, ... indicate how many A-type
points (not shown) are between two B-type points. The sum over
all ways of drawing the A-type chords is equal to a finite-
dimensional integral which is determined by a set of Feynman
rules. The Feynman rules require that each disk-shaped region is
labeled with a @ parameter.

We expressed the rhs of (8.7) in a way that will be
convenient for taking the limit ¢ — 1 below.

(iii) For each involuntary crossing of two B-type chords,
we include a factor (g, = ¢q)

A s; s
Gads (0, ,i0y i ,if,\ — 1 22
Saan (e, e e'% e 4)=qBNq{ ,

Az S3 Sy q

where G, = ¢, §, = ¢ and we need to set
41 = G, = § = q®. Equation (8.9) for g, # @, is
needed if one wants to introduce yet another
chord species. The parameters 6y, ..., 0, represent
the four disk-shaped regions that surround the
crossing.

(iv) After including all of the appropriate factors as
specified above, we integrate over each 6 € (0, z)
with the measure

1 ds
Q) =

= (810
N, 2al,(£2is) (8.10)

=—dsp,(s), (8.11)

q

where as usual 6 = s|log ¢| and s € (0, z/|log q|).
This measure is normalized

T df .
| Swaue g =1 312)

For example, the two-point correlator of B’s described
by these rules is
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(TrBe P4 Be™P4) i (8.13)
:(l_q)2A|10gq|i m’;qﬁ[dsﬂ (S)
1— q Nq o . JEG\TJ
2 cos 9]>:| Fq<A + iSl + iSz)

xexp| —p; . 8.14

B. Scaling limit
We now show that in the limit ¢ — 1 the g-deformed
correlators reduce to JT correlators described in Sec. 1T A.
The density of states p,(s) and the 6;-symbol (8.9) in the
limit ¢ — 1 simply reduce to the corresponding JT values

() () {A1 S1 52} {A1 S1 Sz}

Pqg\s) = p(s), - )

! Ay 53 84 )y, Ay 53 8y
(g —1). (8.15)

The counting of the factors N, is as follows. Consider a
chord diagram with 2n operators B. One can show that

factors of N, from all crossings (8.9) and densities of states

(8.11) combine to give Ny """

. Further, each operator B
contributes N ;/ 2 (8.7), giving in total Ny from 2n operators.
Combining these factors we have for each chord diagram
N;("Jrl)NZ =+ To absorb the remaining factors in (8.7)
we define an oz)erator @)

B = (1-q)*0. (8.16)

The operator O will reduce to the same O considered in JT
gravity in Sec. IT A.

Now let’s discuss the spectrum of A. Near the right edge
in the limit ¢ — 1 it is

2cos(f)  2cos(s|logq|) (8.17)
T-q VIi-4q |

2 <1—(1_

1—-¢q 2

ES)

Q)2s2+...>, (g—1). (8.18)

To zoom into the right edge of the spectrum we define an
operator H

A=

¢12——q (1 _a _2(1)2H> (8.19)

such that in the limit ¢ — 1 the spectrum of H is s> with
s € (0, 00). This is the energy in JT limit. Combining
everything together we find

1qi£111N (TrOQe Pl Qe ) fisk.q

qp—1

= <Tr0€_ﬂlH...Oe_ﬁan>disk, (820)

where we also defined N = eSONq.49 Here, the rhs is
defined by the Feynman rules in JT gravity from
Sec. IT A. Later, in the matrix model N will be the size
of matrices.

The parameter gp is equivalent to € in Sec. VII. The
parameter ¢ was not introduced in Sec. VII but is needed to
carefully define the matrix model below. In the remainder
of this paper, we refer to the limitg — 1, gg — 1 as the “JT
limit” of the g-deformed model.

C. Two two-matrix models regulating JT correlators

As we explained earlier, we expect JT gravity coupled to
a free scalar to be dual to a double-scaled two-matrix
model. To properly define the matrix model, we would
like to describe it away from the double-scaled limit. We
will consider two different ways to move away from the
double-scaled limit: “g-deformed matrix model” and
“Selberg matrix model”.® The reason for considering
two different regulators is the following. In the double-
scaling limit both models will agree with the disk JT
correlators. However, on the double-trumpet in the double-
scaling limit they give rise to different results. The Selberg
matrix model will agree with JT correlators on the double-
trumpet, while the g-deformed matrix model will lead to a
different answer.

We define the regulated two-matrix models by first
specifying their regulated disk correlation functions. The
matrix potential is then obtained by applying the algorithm
in Sec. VII which produces a potential that computes a
given set of disk correlators.

1. g-deformed matrix model

We define the “g-deformed matrix model” such that its
disk correlation functions are those of the double-scaled
SYK model, which are described by the Feynman rules in
Sec. VIII A. It depends on the parameters g4 = ¢, ¢gp, and
G = g”. The potential may be found using the algorithm of
Sec. VIL.

In particular, the g-deformed model is a large N,
‘t Hooft-scaled two-matrix model with a single-trace
potential, and we refer to the two Hermitian matrices as
A and B. A single-trace, planar correlator of an arbitrary
string of matrices, such as

“Not to be confused with N in SYK.

The name “Selberg matrix model” is due to the fact that this
model will reproduce the contribution of the 1-loop determinant
on the double-trumpet, which in turn is computed by Selberg
trace formula.
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1
lim — (Tr AABBABABA),

N—-oo

(8.21)

is computed by placing the same string of A- and B-type
points on the circle of a two-species chord diagram and
summing over all A- and B-type chord configurations.

2. Selberg matrix model

The Selberg regulator differs from the g-deformed
regulator in two ways. First, we set gz = 1. Second, we
introduce a weight ¢"~! for each connected (in energy
basis”' 2n-point correlator. In other words, the blue chords
of a Feynman diagram form a graph. For each connected
subgraph with 2n external points, we include an additional
factor of €¢"”!. For example, the connected four-point
function using the Selberg regulator has a factor e.

The g-deformed and Selberg regulators return the same
results for the two and four-point functions if we identify
qp with €. But the 2n-point correlators with n > 3 are
different between the two regulators. The g-deformed
regulator gives weights gp according to the number of
crossings in the Feynman diagram, while the Selberg model
gives weights e according to the number of external
operators in each connected subgraph.

With these regulated gravitational Feynman rules, we
may use the systematic procedure described toward the end
of Sec. VII to construct a matrix potential to all orders in €.
The result accounts for (5.16) and (5.18). The double-
scaling limit of the Selberg model corresponds to taking
g — 1 and then ¢ — 1 (the order is important, as we will
see in Sec. IX). The matrix potential of the Selberg model
also includes a double-trace term (5.17) that is added by
hand; as explained around (5.17), its presence is required
for the Selberg model to compute the correct empty double-
trumpet.

In the remainder of this section, we focus only on the
g-deformed model. We will revisit the Selberg model when
we discuss the double-trumpet.

D. A single-matrix model warmup

Before we explain why the g-deformed two-matrix
model should exist, we will first consider the easier
problem of finding a one-matrix model whose single-trace,
planar correlators are computed by sums over single-
species chord diagrams. This is possible because the
density of states (8.11) is supported on a finite interval
s € (0. 155547)- just like in a single-cut matrix model.

We let M refer to a N x N Hermitian matrix, and the
matrix integral is given by

4—/MMWWMX (8.22)

*'That is before integrating over parameters s ;.

Our goal is to choose V(M) such that the correlators of M
obey
7 df

: 1 k\ __ +2i6.
nggN<TrM>—/) Y (g2,

k € Zs,. (8.23)

Let p,(E) be the normalized tree-level eigenvalue dis-
tribution of M, which obeys the saddle-point equation [9]

= Ee(a_,a,),

a pao(d)  Vy(E)
di - , 8.24
A E— . 2 (8.24)

where the integral is a principal value integral, and the
endpoints of the single-cut eigenvalue spectrum are

2

ai:i l—q

(8.25)

Next, we define the rescaled quantities p, o(x) and V,(x)
such that

~ & 2x
dipgo() = dippax). Vo=V, (). 1=
(8.26)
Then, (8.24) becomes
1 ] f//
-1 y—Xx 2

Next, note that

. n? _n n
(g.e™20;q) = Z(_l)an[q 2+ q2|T5,(cosd), (8.28)

nez

where T,(cosf) = cosné is a Chebyshev polynomial of
the first kind. Then, (8.23) implies that

Panls) = s | S0Pl + 1T

nez
(8.29)
We will need to use the mathematical fact that
1 dx T2n (x)
=—nU,,_ , n>0, e(-1,1),
. m y—x 2n—1 (y) y ( )
(8.30)

where U ,(cos ) = sin((n+1)0) i the Chebyshev polynomial

sin @
of the second kind and the integral is a principal value
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integral. We can then use (8.27) to directly compute V/,(y),
and the result is

V! (y) - 2 . .
q2 =— ;(‘1)”q7[q‘5 + q¢2]Usu1(y).  (8.31)
Integrating the above with respect to y, we obtain
1 IR R
Vo) == (-1)'q" | ]Tzn(y) (8.32)

The expression for V(1) follows from (8.32) and (8.26):

Y [q_j ¢l (*/12_—‘1,1). (8.33)

We will refer to (8.33) in the next subsection. This single-
matrix model is a regulated version of the SSS model [9].

E. Solvable limits of the g-deformed model

In Sec. VIII B, we showed that in a certain limit, the
g-deformed two-matrix model computes the disk correla-
tors of JT gravity minimally coupled to a scalar field. In this
subsection, we consider other limits of the g-deformed
model, in which the model is solvable. Although we cannot
write a closed-form expression for the entire matrix
potential of the model, we can write the potential in these
solvable limits. In the next subsection, we provide non-
trivial evidence that the model also exists away from these
solvable limits.

We remind the reader that the circle of a two-species
chord diagram represents a trace in the matrix model, and
each A- or B-type point on the circle corresponds to an
insertion of the matrix A or B into the trace. In the
g-deformed two-matrix model, the expectation value of
this trace at planar order (normalized by N) is given by a
sum over all the chord configurations that connect the
boundary points. Two intersecting A-type chords come
with a factor of ¢,, two intersecting B-type chords come
with a factor of gp, and an intersection of an A-type and
B-type chord comes with a factor of g. We let Z, . =
denote the matrix integral of the regulated two-matrix
model.

The first solvable limit that we consider is g = 0. In this
limit, an A-type chord cannot intersect a B-type chord. In
the matrix model, this means that every connected planar
‘t Hooft diagram contains either A double-lines or B
double-lines, but not both. Thus, there can be no interaction
terms between A and B in the potential. The matrix integral
must take the form

z (8.34)

Ga-qp.G=0 — /dA dB e_N(TrVqA (A)+VqB(B))a
where V, was defined in (8.33).

The next solvable limit of interest is gz = 0. In this case,
two B-type chords may not intersect. Given that a B-type
chord may be interpreted as a bulk line in the JT limit and
that the toy matrix model Z,,, does not allow two bulk lines
to cross, it is clear that the g-deformed model with gz = 0
is an appropriate deformation of Z,. In particular, the
potential of the g-deformed model at gz = 0 must be
quadratic in B. The matrix integral for gz = 0 is

Z 4 as=04 = /dAdBexp(—NTrVqA(A)

- N |: B, B —Z?”q:| — NTrV qA@(A))
E abPba B c.t. ’
a,b

(8.35)
where V, is defined in (8.33), and
_ i . (J1=4qg -
FUI = Fad(),, ) = F’M( . L) . %,),
o = i(10,46,).
F49(cos 0y, cos 0,) = 1° . TIEy (8.36)
(7% 9)os
where 4, refers to an eigenvalue of A, and
vil(E) == [ dipyoi)og FILE). (337)

where a, is defined in (8.25). The smooth function
F4%4(2,,2,) is chosen so that the two-point function of
B agrees with the chord-diagram Feynman rule (8.7). As in
Sec. 1V, the counterterm potential is chosen so that the tree-
level eigenvalue distribution of A is p, . To evaluate (8.37),
note that

2. cosnd
—log(ge*?;q), =2y ———3" (838
(Ge*; q) Z Gogmd (838
and thus
~log(ge 0k, g) icosnél cosn92 7. (839)

It then follows from (8.37) that up to an unimportant
additive constant,

; % (E E) (8.40)

VE(E) = Vi 5
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- © 2 1-— -5 + 5
Vo(E) + VEI(E) = S (-1)'g5Ts, (V "E) 7 +q

n
1 ~2n
<)

The last solvable limit we consider is g, = 0. This limit
is the same as the previous limit up to exchanging the labels
A and B. This is because the matrix potential of the
g-deformed two-matrix model must have a symmetry that
exchanges the A and B labels everywhere (including the A,
B matrices themselves as well as the g,, gz parameters).
This symmetry follows from the simple fact that the two
types of chords in a two-species chord diagram are treated
on an equal footing. Of course, the JT limit defined in
Sec. VIII B breaks this symmetry.

(8.42)

F. Perturbation theory around a solvable limit

In the previous subsection, we described three solvable
limits of the g-deformed matrix model, corresponding to
the cases where either gy, gp, or g are set to zero. To test
our conjecture that the g-deformed model exists, one can
compute perturbative corrections to the potential around
each of these limits and check that they are mutually
consistent. In this subsection, we show that the O(gp)
correction to the gz = 0 potential in (8.35) is consistent
with the other two solvable limits. In particular, we will first
compute this correction when § = 0, and the result will
|

G‘I-‘?

= G4
abced ( 2 2 2 2

G?4(cos(6,), cos(6,), cos(63 ), cos(6,))

= = = =
v qﬂa’x/ qﬂb’\/ q%\/ q,

agree with the O(gp) term of the potential in (8.34). Then,
we will compute the O(1) and O(g,) parts of this
correction in the small-g, expansion (for arbitrary §)
and find that the terms in the potential we obtain are
symmetric under relabeling A and B.

Our strategy to compute corrections to the gz =0
potential is the same as in Sec. VII, where we explained
how one could systematically compute corrections to the
matrix potential in Z,, order by order in € (see Fig. 5 for a
description of this procedure to first order). Here, g5 plays
the role of e. We write the matrix integral of the regulated
model as follows:

Z‘IAJ]B@ :/dAdBeXp(_VIIAJIBJI)’

Varana = NTr(V, (A) + VET(A) + gpAV7(A))
(F47 + gy AF%Y)

+NY BBy, 5
ab
Gaea
~Nag Y | BupByBeaBa—4*
a,b,c.d
+0(q3) (8.43)

We allow for a generic O(gp) correction to the terms that
are already present in (8.35), and we also include a new
term that is quartic in B. This quartic term makes the planar
connected four-point function of B nontrivial, which allows
B-type chords to intersect each other. In order for the
single-trace, planar correlators of this matrix model to agree
to order g with the corresponding sums over two-species
chord diagrams, we must set

)

= \/I:""*Z’(cos 6., cos 0,)F7(cos 6,, cos 03) F44(cos 05, cos 04 ) F74 (cos 6, cos Gl)Sg:;(eiel,e"(’%ew% e%s).  (8.44)

This is because in any planar ‘t Hooft diagram with a quartic
B vertex, the propagators can be set to the uncorrected
propagator (NF Zz’q)‘l (since the O(gp) correction to the
propagator becomes an O(g%) correction to the entire
diagram, which we are not interested in). Thus the quartic
interaction in (8.43) is entirely determined by the chord-
diagram Feynman rule for two crossing B-type chords, (8.9).

To determine the O(gp) correction to the two-point
coupling AF Zf, we choose AF Z;‘,‘q to cancel the corrections
t0 (B .,Bpa)aigc from loop diagrams involving the quartic
coupling, such that

(BapBpra)disk = (NFZ?;@)_]- (8.45)
We obtain
P God, Glpar
AFZ/};q = /dlcqu,O(ﬂc) FqA"? +/d/1cqu,O(ﬂc)W'
bC ac
(8.46)

To determine the correction to the B-independent part of
the potential AV94-4, we should integrate out B in (8.43) to
leading order in gg. The result is
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ZqA,qB,q = /dAdB exp (—NTr(VqA (A) + VqA q( )

+N_ICIBZ 1‘132

ab,c

abac
qa-q qu
F ) Fae

We must choose AV94-4 to cancel the contributions from
the other O(gy) terms to the saddle-point equation for the
tree-level eigenvalue distribution of A. Thus,

; AF%?
AVIrd(2,) = — / d2pPg,0(4p) quq
ab
1 bl
) / dﬂthA,o(ib)dﬂchA.o(/%)W
s
b [ Ao ola)diepy,o30) g 20 .
Pl
(8.48)
and if we use (8.40), this becomes
. 1 G4
AVIrd(3,) = —3 / dﬂquA,o(ﬂb)dﬂcﬂqA,o(ﬂc)W~
(8.49)

We now consider the § = 0 limit. From (8.36), (8.46),
(8.44), (8.9), and (A70), we find that

A
Gaaaa

FZ?Z .q FCIA ‘]

dasd _ CIB AFq?a'q
A a
ab ab
(q%))- (8.47)
|
1
Gl =1,  AF3°=2, AVIO(A) ==, (8.50)

and in particular we may ignore AV99(A) because it is a
constant. Then, (8.43) becomes

|
2 an0 / dAdBexp( _NTr {V%(A) LB <§ N f13>

-Lp s o) )

Using (8.33), we see that this agrees with (8.34).

We now consider the computation of (8.44), (8.46), and
(8.49) to order g, for arbitrary §. Because (8.44) depends
on the g-deformed 6 symbol, we use (A82) to write the
g-deformed 6 symbol as an infinite sum. To a finite order
in g4, the sum truncates to a finite number of terms, and
collecting the O(1) and O(gy) terms is straightforward (but

tedious). After determining GZ’,‘)’L_‘Z,, the integrals in (8.46)
and (8.49) are straightforward to evaluate to O(g,). We
now present an explicit formula for the potential in

(8.43) to O(q,):

(8.51)

1 (1-3%) (1-3°) 7’ q(1+3*)
“v T A? B? B2A? — ABAB
N 49a-98-9 I'|: 2 + 2 +1_qZ 2(1_[12)
~4 1 ~2 1-— ~72
—i—qATr[(l _gha 4 . )yt 4 91 . 1 AR
~3 ~2 1 ~2
L gaBaB -1 apap + TUTD) opaap
1-g 2(1-g°%)
7(1-3°)
n qBTr[ oA+ (1-39)B? — PAPB® + PABAB
ot — 1 ~3 2(1 ~2
L@ =g @ __ABAB® + 1 ( a ) AB2AB?
4 (1-3%) 2(1-4%)
o4 (1 — a2 ~4 2_5~2 ~4
—l—quATr[ (1 -y =2 . 1 )A4+q4(1 Y A 1 (i ) a2 4 gpeat
-
2~7 ~4 11— ~2 ~4
q _ 7 A3BAB — %B“ 1 G*A’B* — FABAB® — i q 7 — 1 ABAR?
q —
~5 ~6 ~5 _ 2~2 -1
T pepapar-— L epapap+—L _ppapap+ L0 20— g
(1— ?)? -7’ (1-3%) 4(1-g°)
+- (8.52)
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By inspection, the terms in (8.52) are symmetric under
A < B. At the level of this perturbative calculation, this
result is highly nontrivial, and would be a coincidence if the
disk observables of the g-deformed model did not have a
chord diagram interpretation.

The above calculation is the first step of the systematic
procedure described in Sec. VII for determining the
couplings of the g-deformed model. We expect that if
we continue to determine the couplings to higher order in
qp, we will continue to see the symmetry that interchanges
A and B. This is strong evidence in favor of the conclusion
that the matrix potential of the g-deformed model is well-
defined. If (8.52) did not have the A <> B symmetry, we
would have to conclude that the power series representation
of the matrix potentials2 is merely a formal power series that
does not converge (if it did converge, it would converge to a
potential without the A <> B symmetry, which contradicts
the fact that the chord diagram Feynman rules treat A and B
on equal footing). Although we lack a rigorous proof, we
believe that the potential of the g-deformed model is well-
defined. We will learn more about the g-deformed model in
the next section, where we compute the double-trumpet. In
particular, we will compute the empty double-trumpet as
well as the double-trumpet with one O inserted on each
boundary. From either of these calculations, we can read off
the partition function of the bulk matter theory on the
double-trumpet. The fact that these two separate calcula-
tions return the same result for the matter partition function
provides further nontrivial evidence that the g-deformed
model exists.

We do not have analogous arguments for why the Selberg
model exists because we have no a priori reasons to expect a
symmetry in the Selberg model. Furthermore, in the Selberg
model, we view the empty double-trumpet as part of the data
that defines the model, as opposed to something that is
nontrivially determined by the defining data.

IX. THE DOUBLE-TRUMPET

Previously, we argued that there exist single-trace two-
matrix models which, in the double-scaling limit, correctly
compute the disk amplitudes of JT gravity minimally
coupled to a scalar field. Although we explained in
Sec. VII that there is a systematic way to determine all
of the terms in the matrix potential, actually computing
these terms in practice quickly becomes tedious. The
purpose of this section is to demonstrate that one does
not need to know the detailed form of the matrix potential
to compute the double-trumpet in a single-trace, two-matrix
model. It is sufficient to know the (regulated) disk corre-
lators. In both the g-deformed and Selberg models, we will
compute contributions to the double-trumpet that can be
directly compared against our calculations in Sec. IT B. We

32We are referring to (7.9)—(7.11), where ¢ plays the role of e.

will consider the empty double-trumpet as well as the
double-trumpet with an O operator inserted on each
boundary. For simplicity, we set S, = 0 in this section.

Let us briefly summarize the technical results of this
section. In the g-deformed model, our result for the empty
double trumpet in the JT limit is in agreement with (4.42),
which we reproduce here,

(Tre P Tre a) | = A db bZ,(By. b)Zy (Br. )Z(b).

(9.1)

l—e?

0 e—Ab n
Z(b) = Z <1 _e—b> = | — o b _ pAb"

n=0

(9.2)

We may interpret Z(b) as a partition function of some matter
theory with inverse temperature b. We found this result by
classifying all of the ‘t Hooft diagrams that contribute to the
empty double-trumpet, and we explicitly computed the first
few classes. The first class of diagrams agrees with the ¢ = 0
result (4.42). The next few classes of diagrams, which
represent finite € corrections, actually make a vanishing
contribution to the empty double-trumpet. We conjecture that
the sum over all the ‘t Hooft diagrams agrees with the ¢ = 0
result, so that the matter partition function Z(b) computed
using the g-deformed regulator is the same as in the toy
model of Sec. IV that is Gaussian in . Our computation of
the double-trumpet with one O inserted on each boundary
provides more evidence in support of this result. As shown in
Appendix E, the gravitational computation of this leads to an
integral over the closed geodesic length b. The integrand is a
product of the integral over the “boundary wiggles” at fixed b
(which includes an e™7 weighting factor, where Z is the
renormalized geodesic length between the two O insertions)
and a partition function Z(b). In the g-deformed model, we
classify all of the ‘t Hooft diagrams, and we compute analytic
formulas for the sums over the first four classes of diagrams.
We express the results in a way that allows us to read off what
Z(b) is. We find that the first four classes of diagrams
reproduce the n = 0, 1, 2, 3 terms in the sum in (9.2). We
conjecture that the remaining classes of diagrams that we do
not explicitly compute continue to match the remaining terms
in the sum. Thus, both the empty double-trumpet and the
two-point function return the same result (9.2) for the matter
partition function. We comment on the Hagedorn behavior of
Z(b) in Sec. IXD 1.

Using the Selberg regulator, the empty double-trumpet is
the same as in the g-deformed model. Thus, as explained in
Sec. V, we add a double-trace term (5.17) to the matrix
potential of the Selberg model to ensure that the empty
double-trumpet becomes (9.1) except with Z(b) replaced
by Zcaiar(P), which was defined in (2.23). Our freedom to
add this term arises from an ambiguity in defining the
integration measure for the matrix integral. We have
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identified two reasons for this ambiguity. First, by rescaling
the matrix elements O,;, by a function of E, and E, and
transforming the measure dQO, we can add an arbitrary
double-trace term to the potential that only depends on H.
In other words, if we let dO in (1.1) refer to the standard flat
measure for the rescaled matrix elements, then the measure
written in terms of the original matrix elements includes a
Jacobian factor that adds a double-trace term to the matrix
potential that only depends on H. Unlike the g-deformed
model, we have no way to canonically specify the measure
for 0. Second, if we view this model as an effective matrix
model, then we should consider additional matrices other
than O that can couple to H. Upon integrating these other
matrices out, we obtain the matrix potential of the two-matrix
model, but perhaps with a modified measure for H. Note that
the single-trace potential was obtained from a disk-level
matching calculation (analogous to how one determines the
effective Lagrangian of an EFT from matching). This
matching calculation cannot rule out the presence of a
double-trace term like (5.17) that does not change the disk
answers. This double-trace term can be determined by
matching to the gravitational double-trumpet.

Hence, in the Selberg model, the empty double-trumpet
is viewed as part of the data that defines the model, while in
the g-deformed model, the empty double-trumpet is a
nontrivial prediction of the model. In the Selberg model,
we compute the double-trumpet two-point function using
similar techniques as in the g-deformed model, and we find
that the first four classes of ‘t Hooft diagrams reproduce
the n =0, 1, 2, 3 terms in the sum in (2.24). We then
conjecture that the sum over all ‘t Hooft diagrams in the
Selberg model reproduces, in the double-scaling limit, the
double-trumpet two-point function in JT gravity minimally
coupled to a massive scalar field.

A. Empty double-trumpet

In this section, we study the double-trumpet with no O
insertions by explicitly analyzing ‘t Hooft diagrams. We
illustrate our strategy by working directly in the double-
scaling limit (as in Secs. IV and VII), although we will
eventually write down explicit regulated expressions.

We are interested in the connected double-trace correlator

(Tre Pl TrePrH)

= (Tre PtHTre PrH) — (Tre PLH)(Tre P¥f).  (9.3)

Let (Tre Pt Tre~/#") | denote the leading contribution to
(9.3) in the genus expansion. An example of a ‘t Hooft
diagram that contributes to (Tre ™" Tre/s#) s given in
Fig. 8. To compute the sum over all such diagrams, it is

JIf we wish to preserve the A <> B symmetry in the
g-deformed model, we should not redefine the A matrix in a
B-dependent way. As explained in Sec. VIII, in the double-scaling
limit A becomes H and B becomes O up to trivial rescalings.

O

A B C

@

FIG. 8. A ‘t Hooft diagram that contributes to the connected
double-trace correlator (9.3) at leading order in the genus
expansion. The top and bottom ends of the diagram are identified
to obtain the cylinder topology. Each of the two traces in (9.3) is
represented by a black line. Each red double-line corresponds to
the O matrix. There can be many additional black double-lines
which we have not explicitly drawn (these correspond to the H
matrix). Ignoring the H double-lines, a general diagram can be
separated into connected diagrams. Each of the three connected
diagrams above is labeled by a letter. Diagrams A and B wrap the
double-trumpet. Diagram C is contractible to a point. The
contractible diagrams (namely, the O bubble diagrams) will be
cancelled by counterterms (just as in Fig. 3), so we will no longer
draw them in subsequent figures. Note that diagrams B and C
both arise from the same double-trace term that appears in the
action for H after integrating out O [in the toy model, this term is
the second term in (4.4)].

convenient to first consider the sum over all the connected
O diagrams that wrap the double-trumpet (such as dia-
grams A and B in Fig. 8). Each diagram contains two
noncontractible index loops and hence may be thought of
as a function of the two energies running in these loops.™
Let D(s,, s;,) denote a smooth function that represents the
sum over all connected O diagrams that wrap the double-
trumpet. For convenience, we will often write D, in place
of D(s,.s;,).”> A general ‘t Hooft diagram (such as Fig. 8)
is obtained by connecting together the diagrams that
contribute to D,, with H double-lines and contractible
O bubble diagrams. Because the contractible O bubble
diagrams are canceled by counterterms, we can use the
double-trumpet of SSS to connect the diagrams that appear
in D,,. Explicitly, we have that

*The contractible index loops are also associated with
energies, but these energies should be integrated over with the
disk density of states for H. That is, these loops should be filled in
like a disk.

P As always, s is related to energy by s> = E. The two
noncontractible index loops of a diagram are averaged over
microcanonical windows centered on energies s2 and s3 respec-
tively to obtain the contribution to D,,. In the toy model of
Sec. 1V, the only contribution to D,;, comes from diagram B in
Fig. 8 and is given by log I'(A =+ is, + is; ). Note that D,;, may be
defined to include or not include a symmetry factor of 2
associated with the left-right symmetry. Our conventions for
D, are clear from (9.4).
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[s0]
(Tre‘ﬁL”Tre‘”RH>Cy1—/0 dE dEge "Fre™ b | (py (EL)pr(ER))eyisss

+ /Ooo dEldE2<pH(EL)pH(E1)>cy1,SSSD(\/E_’ \/E_2)<PH(E2)PH(ER)>cy1.sss

+A dE\dEydE3dEy(pr(EL)pu(EL))eysssP(V Er. \/ E2)

X <pH(E2)pH(E3)>cy1.SSSD(\/E—’ E4)<PH(E4)PH(ER)>cy1.sss +ees

where py was defined in (4.6), and (py (EL)pr(ER))cyisss
denotes the leading order connected correlator in the SSS
model and may be computed from the inverse Laplace
transform of the SSS double-trumpet. Using the expression
for (py (EL)pH(ER))cysss from [9], Eq. (9.4) is equal to

(Tre /i TrePrH)
—/ bypdbybrdbgZ(Br.br)Zy(Br. br)

1
[b— O

/ bLabl)f)(blva)+"' )

— b)) +D(b,, bg)

where

~ 00 b b
D(blva)E/ dsldSZMD(sl’sz)m,
0 T T
(9.6)

and Z,(f, b) was defined in (2.21). Note that adding an
energy-independent constant to D does not affect the
connected double-trace correlator because

/oo dE(pu(E1)pu(E2))cy1sss = 0 (9.7)

0

The integral of the density of states is equal to the number
of eigenvalues, which does not fluctuate in the ensemble.

By deriving (9.4), we have reduced the task of comput-
ing the empty double-trumpet to the task of computing D ,;,,
which is the sum over connected O diagrams that wrap the
double-trumpet. Our next step is to classify these diagrams
by studying paths from the left to the right side of a diagram
which are only allowed to cross over O double-lines (and
not vertices). Let DE:,')) denote the contribution to D,;, from
all the diagrams obeying the condition that the lowest
number of O double-lines that are crossed by a path from
the left to the right side is n. For example, diagram B in

Fig. 8 belongs to D(alb) because every path from the left to
the right side crosses exactly one O double-line, while

(9.4)

diagram A belongs to be) because one can draw left-to-

right paths that cross over two O double-lines but not one.
It follows that

9.8)

Dah = Z DEJZ]
n=1

In the next subsection, we compute DS;, be), and be)
using the g-deformed and Selberg regulators and then claim
that there is a pattern that generalizes to arbitrary n.

As mentioned above, by redefining the measure for O,
we can obtain different answers for the empty double-
trumpet. In particular, adding the double-trace term

— 3> log f(E ) (99)
a,b

to the matrix potential is equivalent to adding log f(E1, E»)
to D(/E|,\/E>). To add (9.9) to the matrix potential, we
may define @ab by

@ab = [f(Eav Eb)}_l/anb (910)

and then define the measure to be d@, or the standard flat

measure for the © matrix elements. In this way, we can set
D(VE,E,) to whatever we want. In the Selberg model,
we fix the ambiguity in the definition of the measure for O
by demanding that the empty double-trumpet agrees with
(2.17). On the other hand, in the g-deformed model, we
explicitly chose the standard measure for the A and B
matrices. We should not modify the measure for B because
the g-deformed model is supposed to treat the A and B
matrices symmetrically.

1. Computing DV

To compute Dfllb), we consider diagrams that allow for

left-right paths that cross over one (O double-line. We
enumerate all of the possible diagrams in Fig. 10.

Let X, refer to the 1PI two-point function (see Fig. 9).
Referring to the matrix integral in (7.1), we find that X,
obeys
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FIG. 9. The IPI two-point function is related to the two-point
function as shown. The red blob corresponds to (O, Op,) dgisk-
The top and bottom ends of the diagrams are not identified. We
define X', to be the function of two energies that represents the
1PI blob above.

-1
Fuh

Ou0pa)disk = — 25—, 9.11
< ab ba>d1sk 1— F;bl Xab ( )
which implies that
o F—lXa n
D) = —togF,y + ) LurTarl
n=1
= —logFo, —log (1 = F Xy),
= 10g(O04Opa) gisk
(A £ is, £ isp)
=1 9.12
S N (9.12)

The % factor is a symmetry factor arising from the Z,

symmetry of the diagrams in Fig. 10. Using (4.18) we then
find that

e—Ab

. 1
DY (b, b)) = Z5(19 -b)

o7 (9.13)
This contribution to the double-trumpet (9.5) precisely
equals the double-trumpet result (4.42) in the toy model of
Sec. IV. Changing the normalization of O changes D'") by
an additive constant that does not affect the double-trumpet,
as explained above.

Before continuing on to D?), we will compute the
contribution from D! to the double-trumpet using (9.4)
in the g-deformed model. To be precise, we will compute

(Tre‘ﬂLATre‘ﬂRA>cyl. (9.14)

In Figs. 9 and 10, the red double-lines now correspond to
the B matrix, and we will let the £ dummy variable in (9.4)
refer to an eigenvalue of the A matrix. Using the chord-
diagram Feynman rules beginning from (8.5), we have that

(TrBA™ BA™) 4ig

2
™ do ) 2cos0; \ %
=N / [] [—’(q 1d4)e (€723 )oo< e’) ]
i 0 j=1 2r i A ]_qA

(qz;qA)oo
EEAN

Ge , (9.15)

FIG. 10. The diagrams that contribute to Dfll,} consist of 1PI
two-point functions threaded together. The top and bottom ends
of the diagrams are identified.

where N, defined in (8.8), is the number of eigenvalues of
each matrix. This implies that

1

SE\Ny,pq,0(E1) SE3N py, 0(E2) (TeBP(E1)BP(E,)) sk
— N-1 (7% 94) oo
94 (Elei(if),ié)z);qA)oo’
-l -1z, (9.16)
V-
where p,, was defined in (8.23) and (8.24).

Equation (9.16) is defined analogously to (7.4), so
P(E,) is a projector onto a microcanonical window of
width SE; centered around E;, with SE\N, p, o(E)
eigenvalues to leading order in N, . Equation (9.16) is
the analog of (0,0, )4 in the g-deformed model, so
D) immediately follows from (9.12).

Next, we need to compute

<pA (El )pA <E2)>cyl,1—matrix (917)

in the g-deformed model, where p, is the density of states
of A. Equation (9.17) refers to the cylinder in the single-
matrix model of Sec. VIII D. That is, (9.17) is the analog of
(Pr(E1)pu(E2)) ey sss i the g-deformed model. The
density-density correlator in the g-deformed 1-cut matrix
model takes the universal form [50,51]

(Pa(E\)pa (E2)>cyl,l—rnatn'x

1 1

o)

= . (9.18)
BEEE - () (- (5))
where
2
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Next, note that the Chebyshev polynomials of the first kind have the following generating function®® for lt] < 1

inT (T, ()" = (2 + )22+ 1)xy =42(4 + 1)) + (0 + 74 + 72 + Dtxy +2(1 — )12 — 161 x%y? (9.20)
= (4202 +37) = 4( + Dixy + (1= £ |
|
Taking ¢ — 1, we formally obtain that The integrals over E; in (9.25) can be computed
o0 2(xy—1) 1 dx
n2T,(x)2T,(y) = ————5- (9.21) / e PT, (x) = (=1)",(B). 9.27
2 (3P o) = (C'L(B). (027)
which implies that So we get
<pA(El)pA(E2)>cyl,l—matrix © n
—BL AT, —frA 1 —qj
. o7 (B (E2 (Tre PtATre Prd) | = an_Tln(ﬂLa)I,,(ﬁRa).
1 nety a n\ a n=1 da
= )ZZ . (9.22)
=)0 6) o

Meanwhile, from (8.39), (9.12), and (9.16), we have

8 (B ),
(9.23)

Noting that the Chebyshev polynomials are orthogonal,

1 dx
/_lmz (52T (x) = B

we may plug (9.22) and (9.23) into (9.4) to obtain

nm>1, (9.24)

(Tre™PiATre ety |
E;
SETy T 21, (5)
:) _e_/}lEL4
S

1—q; - 4 ie{L,R} 2na 1— (2)2 .
(9.25)

The D symbol indicates that (9.25) only contains the
contribution from D!, However, below we will see that
neither D nor D) make any nontrivial contributions to
D, and we will conclude that in general, only D)
contributes nontrivially to D in the g-deformed model.
Hence, we may replace the D by an = above. Note that
(9.4) only converges when

Vn>1.

qy+q" <1, (9.26)

This may be derived from the results of [52].
Given that ¢, and ¢ are in the interval (0,1), it is enough to
write (9.26) for n =1 only.

T this is Eq. (50) from [53]. % Our

formula (9.28) is a generahzatlon of that to the 2-matrix
model.

In Sec. IX D 1, we will interpret the matrix model in the
regime where (9.26) is violated. A simpler correlator is

A A
Tr2T, p Tr2T,, p =n
cyl

It would be interesting to reproduce this result for the
double-trumpet in g-deformed theory from the transfer
matrix approach in the double-scaled SYK [13,55]. This
computation can be thought of as the bulk dual of our
matrix model result above. One can construct the bulk
Hilbert space by slicing open the chord diagrams [55] and
use it to compute the double-trumpet.

We can also take the JT limit of (9.29). We set g4, = ¢,
G = g*, and we use (8.19) to relate H and A. Then define
b, and b, via

Without the factor ;—2=

1=g"
A s, (9.29)
1_CIA —q

gy =et, g =et (9.30)
Taking ¢ — 1 for fixed b, b,, we obtain
2 2
Tr—cos (b;VH)Tr —cos (b,VH)
bl b cyl
1 —e ™

which is in agreement with (4.42).

8See also Eq. (2.34) in [54].
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2. Computing D?

To compute D?), we consider diagrams that allow for
left-right paths that cross over two O double-lines, but we
exclude those diagrams that were already counted in D(!).

It is convenient to think of each diagram as an operator that

acts on functions of a single energy. Let X’ Ezzb) (s.,s4) refer to

a smooth function of s,, s, 5., and s, that is defined in

Fig. 11. We may think of X’ 22,) (s.,s4) as an operator (which
depends on the parameters s, and s,,) that acts on a function
of s, to produce a function of s,.

We enumerate all of the diagrams in D®) in Fig. 12,
where we explicitly show the locations where a left-right
path may be drawn to cross over two double lines. The
remaining parts of the diagrams are encapsulated in

X(azb)(sc,sd).

Sb

Sa Se —
Asd

FIG. 11. The blob labeled “2” is the sum over two-particle
irreducible diagrams, i.e. all connected planar four-point dia-
grams such that any left-right path through the blob crosses more
than two double-lines. The simplest contribution to this blob
comes from a tree four-point diagram (in this case, there are no
left-right paths that can go through the blob, because we only let
left-right paths cross over double-lines, and all of the double-lines
are external. So it is vacuously true that all left-right paths
through the blob cross over more than two double-lines).
The blob labeled “2” is a function of the four energies shown
above. We define Xslzc) (sp, 54) to be the product of this function

and  ((O404a) disk (O Oct)atisk (OcaOute aisk (OaaOua)ais)
which is represented by the four red semicircles. Including

+ ...

these factors ensures that XE,ZC)(sb, s4) does not depend on the
normalization of O.

¢

FIG. 12. The diagrams that contribute to D@, The top and
bottom ends of these diagrams are identified. The red blob
represents the exact two-point function (O,,Op.) isk-

FIG. 13. A geometric series involving be)(sc,sd) computes

the connected planar four-point function, which is represented by
a blob labeled “C.” The top and bottom ends of these diagrams
are not identified.

The sum over the diagrams in Fig. 12 is given by
D) = [ dsp()x) (5.9

1 ©
+ 5/0 dsldszp(sl)ﬂ(sz))(izb)(sl,Sz)Xizb)(Sz, 51)

1 0
+ 5/) dsldszds3p(s1)p(sz)p(s3)X£2b)(s1, 52)

X X (53.83) 0 (s3.81) + -+ (9.32)

where the integrals refer to the closed index loops that are
explicitly depicted in Fig. 12. The nth term in the sum has a
symmetry factor of % due to a Z, symmetry.

The function Xf;(sc,sd) may be determined from
the disk four-point function. See Fig. 13. To determine

ngc) (5p,84), We write

<Oab Obc Ocdoda>disk.c
\/<Oab Oba>disk <Obcocb>disk <Ocd0d6>disk <Oda Oad>disk

= X((zzc)(sb,sd) —l—/() dSp(S)Xfc)(Sb,S)ngc) (s,84)+ -,

=X+ X

-1

=X -x (9.33)

where in the third line above we have suppressed some
of the s parameters and the integration to simplify the nota-
tion,” and in the fourth line we summed the geometric
series (which is depicted in Fig. 13). We have

59 . .
We will continue to suppress these s parameters as long as
doing so does not cause confusion.
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<Oab Ohc Ocdoda>disk,c
\/<Oab Oba > disk <Ohc ch>disk <Ocdodc‘ > disk <Oda Oad>disk

A s, s,
= =8,0(5, Sq), (9.34)
A sy s,
from which it follows that
X =1+ 8] S (9.35)

where we have formally inverted the geometric series in

(9.33). Note however that 1 + S, viewed as an operator

acting on functions of a single s variable, is not invertible
8(sp = sa)

because
A s, s
a0
p(sp) A se sy
=2 ) PR (503 8ar S )P (54 San S0

n€2Zs,.

[1 + ‘Sac}(sb sd) =

(9.36)

where we have used (A28), (A30). Because the sum runs
over even n only, it follows that any Pa(sy:s,.s.)
function with n odd is annihilated by 1+ S,. The
g-deformed and Selberg models regulate these expressions.
We define S as in (9.34) except with the g-deformed 6;
symbol. Using either of the two regulators, (9.36) becomes

- A
(14 eSle](sp, 54) = 8(s = 5a) + e{ fa T }
q

Pq(sp) A s sq
= Z Pﬁ’A(sb;Sc’Sa|q)
n€Zyy.

X P (545 e Salq)

x (14 e(=1)1g T gn),

(9.37)

which reduces to (9.36) as ¢ > 1 and ¢ - 1. In the
g-deformed model, we have set g4 =¢g and ¢z =e.
From (9.37) we see that 1 + eSg. is invertible. A simpler
way to write (9.32) is

2 1 2)m
2 :Trzz[xg,j] : (9.38)
n=1

Using (9.35), we finally have

2 ) eS?
DY) = ~Trlog (1 - X)) = ~Trlog (1 B ﬁ)

= Trlog (1 +eS%,). (9.39)

It follows that Dgzh) only depends on the eigenvalues of

1+ eS?,, but from (9.37) the eigenvalues do not depend on

s, or s;,. Hence, using the g-deformed or Selberg regulators,
we find that Dﬁ) is a constant that does not contribute to the
empty double-trumpet. )

The computation of D, is presented in Appendix F 1.

B. Two-point function on the double-trumpet
In this section, we consider the double-trumpet two-
point function where a single O operator is inserted on each
boundary,

(Tre PH OTre M O) (9.40)

cyl»
where as before cyl refers to the leading contribution in the
genus expansion. As in the previous section, we can
systematically classify and compute the ‘t Hooft diagrams
that contribute. We obtain results for both the g-deformed
and Selberg models and explain for the g-deformed model
why these results are consistent with our results for the
empty double-trumpet.

The simplest class of diagrams that contribute to (9.40) is
depicted in Fig. 14. In either the g-deformed model or the
Selberg model, their total contribution in the JT limit is

/ dsap(sa)e_(ﬁl‘JrﬂR)S% <Oaa0aa>disk,c

0
= / dsap(sa)e_(ﬁL+ﬂR)5%F3a’
0

(9.41)

which reproduces the first term in (2.36).

FIG. 14. The simplest class of ‘t Hooft diagrams that contribute
to the two-point function on the double-trumpet consists of
diagrams that admit a path from the left to the right boundary that
does not cross over any O double-lines. The red blob represents a
sum over connected planar two-point diagrams. The top and
bottom ends of this diagram are identified.

FIG. 15. We enumerate diagrams where a left-right path can
cross a single O double-line. The top and bottom ends of these
diagrams are identified. As in Fig. 22, a blob with an “A”
represents a sum over planar connected amputated diagrams.
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FIG. 16.

In these diagrams, the minimum number of O double-lines that are traversed by a left-right path is two. The blob labeled “2”

refers to the same object as in Fig. 11. The top and bottom ends of these diagrams are identified. The green blob with six external double-
lines is defined in Fig. 17. On the right side, we represent the sum as a geometric series, where multiplication is vertical.

Next, we consider diagrams such that the minimum
number of O double-lines that are traversed by a left-right
path is one. These diagrams are depicted in Fig. 15. In
either the Selberg or g-deformed models, they become in
the JT limit

<Oaa Oab Obb Oba>disk,c
<Oaboba>disk,c

= / dsadsbe_ﬂ”g@_ﬂks’z’ﬂ(&)P(%)(Fgarzeb)m

{ A s, s }
X ’
A s, s,
which reproduces the second term in (2.36).
Next, we consider diagrams such that the minimum
number of O double-lines that are traversed by a left-right
path is two. These are depicted in Fig. 16. To evaluate these
diagrams, we should first solve for the green blob in
Fig. 17. The sum of the diagrams in Fig. 16 differs between
the g-deformed and Selberg models. We remind the reader
that for both the Selberg and g-deformed regulators, the
gravitational Feynman rules are replaced by their g¢-
deformed counterparts. Furthermore, in the g-deformed
model, each 6 symbol is accompanied by a power of €. In
contrast, in the Selberg model, each connected 2n-point
function is weighted by "'
In the g-deformed model, the sum of the diagrams on the
right-hand side of Fig. 17 is

A A A A

/ dsdsye e wp (s, )p(sk)

(9.42)

2 A_|_€3 A

/\

(9.43)

In Sec. VIII C, we referred to € as gp. Here, we will return to
a notation that is consistent with Sec. VII.

We choose to make the factors of € explicit in our graphical
representations of products of 6;j symbols. Furthermore,
Fig. 13 implies that

(-

T -1

A) —1+e X

(9.44)

Note that if we multiply the left-hand side of Fig. 17 by the
inverse of (9.44) and then identify the top and bottom ends
of the diagram, we obtain the left-hand side of Fig. 16.
Thus, we need to multiply (9.43) by the inverse of (9.44). In
the g-deformed model, the sum of the diagrams in Fig. 16
then becomes

(9.45)

where the top and bottom ends of this diagram are
identified. Equation (9.45) is a graphical representation
of the following expression:

/ dsapy(5a)dsppy(sp)dscpy(se)e PPt (T4, Th )12
X€2{A Sa sb}{A Sp sc}‘
A sy osq) LA s s, ),

Using the pentagon identity in (G52), this becomes

(9.46)
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FIG. 17. This equation is used to solve for the green blob with six external double-lines. A blob labeled “A” represents a sum over
connected amputated planar diagrams (for the blob with four external double-lines, this is equivalent to summing over 1PI diagrams).
The green blob should consist of connected diagrams only, or else the diagrams in Fig. 16 would permit left-right paths that cross fewer
than two double-lines. Furthermore, any diagrams that contribute to the “2” blob should be amputated off the bottom two and top two
legs of this green blob, because in Fig. 16 we want to make all of the appearances of the “2” blob explicit. That is, there should not be any
“2” blobs hidden in the green blob. If it were not for the two subtractions on the right-hand side, then the green blob would be defined to
be the sum of connected six-point diagrams with “2” blobs amputated off the top two and bottom two legs. However, we must also
exclude from this green blob certain connected diagrams that would permit left-right paths that cross over one double-line (this explains
the subtractions on the right-hand side). The top and bottom ends of these diagrams are not identified.

_ From (9.47), it is clear that the ¢ — 1 and g — 1 limits
Brsi—Prs? (TA A \1/2
/ dSapq(Sa)dscpy(se)e ™ (i gleq) commute in the g-deformed model.
We now consider the sum of the diagrams in Fig. 16
2A+m s, s, ) .. .
x €2 Z q“ , (9.47)  using the Selberg regulator. The explicit expression for the
Se Salyq amputated blob with six external double-lines in Fig. 17 is

given by summing over the four connected chord diagrams

which gives in the JT limit with six external lines. However, two of these chord
diagrams are canceled by the subtractions on the right-

B 2p s hand side of Fig. 17. The remaining two chord diagrams are

/ dsap(sa)dscr(se)e Pusihues (F“A“F?C>l/2 both weighted%)y €2, which is in fontrast to (9.4%), where
WN+m s, s, one diagram is weighted by € and the other by €>. We again

X Z{ } (9.48)  want to multiply the sum of these two chord diagrams by
the inverse of (9.44). Using (A82) and (G52), we have that

A A A A
O
_ Z nA 1 1n2nA+% 28t
AL A= q (+(—)q )
n=0

(9.49)

Se Sq

Next, we multiply (9.49) by the inverse of (9.44) and identify the top and bottom ends. The sum over the diagrams in Fig. 16
finally becomes

2A +n

n(n 1)

i go it (=D)rg* et A ‘ (9.50)
n—0  Lte(=1)" CI%AJFWIT?I) ’
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The JT limit corresponds to taking ¢ — 1 and ¢ — 1. For
the Selberg model, the ¢ — 1 limit must be taken first, or
else the answer would agree with the g-deformed model.
The result is that only the even n terms in the above sum
contribute. In the JT limit, the result becomes

/ dsap(s,)ds.p(s.)e PrsiPesi (DA 5,1/

2 (2A+2n s, s,
it }

Se  Sq

(9.51)

which reproduces the third term in (2.36).

The next class of ‘t Hooft diagrams, in which the lowest
number of O double-lines crossed by a left-right path is
three, is computed in Appendix F 2.

C. Comments on the pair of pants

Throughout this section, we have explained how double-
trumpet correlators in the matrix model may be directly
computed from the disk correlators. We expect that our
computational techniques generalize from the double-
trumpet to topologies with more handles and boundaries.
In this subsection we sketch an approach to computing the
empty pair of pants.

It helps to represent nontrivial topologies using the
plane. For instance, we represented the double-trumpet
as a square with one pair of opposite edges identified. For
the pair of pants, we may use two hexagons with an
appropriate set of edge identifications. See Fig. 18. One
should consider only matrix model diagrams which are
connected at the level of the O double-lines (ignoring trivial
O bubble diagrams), and nontrivially wrap all three holes.’"
Otherwise, the diagram (or a disconnected subdiagram)
will have already been included in a double trumpet leg.
One may enumerate all the possible graphs as follows.
First, one should specify the number (greater than or equal
to one) of double-lines passing through each of the three
blue edges in Fig. 18. Then, on each hexagon, one should
draw all possible planar graphs with the specified number
of external lines on each edge. We have drawn some
examples in Fig. 18. Of course, this procedure will over-
count the graphs. For a better count, one should use the
appropriate analog of the inverse “two-to-two propagator”
mentioned in Sec. V to strip off the appropriate subdia-
grams from the external lines before gluing the two
hexagons together, so that one is gluing correctly ampu-
tated disk diagrams. Note that in the Selberg model, the
competition between the vanishing of the total disk
amplitudes between nonsymmetrized states and the diver-
gence of the inverse propagator results in only symmetrized

1A hole is nontrivially wrapped if every path that begins on
the hole and ends on any other hole crosses one or more O
double-lines.

3 3

FIG. 18. A representation of the pair of pants as two hexagons.
The blue edges are identified in pairs according to the labels 1, 2,
and 3. The black edges refer to the boundaries that correspond to
the single trace insertions in the matrix integral. By drawing
planar graphs on the hexagons and gluing them across the edges,
we may construct graphs with the pair of pants topology. Each red
blob stands for a sum of planar diagrams with the appropriate
number of external double-lines.

states appearing in each glued edge, by identical reasoning
to the double trumpet two-point function calculation.
Moreover, in the g-deformed model, we expect that the
symmetrizers again cancel and a Hagedorn spectrum of
states propagates across the blue edge.

We leave a careful study of this counting problem to
future work. This matrix model analysis should lead to
expressions involving integrals of products of 6 symbols.
We expect that further calculations like the one in Sec. 11 C,
which covers the simplest irreducible diagram in the pair of
pants, can demonstrate the correspondence between certain
classes of ‘t Hooft diagrams and certain geodesics on the
pair of pants. Because the pair of pants has infinitely many
different closed geodesics while the double-trumpet has
only one closed geodesic, we expect the study of the pair of
pants (as well as geometries with handles) to be more
involved than the analysis presented in this paper.

D. UV divergences in the double-trumpet

In this section we comment on the matrix model
interpretation of the problematic UV behavior in the matter
partition function on the double-trumpet. We first comment
on the Hagedorn temperature in the g-deformed model and
then argue more generally that whenever the double-
trumpet is undefined, the matrix model saddle is unstable.

1. Hagedorn temperature in the q-deformed model

An interesting outcome of our analysis is that the empty
double-trumpet in the g-deformed model does not depend
on the parameter ¢ that was introduced by the regularization
scheme. We explicitly found that D@ and D®) do not
contribute to the empty double-trumpet, and we conjec-
tured that D for n > 3 also do not contribute. The
contribution from DV agrees with the ¢ = 0 model, which
in the JT limit is given by (4.42). Equation (4.42) may be
interpreted as the double-trumpet path integral of a matter
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theory minimally coupled to JT gravity. From (4.42), we
find that the matter partition function is

1—e?®

Z(b) = —

= 9.52
l—eb—e ( )

The matter theory associated to this partition function
has many more states than the theory of a free scalar
quantized in global AdS,. In particular, the states counted
in Zga.:(b) span a Fock space that is defined by acting on
the vacuum with creation operators a), for n>0. The
operator a, raises the energy by A+ n, and all of the
creation operators commute. The states that contribute to
Z(b) may be enumerated in the same way, except without
the [al, a,m = 0 condition. That is, different orderings of
the creation operators correspond to different states. Put
differently, we may say that Z(b) counts all the words that
may be constructed using the letters O and 0 such that the
rightmost letter is O. The energy of a word is given by
Angp + ny, where np and ny are the numbers of O and 0
letters.

For sufficiently small (but nonzero) b, the denominator
of (9.52) goes to zero, which indicates that there is a
Hagedorn temperature. When b is below the inverse
Hagedorn temperature, the sum over the ‘t Hooft diagrams
that contribute to (9.31) does not converge. Away from the
JT limit, we see from (9.29) that a nonconvergent sum is
still possible when g4 + § > 1. In the remainder of this
section, we show that the saddle point we are doing
perturbation theory around is perturbatively unstable in
this regime. Because the empty double-trumpet does not
depend on ¢, we will for simplicity first analyze the ¢ = 0
model for g4 < 1, which was introduced in Eq. (8.35).
After integrating out B, the matrix integral becomes

2 a0 = / dVdexp (Z log(d, = 43)?

a<b

=N Vo, (3a) + VET(2,)]

1 )
- EZ log FqA"i(/la,/lb)>, (9.53)

a,b

where we have written the matrix as an integral over the
eigenvalues of A. By making the change of variables

2x
A=— 9.54
=0 (9.54)

for each eigenvalue A, the matrix integral becomes

2, ap=0.q & /de exp (Z log(x, — x,)?

a<b

= NY [V, () + V447 (x,)]

1 L
—Ezhlog F"A"’(xa,xb)), (9.55)

where V, was defined in (8.26), V{47 was defined in
(8.40), and F9+7 was defined in (8.36). The density of
states p(x) defines a saddle of the matrix integral when it
extremizes the total potential energy, which is

Viw = N / dxp ()7, (x) + V47 ()]

1
+5 [ drp)dnp(o)

x [log F924(x,, x,) —log(x, — x,)?].  (9.56)
The function F94-9 modifies the Coulomb repulsive force
between different eigenvalues. Our saddle point of interest
is p(x) = Np,, o(x), which was defined in (8.29). This
saddle is stable when the Hessian of V, evaluated for
P = Npg, o 1s positive-definite. If we vary a single eigen-
value at position x by dx,, the density of states changes by

p(x) = p(x) — 6x¢8 (x — xg). (9.57)
More generally, if we vary all of the eigenvalues according
to the rule 5x = f(x) for some smooth function f, then the
change in the density of states is

d

WS (9.58)

6p(x) =
Note that the support of 5p(x) is x € [—1, 1], which is the
same as the support of p, o(x). Hence, a small deformation
away from the saddle point corresponds to varying the
density of states by a function §p(x) that has support for
x € [—1, 1] and integrates to zero. We may expand 5p(x) in
a basis of Chebyshev polynomials,

. S¢
5p(x) = "__T,(x), 9.59
(x) ; Vg (x) (9.59)
where the n = 0 term was omitted to ensure that
1
/ dxép(x) =0. (9.60)
-1

Note that the integral of each term in (9.59) is proportional
to vx+ 1 (resp. V1 —x) near the x = —1 (resp. x = 1)
endpoint. This is consistent with (9.58) and the behavior of
p(x) near the endpoints. If we expand V., around the
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saddle to second order in the deformation and use (9.59),
we obtain

1 - .
Vi =3 [ deadplx,)dnap(z)

x [log F924(x,, x,) —log(x, — x,)?].  (9.61)
”Qié - I (9.62)
=— |-+, )
247" (1=q")n n
where we have used (8.39) as well as
I dx
T,(x)log(y — x)?
| =T ogs =)
2
=-r.0).  axl e(-1.1). (9.63)
n

The Hessian is positive-definite when each term in the sum
in (9.62) is positive. Thus, when g 4+ g > 1, the saddle
becomes unstable. This stability criterion exactly coincides
with (9.26).

2. General stability analysis

For the general ¢g-deformed model with nonzero ¢, the
analysis above does not change very much. In fact, for a
general ‘t Hooft-scaled single-trace two-matrix model, one
can show that the Hessian directly determines the double-
trumpet. As a reminder, the two matrices in the ‘t Hooft-
scaled model are A and B, and the scale factor a is chosen
such that the saddle-point spectrum of A/a has support on
[—1, 1]. After integrating out B, the total potential energy of
the eigenvalues of A takes the form

[Se]

vwm=ZN2—k / [lf[ldx,-f)(xi)} VO (xy,....x)  (9.64)

k=1

where p(x) is the density of states of the rescaled matrix
A/a and x € (—1,1). Because this is a ‘t Hooft-scaled
model, N does not appear in V¥, If we denote the saddle
for p by Npy and write p = Npy + 6p, then (9.64) takes
the form

oo k
Vi = » N7 / {deiéﬁ(x,-)] VO (xy,...,x,),  (9.65)
k=2 i=1

where 8p does not appear in the expression for V). The
k=1 term does not appear because we are expanding
around a saddle of V. In the large N limit the only
nonvanishing term in the sum is for k = 2, because Jp is
order one in the large N expansion. Using (9.59) again, we
finally have that

Viotal = Z ocy Vnm> OCys

nml

(9.66)
where

2 (x,0) 202 (9.67)

V( L Xy) =l
Tcl )

is the Hessian. For general N, the range of the dc,
coefficients is restricted by the condition that the total
density of states should be nonnegative. However, in the
large-N limit, the dc,, coefficients are valued on the entire
real line because the perturbation Jp is always subleading
compared to the saddle Np,. Thus, at large N, the matrix
integral becomes Gaussian in the dc, coefficients, which
reflects the fact that the multiboundary correlators are
dominated by disks and cylinders.”
From (9.59) we have that

VI =2 [ dxydx, 221

1
/ dx 55(x)T, (x) = gécn, n>1,  (9.68)
-1
and it follows that at large N,
A A
<mn <_) T, (_) >
a a
— [ andn )T () T(x2) (9.69)

( dx,Np xl)Tn(x1)> </_1 dszﬁo(xz)Tm(Xz)>

(6c,6¢,,). (9.70)

’L
4

Extracting the connected part of the above, we have that

o) (0)), %

(6c,6¢,,)

L 4>|=‘

4 -
= Z[VU’)],,;?. (9.71)

We have thus shown that the double-trumpet is well-
defined precisely when the matrix model saddle is stable.
Thus, the conclusions in Sec. IXD 1 hold for any e.
Similarly, although we do not have an explicit expression
for the regulated double-trumpet in the Selberg model, we

I particular, in a one-matrix model, (9.64) only contains
terms for k = 1, 2, and the k = 2 term is fixed by the Vander-
monde determinant, while the k = 1 term is fixed by the matrix
potential. It is known that the cylinder amplitude is universal once
the endpoints of the spectrum have been fixed. This result is
reproduced by a Gaussian measure for the dc, coefficients.
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know that in the double-scaled limit the double-trumpet
correlators look like

(Trcos (byVH)Trcos (b,VH))
b,
4

cyl

Zscalar(bl)é(bl - bZ)’ (972)

which means that in the double-scaling limit, the spectrum
of the Hessian extends down to zero, leading to an
instability.”?

X. DISCUSSION

A. Summary of results

In this work, we described various methods for studying
two-matrix models dual to JT gravity minimally coupled to
matter. Our aim was to demonstrate how the gravitational
path integral may be used to determine the ETH ensemble
that arises from coarse-graining the CFT data involving
heavy operators at large but finite N.

In one approach, we identified an operator equation
obeyed by two operators, O and H, that is analogous to the
statement in 1D CFT that the only primary operators (aside
from the identity) that appear in the OO OPE have
dimensions 2A plus a even non-negative integer.
Together with conformal invariance and associativity of
the OPE, this condition entirelzy fixes the n-point O
functions to be those of a GFE.** We constructed a two-
matrix ensemble by imposing this operator equation as a
constraint on the matrices that represent the operators.
This matrix model should compute the correct holographic
n-point functions because we are representing the operators
using matrices, and matrix multiplication is associative.
This result is further supported by explicit checks of
Schwinger-Dyson equations.

In another approach, we described an algorithm for
determining a matrix potential that reproduces all of the
gravitational disk correlators. To organize the calculation,
we introduced a fictitious parameter ¢ such that gravita-
tional Feynman diagrams with more crossings are weighted
by more factors of €. The matrix potential can be written in
an ¢ expansion. Different schemes for weighting gravita-
tional diagrams with powers of ¢ correspond to different
ways to take the double-scaling limit. We discussed
two specific schemes: the “Selberg regulator” and the
“q-deformed regulator.” By construction, the disk correla-
tors of the matrix model do not depend on which regulator
is used.

In the Selberg model, the regulated disk density of states is
the same as in the g-deformed model, so we can still use (8.19) to
relate H and A and set a = \/?_—q. In the double-scaling (or
g — 1) limit, we set e=” = ¢" with fixed b such that Tn(%)
becomes cos(b\/H) (see the discussion leading to (9.31).

64 :

See Appendix D.

We showed that in any single-trace two-matrix model,
the cylinder (as well as the cylinder two-point function) can
be determined directly from the disk amplitudes without
explicit knowledge of the potential. Our strategy was to
systematically classify ‘t Hooft diagrams with cylinder
topology. For the matrix models of interest in this paper,
our procedure for determining the cylinder only returns a
definite answer if the method for taking the double-scaling
limit is known. We obtained formulas using both the
g-deformed and Selberg regulators. To the extent that we
checked, the Selberg model reproduces the cylinder ampli-
tudes of JT gravity minimally coupled to a scalar field.®
The bulk dual of the g-deformed model is not known, but
the cylinder amplitude indicates that the partition function
of the unknown matter that propagates on the double-
trumpet has a Hagedorn temperature.

After removing the regulators, the cylinder amplitudes of
the matrix models (or equivalently, the double-trumpet
amplitudes of their bulk duals) are formally undefined due
to the UV divergence associated to the shrinking cycle in
the off-shell gravitational path integral. Hence, the matrix
models do not have a well-defined genus expansion in the
JT Limit.*® We explained that this is because the saddle
point of the matrix integral is perturbatively unstable. It
would be interesting to find a new saddle that the unstable
saddle can decay to. We leave this task for future work.

B. Generalization to higher dimensions

The ETH ensembles considered in this work are analo-
gous to the ETH ensembles that one might consider in
higher dimensional AdS/ CFT.” In a general holographic
CFT, if we know the correlation functions, OPE coeffi-
cients, and scaling dimensions of the light operators only
(including 1/N corrections), then we can construct an
ensemble by averaging over all of the CFT data involving
the heavy operators that is consistent with this information
[56-58].° For example, the light-light-heavy structure
constants will be constrained by the four-point function
of light operators because heavy operators may run in
the intermediate channel. These structure constants are

%Due to an ambiguity in the measure of the matrix O, the
empty double-trumpet in the Selberg model is treated as part
of the data that defines the model, rather than a nontrivial
prediction of the model. The double-trumpet two-point function
is a nontrivial prediction. For the g-deformed model, both the
empty double-trumpet and the two-point function are nontrivial
predictions.

Note that the regulated models can have a well-defined genus
expansion.

"We would like to thank A. Belin, J. de Boer and P. Nayak
for important discussions on the issues described in this
section.

This ensemble has the property that observables involving
states that are far below the black hole threshold are not affected
by ensemble averaging [59].
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constrained by the requirement that the four-point function
of light operators is computed correctly.

Correlators with external heavy operators also lead to
crossing-symmetry constraints on the structure constants.
Each structure constant can be thought of as a random
tensor whose rank is the number of heavy operators. The
crossing equation is quadratic in the structure constants. We
can impose crossing symmetry as a constraint by squaring
the crossing equation and adding it to the potential with a
large coefficient A. This means that the potential is at most
quartic in the tensors (note that in the CFT ensembles
proposed by [57,58], non-Gaussianities also play an
important role [60,61]). The ensemble will also include
a set of variables that represent the scaling dimensions of
the heavy operators. These are analogous to the eigenvalues
of H in our matrix model. The potential will depend on
these eigenvalues in a complicated way through their
appearance in the crossing equations. The number of
eigenvalues must be scaled to infinity as A is sent to
infinity; the precise way to do this might be similar to the
scaling procedure discussed in Sec. VI B.

To reproduce the correlation functions of light operators
at finite temperature, only tensors up to rank 2 given by
light-heavy-heavy structure constants will play a significant
role. The resulting matrix models will be very similar to
those constructed in this paper, except that vector spaces on
which they act will be graded by spin, and there will be a
matrix for every light operator, including multi-twist
operators. In holographic theories, it may be possible to
express the ensemble only in terms of the primitive
operators, dual to bulk fields, by integrating out the
multitwist matrices.

Previous work in AdS;/CFT, [57,58] has shown that
imposing crossing symmetry for four-point functions of
only heavy operators is not necessary for the ensemble to
have a gravity dual. However, if we constrain the structure
constants to ensure that crossing symmetry is obeyed for all
correlators, then the ensemble is an average over all the
CFTs that are consistent with the initially given information
on the light operator data. The given light operator data may
not correspond to any solution of the crossing equations, in
which case we may say that the light operator data belongs
to the swampland.

Suppose we use the light operator data from a theory in
the landscape to construct an ensemble by squaring the
crossing equations, as described above. Suppose also that
we impose crossing symmetry for all correlators, so that the
solutions to the constraints are actual CFTs. Suppose for
simplicity that there is a unique solution to the crossing
equations given the light data. One might think that
computing ensemble-averaged observables in the A — oo
limit is no easier than solving the entire theory, which is
extremely difficult. Nonetheless, it still may be possible to
study interesting features of the ensemble for large A. To be
more precise, let A, refer to the A parameter that multiplies

the square of the crossing equation for four external heavy
operators.69 This parameter should be viewed as a control
over how much coarse-graining is being performed.” For
A;, = oo and fixed N (or fixed central charge), the spectrum
of heavy operators will be a sum over delta functions,
corresponding to the solution of the crossing equations. For
Ay, large but finite, these delta functions will be smeared by
various amounts, resulting in a coarse-grained spectrum. It
is unlikely that the distribution of CFT data uniformly
converges to a sum of delta functions in the A, — oo limit.
For large but finite A;, we expect that the spectrum of
scaling dimensions will still look smooth (as opposed to
being a sum of slightly smeared delta functions) for scaling
dimensions ZA;. Another way to obtain a smooth spec-
trum is to take the N — oo limit in tandem with the
A;, — oo limit. Because A, is interpreted as a coarse-
graining parameter, it is reasonable to expect that the smooth
parts of the spectrum can be reproduced by a semiclassical
bulk dual. Perhaps there are features in the smooth spectrum
for scaling dimensions on the order of A, that can distin-
guish whether the light CFT data is in the landscape or
swampland. It would also be interesting to study this
ensemble using the Schwinger-Dyson techniques of Sec. VI.

Note that in the ETH ensemble described in Sec. VI,
there are light operators but no light states, and there are
heavy states but no heavy operators. The heavy states are
the eigenvalues of H, while O is the light operator. Our
constraint is analogous to the statement in 1D CFT that the
spectrum of primary operators in the OO OPE should be
that of the generalized free field. Given our checks of the
Schwinger-Dyson equations in Sec. VI, we believe that this
constraint is sufficient to construct an ensemble that
reproduces all of the holographic disk correlators. There
is no analog of crossing symmetry of heavy external
operators in our model. While we have not explicitly
studied the space of solutions to our constraint, we know
that solutions exist. For example, the SYK model in the
appropriate scaling regime furnishes a solution to the
constraint. Our constraint holds as an operator equation
in any ensemble-averaged theory whose correlators repro-
duce the disk correlators of JT gravity minimally coupled to
a scalar field. Our ensemble is maximally ignorant in the
sense that all theories that obey the constraint are aver-
aged over.

C. Other ETH ensembles

A point we want to emphasize is that it is important to
have a principle that determines the ETH ensemble beyond

%In general, there may be multiple A parameters associated to
the multiple constraints we impose.

70/\,, is analogous to the y parameter in (2.48) of [62]. The
authors of [62] were able to give their coarse-grained/ensemble-
averaged theory a gravity description involving interacting end-
of-the-world branes.

066015-54



JACKIW-TEITELBOIM GRAVITY WITH MATTER, ...

PHYS. REV. D 108, 066015 (2023)

the requirement that it reproduces gravitational path inte-
gral calculations. Without such a principle, we would not be
able to learn anything new from the ETH ensemble. One
such principle is that the ensemble should be the maximally
ignorant ensemble that agrees with the gravitational path
integral calculations that we know how to do. In practice,
one should fix an ansatz for the ensemble and tune the
parameters to match the gravitational path integral results.
Different ETH ansétze correspond to different schemes for
coarse-graining the CFT data. Our ETH ansatz was simply
a two-matrix model with a single-trace potential. It would
be interesting to compare our notion of coarse-graining to
other notions of coarse-graining that exist in the literature
[63,64]. One might also try to connect the ETH matrix
model that would arise from such coarse-graining proce-
dures to the Goldstone effective theories of chaos described
in [65,66].

Another ETH ensemble was considered in [26,29,67]. In
[26], the principle that determines the ensemble was called
the assumption of local typicality. This is the statement that
simple observables are unaffected by conjugating the
simple operators with block-diagonal random unitary
matrices that act separately in each microcanonical win-
dow. From this principle, one can construct an ansatz for
multipoint thermal correlators of simple operators. To
leading order in e, this ensemble is the same as our
two-matrix ensemble. For example, the ETH diagrams in
Fig. 2 of [67] are the same as the ‘t Hooft diagrams on the
left side of (5.3) after accounting for the fact that the one-
point correlators of O vanish in our model. To leading order
in 5, the diagrams in [29] are isomorphic to the planar ‘t
Hooft diagrams in this paper after specializing to the case of
having a single simple operator. However, the ensemble
constructed from local typicality differs from our matrix
ensemble at subleading order in e5. Using the assumption
of local typicality, [26] was able to match certain wormhole
contributions to multipoint amplitudes, but without the
contribution from the matter determinant. Unlike the
principle of local typicality, our ensemble includes an
average over the eigenvalues of O. This averaging appears
to be important for reproducing the matter determinant,
which is an important aspect of bulk locality. Furthermore,
[68,69] studied the matrix elements of simple operators in
extremal (or zero-energy) microstates of certain super-
symmetric black holes and found that they are approx-
imately described by a Gaussian random matrix. Hence,
including the O operator in the matrix ensemble is natural
and well-motivated.

D. Future directions

There are various directions we wish to explore, some of
which have already been mentioned. We are interested in
studying the fate of the double-trumpet UV divergences in
our models by finding a stable saddle that the unstable
saddle can decay to. This computation might be easiest in

the Gaussian toy model of Sec. IV, or its g-deformed
counterpart in (8.35). In the g-deformed model, we can tune
the parameters such that only one eigenvalue of the Hessian
has the wrong sign. In this case, there is only one unstable
direction.

Another interesting idea is to find a modular-invariant
spectrum of primary operators in a CFT, using a con-
strained ensemble constructed analogously to the one that
we considered in Secs. 11l and VI.”' The scaling dimensions
of the primaries in a given spin sector can be represented as
eigenvalues in an eigenvalue integral, and the modular
crossing equation can be squared and added to the potential
with a large coefficient. This question is interesting to study
because the Maloney-Witten-Keller [70,71] partition func-
tion, which is a sum over SL(2, Z) images of the vacuum
Virasoro character, yields a modular-invariant spectrum
that exhibits negativity. By representing the scaling dimen-
sions as eigenvalues in an eigenvalue integral, it is
impossible for the spectrum to become negative. The
Schwinger-Dyson equations of the constrained model
may be useful for finding a modular-invariant spectrum
free of negativity.

It would also be interesting to use the g-deformed model
of Sec. VIII to study the bulk reconstruction of JT gravity
with matter in the same manner as [55]. In particular, [55]
noted that in the double-scaled SYK model, one may write
an ensemble-averaged correlator as an overlap between a
bra and a ket state. These states live in a bulk Hilbert space,
and their quantum numbers count the number of chords that
pass through a spatial slice. These chord numbers encode
the length of the slice as well as the positions of matter
particles along the slice. Because the disk correlators of the
g-deformed model are also computed by summing over
chord diagrams, one can reconstruct the same bulk Hilbert
space from the g-deformed model. In the planar limit, the
disk correlators (such as (8.21)) exactly agree with the
double-scaled SYK model. However, the subleading cor-
rections to the correlators differ between the two models.”
It would be interesting to study how bulk reconstruction
differs between these two models when subleading cor-
rections are considered. Note that due to these corrections,
the bulk to boundary map is no longer an exact isometry.
This is an important feature of realistic models of
AdS/CFT [72].

Finally, we want to better understand the relationship
between the g-deformed and Selberg models of Sec. VIII

"'We thank Tom Hartman for suggesting this idea to us.

2As mentioned previously, finding the subleading corrections
in the g-deformed model in the JT limit is challenging due to UV
divergences. However, away from the JT limit, we found a
parameter regime (9.26) where the double-trumpet was finite.
Without a better nonperturbative understanding of the g-de-
formed model, one should compare the g-deformed model and
the double-scaled SYK model in a parameter regime where the
matrix model saddle is stable.
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and the constrained ensemble of Sec. III. The former
models appear to be perturbatively unstable (the most
explicit check is performed in Sec. IXD 1) while the
constrained model is nonperturbatively well-defined, since
the potential in (3.20) is bounded from below.”> We have
not been able to explicitly show that the Selberg and
g-deformed models resemble (3.20) in the double-scaling/
JT limit, although we have not ruled out this possibility.
If we cannot find a stable saddle in the Selberg and
g-deformed models, then we can instead use the con-
strained ensemble (3.20) to understand how the UV
divergences in the bulk can be regulated by nonperturbative
effects. We leave more explicit studies of the constrained
model to future work.
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APPENDIX A: SPECIAL FUNCTIONS

In this appendix, we introduce the special functions used
in the main text. For the properties of Wilson polynomials
and Wilson functions we follow [73,74].

1. Wilson polynomials

Wilson polynomials W, (x) = W, (x;a,b,c,d) are nth
order polynomials of x*>. They depend on four complex
parameters a = a;, b = a,, c = a3, d = a4, such that non-
real parameters appear in complex conjugate pairs. They
are defined by

We expect that V(H) can be chosen to be bounded from
below. The role of V(H) is to ensure that in the double-scaling
limit, the density of states of H becomes, in the saddle-point
approximation, the disk density of states of JT gravity. Away
from the double-scaling limit, the density of states of H will have
compact support. This means that as the double-scaling limit is
taken, V(x) can be designed to approach +oo for x — +oco.

W,(x;a,b,c,d)
=(a+b),(a+c),(a+d),
—-n,n+a+b+c+d—-1,a+ix,
X 4 F; ;1) (Al
a+b,a+c,a+d

They are symmetric in a, b, ¢, d and obey an orthogonality
relation

A )W ()W (3) = Faon.

2
(”—1+Zaj)n
=nl— = VT (q; ; . A2
T T Y ay) g R
The measure is
4 T(a; +ix
M(x)=M(x;a,b,c,d) = M (A3)

(+2ix)

For a general choice of a; € C there is also a discrete part
of the measure [73]. However, it is absent if Rea; > 0, the
case relevant for JT gravity.

We also define rescaled Wilson polynomials’ P, (x) =
P,(x;a,b,c,d) that are orthonormal with respect to the
Schwarzian measure

4

X) = ! a: ix 1/2 X 4
S PP = A5
A W 2 (X) Py (X) = G- (A5)

2. Choice of parameters relevant for JT gravity

The choice of parameters relevant for JT gravity is

a:d*:Al+ik1, b:C*:A2+ik2. (A6)
We therefore define
Pi 2 (xiky ko) = P(x; Ay £ iky, Ay £ k), (A7)

where by A 4+ ik we mean that P, depends on both
parameters and the order is not important due to symmetry
in a, b, c, d. Pictorially, we represent the Wilson poly-
nomial as

74Strictly speaking, P, are not polynomials, but we abuse the
language slightly and still call them Wilson polynomials.
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Aq JAD) We often denote the bottom line by n instead of
x A, 4+ A, + n for brevity.
PAYA2 (1 ke k) = ki | ko (A8) 3. Wilson function
The Wilson function is a certain analytic continuation of
AL+ Ay +n the Wilson polynomial in its degree. It is defined by [73]
W,(x;a,b,c,d) = ¢,(x;a,b,c,1—d) (A9)
B 1 I'(g+a+id)
INa+b)l(a+c)l(a+d)T(g—a—il)['(g+ il £ ix)
(A10)
W(g+a—1+idia+ix,a—ix,a+ il b+id, ¢+ id), (A11)
where a “very-well poised” hypergeometric series is
a, 1 + a R b, c, d’ e,
W(a;b,c,d, e, f) = 7F6( 2 f; 1>. (A12)
. l+a-b, 1+a-c, 1+a-d, 1+a-e, 1+4a-f
[
The “dual” parameters are defined by The representations (A16) and (A17) are useful for writing
A A the Wilson function as contour integrals, as we will discuss
1 1 ~ below. Equation (A17) is also useful for deriving asymp-
9= 5; 4i = 5;0” (A13) totics of the Wilson function (and related 6j-symbol) at
B a large x.
ay = g—ay, ay, = g—a, (A14) The Wilson function has the following properties:
(i) Wy(x;a,b,c,d) is symmetric in a, b, c, d. .
iy = g—as, a3 = g— a,. (A15) (ii) It satisfies a duality W, (x;a,b,c,d) =W, (4;a,b,

Here and below we seta; = a,a, = b, a3 = c,ay = d. We
will use a;, a,, as, a4, and a, b, c, d interchangeably.

Two more representations that follow from some non-
trivial identities of hypergeometric functions are [see
Eq. (3.3) and Proposition 4.4 in [73]]

W;(x;a,b,c,d)
I'(d-a)
[(a+b)(a+ ¢)[(d + ix)['(d + i)

a-+tix,a—ix,a-+iAa—il
x 4 F i1
a+ba+c,a—d+1

+(a < d), (A16)
Wi(x,ay, a5, a3, as)
I'(-2i)
T (gt ih+ix) [[o, (@ — id)
Gy +id 8y + i2.Gy + ik ay + id
! 3(g+m+ix,g+m—ix,1+2m’l)
+ (A= =), (A17)

¢,d).

For 1 = +i(@+ n) the second term in (A16) vanishes
because of I'(a + i4) in the denominator, while the first
term reduces to the Wilson polynomial up to gamma-
function factors.

4. 31(2,R) ¢j-symbol
The 6j-symbol used in the main text is defined by

{AI kl x}
A ky A

= (P PW, (6 Ay £ iky, Ay £ iky)  (A18)

4
H a; £ ix)['(a; £ i2)'*W,(x;a,b,c,d),  (A19)

where in the first line by A &+ ik we again mean that W,
depends on both and the order is not important due to
symmetry in a, b, ¢, d. The parameters are chosen as in
(A6). We also defined
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v =T(A £ ik; £ ik,). (A20)
The dual parameters exchange A; and A,
a=d" = A +iky, b=c"=A)+ik,, (A21)
a=d" =N, + ik, b=¢"=A+ik,. (A22)
Pictorially, we represent the 6j-symbol as
Ay
(A23)

Al klx o
Ay ko A n

This is a 6 symbol associated to the triple tensor product
" @ n¥ @ n*, where n" is a positive discrete series
representation and 7 is a principal series representation
of 81(2,R). See [74] for details.

Using the representation (A17) we can derive the
asymptotic at large x. In this limit the hypergeometric
function drops out and we have

Ak 2 4 (T(a 1/2
(85 2y [ (R )
A ky A x 1 \I'(a

+(A->—-1), (x> ). (A24)

5. Properties of the 6j-symbol
The Wilson function transform (of type I) is defined
in [73]

FEnw = ["5im

The Wilson function transform of the Wilson polynomial is
the Wilson polynomial with dual parameters up to a sign

M)W, (x)f(x).  (A25)

(FW,)(A) = (=1)"W,(2), (A26)
where W, (x;a,b,c,d):= W,,(x;Zz,l;,?:,gl). This can be writ-

ten in terms of the 6 j-symbol and rescaled polynomials P,

/°° dx- {Al ky X}P’All,Az(x)
0 271F(:l:21x) A2 k2 /1

= (=1)"Pp>™ (2). (A27)
Note that in the rhs A;, A, are exchanged, which is how
duality acts on the JT parameters (A22). Since P,, are a full
set of orthonormal functions, (A27) implies

Ay kK x} S ApA AyA
=3 (1) PE R (PR (7)., (A28
NI B SEIT T TS

As pointed out in [73], this is not actually convergent. We
assume that it can be thought of as an identity of
distributions and converges after integrating with a test
function. We represent (A28) pictorially

(A29)

An analogous equation can be written for the resolution of
identity

27T (£2ix)5( ZPA‘ A2 (x)PRR2(2),  (A30)
Ay JA)
A Ag
T <
o0 +
k1 ke = >, ki i ka
A " 4
Al AQ
(A31)

Here, note that A, A, are interchanged in the bottom part
of the diagram in comparison to (A29). Furthermore, note
that each term appearing in the sum on the right-hand side
of (A29) or (A31) may be interpreted as a conformal block
(dressed with the Schwarzian mode) that corresponds to the
exchange of a primary with dimension A; + A, +n in a
four-point function. For the simple case where A; = A,,
we verify this statement in Appendix C 1.

The “pentagon identity” can be derived by analytically
continuing the formula at the top of p. 33 in [74]
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Ay Ag
kl T k2
A =
k4 A kg
A
Aq Ao

(A32)

This is essentially the identity resolution (A31) with an
additonal horizontal line A. But written out explicitly it
contains a product of two 6j-symbols in the lhs and one
6j-symbols and two Wilson polynomials P, in the rhs.
One can integrate this with the Wilson polynomial P,
(pictorially, attach it e.g. in the bottom), use orthogonality

of Wilson polynomials in the rhs, and obtain another useful
relation (Theorem 7.5 in [74])

Aq Ao Ay Ag
I — ‘ (A33)
mn n
where we omitted the energy labels of regions. They are

the same on both sides, except for the loop in the lhs which
represents an integral with the Schwarzian measure

dx
I 2aT (£2ix)"
The Yang-Baxter equation (2.15) can be derived using

(A29) and (A33)

© (A34)
- Y- = Yy
n=0 n=0
n
00 (A35)
- Se - |
n=0
6. Contour integral representation
A useful representation of the 6j-symbol was discussed in Appendix B of [16]
Ak Kk . ico (]
{ 1k 2} _ el¢/2/ —u,f(u), (A36)
Ay ks ky _ico 271
where
i : i O\ T(A —u—=dk3)T(A —u+1ki3)
u)=Tu—=kj s xik, | T u+=k  5xik 2 2 , A37
R O L e LY reees tow o oy 437
ot T(A| + iky £ iky)T(A] — iky £ iky)T(A, — iky £ iky)U(A, + iks + iky) (A38)

T(A, — ik, % iky) (A, + iks & iky)T(As + ik, & iky)T(Ag — iks £ iky)
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We also used a short notation ki3 =k; + k3, ki3 =
ki — ky. This integral is related to Eq. (B.28) in [16] by
a shift of . The integrand contains semi-infinite sequences
of poles. The contour is such that poles of I'(« + ...) are to
the left of the contour and poles of I'(—u + ...) are to the
right. Closing the contour to the right and picking up
the poles one obtains a sum of two ,F,’s related to the
representation (A16) of the Wilson function.

The integral simplifies significantly in a special case
A} = Ay = A k3 = —k;. In this case the phase factor is
absent ¢¥ = 1 and (after relabeling)

A KR [ P  iky)
N [ S ikr G

I'(A —u+ik)
_ A39
“T(A+uxik) (A39)
We also used that the 6j-symbol is an even function of k;.
For the computation of the geodesic on the pair of pants in

Sec. II C, it is convenient to take the Fourier transform of
(A39) in k, ky, k,. We note that

T(u + ik) = T(2u) / = ap-20k) )

0 (2 cosh)

7 00 —x—1
[(xt lk) = ! / db e~ibke=5x+y-1) (ZSinhb> ’ )
F(y+ik) T(y—x)Jo 2

(A41)

It is somewhat easier to derive the inverse Fourier of these
formulas. Then one has integrals of gamma-functions that
can be computed by deforming the contour and picking up
residues at poles of the gamma functions. Applying these

. . N D(A—utik) T(A—u—ik)
expressions to I'(u = k), I'(u & iks). 5z 1) » T3 i)
we find from (A39)

{A k kl}
Ak k
= /oo db,db,dbdb' cos(b k) cos(b,k,)e b=V
0

(A42)
e~(aDib+t) /,»oo du < sinh sinh 4 )2“
sinh2sinh 4 /e 27i \cosh % cosh 2
1 00
_EA dbdb,dbdb’ cos(b k) cos(b,k,)
x gik(b=b") g=(A=5)(b+V') (A43)
b b b, b,
inh~ sinh— — cosh—cosh—2 ). (Ad4
6(s1n 5 sinh = — cosh =~ cos 2) (A44)

The u-integral resulted in a delta function. Now we change
variables to b, = b + b’ and integrate out b, using the
delta function. We have

o0 1 o0 o0
/ dbdb' = —/ db_ / db, (A45)
0 2 ) [b_|
b b’ b b 4
6<Sinh§sinh5 - cosh%coshf) = mé(i)+ - B),
(A46)
where B is defined by
B b b b
cosha = coshi +2 coshE1 cosh 32 (A47)

Note that this implies B > |b_|, assuming B > 0. So B is in
the integration range b, € (|b_|, o). Therefore integrating
out b, leads to

{ k 1}_—2/ db,db,db Co(bk)co(bk)
S S
: k k2 0 1 2 171 2R2

e_(A_%)B

x cos(b_k)

. A48
sinh 2 (A48)

Finally, we give yet another integral representation of the
6j-symbol that looks a bit simpler than (A36), though we
do not use it in the main text. It is

{Al kl x}
<7§;r§j> 2 /imﬂF(AI +ix + u)[(Ay % id + )

yle‘ }/lAiz ico 2ri F(Al + Az + lk2 + ll)
x I'(+ik; —u). (A49)

Closing the contour to the right or, equivalently, using
formula (B.18) in [16], we obtain the sum of two ,F;’s that
is related to the representation of the Wilson function
(A17). The integrand doesn’t obey all symmetries of the
6j-symbol, so applying symmetries of the 6j-symbol we
can get different integral representations.

7. q-deformation

We now discuss the g-deformed version of Wilson
polynomials and functions with 0 < g < 1. First, the g-
Pochhammer symbol is defined by

(A50)
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Many of the g-deformed functions that we discuss below
can be reduced back to the undeformed case in the limit
q — 1 using

n—1

Ha-i—]

J=

a

4 (9% 9),
S (="

l—gq
l—g¢q

(A51)

The g-hypergeometric series (often called “basic hyper-
geometric”) is defined by75

Al LA (A1, .., Ar13q), X"
b (g ) = G e
B,.....B, “~ (By,...B;3q), (4:9),
(A52)

Using (AS51), in the limit ¢ — 1 the basic hypergeometric
series reduces to the usual hypergeometric function

qal ,7qllr+1 > <al, ces Ay >
g, x| —> L F X .
r+1¢ < ’ aqb q e bl?"‘vbr

(AS3)
Another useful function is the g-Gamma function
L= (- L0 (a5
(7% 9

In the limit ¢ — 1 this becomes the gamma function I'(x).

8. Askey-Wilson polynomial
The Askey-Wilson polynomial is defined by

pp(cos@; A, B, C,Dlq)
= A™"(AB,AC.AD;q),
q—n’ q”‘lABCD,Ae’H,Ae‘m
X 493

AB,AC,AD
They are degree n polynomials in cos@. They are also
symmetric in A, B, C, D. Setting A =q% B=q",
C=¢q°D=gqg? and taking ¢ — 1 we recover the
Wilson polynomial (A1) up to an overall factor

1 g, q)- (A55)

Pn <#;q“,qb, q° q"lcz)
= (1=-q)"W,(x;a,b,¢,d) + g—1. (A56)
Here, we also introduced a variable x by
el = g7, 0= xlogé. (A57)

"For the more general case p(ﬁp see e.g. [75].

We will sometimes denote the parameters by A; = A,
Ay, = B,A; = C,A; = D. Askey-Wilson polynomials sat-
isfy an orthogonality relation. Assuming |A;| < 1 (other-
wise there might be an extra contribution from a discrete set
of points) we have

do
|5 MOpa(cosOpa(cos0) =gy (459
0 2
1 (ABCDq"';q), 1
hy = 2n—1 nt1 n
1 _ABCDq (q 9g) i<j (Atqu ’q)oo
(A59)
where the integration measure is
( iZt(-),q)
M, (0) = - (A60)
1 j:l(Ajei 9’ Q)oo
22 GO T[4, Ty (a; + ix
_ =9 i Ll £ i) (A61)

(4:0)% [y (+2ix)

As before, § = xlogé and A; = g%

We also define orthonormal rescaled Askey-Wilson
polyonomials

P,(x;ay,as,a3,a4|q)

4 -1/2
= |logq|"2(1 - (hn [Tq )
j=1
ix —ix
X Py (%;Q“%q“% q%, q“lt[)- (A62)

They are orthonormal with respect to the g-deformed
Schwarzian measure

/On/nogq dx py(X) Py (%) Poy(x) = 8pr (A63)

where

1

T (AG4)

pq(x) =

As in the undeformed case, the parameters relevant in JT
gravity in the main text are chosen to be

a=d" = A+ ik, b=c"= A+ ik, (A65)
and we define
P (xiky kalq) = Po(x; Ay % ki, Ay % iks|q).  (AG6)
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9. Askey-Wilson function
The Askey-Wilson function is defined by

Wa(X;A,B,C.D|q) = ¢A(X;A,B,C.q/D|q) (A67)
AB,AC,AD,GA™'A™!, GAX*;
( ’ C’ ’ G > G K q)oo (A68)
(GAA; q)o
W, (7' GAA; AX, AX™" AN, BA, CA; g, DA7Y),  (A69)

where the very well-poised ¢, series is defined by

8W7<A;A1,...,A5;q,2)
A, qAY2, —qAV2 A, L As
1/2 1/2 g,z - (A70)
A / 7_A/ an/A17'-'7qA/A5

The “dual” parameters are defined as

G = (ABCD)'?> = (ABCD)'/?, (A71)
A=G/D, D = G/A, (A72)
B=G/C, C =G/B. (A73)

Another representation that generalizes (A16) is (741"

Wi (X;A, B, C,Dlq) (A74)

~ (AB,AC,DX*',DA*';q),,
(D/A;q)
AX,AX"1 AN, AN!
8 4¢3< AB,AC, gA/D - q)
+ (A < D),

(A75)

One can also write down a representation that generalizes
(A17), see [76]. The Askey-Wilson function W, is
symmetric in A, B, C, D and satisfies “duality”

W(X;A,B,C,Dl|q) = Wx(A;A,B,C,Dl|q). (A76)
It is also symmetric in X, A (as clear from (A74)
Wast (XF1A,B,C,D|q) = WA (X;A,B,C,D|q) (A77)

for any choice of signs. To recover the Wilson function
(A16), wesetA; = g%, X = g7, A = g~ and take g — 1

"See formula (8.15) in [74]. Our definition differs from that
paper by D — ¢/D, such that in our convention the Askey-
Wilson function is symmetric in A, B, C, D.

W,-a(a7%:9%,4". 4% 9% q)

= (1= )22 (g ) Wy(xsa.b.c.d) + (AT8)

10. g-deformed 6j-symbol
We define the g-deformed 6j-symbol by

Ak x} -642% " a;
=|lo 1- g )
{Az b A, [log q[(1 - q) (:9)w

4
H (a; £ ix)[,(a; £ i2))"/?

X quM(CI‘ :q°.4".q% 9% q)  (AT9)
= |logq|(1 - q)*(4:9)%
% H ajilx a]im;q)oo]—l/z
XWq-u(q‘ 1q°.4". 4. 4"q), (A80)

where the parameters a; are chosen as in (A65). In the limit

q — 1 we recover the undeformed 6;-symbol
A kox Ay kpox
{ b } - { b } (A81)
Ay ky A, A ky A
The definition of the 6j-symbol looks unpleasant, but it

satisfies many beautiful identities. For example, a
g-deformed analog of (A28) is [77]

Al kl x} - n(n—1)
_ —1)" n(A+4,)+=5
PR D WEI

n=0

x Pp% (x1ky, ko)

x P (A ky. ks q). (A82)

a. Orthogonality relation

The Askey-Wilson function defines the Askey-Wilson
transform [76] and satisfies an orthogonality relation that
we express in terms of the 6 j-symbols (though we don’t use
it in the main text)77

7/|log g r,A+B+ix) (A ki x
/ dqu(x)“—{
0 V€, A ko A),

{ Ay kpox } .
X + discrete
Ay, ky X p

"These formulas are adopted from Sec. 8.3 in [74]. We set the
parameter ¢ in that paper to be r = ¢5+1/2

(A83)
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The dual parameters B, C , are defined by

CS(A-) C, (AB4)
- p,() T,AE£BLid)’
where B=-B—-A —-A,, C, =C,ls_5- (A86)
1 . 1 .
Cq:Fq Ei(B“‘A])ilkl Fq E:}:(B"‘Az)j:lkz .
(A85) The discrete part is
|
(A + B+ ik, (A, £ (B+1)+ik
discrete = q( 1 £ (B 2) : l\}g( 2+ (B+ 2) k) (A87)
Ay ko ox Ay ko ox
bk PR TR (A £ ik ixg) T (A £ ik & ixy)! (A88)
Ay ky A Ay ky X1 1
k>B+1/2 2 2 q 2 K2 q
(q—1/2—B+A1:tikl i q—1/2—B+A2iik2; 61)/( 1— q2k—23—1 (A A B) ok
: . , A89
(g2 BAEk g1 /2-B-AEik, 0y log g q (A89)

where x;, = i(B+ 1/2 — k).

b. Physical interpretation of B

The parameter B can be thought of as the magnetic field.
Indeed, the full density of states in the limit ¢ — 1 is

. 1 , 1 _
}]Er%pq(x)l"q 5 tB+ix) =px)0l 5 +B+ix) (A90)

B 2x sinh(27x)
~ cos(2zB) + cosh(27x)

(A91)

This is the density of states of a nonrelativistic particle
moving on a hyperbolic plane in the magnetic field
B [19,20].

To recover the formulas in the Schwarzian limit we take
B — ico. In this limit

Ve
“TE+B+ix)

I'(3+ B+ ix)

VC

r e T AITA) - (A92)

where C =lim,_,; C,. And the orthogonality relation
(A83) becomes (2.16).

c. Contour integral representation

A generalization of the integral representation (A49) is

{Al kl X}
A ky 2,

Ay A 1/2 . )
= |logg] <72)?71172ﬂ]-q> / L (1+2ik) )T, (=2ik,) (A93)
I=q \yft stz ) T(1+2ik)0(=2ik,)
/i"" du o Ty(A) £ ix + u)ly (A £ id + u)
—ico 2zi Fq(Al + Az + lk2 + u)
D(Eiky +u+1) .
T(Lik, — u). A4
T, (Fiky +u+ 1) (iky — u) (A94)
where
78, =T (A ik £ iky). (A95)

This representation can be derived from Eq. (B.23) in [13].

APPENDIX B: FOUR-POINT FUNCTION
ON THE DISK

In this section we check that the relative coefficients
between the three terms in (2.13) are indeed as written. The
first two terms are computed by the same path integral up to
relabeling of f; and must clearly enter with the same
coefficient. Let us check the relative coefficient between the
second and third terms. We note that in the limit §, — 0
they must be equal
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B2
B3 b1
B

B2
—7
B3 B

Ba

,62—>O

Setting f, = 0, we can integrate over s, in the correspond-
ing amplitudes and (B1) holds thanks to the identities

APPENDIX C: SEMICLASSICAL LIMIT
OF FOUR-POINT CORRELATOR

1. Wilson polynomials and conformal blocks

In this section we show that in the semiclassical and zero
temperature limit > 7;

1 o 4 ,
_ d . . _ﬂ,'SJ. FAFAFAFA 1/2
Z(ﬁ)[) JI:II( Sjp(s])e UNAEAEASY

X Py2(sp151.53) PRt (s4:51.53) (C1)

(24);

R Nal@Ata—1), (Bafa)™?

Aain(2). (C2)

., 8(sy — 54) where 7 = 2;—:2 The rhs is the conformal block of the
2
A ds; p(s;)(THI53)Y 2(57) double-trace operator 2A + n. We also assume
0o A S1 S _ 3 _ _ _ _ .
— / dsy p(s2)(THI5)12 A br=pF—-7u. Pr =112, Pz =13, Pa = T345
OA A1 53 54 f>1,>1,>13>7,>0 (C3)
= (P Tg3) 2. (B2)
Using the definition of Wilson polynomials in Sec. A
The second identity is the n = 0 case of (A27). we have
1 (2A)?2 4A + 2n) g
d e P57 yyA A LA A C4
Z(B)n'(4A +n—1),T(2A)T(2A + 1 / H g Recee ()
(2A + isy £ is3)? F (—n,4A+n—l,A+is1:|:is2.1> (—n,4A+n—1,A—|—is1:I:is4'1) (C5)
T2A +n+is, £isy)* 3 2A,2A + is| % is; a3 2A,2A + is| £ is; )

where y4,, = T'(A +is, +is,,). To take the semiclassical
limit we change variables

2

[
length, k> has dimensions of energy, and /3 has dimensions
of length. We will not do this explicitly, but instead think of
it as the high-energy limit s{ > ;.

S; = s+ Wj, Jj=2.3.4 (Co) Using that
and take the limit s% > w;. More carefully, we should first . Sam1 sl
restore the factors of gravitational coupling y = 8;;0 that [a £ is) ~ 2z]s|* e, |s| = 00, (CT7)
we previously set to 2y = 1. This is easily done by
dimensional analysis. The coupling y has dimensions of = we find
|
1 (24)2 ['(4A + 2n) o >
n d _ﬁsl 2 403 C8
Z(B)n\(4A +n— 1), [(2A)°T(2A + n)ZA s1p(s1)e71(281) (C8)
da)zda)3da)4 _ —Bra— 3 . Wy . Wy . W3 . W34
———— e PP ST (AL i = |T[ALi— |T[A+i = |T(A+i— (C9)
—0 (27[) 2 2S1 251 2S|
—1)"(2A — i 22)? -n4A+n—-1,A—-i5> -n4A +n—1,A—-iF"
ol .22)"3 2 . 21?1 3F . 21§1 (C10)
F(2A+n:|:12—;1) 2A,2A—12—S3l 2A,2A—12—;l
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where w;; = @; — ;. The integral over s, is computed by a saddle approximation. The value of the saddle is determined

ij
from p(s;)e P51 ~ ez’”‘ /st and is given by 5, = % Then Je ds p(s,)e P51 = Z(p) is the partition function, while in the rest

of the integral we simply set s; = %

(24); [(4A +2n) <2_”> e (Cl11)

n!(4A +n—1), T(2A)T(2A +n)? \ p

% da,dayd
/ T2 04 ehrn=Pros=Puos hos aril o \r(asilo\r(asilo,\r(asil o, (C12)
o (2m) 27 2r 2z 2z

—1)"2A —i L —nd4A+n-1,A—ilw —ndA+n-1,A—itw
( )( l (1)3)) 3F2( 27[ 2 )3F2< 27z 4’1> (C13)

F(2A+n:|:l§a)3 2A,2A—12—”0)3 2A,2A—lz€03

Now we take the zero temperature limit f — oco. Again using the asymptotics of gamma functions at large argument, we find

(2A)2 ['(4A + 2n) (C14)
nl(4A +n—1), T(2A)’T(2A + n)>
/oo dwzdw3da)4e—ﬁzw2—ﬂ3w3—ﬂ4w4eg(w3+|w3|—|wz|—|w4|—|w3z\—\w34\) (C15)
—-ndA+n—-1 @ —-nd4A+n—-1 @
03|72 a3 w34 |27 F ' ;—2> F < ’ ;—4> Cl6
e Y (c16)
One can show that at large
Lo lon/—fonl—lo|-lanl-lox)) { I, if0<w <w;,0<wy< @3 (C17)
0, otherwise
Therefore we find
(2A)2 ['(4A + 2n)
5 5 (C18)
nl(4A +n —1),T(2A)’T(2A + n)
/ " dar, e P 7 (C19)
0
Am dw, e (w,w3) 27V F(=n, 4A +n — 1,2A, 0,/ w3) (C20)
Aw} dwy e (w4w3,) 27 VF(=n, 4A +n — 1,24, 0,4/ 03). (C21)
After rescaling w, = xw3, w4, = yws and using that
1 1
/ dx e [x(1 = x)]*A7 F(—n, 4A + n — 1,24, x) = /ze™ a2 (2A) 5 1, 1(a/2) (C22)
0 2
we have
(2A)2 al'(4A + 2n) (C23)
n!(4A +n-1), T(2A + n)?
© Poth
(ﬂzﬂ4)_2A+%A dwy e~ V737 4)w312A+n——( Prws[2) 1o 1(Paws/2) (C24)
(24);
_ ) C25
D g ) a2 (c25)
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_ LY _ T1n73 _h
where = m— 2?‘21 and an (Z) =z F(l’l, h, 2/’Z,Z).

We checked this integral numerically. This is indeed the
expected answer.

2. Semiclassical limit of the 6j-symbol

It is also interesting to take the semiclassical limit of the
6j-symbol and check that after an appropriate integration
over energies it gives the crossed GFF Wick contraction.

We consider

{A k, kz}

= (712723734741)1/2Wk4(k22 A+ ik, A+ ik3)- (C26)
We set
B=Ktw; knk+d=k+v;, j=234 (C27)

2k,

and take k7 >> w;. It is convenient to use the expression for
the Wilson function (A16) giving

Wi, (ks A + iky, A + iky)
I(=2ik;)
T(2A + ik, % iks)T(A — ik, & iky)T(A — ik, & iky)
(C28)

A+ iky + iky, A + ik, + ik
43( e 4;1>+c.c. (C29)
2A + lkl j: lk3,2lk1 + 1

At large k| the hypergeometric function simplifies signifi-
Cantly (klj = ki - kj)

<A+ikliik2,A+ik1iik4‘ )
Y3\ 2A ik & iks, 2ik, +1

A+ ik, A + ik
~,F, < 2 1> (C30)
2A + lk13
_ F(Q’A + ikl3)r(ik2+4—l—3) (C31)
T(A + iky3)T(A + iky3)
where k;, j = k; + k; etc. Also using that
F(A + lx) ~ \/E|X|A—%e—%|x|eisgn(x)%(A—'i)-Hxlog@’
xeR, x| > 1, (C32)
we find
Wk4(k2; A+ ik], A =+ lk3)
e2ﬂk1 .
~ - (2k1)1—4A65(vg+v3+1/4) (C33)

(2/(1 )i’“2+4-3r(i1/2+4_3)
(F(A )T — i) T(A + i) T(A —ivg) C-")-
(C34)

At large k; it is highly oscillating unless v,,4 3=
vy +v4—v3=0. Near this value we substitute v3=v,+14
in the gamma functions in the denominator, expand the
gamma function in the numerator and find

Wk4<k2,Ailk1,Ailk3)

L (2ky) et ) Dsin (1, 45 log (2K,))
T 2a0(A+iv,)T(A+ivy)

(C35)
V214-3

o2k (2 k, ) 1=4A S5(vatvstuy)
T D(A +iv)T(A + ivy)

5(v214-3)- (C36)

In the last line we used that lim,_, 25”;(”) = 275(x). Also
taking the limit of gamma functions in the prefactor in
(C26) we find a rather simple expression

{A “ kZ} 2 Sk + s — kg k) (C37)
N ~ ez 2% 1 3T Ky TRy

Olky +ky —ky — k

z<1+ 3=k —ky) (C38)

p(k) ’

where we restored the original variables and defined the
average momentum k =1 (k; + k + k3 + ky). To reiter-
ate, we take the limit where all k; are large, but all
differences k; — k; are finite. It is straightforward to use
the above formula to show that appropriate integration over
energies gives the crossed GFF Wick contraction in the
four-point correlator, as expected.

APPENDIX D: OPERATOR ALGEBRA
OF THE GENERALIZED FREE FIELD

The purpose of this appendix is to show that the condition
(3.10), together with associativity of the OPE and conformal
symmetry, guarantees that all n-point correlators of O agree
with those of the bosonic generalized free field. The upshot is
that the operator algebra of O in the generalized free field
theory is completely characterized by the operator equa-
tion (3.10) and conformal invariance. All other operator
equations must be implied by (3.10) and conformal invariance.

As mentioned in the main text, (3.10) implies that the
OPE takes the form (3.9), which we repeat here (in a
slightly modified form):

1 (o]
O(#)O(r) = 25 + Y FHIOO] |z
12

n=0

+ descendants. (D1)
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We have chosen to expand the operators about their
midpoint. Written in this way, all of the powers of 7y,
are even. In particular, one can show that the descendants
only contribute even powers of 7y,. If we compute the
Lorentzian commutator [O(t;), O(1,)], all of the terms on
the right-hand side of (D1) drop out except for the identity
contribution, which appears on the right-hand side of
(3.10). If any other primaries with dimensions not in
2A + 27 appeared in the OO OPE, these primaries
would contribute to the right side of (3.10), so by imposing
(3.10) as a constraint on the algebra we are demanding that
the OPE takes the form (D1).

Let F,(z,7),...,72,) be the 2n-point function of
O in a theory where the OPE (D1) holds, and let
G, (71,7, ...,75,) be the 2n-point function of O in the
generalized free field theory. We will inductively show that
F, =G, for all n € N.”® The base case n = 1 is trivial.
Next, suppose that the result has been shown forn < m — 1
with m € N. Define

Hm(7'-17727 ""TZm) = Fm(TI’TZ’ ""12m>

=G, (11,72, ..., To).  (D2)

This function should be defined via analytic continuation
from the domain 7; > 7, > --- > 7,,,. One can easily see
that H,, is nonsingular for 7; — 7, because the identity
contributions to the O(z;)O(r,) OPE cancel. Hence, we
can analytically continue to 7; < 7,. Furthermore, H,, is
invariant under 7; <> 7, because only even powers of 7|,
appear in (D1). Hence, the 7; — 73 limit is nonsingular
because the 7, — 73 limit is nonsingular. One can thus
show that H,, is entire in 7;. Using the same logic, one can
show that H,, is an entire function of all of the 7 variables.
Furthermore, H,, goes to zero as 7; — oo due to conformal
symmetry. Hence, H,, vanishes identically.

APPENDIX E: TWO-POINT FUNCTION
ON THE DOUBLE-TRUMPET

In this section we compute the two-point correlator on
the double-trumpet. We use the boundary particle formal-
ism of [19]. It is convenient to work in the coordinates
ds?> = dp* + cosh® pdz*>. We first compute the JT path
integral on a piece of the disk in the Fig. 19 bounded
by four points: A} = (p1.71), 4y = (p2.72), By = (0. 7y),
B, = (0,7,). The wiggly line connecting A;, A, is the
boundary of physical length u. The embedding of this
boundary segment into the hyperbolic disk is integrated
over with the Schwarzian action. The other four lines
connecting points A;, A,, B;, B, are geodesics. We
construct the path integral for g(u;A;,A,) out of the
Hartle-Hawking wave function (region bounded by the

"We thank Dalimil Maza& for providing this proof to us.

FIG. 19. Geometry relevant for the computation of g(u; A}, A,).

boundary and the geodesic #) and the hyperbolic quad-
rangle A;A,B,B,

g(u: Ay, Ay) = €M, (£). (E1)
The factor e?*4, where A is the area of the quadrangle
AA,B,By, is the JT path integral on the quadrangle. An
exercise in hyperbolic geometry shows that in the limit

when A, A, are close to the boundary (p,, p, — o) this
area is

Arm—2(e + e ) coth L g LR (E2)

Also multiplying by ¢, =%=ygq, rescaling the radial
coordinate” e = ée‘w and setting y = 1/2 we get a
contribution
ePA eﬂq—(e'“'l +e‘“’2)coth¥' (E3)

The first term g cancels out if one adds appropriate corner
terms in the JT action.® In any case it doesn’t depend on
any of the coordinates. The second term will be important
in the computation below.

The second factor in (E1) is the Hartle-Hawking wave
function

$u(6) = e / " ds p(s)e 2K 5y, (2e7717)  (EA)
0

This is analogous to the rescaling z =2 in [19]. It is

necessary for the particle in a magnetic field {o be equivalent
to the Schwarzian theory.
%Such terms are necessary for locality, see [78] for details.
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=02 Aoo ds p(s)e ™ d(£). (ES)

In the energy basis it obeys the orthogonality relations

o A B 5(s—)
[ abopee) =L (e
/0 S dsp()B ()b () = 8(E - ¢).  (ET)

In (E1) the (renormalized) geodesic distance # between the
points Ay, A, is e’ = "1™ sinh? 25, Putting everything
together we have

_witwy

_ _ Ty — 1Ty e 2

AL AY) = —(e™ *2) coth —
ol Ag) = exp (~(e + o220 ) £

w+wy

oo Y
X / ds p(s)e_l”zszl's (67:22_,[1) . (ES)
0 nL—n

sinh 5

1. Trumpet partition function
To make sure our formulas are correct, we first compute
the trumpet partition function. We set w; = wy, = w, 7, =
71 + b = v+ b and integrate over w. The correct measure
of integration is*' 1 dzdwe" sinh %, where 1/b is from gauge
fixing U(1) symmetry. The 7 integral is trivial [?4f =1
and the rest gives

o b B w
Ztr(ﬁv b) = / dw (ew sinh§> . g2 coths e

- 1D
0 sinh 3

N : 2
< [Tasperan (25) ®)
0 sinh3
oo b
_ A dse—ﬂﬁ@, (E10)

where we used that

#!The measure which naturally arises in the boundary particle is
induced by the metric ds®> = dp® + cosh? pdz®, which gives
\/9dpdr = cosh pdpdr ~ q % e"dwdr. This differs from the correct
measure by a factor 2 sinh %. This factor is explained by the fact that
the boundary particle is equivalent to the Schwarzian theory with
the path integral measure [ [, ‘if((:;, while the correct measure on the

double-trumpet is 2sinh2]], ‘if(u"). The factor 2sinh% can be

understood from considering Eq. (2.25) in [79]. We first map it
to the double-trumpet coordinate by tan% = e¢7". Then two
solutions of (2.25) in [79] become W, = ¢*7/2/+/7/. Under
Euclidean time evolution u — u + 2z, we have 7 — 7+ b and
¥, — e™/2¥_ Then we compute the trace of evolution operator
around the Euclidean circle Tr(—1)"U = ?/> — ¢7/> = 2sinh?,
where the minus sign is from (=1)¥.

/00 @ e—2x COShgszis (2)() - (— (El 1)
0

X p(s) =

2. Two-point function without 1-loop determinant

The two-point function on the double-trumpet without
the matter determinant can be computed by putting together
two factors of g(u; A, A,) from the previous subsection,
for the left and right trumpets. We also insert e 272, where
efir = Wi tWe coshz% is the (renormalized) geodesic
distance between the two operators. See Fig. 20. We have

(Tre PO Tre PREO) S

(E12)
co b [« [+
:/ db/ dr/ dedwR/ dspdsgp(sy)
0 0 —0 0
x plsg)e it (E13)
—-wy,
x e=2¢7"L coth§2K2is <2e b>
“\sinh 3
—2¢™"R coths 2e7"
X e "¢ 22K2iSR 7 (E14)
sinh3
© —(wp+wg)\ A
e
X , El15
n_zoo <cosh2 %) (E15)

FIG. 20. Geometry for the computation of the two-point
function on the double-trumpet. The blue line is the geodesic
of (renormalized) length £;  connecting operators on the left and
right boundaries.
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where the sum over n is the sum over windings of the
geodesic connecting two operators. The integral over 7

gives
b = 7+ nb\ 24
d h
[y ( . )

= /_: dr (cosh %) - (E16)
- 22AF(A)2
") =

To compute w;, wg integrals we change variables to
x; = 4 and similarly for wg. And use that
2

o dx
/ - er—2x cosh%ZKzl_S (2)()
0 X

oA 1) b\ —24+1
= 272AT(A + 2is)V/ cosh @, (b), (E18)

@, (b) = WF(A + 2is)!/?

1 1 1 b
X F(z + 2is,§ —2is, A+ X —sinh? Z) . (E19)
This is a generalization of (E11). We introduced a function
®,(b) which is essentially a Jacobi function that defines
Jacobi transform, e.g. see [80]. It satisfies orthogonality
relations

0 b 24 b\ 2(1-4)
/ db <sinh—> <cosh—> D, (b)D, (b)
o 4 4 L R

Sls, —
_ (SL SR) , (E20)
p(s)
7 aspo,mo,w)
0
5(b-1)
= —. (E21)
(sinh g) 24 <cosh g>2(1 4)
Using above integrals we have
r(A)? [o
FE2A)) /0 dspdsgp(s.)p(sg)
x e PsiPrsi(D(A + 2is, )T(A + 2isg))/?  (E22)

0 b 24 b 2(1-4)
x/ db(sinhz) (coshz> @, (b)®,,(b). (E23)
0

The b integral here turns out to be the orthogonality relation
for the Jacobi transform, so we find

(Tre PrH OTre et O)

2 e
F(A)/ ds p(s)ePribos’ D (A £ 2is).  (E24)

> T2a)

3. Two-point function with 1-loop determinant

To include the 1-loop determinant in our computation,
we use the formula (2.24) for the determinant at fixed » and
insert it in the computation in the previous subsection. We
start with the n =1 term in (2.24) corresponding to the
operator A propagating on the closed geodesic. Instead of
the integral (E23) we need to compute

o ) b\ 24 b\ 2(1-4)
/0 dbl — (sinh1> <cosh Z) @, (b)D,, (b)
A s osp
- { A sp oS }
We did not find a derivation of this formula, but we checked
that it holds numerically. For the n = 1 term we need this

integral with A’ = A. Assuming it is correct, we have a
contribution to the two-point function

(E25)

(Tre PO Tre PREQO) 5

(E26)
F(A)z 0 2 2
— _(ﬂLSL+ﬂR5R) Ez
Fony [ ddsanlsip(sa)e (E27)
A S SR
x(C(A+2is, )[(A£2isg))'/? . (E28)
SR SL

For the n=2 term in (2.24), we expand it as
%: © efizfﬂ’)h and use (E25) with

A" = 2A + 2m. Higher-order terms n > 3 can be similarly
computed as a sum over contributions of higher-trace
operators.

APPENDIX F: MORE ‘T HOOFT DIAGRAMS
ON THE DOUBLE-TRUMPET

In this appendix, we compute ‘t Hooft diagrams for the
empty double-trumpet and two-point function on the
double-trumpet, where a right-left path crosses three lines.

1. Empty double-trumpet
To compute D), we consider diagrams that allow for
left-right paths that cross over three O double-lines, but we
exclude those diagrams that were already counted in D)
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(2)

FIG. 21. On the left we graphically represent X', In the center
2)

we graphically represent X’ (22). We may think of &’ 52) and &7 as
operators that act on a function of s and s, to produce a function

of 5, and s.. On the right, we represent the product X 22)2((22).

and D@, It is convenient to think of each diagram as an
operator that acts on functions of two energies. Before we
can enumerate the diagrams that contribute to D®), we need
to define a few operators. The first two operators we
consider are defined as follows:

2 . 2) 5(s. —s.)
X SpyScs8s,8,) = Xud (8p, §¢p) ———,
[ 1 ]ad( b f ) ( b f) P(Sc)
Slsr — s+
D) (5. 5e57050) = X,%)(sc,se)i(sb (g
’ p(sp)

For convenience, we will often write X' @) and X5 @) (o refer
to these operators.*> We deplct these operators in Fig. 21.

The product of X ,( and X ) (withi,j € {1,2}) is defined
as follows:

i évgznad(sb’vasfv )
A dsip(sy) dSzP(Sz)[Xﬁz)]ad(Sb’Sc;sl,52)
x| Xiz Jaa(S12 82585, 5). (F2)

We use this product to define the operators B and P as
follows:

= 2 2)\n
B=Y (7 +a7) (F3)
n=0

P=B-1-> (X)) +@P)").  (F4)

n=1

The motivation for defining B and P in this way will be
clear from Fig. 24. The next two operators we introduce, A
and F, are respectively defined from the connected planar
six-point and four-point functions of O. See Fig. 22.
The last operator we need, X (), is defined in Fig. 23.

2All of the subsequent operators we define will depend on the
same set of energies, which we will no longer explicitly write
unless necessary.

BN
=~ 7 TJ 1PI
= — I
‘ 0 B A ‘ B
1 I 0
[T1
FIG. 22. On the left we relate the sum over connected planar
six-point diagrams (represented by the “C” blob) to the sum of
amputated six-point diagrams (represented by the “A” blob). The
operator A is defined by multiplying the sum of amputated six-
point diagrams by a factor of \/{(O,,Op,)gis for each external
double-line, where s, and s, label the two energies appearing in
the double-line. Each factor of \/{(O,,Oy,) is is represented by a
red semicircle. The operator F is defined in terms of the 1PI

planar four-point function as shown on the right. Note that .4 and
F do not depend on the normalization of O.

x<3>=@:%+

FIG. 23. The blob with a “3” corresponds to the sum over all
connected planar six-point diagrams such that any left-right
path through the blob crosses over more than three double-lines.
We define X©®) as the product of this blob with a factor of
(O, Opa) gisk for each external leg, where s, and s, are the two
energies associated with the leg. These factors are represented by
red semicircles. The simplest contribution to the blob labeled “3”
is a tree six-point vertex (in this case, there are no left-right paths
that can go through the blob, because we only let left-right paths
cross over double-lines, and all of the double-lines are external.
So it is vacuously true that all left-right paths through the blob
cross over more than three double-lines).

The product of any two operators is defined as in (F2). The
integrals over s; and s, correspond to integrating over the
energies that appear in the closed index loops that are
formed when a diagram in the first operator is attached to a
diagram in the second operator. Note that when either X (12)

or X gz) appear in a product, at most one closed index loop is
formed, which reflects the fact that delta functions appear
in (F1). Having defined X", X'”, B, P, A, F, and X©)

we note that the explicit formulas for all of these operators
are known a priori, except for X©). This is because X (12)
and X7 follow from (9.35), while A and F follow directly

from the connected planar correlators of O, which are
known from the (regulated) gravitational Feynman rules.

To determine X, we use the following relation:

A=F +P+BXOB[1 - X387, (F5)
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FIG. 24. To solve for X®), we systematically classify the
diagrams that contribute to the amputated connected six-point
function, which is contained in A and appears on the left-hand
side. The diagrams that contribute to F (first term on the right-
hand side) all allow for left-right paths that cross over only one
double-line. The remaining diagrams on the right side have the
property that any left-right path crosses over three or more
double-lines. We organize these diagrams by explicitly showing
all the locations where a left-right path can cross over three
double-lines. The remaining parts of the diagrams are encapsu-
lated in X®). The blobs labeled B and P should be replaced by
sums over products of the first two diagrams in Fig. 21, according
to (F3) and (F4). The ... includes further terms in the geometric
series in (F5). Note that P is defined similarly to B, except that PP
only contains connected diagrams. Given that the left-hand side is
a sum of connected diagrams, only connected diagrams may
appear on the right side.

which is depicted and explained in Fig. 24. After using (F5)
to solve for X®), we may directly compute the sum of all
diagrams that contribute to D®). The basic building blocks
we use to enumerate these diagrams are X §2>, ng), and
X0). Note that B counts all of the diagrams that may be

enumerated using X <12) and X <22) only. The result is

3 2 2)n 2)1n n
D =Ty~ (7 + a9 - [P - (A7)
n=1
21
+Try —[xOB) (Fo)
n=1

The trace in (F6) corresponds to setting s, = s, and
s. = s, in Fig. 21 and then integrating over these energies

with measure dsp(s). We are left with a function of s, and

s, that corresponds to D[(fd). On the first line of (F6), we

enumerate all of the diagrams that may be built out of X’ (12>

and ng). The subtractions ensure that we only count

connected diagrams. On the second line, we organize the
diagrams by the number of X® factors that appear. The %
factors ensure that there is no overcounting and also supply
the correct symmetry factors to the diagrams that have a Z,,
symmetry.

Using (F5), we have that

A-F-P+B=B1-X88":=R, (FI)
from which it follows that
1-R'B=XxCB. (F8)
The second line of (F6) becomes
2.1
TrY —[xC)B)" = -TrlogR™'B
3 OB - <Triog
=TrlogR —TrlogB, (F9)
so that (F6) becomes
DY) = Trlog(1 — &) + Trilog(1 — X))
+ TrlogR, (F10)

where we have used (F3) to substitute for 5. Our method for
computing DP) is valid for any single-trace, two-matrix
model. Given the connected planar correlators which are
fixed by the disk amplitudes of the model, we may
determine X 52>, X(Zz), and R and thus D®),

We now obtain explicit expressions for D) using the
g-deformed and Selberg regulators. We first define the

operators ST and 87 as follows:

A Sp sc} 5(SC_S6)

ST (5pSci855.8,) =
[ l]ad( b f S) {A sf s, pq(sc)

. (F11)

5(5‘;, —Sf) { A Se Syq

Sq’ SpyScsSr,Se) =
A S O R U

} . (F12)

Note that the Yang-Baxter equation is
818381 = Sis1sa. (F13)

Using the regulated gravitational Feynman rules to deter-
mine the disk amplitudes, we find that
A=F + 28181 + 28185 + *S181S1, (F14)

where # = 3 for the g-deformed regulator and # = 2 for the
Selberg regulator, and

A s Se A s, s
Flaa(sp, 56357, 5¢) :ez{ b } { f} .
A sd sa q A su sd g

(F15)

From (F1) and the g-analog of (9.35), we have that
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20 _ €St o) _ €5

b1+ eST 2 1+eSY

(F16)

and it follows using (F4) that

-1

B-P=[1-XP"+1-aP" -1, (F17)

=1+eS] +€S1. (F18)

Using (F7) and (F10), we finally have

DB = —Trlog(l + eSY) — Trlog(1 + €S9)
+ Trlog(1 + eS! + €S% + 2S4S

+ 28185 + " S181ST). (F19)
The first line of (F19) only depends on the spectrum of S7
and SZ, which is independent of the two energies that DG
could depend on. We now argue that the second line of
(F19) is also independent of these energies.

To compute the second line of (F19), we will construct
two convenient orthonormal bases for the space of func-
tions of two energies that the operators S} and S act on.
We will refer to basis vectors of the first (resp. second) basis
as |n,m), (resp. |n,m),), where n,m € Z,. The basis
vector |s) in the space of functions of one energy is
normalized such that

3(s1 —52)
s1]sy) = —==. F20
(ks =S (F20)
Then, we define )1 by
((s¢] ® (sel)|n. m),
= Pt (g5 Sas 8ol @) P2 (503 540 54lq). (F21)
and |n, m), is defined by
((s7] @ (se|)[n.m),
= Pﬁ'um(sf;%,Sd|CI)P3fA(Se;Sf’ sqlq).  (F22)
Using (A63), we have
1< ’ () = 2< > )y = O 7O > (F23)

while (G4 1) ensures that these bases are complete. Our two
bases are eigenbases of S7 and S7,

5‘1“|n myy = 2A”In my,

( 1)11

1 n,m)y = (=1)"g" 5 2" |n, m),, (F24)

which shows that SY and &7 are Hermitian.

The operators S and S7, subject to the relation (F13),
generate an algebra. A casimir of this algebra is given by

C:= (S‘ngS‘f)z. (F25)
Using (G52) and (A82), we find that
Cln,m)y = Cypln.m)y. Cln,m)y =C, |, m),,
Cnm = q(n+m)(6A—l+n+m). (F26)

In particular, the casimir depends only on the sum of n and
m. Because n and m are non-negative integers, each value
of the casimir corresponds to a finite-dimensional repre-
sentation of the algebra. Hence, in either of the two bases
we introduced, any operator in the algebra takes a block-
diagonal form, where each block is finite dimensional. To
compute the second line of (F19), we need to compute the
log of the determinant of the operator appearing in
parentheses. It suffices to compute the determinant of this
operator in each individual block. The second line of (F19)
thus takes the form of an infinite sum, where each term in
the sum corresponds to a single block. Let us consider the
matrix elements of S and &I in the |n,m), basis for
concreteness. The matrix elements of ST are determined by
its eigenvalues, which do not depend on the two energies
that DO could depend on. To determine the matrix
elements of Sg, we use (G55), which implies that

n+m

o), =3 SpEn(y,

y=0

mln+m=y.y). (F27)

Hence, the matrix elements of S7 in the basis that
diagonalizes S do not depend on the two energies that

D) could have depended on. It follows that Df‘,) is
independent of s,, s, and does not contribute to the empty
double-trumpet.

Having explicitly shown that D? and D®) do not
contribute to the empty double-trumpet, we conjecture that
D™ does not contribute for all n > 2. The formula for D™
should involve determinants of operators acting on the
space of functions of n energies, and we expect that these
operators are part of the algebra generated by the appro-

priate analogs of S and 8. An argument similar to the one

given above will then show that Dg{'} does not depend on s,,

or s,.

2. Two-point function on the double-trumpet

Continuing from the end of Sec. IX B, we now consider
diagrams such that the minimum number of O double-lines
that are crossed by a left-right path is three. This is the last
class of diagrams that we explicitly compute. In this case,
the analog of the green blob in Fig. 16 will have eight
external double-lines. Six of the double-lines will wrap
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around the double-trumpet, while the other two double- pRc) X 1

lines go to the AdS boundaries where they represent an =-1- e — 2+ (F30)
insertion of . The green blob should only include - -
connected diagrams. However, there are connected dia-
grams that allow for left-right paths that cross over only one _ i
or two double-lines. These diagrams must be subtracted _ v _ @ _ 12 _ (2 3
from the sum over all connectedgeight-point diagrams (this b -4 R R v
subtraction is analogous to the subtraction on the right-
hand side of Fig. 16). In Figs. 25-27, we enumerate all of
the connected diagrams that should be subtracted. We then

define the green blob in Fig. 28. In Fig. 29, we enumerate 1
all the diagrams that we wish to resum. %) %) B
Next, note that (F3)—(F5) imply that I-X7 -4y -4
2 2
=1+ Xg )<2) + Xg )(2> +A-F. (F32)
A-F=P+B([1-x38]"-1) (F28) 1-x7 1-4x;
Recalling the graphical representations of X’ 52) and X g) in
XEZ) XEZ) 3)g1-! Fig. 21 as well as the representation of X©) in Fig. 23, it
=-1 _1 0 - e +B[1-XVB] (F29) follows that the left-hand side of (F32) is graphically
4 4

represented by

FIG. 25. In this figure, Figs. 26 and 27, we enumerate all of the connected eight-point diagrams that admit a “shortcut” from the left to
the right side of the diagram. A “shortcut” is defined as a left-right path that crosses over one or two double-lines. In keeping with the
conventions in Fig. 22, a blob with an “A” in it refers to a sum over connected planar amputated diagrams.
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FIG. 26. In this figure, Figs. 25 and 27, we enumerate all of the
connected eight-point diagrams that admit a “shortcut” from the
left to the right side of the diagram. A blob with an “A” in it refers
to a sum over connected planar amputated diagrams. The three
factors that are arranged vertically are meant to be multiplied. The
“2” blob was defined in Fig. 11.

FIG. 27.
connected eight-point diagrams that admit a “shortcut” from the
left to the right side of the diagram. A blob with an “A” in it refers
to a sum over connected planar amputated diagrams. The three
factors that are arranged vertically are meant to be multiplied. The
“2” blob was defined in Fig. 11.

In this figure, Figs. 25, and 26, we enumerate all of the

We now evaluate the right-hand side of Fig. 28 using the
g-deformed regulator. There are 27 connected chord dia-
grams with eight external lines. These contribute to the “A”
blob. Of these chord diagrams, 21 are subtracted. The right-
hand side of Fig. 28 becomes the sum over the following
six chord diagrams:

(F34)

-1
which appears in Fig. 29.
|
€’ ‘ ‘ ‘ + €
N
+ 65 +
VA

~

This is a symmetric sum over six permutations. To obtain the sum over the diagrams in Fig. 29, we should multiply (F34) by
the inverse of (F32) and identify the top and bottom ends of the diagrams (or equivalently, take a trace). In the g-deformed

model, (F32) becomes
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RolRloRe

FIG. 28. We define the green blob with eight external double-lines. First, we subtract all diagrams that permit shortcuts from the
sum over connected amputated eight-point diagrams. The blue blob is defined to be the sum over all the diagrams in Figs. 25-27.
Furthermore, we must amputate off factors of the “2” and “3” blobs from the top and bottom three legs. The “3” blob is
defined in Fig. 23. This figure defines the green blob in analogy to Fig. 17. The top and bottom ends of this diagram are not
identified.

+ € +
(F35)
2 3
+ € + + €
[
Multiplying (F34) by the inverse of (F35) has the effect of
undoing the symmetrization over the three lines in (F34). 3 (F36)
The final result for Fig. 29 is € | | |
-1
1 - _ _ After using the pentagon identity (9.47) and taking the JT
limit, this becomes
[ dsaplsdsapts et cara)
X (3A4+n+m s, s,
x ) { } (F37)
w0 LA Se S
FIG. 29. We enumerate the sum over all diagrams such that the
minimum number of double-lines crossed by a left-right path is . )
three. The green blob is defined in Fig. 28. The top and bottom Finally, we turn to the Selberg regulator. Using the
ends of this diagram are identified. Selberg regulator, (F32) becomes
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+ € €

(M- N+ XK

which differs from (F35) by the weighting assigned to the last diagram.

We now consider the right-hand side of Fig. 28 using the Selberg regulator. Note that each chord diagram that contributes
to the “A” blob is weighted by €*. Furthermore, every diagram in Fig. 25 is weighted by €. In Figs. 26 and 27, the terms
inside the round brackets are weighted by €. The factor inside the square brackets may be evaluated from (9.44). To
simplify the remainder of this computation, we now set ¢ = 1. From (9.44), we have that

1 - _(1+€><)1_1162(1_6><) (F39)

4

(F38)

where in the last equality we used (2.14). It follows that the diagrams in Fig. 26 evaluate to

I + (F40)
1+e

while those in Fig. 27 evaluate to

_ + (F41)
14+ e€ |

The right-hand side of Fig. 28 then becomes the sum over the following chord diagrams:

(b - e e A - K

Next, we must multiply the inverse of (F38) with (F42) and then take a trace. Evaluating the inverse of (F38) is easier when
q = 1. The inverse of (F38) is
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where the coefficients ¢ ; are

- 2¢(—e* +e+1)+1
T e—1)(ee(6e +7) +4) + 1)
e((e—=2)e(e+1)-1)

2T T e ) elelbe £+ 4) )
- e}(e+2)
4TS T e 1 (ele(be + ) + 4) + 1)
. 62(262 +1) (F44)

(e—1)%(e(e(6e+7)+4)+1)"

We now multiply (F43) with the final line of (F42) and then take the ¢ — 1 limit (we will come back to the rest of (F42)
later). We then take a trace by identifying the top and bottom ends of the diagrams. The result is

Because we have identified the top and bottom ends of each diagram, it turns out that (F45) evaluates to zero. In fact, each of

the bracketed terms separately vanish.
We now multiply (F43) with the sum over the six terms appearing in brackets in (F42). In the JT limit, the result finally

|)eC()1 nes
+ —|_

AN A

CVC MK

Now we would like to compute (F46), where we identify the top and bottom parts of the diagram. We start with the first
three terms

o kalk: ~ [3A+n+m s, S
B _ a F47
tr _H_‘, /0 dkydky p(k1)p(ke) —i > { A Sb sa} I

n,m=0

tr%— = tr~‘—X— = Z (—1)" {3A +An+m Zz EZ} . (F48)

n,m=0

F45)

(F46)
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The trace here means that we identify top and bottom parts of the diagram and integrate over k;, k, with the density of states.

In both equations we used the pentagon identity (A32) twice and orthogonality of Wilson polynomials. In the second
equation we also used (A27).

The last three terms in (F46) are slightly more tricky to compute. The fourth term gives

/

n n
tr - = Ztr = Z(—l)m tr (F49)
n=0 //\ n,m=0 m
e
(F50)
=3 )" n
n,m=0 m

In the first equality we used the pentagon identity. Then we used an expansion of the 6j-symbol into Wilson polynomials
(A28). And finally, we computed the trace by connecting top and bottom lines.
To compute (F50) we note that it is an overlap between two products of Wilson polynomials

= Pn(k’l,A:i:’LSa,A:i:Zk’g)Pm(k’Q,QA—l-niZSa,A:l:ZSb) s (FS])

= Pu(ki; Atise, 20 +n tisy) Py (ko A ik, A £isy) . (F52)

These two products can be thought of as bases in the space of functions of two variables k, k,. Since both of them are bases,
they can be related to each other by a linear transformation. Indeed, such a transformation can be derived by analytically
continuing the Theorem 7.6 of [74]

k n+m

Sa Sp - Z CjRj

J=0

(F53)
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where
r—(n+m\ (2A) (2A 6A+n+m—1);
Cj — Nj( . )( )n( )m ( : .)J , (F54)
J (ZA)j (4A +J - 1)/(4A + 2])n+m—j
il —NO6A+n+m+j—-1),.,_. (4A+j—-1);
Nj:J(ner N J= Dy (BA+j - 1), (F55)
n'm! (6A+2n+m-1),, (@AA+n-1),
C(4A +2n)T(4A +n+m+ j)T2A +n+m — j)I'(2A + j)? (F56)
T(4A +2j) T(4A +2n+m) C(2A + m)T(2A + n)?
and R; is the Racah polynomial defined on page 1 of [74]
R;=R;(m;2A-1,2A-1,-n—m—1,4A+n+m—1) (F57)
—j,—n4A+j—-1,4A+n-1
-r(7] y 1) (Fs8)
2A,—n—m,6A +n+m-—1

In (F50) the top and bottom lines are identified and carry the index m. This means that we are interested in the term j = n in
the rhs of (F53). In this case some of the expressions simplify. In particular, A/, = 1. We find

m'
n
(F59)
(¢ Rj)lj=n
n
m
m\ (24),(6A+n+m-1), —n,—n,4A+n—-1,4A+n-1
=\n — 413 1. (F60)
n)(4A +2n),(4A+n-1), 2A,—-n—m,6A+n+m—1

Finally, we find

tr \X = tr >§/ — Z (_1)anRn {3A+n+m Sa Sb} . (F61)

\ \ o / A Sp Sa

n,m=0

A similar computation shows

A Sp  Sa

\\{ — F62
tr | Z (=)™, R, {3A+n—|—m i Sb} . (Fez)

n,m=0

Combining the above results we have
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—1r
|
3! Bl

c Y] LY

\ [ /\
1 & 3A+n+m Sqa  Sp
=— 1+2(=1)"+2(-1)"c,R —1)""me R F64
i 2 (14200 4 20 R+ (1o ) vl (Fo)
IS [3A+N 5, 85| & ; m netm
T e S a1y 2 Ry + (1R (F65)
N=0 b a’l n=0
|
We would like to compare this result with JT gravity. The KK~!' =1 = KK, KE = q'?EK,
next term in (2.36) (that we didn’t write there) is K2 — K2
KF = q~'?FK, EF —-FE=—+——, (Gl)
P
i 3A+2n+3m s, s
po LA Sy Sg and the Casimir is given by
2 (3A+N s, sb} -
_ Sopiamn.  (F66 1252 o 1/25-2 _
(7" =q'7)
—12K=2 4 g1/2K2 _ 9
q +q
To match this with (F65) we need = (2= g2 + FE. (G2)

N

1
;Z [142(=1)" +2(=1)"c,R, + (=1)"t"¢,R,)]
" n=0

(o]
= E 5211+3tn,N >

n,m=0

m=N-n

(F67)

where ¢, R, is defined in (F60). Incredibly, this identity is
indeed true. We didn’t find its derivation, but checked it
numerically for several values of N.

APPENDIX G: REPRESENTATION THEORY
OF U, (3 (1.1))

In this appendix, we introduce the ¢/, (8u(1, 1)) algebra
and derive important relations involving the various 6;j
symbols that are encountered throughout this paper. We
mostly follow the discussion in [74], although our con-
ventions differ. Any results that are not proven here are
attributable to [74]. The main purpose of this section is to
derive the identities (G52) and (G55).

1. The ¢4,(3u(1.1)) algebra

The U, (3u(1,1)) algebra is a g-deformation of the
universal enveloping algebra of 81 (1, 1). The generators K,
K~!, E, and F obey the relations

This algebra is a Hopf *-algebra, and the comultiplication
operator A is defined as follows:

AK)=K®K, A(E)=KQE+EQK™",
AK)=K'®K', A(F)=K®F+F®K™'. (G3)

Note that this algebra is not cocommutative, which means
that the tensor product of two representations depends on
their ordering. The adjoint operation is defined by

K'=K, E'=-F, F'=-E,

(K =K. (G4)

We may define an automorphism of the algebra as follows:
F=E (G5

The tilde generators also obey (G1), (G4), and (G2) for the
same Q. The coproduct is not invariant under (G5). If X
represents a generator of the algebra such that

A(X) = Za,- Q b;. (G6)

then
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A(X) = Zi;l. ® a;. (G7) a. Discrete series
i The positive discrete series r; is labeled by k > 0. The
representation space is ¢?(Zs,) with orthonormal basis

We are interested in three unitary representations: the SR
{en}trez,,- The action is given by

positive discrete series, the negative discrete series, and the
principal series.

ﬂljr(K)en = qk%env ”]j(K_l)en = q_%en

(472 = g2 (E)e, = 5 (1= ¢ 1) (1 = ¢* e,

— 1k n —
(¢ =q"P)mf (Fe, = —¢+ 2\/(1 =q")(1=¢*" e,
(a7 = ") x (e, = (¢" 7 + ¢ = 2)e,. (G8)
The positive discrete series representation becomes the b. Principal series
negative discrete series representation under the automor- The principal unitary series representations x’, are

phism in (G5). That is, if X is a generator of the algebra,
then it is represented by 77 (X) in the negative discrete
series representation, where

77 (X) = 7 (X).

labeled by 0<p <2 and e€[0.1), where (p.e)#(0.).
At times we may ﬁnd it convenient to allow e to take
values outside of this range with the understanding that
€ is defined modulo unit shifts. The representation space is
¢*(Z) with orthonormal basis {e,},c,. The action is
given by

2 en,

775,6<K_1)€n = q_n_ﬂ

(72 = ") (e, = g (1= greriody (1 = grieodye,

(7" = q'*)ah (F)e, = —61%‘3‘5\/ (1 = gmretir) (1 — gemiv e,

(g7 = q'1%)*x;,

If we define the automorphism in (G5) to acton ¢,,, p, and €
as follows:

p=r,
then (G10) is invariant under the automorphism.
2. Clebsch-Gordan coefficients

We now consider the Clebsch-Gordan coefficients that
we will need.

(Q)e, = (¥ +q77" = 2)e,

(G10)

ant @a*t
Consider the tensor product representation ﬂk ® ﬂ'k7

which is spanned by e, ® e, for ny,n, € Z5y. Astate of
definite K weight is given by

P
p> = Z vgen ® ep—nv

n=0

(G12)

where p € Z, and we wish to choose v}, such that |p) is
an eigenvector of the casimir Q. The correct choice is
to take

066015-81



DANIEL LOUIS JAFFERIS et al.

PHYS. REV. D 108, 066015 (2023)

2k,

(qZkz;q)p (q s q_p;q)n

o (ki ko) = (g i) grh \/(

PRI

i

q.q"7"*;q),

g, gtk

q77q), (g7

x(x—1)

)(1 _ q2k1+2kz—l+2x)

”l

where x € {0,1,...,p}, and R, is a dual g-Hahn poly-
nomial, defined on page 450 of [81]. Note that the
quantities inside the square roots are positive. With v}
chosen as in (G13), |p) in (G12) is a vector in the 7Z'k+3
representation, where k3 = k; + k, + x.

The Clebsch-Gordan coefficients v} (x, ky, k,) obey the
following orthogonality relations:

P
Zv, X, ki, ky)vh (x, ki, ko) =6,,,, n,me{0,1,...,p}
x=0

(G14)
P
D vk ki ko) vk (xa, ki k) = B,
n=0
x1,x, €{0,1,...,p}, (G15)

and it follows that the decomposition of 7 ® 7 is

(q, q2k|+2k2+p’ q2k2;Q)x
X R, (u(x):g*1 71, g*71 plg),

(1 _ q2k|+2k2—1 )(_q2k| )x

(G13)

b. z* ® #¥

Consider the tensor product representation 7} ® 71'5 o
whose decomposition into irreps contains both principal
series and positive discrete series representations [74].
We are only interested in the principal series representa-
tions. The space 7, ® 77:5 ¢ is spanned by e, ® e,, for
ny € Zsy and n, € Z. A state of definite K weight is
given by

|T’ p> = ng(T’p’e’ A)eﬂ ® ep—n,

n>0

(G17)

where p € Z, and we wish to define f%(z, p, €, A) such that
|z, p) is an eigenvector of Q that belongs to the principal

given by series representation 77.'11: a+e- The Clebsch-Gordan coeffi-
cient is given by
ﬂ,:’l ® 7[,: = @)ﬂz+k2+j. (G16)
=

|

fh(eped) = (1 /12 1 (@2, 4, ", 4% q)

n T’pﬂe’ =\~ J S 1y A—etij i 1
2% (9:9),(¢*%:9), (77505 q), (gmPhmerie gA=irsin g)

qi‘r + q—iT

1
——p—A—e

q
2 ’

oo

where p,, is a continuous dual g-Hahn polynomial, defined
on page 429 of [81]. Because |71, p) and |z,, p) must be
orthogonal for 7| # 7,, we have that

fo’)l(Tlvpve’ A)fg(fz,p,é‘, A) = 5(71 - 72)’

n>0

(G19)

And the normalization of (G18) is chosen to make (G19)
consistent with the orthogonality relation of the continuous
dual g-Hahn polynomials provided in [74].

(G18)

Ailp | q>

et @n~
The decomposition of z” ® z~ may be deduced from
the decomposition of z* @ z” and the automorphism (G5).
In particular, 7[56 ® 7 is spanned by ¢, ® e,, with n| €
Z and n, € Z. If we define

=Y (=1)"fa"(z.p,—e

n>0

’ A)eern ® en’ (GZO)

. p)

then |z, p) belongs to a #¥,_, representation.

T,6—
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dzn- Qn~
The decomposition of z~ @ z~ may be deduced from
the decomposition of 7" ® z* and the automorphism
(GS5). In particular, T, ® m, is spanned by e, ® e,,
for ny, ny, € Z. If we define

14

|P> = Z vg—"(x’ k2’ kl)en ® ep—nv

n=0

(G21)

then [p) is a vector in the xj ,, . representation.

3. 6j symbols

In this section, we study three different 6j symbols that
may be built out of the above Clebsch-Gordan coefficients.
We now briefly review the general definition of a 6;
symbol. Let j; denote a unitary irrep of an algebra, where
i €{1,2,...,6}. To define a 6 symbol, consider the triple
tensor product j; ® j, ® jz3. One way to decompose this
into irreps is to first take the tensor product of j; ® j, and
then tensor the result with j;. Let us then project the result
onto the space of states transforming in a j, representation
(call this space S4). The space S, may be written as a direct
sum of orthogonal subspaces, where each subspace corre-
sponds to a representation that appears in the j; ® j, tensor
product (let js; refer to such a representation). Thus an
orthonormal basis vector of S, may be written as
|jamys js) 10, where my labels a basis vector in the j, irrep.
Alternatively, we can repeat the entire process in the other
channel by taking the j, ® j; tensor product first. Let jg
refer to a representation in the tensor product of j, ® j.
Thus a different orthonormal basis of S, is given by vectors
of the form |j4my; jg),3- The 6 symbol is defined to be the
overlap

JiaJss — i A i
UGt = 15 (Jamas js|jamas je)azs

(G22)
which does not depend on m,. The 6j symbol is repre-
sented graphically in Fig. 30. Equation (G22) defines a
unitary matrix because it is an overlap of orthonormal basis
vectors. In particular,

ZU§;§213J4<U{:11'2/3J4)*

Je

Jsie

Ja Ja
5 Uiikis Jo
J5J6
Jo

o 2 B h kB

FIG. 30. A diagrammatic illustration of the definition of the 6j
symbol. Each junction of three lines represents a Clebsch-Gordan
coefficient.

In general, 6j symbols may be constructed from
Clebsch-Gordan coefficients. Let us define the Clebsch-

Gordan coefficients C;/};%,, such that

jm) =3 Clilbljim)) ® ljamy).  (G24)
my,my
The coefficients obey an orthogonality relation:
> Ol CL = 8,505, (G25)

my,my

The Clebsch-Gordan coefficients and 6j symbols are
related as follows:

2 : JaJ5:J3 JsJ1:J2
Cm4,m5 M3 Cms S,y
ms

_ J1J2J3Ja rasdiJ J6:J2:J3
= > U, Clii

(G26)

Jo:Me

Using (G25), we have

Ja-Js-J3 Js-J1:J2 J6-J2:J3
E Cm4,m5 s Cm5,m1 iy Cm(,.mz,m3
ms,my,ns3
_ prh2d3da padiJe
= Ujsjs Cm4,m1,m5~

(G27)

=5 - E (Uj:ljzj3j4)*Uj1[2j3j4 S (G23)

JsJs’ JsJe JsJe JeJe" . . . .
= : We now derive another identity that we will use later. We
will start with (G26) and multiply by three new Clebsch-

The 6] symbols that we discuss are real. Gordan coefficients on each side to obtain

JarJsJ: JsJ1.J Js+J7+J JosJs-J2  J10+09-]
E Conyinsims Crizomy-my Cgoigimy Crngmmy Csmgmy
s,y My, ms3,mg,ny
_ JiaJzia (iasdiide  ie2:ds J8+J7:J1 JouJsJ2  J10+J94J3

- Z Ujsjﬁ Cm4,m] Mg Cm(,,mz,m3 Cmg,m7,m] Cmg.mg,mz leo.mg.m3 . (G28)

Je-Mg,my My, m3,ng,Ng
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Next, we use (G27) to simplify the m, m,, mg sum on the
left and the m,, ms3, mg sum on the right. The result is

E J71J2J9 (vJ10:9+J3 J9+J7+J5 JaJ5+J3
Uj8]5 leo mg,ms3 Cm9»m7-m5 Cm4$m5,m3
ms.ms.mey

J1J2J3Ja 7 7igJaJzii0 (J10-Js-J6 Js-J7.J1 JasJ1:J6
E UJs](, Ujgjﬁ Coliveome Congoinmy Crtptt g -
Jos1mgmy ,mg

(G29)

Next, we use (G27) again to simplify the ms, ms, mg
sum on the left and the mg, m;, mg sum on the right. The
result is

U]7J|Jz]9 Uj7js/3jlo leo J7:J4

JsJs JoJa 10,177,114
_ Juj2jaja g risiadziio yririviedio (v10-J7-J4
- ZUJSK UJ916 U]x]4 leo,m7,m4 <G30)

which becomes

U/7/| J2Jo U]715J3110 E U11]212J4 U]s]zjzllo UJ71116J10_ (G31)

J8Js JoJa JsJe JoJe JsJa
antQat Qxat
Consider the triple tensor product z; ® #;, ® ;.. Our

convention for the 65 symbol is given in Fig. 30 with the
following identifications:

. + . + . +
Jl_”klv J2_7[k27 J3_ﬂk37

at oot
Ty rhptxy J6 = Ttk gy

ZZ

xp3=0

S
JA= T kgt +N° Js=

U1112/314 Sk1~/<2~k3

Jsis (xX12,%23), (G32)

where the 6j symbol Sk ko ‘N(

follows:

X12,X3) is defined as

=142k 4+2ko+x15  ,—142ky+2k3+X03  ,—X10  ,,—X23
Skl,kzwkz,N(xlz x23) _ qkz(N—xlz—x23) |: N :| « 4¢3 < q - q »qd " q 4,4
4 ’ - 2ky =142k +2ky+2ks+N ,—N * 4
x23 q q 2 q 1 2 3 q
— 142k, +2ky+2k3+N . 2k 2k
(q= e g) (@75 v, (723 9) s,

X

2k 2k 2k +2ky+x1,—1. 2k +ky+ 2k +2ky4+2k3+N+x1,—1.
\/<q’q 1 q 2 q 1 2 2= q)xm(q q 3 q (l 2 xll)’q 1 2 3 X12 ’q)

N—=xy,

X

\/ (4,973 q),,,(q. ¢*1, g1 thtelaiNim-lo gy

: (G33)

\/ (Pletht); gy (g5, gttt g)

and the g-binomial coefficient is defined by

(2:9).,

e

In particular, we have that for n,n,,n; € Z,, and
ny+n,+n3 >N,

(G34)

ny+ny nytny—xp+n;
O (X120, ks ko) Vs (N = X2, ky + ko + x12, k3)

min(N,ny+n3)
_ ky.ky.k3,N
>, s

ny+nz
X125 %23) Uy (X3, K, K3)
X23:0

ny+ny+n3—x3

X Un, (N — X723, k] s k2 + k3 + .X'z:),). (G35)

Each Clebsch-Gordan coefficient above corresponds to a
junction in Fig. 30. Also, (G23) becomes

N
ky ko k3 N ks ko ki N ~
qul' T (x12,%23) 8¢ (403, X12) =04y, 5, (G36)

X3=0

b Qnr~ Qn~
The 7~ ® 7~ ® n~ 6/ symbol is related to the 7+ ®

zt @ #7 6j symbol via the automorphism (G5). We may
make the following substitutions in Fig. 30,

]l:ﬂ]:l7 .]2:7[]:2’ ,]3:77:]:3,
JA= T iy thyans IS :”_1+k2+x12’ J6 = Ty ky by
k3.ky.ky N
Uj;?;hja S 3,K2,K1, x235x12 § : 2 : (G37)
X23=0
cat@at

Consider the triple tensor product 7, ® 7, ® 7 ..
Our convention for the 6 symbol is given in Fig. 30 with
the following identifications,
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. _ + . _ + . _ P . _ P . _ + . _ P
J1 = Tp s J2 = Ttp,> J3 = T, e Ja = T5 A+, +e J5 = A + A, +x0 J6 = s Ayte

UL = (1 P (sisesda). 3= [Pas (@38)
Je

While the tensor product of an and ﬂi « does contain positive discrete series representations, the label jg only runs over

principal series representations because the tensor product of a positive discrete series representation and ﬂXl cannot

produce 7z A A .-
To be precise, the following identity holds:

ny+ny

ny+n ny+ny+n3—x 1 A
O (0 AL ) ol T (S Sas €, Ay Ag + x)(=1) 1 g (5) P ‘ (83545 5:1q)
x=0

— I (s e )T (s s e+ Ay, Ay), ny,ny € Zs, n3y €Z. (G39)
Using (A63), this becomes
v (0 Ay Ag) ol 2 T (e Sas €0 Ay 4 Ay )
— /OIOM l+x\/—-lDAz (53800 S @) Fr T (50800 € 80) f T (55 € Ag A,
0<x<n+n,. (G40)

Each Clebsch-Gordan coefficient in (G40) is represented by a junction in 30. Unitary of the 6 symbol also implies the
completeness relation™:

3(sp _Sd)'

Ay A Ay A
ZP . l sb;sc’sa|Q)Pn2 l(sd;sc’saM) = pq(sb)

(G41)

Using the graphical notation in (A8), the completeness relation is given in (A31).

d X Qr Q-

The 6, symbol for z{ . ® 7, ® 7 may be inferred from the 6 symbol for 7, ® 7} ® #}, _.. In particular, it follows
from (G39) that

(1) f " (550 =€ A (=1 f2 7" (5005, —€ + Ay, Ag)
ny+ns

Z v A, A ) (=1)B T (s, 50 €,k K+ )[4 /g () PR (8554, 5] )],

ny, Ny (S ZZO’ np eZ. (G42)

Thus, the 65 symbol is represented by Fig. 30 with the following identifications,

. _ P . _ — . _ —_ . _ P . . P . . —_
J1 = T, e J2 = Ty s J3 = 7p,» J4 = s, e—n -0y J5 = s e—n» J6 = A +A,+x
Umz/m _ ( )PAlvA2( . | ) _ (G43)
e = Pq(s)Px S5 84:5:19), = .
Je x>0

8This is equivalent to a special case (@ = 0) of (4.1.11) in [82]. See also Egs. (3.8) and (10.1) in [83].
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P
ﬂ-SC,G—I-Al —As

P
ﬂ-sb?ﬁ—{—Al

+ P -
A, T, e A,

FIG. 31.

P
Mse e+ D1—Dy
P

S3:5¢.€

= / H deRALﬂQ(Sb,Sd) ﬂ-sd,e—Az + o
0

+ P -
AL T, e Ty

A diagrammatic representation of the 6 symbol in (G44). On the right-hand side, we have only depicted z” representations

running through the channel. The - - - contain contributions from negative discrete series representations that also run in the channel.

I i Jr
Jo . Jja
: . Js Js SR )
I — s fafafr — fafalady § el
. Z Uj'a.ia - Ufws Uju.rg o8
Jg Ja o
h o s s it B B s h k2 B
. Jz .
J7 I ; i
. Js 1 :
Je .
— /112208 ; = Las | i afT — fxfah et g piviein
Js - Z Ujﬁjm J1o Z U;j.v'm Ujﬁ}ll J1o Z U?;);m ’ Uj‘,—:j“ ijjl-g

J1o At

: L ho k2 B3 ga
h 2 BB )4

o141z

R J3 g Wb A s

FIG. 32. A graphical illustration of the pentagon identity. We may exploit the fact that there are various ways to take a tensor product of
four representations to derive a nontrivial relation involving 6; symbols.

ext @t Qn~
Consider the triple tensor product 7; ® 7y . ® 7y,
projected onto the subspace of states that transform in
the ﬂ'i e+A,—A, Tepresentation. In the two channels, we will

~ P P
project onto the 7y , .. and 7, .

a, channels. The 6/
symbol is given by

A <q1/2ieiis,,’q%i(Al—A2+e)iis‘.;q)m
Rylsce(sp:5a) = Li(e4+A))tisy, A+(Ay—e)tis
(et glbameFia  g)

AZ Sp Se
X pq(sb)pq(sd)’ (G44)
Ay Sq Sa q

and is diagrammatically represented in Fig. 31. Note that
the tensor product of z¥ ® z~ contains both z” and 7~
representations, and tensoring z* with either of these
produces a 7" representation. Thus, to derive an orthogon-
ality identity analogous to (G23), we must consider both 7"
and z~ representations in the channel on the right-hand side
of Fig. 31. However, we have only explicitly considered the
=” representations. The discrete series representations will
not play a role in our derivation of the pentagon identity,
which we carry out in the next section.

4. Pentagon identity

We now derive a pentagon identity®* for the tensor
product z7t ® 7 ® 7~ ® n~. The pentagon identity may
be derived by tensoring four representations together and
applying the relation in Fig. 30 in different ways, as
indicated in Fig. 32. Equality of the two lines in Fig. 32
indicates that the 6 symbols must obey

U340 gliadsin — E [ JEARREENLY geARACENED PR EY eV (G45)

J6Js JsJ9 - JsJ10 JeJ9 J10J8
J1o

To obtain the identity of our interest, we make the
substitutions

. + . P L — e -
]l_ﬂAla ]2_”.\'a.€9 ]3_7TA27 .]4_77:A3

. P . _ P . P

J5 =T, 6100 J6 =T cx A=Ay JT = Fg et Aj—Ay—Ay>

. — . P . _ P
I8 = nytas4x0 SO T s e—ny-050 J10 =0y (G46)
so the 6 symbols are

¥See [84] for an explanation of the pentagon identity, which is
also called the Biedenharn-Elliot identity.
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Jsizjaj1 _ AoAz . J1j2J8) A Ay +Az+x
UJ:.Js '= pq(sC)Px (sc’sbvde)’ Ujsjg ! R »Sd€ (Sb,Se),

AA AA A, A
UL = RS sysy). UM = RES L (ses). URR = = o) s pssasida) (G4

and the pentagon identity becomes

\/Pa ()P (5.5, sal @) Raie ™ (s, 5,)

Togal AA, oA
:[) 24 dszSaS( (Sb’sf>RSflsdsg AZ(SC’S€>”pq(Sf)Px2 3(Sf;sa’se|q)v (G48)

and using (G44) and simplifying, this becomes

+(Ay+Az—€)Eis, . (A=A —As+e—x)tisy. A A
90 (@ 1) 00 pAsA (A +A5+x) 5, 84
\/(q \/ EPy (565855 Salq)
q

+(Ay+A3—e+x)Ltis, . C]) (q% (A =Ay—Az+e)Lis,. q) A, s, S,
A s, S Ay s, s

Mog 4] 2 b c 3 c d A, A
= ds K P (seys,,s . G49
/o 4l f){A1 Sy sa}q{Al S, sf}q S elg) ( )

Next, we use the identity

(q%:t(k—x)ﬂ:is; q)oo o (GSO)

(qiﬂ:k:tts @) -4

and conclude that

A +Ay+x) s, S
CIXA'PfZA3(sc;sb,Sd|fI){( ? ’ ) d}
q

A1 Se  Sq

e Ay 5, S Ay s, s
[Tog q] 2 b c 3 c d A, A
= d sz 3 ; as’Pe . G51
A Squ(sf){A] Sf Sa} {Al S, Sf} <Sf Sar§ |q) ( )
q q

Using the completeness relation (G41), this becomes

ZQXA‘P?2A3(SC;Sb,Sd|‘1) } P (53 5005.19)
x=0 a

Ay sy s Az se sy (G52)
N Al Sf Sq q Al Se Sf q'

{(A2+A3 +x) sy S

A1 Se  Sq
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Using the graphical notation in (A8), this becomes

Ay Ag

Ay Ag

©.@)
Ay +Az+x
CUAl
A p— E q Ay (G53)
x=0

Ay Ag

5. Final identity
The last identity that we will need follows from (G31), with the following identifications:

]l:”ZI’ ]2:7[527

J5 = A 4 Ay a0

J3 = Ta,s

J6 = T a,+Astys

J4 = TA 4 A+ 854N

. _ P . o P
J1 = s e Jg = ”sb,e—Al’

N
Jo = ﬂfp.e—Al—Az’ Jio = ﬂfdﬁ—Al—Az—M’ Z - Z ’ (G54)
Je y=0
Then, (G31) becomes
N
P sy 50 Sc @) PRS0 (st s sala) = DS (3,0 PRSP (5550, 8l @) Py (ses 5. 5alq). - (GSS)
y=0
Using the graphical notation introduced in (A8), this identity becomes
A1+ Ay + A3+ N AL+ Ay + A3+ N
N
A+ As + A3, Ao, A1, N
— E Sy o e (y, x) INE (G56)
y=0
A
1 Ag Az Ay A, As
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