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Abstract

Mechanical properties of as-printed 316L stainless steel thin-walled structures obtained by directed

energy deposition are investigated. In-situ tensile and fracture tests are performed on small samples

obtained from a additively manufactured square section tube and extracted with three different

orientations with respect to the part build direction. Despite a strongly oriented microstructure

resulting from the process, as-printed specimens exhibit a reduced anisotropy in comparison with

thick or polished samples commonly reported in the litterature. Moreover, it is shown using a

simple model that the slight observed anisotropy can be explained by considering the material

thickness variation pattern only, resulting from the layer stacking process. Fracture tests are

analyzed using an adapted digital image correlation procedure allowing to evaluate the specimen

fracture toughness from experimentally computed J-integrals. Using time reversal, strain fields in

regions close to the crack path are identified. Stress fields are then computed from the constitutive

behavior identified in tensile tests. A regularization procedure is proposed to enforce the stress

equilibrium. Finally, the J-integral is computed using various integration contours in order to

validate its path-independance. On this basis, a nearly isotropic fracture toughness is identified.

Additional scanning electron microscope observations show that fracture surface features are

independent from specimen orientation. This apparent isotropy is explained by the isotropic

distribution of lack-of-fusion defects driving crack initiation and propagation.

Keywords: Direct Energy Deposition, Fracture toughness, Digital Image Correlation, In situ

SEM experiment

1. Introduction

In the past decade, additive manufacturing of metals has evolved from a rapid prototyping

technique to a process suited for the production of fully functional parts [1]. Among the emerg-

ing additive manufacturing technologies, the Directed Energy Deposition (DED) [2] is a process

suitable for applications ranging from functionally graded parts [3] to structural repair [4]. In

particular, the DED technology enables to quickly produce complex thin-walled structures. Ad-

ditive manufacturing processes opened a set of challenging questions which received a strong

∗Corresponding author: pierre.margerit@polytechnique.edu

Preprint submitted to Additive Manufacturing September 10, 2020



interest from the scientific community [5–7]. Understanding the complex interweaving between

process parameters (e.g heat source power, scanning path, powder flow), residual stresses [8–13]

and mechanical properties [14] is one of the major issues [15]. The chosen printing strategy

has indeed consequences at different scales: (i) at the microscopic scale, where crystallization is

driven by temperature gradients, resulting in epitaxial grains with orientations highly influenced

by the heat source path [16]; (ii) at the mesoscopic scale, where the layering process as well as the

lack-of-fusion defects result in significant thickness variations responsible for stress concentrations

[17]; (iii) at the macroscopic scale, where residual stresses associated to heating/cooling cycles are

responsible for distortion of parts [8, 9, 18].

Among material characteristics affected by the fabrication process, fracture properties are

central for engineering applications, certification and safety. A number of works focused on

fracture properties of additively manufactured parts [14]. However, most results related to 316L

stainless steel material have been established for Selective Laser Melting (SLM) technology. It has

been observed that additively manufactured 316L exhibits higher yield stress and ultimate tensile

strength than conventionally manufactured 316L, and a lower elongation to failure and fracture

toughness [19]. In addition, the influence of layer orientation and surface roughness on the

fatigue behavior of SLM parts were addressed in [20, 21]. The ability to manufacture 316L

stainless steel parts using the DED additive manufacturing technology have been investigated

in a number of recent works [22–28]. However, most of the studies related to the fracture prop-

erties of parts resulting from this specific process have focused on polished Ti-6Al-4V specimens.

Anisotropic fracture toughness is usually explained by the morphological texture, as cracks prop-

agate through columnar grains or following columnar grain boundaries depending on specimen

orientation [29]. In contrast, as-printed specimens present significant thickness variations across

the build direction associated to the layering pattern. Thus, geometrical effects depending on the

applied load direction are expected, in particular when considering additively manufactured thin

walls, for which the thickness variations count for a significant proportion of the nominal thickness.

Moreover, unmelted particles are randomly distributed at the specimen surface, resulting in a large

number of stress concentrations responsible for the initiation and propagation of cracks in the

structure. Hence the current literature dedicated to polished specimens can be used only for parts

receiving post-processing such as surface machining. In addition, the fracture toughness is usually

measured by using classical compact tension (CT) specimens. For thin-walled structures though,

CT specimens cannot be used as they would buckle under the compressive stresses developing

in the bending region. Moreover, in these specimens the process zone is relatively confined near

the crack tip (i.e pre-crack or notch) if the material exhibit a brittle fracture behavior. In this

case, the fracture toughness can be conveniently determined using the process zone confinement

assumption, using classical formulas of stress intensity factors based on linear fracture mechanics.

However, because of the relatively high ductility of additively manufactured 316L material, a large

plastic zone would develop around the crack tip of a notched specimen, requiring a more detailed

investigation concerning the validity of the process zone confinement assumption.

The present work is dedicated to the characterization of tensile and fracture properties of

as-printed thin-walled 316L structures fabricated by DED. In particular, the objective is to under-

stand in what extent specific microstructures, lack-of-fusion defects (i.e., unmelted particles), and

thickness variations contribute to the overall fracture behavior. In addition, a procedure leading
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to the evaluation of the the material toughness is proposed, with the aim to overcome problems

associated to thin-walled structures made of 316L stainless steel: (i) a low thickness preventing

the use of classical CT specimens and (ii) a large plastic zone (ductile fracture process) breaking

the assumption of a confined process zone. The analyzed specimens were extracted from a square

tube fabricated by laser metal powder directed energy deposition (LMPDED). A close image of

the as-printed material showing layers and lack-of-fusion defects is presented in figure 1. Strong

crystallographic and morphological textures are also observed. To identify a potential anisotropy of

the mechanical behavior, specimens have been extracted along three different orientations, namely:

the build direction (verical Z-axis), the print direction (horizontal X or Y-axis) and the oblique

direction (i.e., 45◦).

Figure 1: Close image of the as-build material surface showing the printing layers and the unmelted particles.

Interlayers are separated of a distance of 200µm.

The proposed procedure starts with the identification of the elastic-plastic material constitutive

behavior determined by tensile tests on dog-bone specimens. The identified material parameters

are observed to be slightly dependent on the specimen orientation. A simple model is introduced

to estimate the influence of the thickness variation pattern. Based on an analogy with springs

and sliding frictional elements (disposed in parallel or series according the specimen orientation),

it shows that the apparent anisotropy identified may be largely explained by the thickness profile

instead of the textured microstructure.

Once the material constitutive behavior is known, it is proposed to determine the material

fracture properties from the mechanical fields in the neighborhood of the crack tip of a single-edge

notched specimen. More precisely, displacement fields are measured by digital image correlation

(DIC) techniques [30, 31]. The main difficulty in assessing fracture properties from displacements

obtained by DIC arises during crack propagation where neighboring pixels get separated. Thus

the identification process of local fields becomes unstable and significant errors can occur. To

overcome this difficulty, a backward DIC scheme is preferred. It consists in defining the final
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loading stage as the reference image, and performing the correlation gradually from the final

image to the first one. This original procedure allows to evaluate strains close to the crack

surfaces. Since the anisotropic elastic-plastic behavior has been previously identified on dog-bone

specimens, a simple algorithm is proposed to estimate elastic and plastic strains and stresses (with

elastic trial and plastic correction by a radial projection scheme). However, due to measurement

uncertainties, this procedure leads to stresses not satisfying equilibrium. Thus, the procedure

includes a correction based on a minimization between the initial stress field estimation (i.e., not

verifying the equilibrium) and the corrected stress field, under the constraint of stress equilibrium.

This constrained minimization is performed within the framework of Lagrange multipliers, leading

to a diffusion equation that has to be solved at each time step to obtain the corrected stress field.

Since the distribution of the strains and stresses has been determined, the evolution of the process

zone can be followed during each step of the test (stress concentration buildup, crack initiation

and propagation). In addition, the classical path-independent J-integral [32] is computed from the

identified mechanical fields. The results show that this experimental J-integral is path-independent

up to the crack initiation where it equals the critical energy release rate and is equivalent to the

fracture toughness [32]. The obtained critical energy release rate values are similar for the three

tested directions. In addition, no kinked cracks are observed in all experiments. This is likely due

to the effect of unmelted particles that are responsible for stress concentration and void nucleation

guiding the crack path. Since these defects are isotropically distributed at the specimen surface,

the crack path and fracture toughness are more or less isotropic.

To support this hypothesis, the study is complemented by in-situ Scanning Electron Microscope

(SEM) observations to understand in more details the fracture mechanisms. Interestingly, stress

concentrations as well as void nucleations detected near the unmelted particles are observed to

drive the crack propagation path, confirming their role in the fracture behavior.

The paper is organized as follows. The section 2 details aspects related to the manufactured

material: specimen fabrication, geometrical analysis and microstructure analysis. In section 3

the experimental setup is presented as well as numerical methods: DIC, stress computation and

correction, J-integral evaluation. The sections 4 and 5 respectively presents the tensile tests on

dog-bone specimens and fracture tests on notched specimens. Finally, complementary in-situ SEM

experiments are presented in section 6.2. Conclusive remarks are given in section 7.

2. Materials

2.1. Specimen fabrication

The specimens analyzed in the present work were fabricated by LMPDED with a a

BeAM™ machine. The powder used in this study is MetcoClad™ 316L-SI, whose chemical

composition is provided in table 1. In general, the mechanical properties of additively manufactured

material are highly dependent on process parameters (e.g., laser power, powder feed rate, laser

path and velocity). However, a consistent experimental characterization relies on homogeneous

material properties. As a consequence, the part from which the specimens are extracted has to be

designed so that the laser power and velocity and the powder feedrate are kept as steady as possible

during the process. The ideal candidate structure is therefore a circular cylinder created following

a helical path, thus resulting in constant process parameters. In order to obtain flat specimens, it
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has been chosen here to fabricate cylinders with a square section (see Fig. 2). The cylinder was

manufactured on the substrate and later removed using an electric saw. It should be noted

that specific supports could have been designed to easily deal with the removal task [33]. The

samples were finally extracted out of the flat faces by water-jet cutting. Process parameters chosen

for this study are listed in table 2.

An important feature is the development of residual stresses in the manufactured part

due to the high thermal gradients involved in the process. This eventually leads to large

distortions in the part. In the present case, these distortions are associated to the wavy

pattern that can be observed in the manufactured tube (see figure 2). In order to reduce

the magnitude of these distortions as much as possible, the size of the tube section was kept

relatively small, thus reducing the length of the specimens that could be extracted. At the

end of the process, residual stresses are almost completely released during the specimen cut

(e.g., residual stresses magnitude is estimated to 100 MPa in [16]), and almost flat specimens

are obtained.

With the aim to quantify the anisotropy in the material constitutive properties, specimens have

been extracted according to three different orientations, namely: 0◦, 45◦, and 90◦ corresponding

respectively to the build (red), oblique (blue) and print (green) directions in figure 2. Two different

types of specimens have been extracted namely: dog-bone specimens and notched specimens,

respectively dedicated to tensile tests and fracture tests. The notch diameter (1.5 mm) is limited by

the water beam diameter.

Table 1: Chemical composition in weight percent

Fe Ni Cr Mo Si Mn C Others

Balance 12 17 2.5 2.3 1 0.03 ≤0.5

Table 2: Process parameters for the tube

Laser velocity (mm.s−1) 33

Laser power (W) 245

Laser beam radius (mm) 0.338

Dwell time (s) 0

Layer spacing (Z-axis step) (mm) 0.2

Powder flow rate (g.s−1) 6

2.2. Surface roughness

The surface roughness resulting from the fabrication process were characterized using surface

elevation measurements performed with a Keyence™ VHX-6000 optical microscope equipped with

a 250× magnification lens. The total apparent thickness, measured with a caliper, is approximately

H = 800 µm. However, lack-of-fusion defects are distributed on the surface, as show in the figure 1.

These spheres have a diameter similar to the powder, (i.e., D = 65 µm on average). As already

mentioned, these spheres favor local stress concentration, but do not contribute significantly to the
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a finite-element-like formulation, discretizing the transformation function u by means of a mesh

covering the entire Region Of Interest (ROI):

u(x) = N (x) · [u] (3)

where the unknown [u] correspond to the nodal displacements and the interpolation matrix N (x)
contains the finite element (FE) shape functions. Such a formulation presents several advantages.

First, strains are computed as in usual FE schemes (by derivation of N (x)), which avoids smoothing

issues and finite difference schemes as in local DIC [34]. Second, the FE mesh enables to accurately

follow the object geometry, allowing to identify displacements at the edges (e.g crack surface, see

section 3.3) without being influenced by the image background.

Solving the non-linear problem (2) requires the implementation of an iterative Newton-Raphson

procedure (see [35] for more details). In this work, the minimization problem is solved in Mat-

lab™ [36]. Meshes with linear triangular elements are defined using the unstructured DistMesh

generator by Persson [37]. At the end of the procedure, a set of configurations is obtained, rep-

resented by the set of nodal positions [x]i (with i = 1, . . . , N the image index). Considering the

transformation gradient F = ∂x/∂X with respect to the initial configuration X = x1, the strain

rate ε̇ and total strain ε can be computed. Since linear elements have been chosen, these fields are

piece-wise constant.

3.3. Crack opening and backward-DIC scheme

Figure 5: DIC mesh defined at the initial loading stage.

For the fracture tests, the crack opening poses several difficulties for DIC when the reference

image is defined at the initial step (pristine specimen), as the separation of pixels during the

crack propagation introduces artifacts in the correlation procedure. Classical approaches adapt the

correlation domain at each time step by erasing elements, with the local correlation coefficient as

selection criterion [31]. However, the deletion threshold is often difficult to tune and the success of

the procedure is not guaranteed. In order to overcome this difficulty, the procedure proposed here

starts at the final loading stage, just before specimen failure (see figure 5). At this specific stage,

the crack geometry is well defined (see figure 5), and the DIC can be performed in the backward
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direction, from the final stage to the initial stage. Thus, the DIC domain remains unchanged

during this procedure. Finally, displacements and strains are computed with respect to the initial
configuration (i.e., X = x1) as for classical approaches.

3.4. Stress field estimation

The experimental evaluation of the J-integrals requires that both strain and stress fields are

known on the contour path. However, at this stage, only the kinematic fields have been computed

from the DIC procedure, as well as the measured resultant force F at the specimen boundaries.

Ideally, the stress field should derive from the constitutive law applied to the identified strain

field, and should be statically admissible, such that both momentum equations (quasi-static regime

without body forces) and boundary conditions are fulfilled:

div (σ) = 0 x ∈ Ω (4)

σ · n = T x ∈ ∂Ω (5)

where Ω and ∂Ω respectively denote the domain and its boundary on the current configuration, σ

the tensor field of stress, n the unit outward normal on boundaries and T is the applied surface

traction. Experimentally, the boundary is partitioned between free surfaces where T vanishes and

loaded surfaces for which only the resultant traction F is known:

F = em ·
∫

∂ΩF

T dS (6)

where em denotes the direction of the applied tension.

Recently, it has been proposed to evaluate the stress field without a priori information on the

constitutive law [38]. However, this so-called data-driven approach is limited to the non-linear

elastic case [39], which is not suitable for the present contribution. Instead, the stress identification

procedure is divided into two steps. First, an initial estimation of the stress field is computed by

applying a constitutive law on the experimental strain field. Due to measurement uncertainties,

the obtained stress field is unbalanced. Second, a corrected stress field is computed as the closest

candidate stress field satisfying the momentum equations (4).

The first step necessitates to identify an elastic-plastic constitutive behavior. For the present

work, a Von Mises material with a non-linear isotropic hardening law is considered (kinematic

hardening being neglected) and identified with tensile tests on dog-bone specimens (see section 4).

Thus, the first estimation simply relies on a classical algorithm with elastic trial and plastic

correction by a radial projection scheme, and allows to estimate elastic and plastic strains, and

stresses as detailed in Appendix A. However, as the DIC procedure is only able to identify the

in-plane strain components of the specimen top surface, additional assumptions on the out-of-

plane direction are required. Since specimens are relatively thin, stresses are computed under

plane stress assumption. Moreover, assuming large plastic deformations, volume variations are

negligible, leading to a purely deviatoric strain tensor.

The second step is a constrained minimization procedure and is detailed in Appendix B. At

each time step, an auxiliary boundary value problem is solved, defined on the FE mesh already

introduced for the DIC. An illustration is shown in figure 6, with (a) the initial equivalent stress
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Figure 6: Stress regularization by equilibrium enforcement: (a) initial equivalent stress field; (b) Lagrange multiplier

field associated to the constraint; (c) regularized equivalent stress field. A relaxed stress zone in front of the crack

reveals the classical butterfly distribution around the crack tip.

field, (b) the norm of the resulting Lagrange multiplier field, and (c) the corrected equivalent stress.

Constraining the equilibrium (4) has a smoothing effect on the stress field, which is an asset in the

elastic regime with a low signal-to-noise ratio due to small strains.

3.5. Path independent J-integral

The proposed approach coupling DIC and stress correction (see sections 3.2 and 3.4) permits the

direct observation of the evolution of the process zone, from which the classical path-independent

J-integral can be computed [32]. For any contour Γ enclosing the crack tip, the following J-integral

denoted by J reads:

J =
∫

Γ

[

Ψ n − T ·
∂u

∂x

]

· ed dΓ (7)

where ed is the crack propagation direction, n the normal to the contour, T = σ · n the traction

vector, u the displacement, and Ψ the stress work density defined as:

Ψ =
∫

t
σ : dε (8)

The J-integral is path-independent provided that the integration contours Γ fully contain the

dissipation zone (e.g. plasticity, damage).

4. Tensile tests

Monotonic tensile tests performed on dog-bone specimens were performed to: (i) estimate the

apparent anisotropy, and (ii) identify an equivalent elastic-plastic constitutive law needed for stress

computation (see section 3.4). The experimental setup is presented in section 3.1. Specimens of

each orientation (build, oblique and print directions) are monotonically loaded up to failure with a

0.1 mm.min−1 extension rate, corresponding to approximately 2 · 10−4 s−1 strain rate. The interval

between two optical microscope image acquisitions is fixed to 15 s, which corresponds to a 0.3%

strain step, sufficiently small to capture the elastic regime.
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The DIC procedure is applied on a virtual gauge defined on the reference image. It is located

on a region where the strain distribution is relatively homogeneous (with less than 10% variation

with respect to the mean), far from the region of strain localization or failure. The domains

corresponding to the virtual gauges are presented in figure 7 for all specimens. The chosen

gauge position and size depend on the specimen, as the failure occurred at different locations.

Therefore, the measured stress-strain behavior is not affected by strain localization and thus the

elastic unloading of the material with the crack propagation captured.

The true stress-true strain curves are presented in figure 7. The stress was computed from the

applied load using the nominal thickness fixed to hN = 600 µm as detailed in section 2.2. For

each test, a simple uni-axial elastoplastic constitutive law is identified, with isotropic non-linear

hardening of the form:

σy(p) = σ0
y + K pn (9)

where σy(p) denotes the true yield stress, σ0
y the initial yield stress, p the cumulative plastic strain,

K the hardening modulus, and n a power-law coefficient. The Young moduli E and E ′ where

respectively identified from the loading and unloading phases. This enables to characterize the

occurrence of damage, if E ′ < E. The identified material parameters are listed in table 3. The

Figure 7: Tensile tests. Left: optical microscope images at the initial and final stages and for the three considered

orientations; the virtual gauges used to measure the strains are denoted by black rectangles. Right: resulting true stress

- true strain curves.

results are in agreement with isotropic tensile properties of bulk 316L specimens reported

in the litterature [23, 26]. The variation of material parameters is small: respectively 2%,

5% and 6% for Young modulus E, yield stress σy and hardening modulus K. This apparent

anisotropy may be the consequence of: (i) the oriented microstructure morphology; (ii) residual
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E (GPa) ν σ0
y (MPa) K (MPa) n E ′ (GPa) JC (kJ/m2)

Build dir. 197 0.47 419 1136 0.67 137 702

Oblique (45◦) 201 0.40 441 1177 0.68 151 785

Print dir. 201 0.35 431 1203 0.63 195 644

Table 3: Tensile tests. Identified material parameters associated to an equivalent elastic-plastic material with a

non-linear hardening law σy(p) = σ0

y + K pn.

stresses developing during the manufacturing process; (iii) the wall thickness variation pattern.

While investigating the effects of the two first causes would required further experiments, the

consequence of thickness variations can be studied easily. To this aim, a model based on an

analogy with springs and sliding frictional elements is detailed in Appendix C. These elements

are respectively disposed in parallel and in series for the print and build directions. Assuming a

unique elastic-plastic behavior for both print and build directions, one can roughly reproduce the

overall anisotropic behavior observed in figure 7.

Furthermore, optical microscope images at the final loading stage are presented in figure 8.

Images contain both pristine regions (at the left of specimens with a larger width) and highly

deformed regions near the maximum strain localization, so that one can qualitatively estimate the

effect of deformation on the thickness profile. Figure 8 shows a clear geometrical effect, as the

thickness profile is significantly flattened for the build direction, is not significantly affected for the

print direction, and undergoes an intermediate flattening for the oblique direction.

5. Fracture tests

The fracture tests are performed on single-edge-notched tension specimens with three material

orientations.

5.1. Measurements

The results of the experiments are represented in the figure 9, where the applied load is

plotted as a function of the mean engineering strain, for each specimen. In addition, the crack

initiation is denoted with a circled marker and corresponds to the peak load. In the later stages,

the load monotonically decreases with the crack propagation, which implies that the crack is stable

under displacement control only. Several loading stages are highlighted with dot markers: the

corresponding equivalent strain maps for the build direction specimen are represented on the top-

left side of figure 9(a-f). These strain fields have been identified using the backward-DIC scheme

described in section 3.3. Before the crack initiation (from (a) to (c)), strains present a classical

butterfly-shaped distribution. As the crack starts to propagate, strains concentrates near the crack

flanks. It was observed that the different specimen orientation exhibit comparable load/strain

curves and strain maps. This can be seen in the bottom of the figure 9, where the strain maps

corresponding to the the crack initiation are represented for each specimen.
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Figure 8: Tensile tests. Optical microscope images of the specimen surface at the final loading stage, for the different

specimen orientation.

5.2. Fracture toughness estimation

The critical energy release rate JC is a crack propagation criterion connected to the path-

independent J-integral [32]. It is determined by computing the J-integral as a function of the

loading stages, and selecting the value reached by J when the crack starts to propagate. In

figure 10b it is shown that the J-integral is rigorously path-independent before crack nucleation as

the specimen undergoes monotonic plastic deformation, which is similar to non-linear elasticity.

However, when the crack propagates, elastic unloading arises near the crack flanks due to the free

traction condition. Since plastic strains spread on a relatively large area, several contours have

been tested (see figure 10a) to determine whether the J-integral is path-independent for sufficiently

large contours (enclosing the process zone). Very similar J-integrals are obtained for contours (c)

and (d) in figure 10b, which indicates that all the dissipation has been taken into account.

The J-integrals computed using the largest contour and applied to all fracture tests are presented

in figure 11. For each specimen orientation, the stress field have been computed using the

constitutive material behavior identified from the corresponding tensile test (see the section 4),

thus sampling the slight anisotropy in the material properties. It can be noticed that similar J
curves are obtained for all specimen directions. In particular, the critical energy release rates JC ,

indicated with dot markers and reported in table 3, show a variation of 20% with respect to the

mean value JC = 710kJ/m2. The reduced difference between specimen orientations is more

likely due to random defects than systematic anisotropy. The identified critical energy release rate
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is higher than values of approximately JC = 200kJ/m2 reported in the literature concerning steel

sheets [40, 41] identified on thicker samples (h ≈ 1.5 mm). However, it is well-known that the JC

is highly dependent on the material thickness, and the values reported here are in agreement with

the 3-fold increase of JC that have been observed at the sum-millimeter range in [42, 43].

Figure 9: Fracture tests. Top left: measured load versus engineering strain showing elastic, plastic and unloading

regimes; the crack onset is denoted by a circled marker. Top right: equivalent true strain maps for the build direction

specimen, taken at different loading stages. Bottom: Strain maps just before crack onset corresponding to each

specimen orientation obtained using classical forward DIC.
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6.1. Crack surface characterization

Crack surfaces are presented in figure 12. On the left panel, a view of the print orientation

specimen is presented, showing the crack surface and the wavy thickness pattern with the interlay-

ers. Unmelted spherical particles can also be seen, revealing their poor cohesion with the bulk.

Therefore, these lack-of-fusion defects act as stress concentrators and void nucleation sites, driving

the crack initiation and propagation. A closer view of the crack surface of the build direction

specimen is presented on the right panel of the figure 12. Dimple structures can be observed,

characteristic of a ductile fracture process. Thus, large plastic deformations in the bulk are driving

the overall fracture behavior.

A quantitative analysis of the dimple structure size distribution is presented in figure 13 for

the build and oblique directions. The equivalent diameter of dimples is computed through image

segmentation (see Appendix D for details). Similar distributions are obtained, which strengthens

the hypothesis that fracture mechanisms are more or less isotropic.

Figure 12: SEM micrographs of crack surfaces. Left: global view (print direction specimen); right: close view of

dimple structures (build direction specimen).

6.2. In-situ SEM fracture test

In order to characterize the effect of surface roughness of the crack initiation and propagation,

an additional in-situ SEM fracture test was performed on a build direction specimen using the

experimental setup detailed in section 3. The load-extension curve is shown in figure 14 (a). Four

images were recorded during the test and are labeled (a) to (d). A slight unloading of the setup

is observed at each recorded stage, corresponding to the arrest of the loading during the electron

beam scanning. The global DIC procedure detailed in section 3.2 is applied to measure the strain

field. The equivalent strain map normalized by the mean strain is presented in figure 14 (b) in

the early plastic regime (i.e., image (b)). Clear strain localization is observed at inter-layers and

regularly spaced of ∆z = 200 µm. Since smaller grains are located in the inter-layers, lower

yield stress is expected in these regions by Hall-Petch effect [44], which could participate in strain

localization. While strain localization at inter-layers has been reported on polished specimens

[27, 28], a structural effect is also expected as inter-layers correspond to the valleys in the thickness
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Figure 13: Distribution of the equivalent diameter of the dimple structures.

profile (thinnest regions). In addition, strain localization is clearly affected by the lack-of-fusion

defects, which tend to concentrate strain around them.

As shown in figure 14 (c), void nucleation is also detected in the SEM micrographs at different

loading stages. Void nucleation arises near the lack-of-fusion defects, and are likely responsible

for strain localization. In addition, voids nucleate before the crack onset, and are aligned with

the maximum stress. Thus, the crack is guided by micro-cracks that can follow the line of

maximum stress regardless of the microstructure and thickness profile, as the lack-of-fusion defects

are isotropically distributed at the specimen surface. In addition, these micro-cracks are likely

responsible for damage identified in section 4.

7. Conclusion

This paper presents an experimental study on ductile fracture mechanisms of as-printed 316L

stainless steel thin-walled structures fabricated by directed energy deposition additive manufactur-

ing process. In-situ experiments (tensile and fracture tests) have been carried out. Microstructures

have been characterized and a strong morphological texture has been observed. Thus, anisotropy

was expected and three specimen directions have been considered (i.e., 0◦, 45◦ and 90◦ with respect

to the build direction). Global digital image correlation techniques have been used to measure

strains, and the elastic-plastic behavior is inferred from the applied load. Results suggest a slightly

anisotropic hardening law, which is likely due to geometrical effects arising from thickness vari-

ations resulting from the process. Indeed, a simple model based on springs and sliding frictional

elements showed that an isotropic material can reproduce the apparent anisotropy if thickness vari-

ations are taken into account. For the fracture tests, a backward digital image correlation scheme

has been proposed in order to deal with the crack opening. Elastic and plastic strain and stress

have been obtained. The path-independent J-integral has been computed for all fracture tests,

and are very similar for all specimen directions. Fracture toughness has therefore been identified.

Similarly, the crack path and the crack surface have been found to be very similar for all speci-

mens directions. To explain such isotropic fracture mechanisms, although ductile fracture involves
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Appendix A. Local stress computation

In the following we describe the procedure implemented to compute local stresses from the

total strain field ε resulting from DIC (see section 3.2).

An incompressible elastic-plastic material is considered. As a consequence, the isotropic part

of the total strain vanishes (i.e tr(ε) = 0), it is thus fully deviatoric. The following additive

decomposition into elastic and plastic strains is considered:

ε = ε
e + ε

p (A.1)

The deviatoric stress s is then related to the strains as follows:

s = σ −
1

3
tr(σ)1 = 2µ ε

e (A.2)

We consider a Von-Mises flow rule with isotropic hardening. Thus, the elastic domain is defined

as:

f(s, p) = Σeq(s) − σy(p) 6 0 with Σeq(s) =

√

3

2
s : s and p =

∫

t

√

2

3
ε̇

p : ε̇
p dt (A.3)

where Σeq, σy and p denote the equivalent stress, yield stress and cumulative plastic strain respec-

tively. The flow rule reads:

ε̇
p = ṗ n(s, p) (A.4)

where n(s, p) denotes the outgoing normal to the elastic domain and reads:

n(s, p) =
∂f(s, p)

∂s
=

3

2

s

σy(p)
(A.5)

Given the i-th known state {σi, pi} and given the total strain step ∆ε, the present procedure

aims at computing the next state {σi+1, pi+1}. First, a trial stress s
tr is computed as if the step was

purely elastic:

s
tr = si + 2µ ∆ε (A.6)

Hence, two cases are considered depending on the corresponding plastic criterion f tr = f(str, pi):

• If f tr 6 0, there is no plastic flow (i.e., ∆p = 0 and ∆ε
p = 0).

• If f tr > 0, a plastic correction is needed.

If plastic correction is needed, ∆p is computed so that the deviatoric stress si+1 = s
tr − 2µ ∆p n

verifies (A.3), hence:

f(si+1, pi+1) = f(str − 2µ ∆p n, pi + ∆p)
= Σeq(s

tr) − 2µ ∆p − σy(pi + ∆p)
= 0

(A.7)
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In general this last equation (A.7)is solved by an iterative Newton-Raphson procedure, which

enables to evaluate the new deviatoric stress si+1 and cumulative plastic strain pi+1.

However, since the material is assumed to be incompressible, the isotropic part of the stress

tensor σi+1 is not determined from the behavior. As a consequence, the stress tensor is known up

to a constant c so that:

σi+1 = si+1 − c1 (A.8)

Boundary conditions are used to identify c. Indeed the plane stress assumption gives:

σ33,i+1 = s33,i+1 − c = 0 (A.9)

Hence, the stress tensor reads:

σi+1 = si+1 − s33,i+1 1 = 2µ
(

ε
e
i+1 − εe

33,i+1 1

)

(A.10)

Appendix B. Stress field correction

Due to measurement uncertainties (noise in DIC and imperfectly known behavior), the proce-

dure presented in Appendix A lead to stress fields that do not verify the equilibrium equation (4). A

stress correction is proposed to verify the equilibrium equation. Of course the yield stress may be

slightly exceeded as stresses are modified, but this is not a significant issue as the constitutive law

is imperfectly known although the equilibrium is a state equation that should be verified exactly.

The proposed correction consists in finding a deviatoric elastic strain ε
C (where the superscript

C stands for corrected) as close as possible to the previously computed elastic strain ε
e (as detailed

in section Appendix A), and so that the resulting stresses σ
C = 2µ

(

ε
C − εC

33 1

)

verifies the

equilibrium equation (4). This can be written as constrained minimization:






















ε
C = argmin

εC
∗

[(

ε
C
∗

− ε
e
)

:
(

ε
C
∗

− ε
e
)]

constraint div

[

2µ
(

ε
C − εC

331

)]

= 0
(B.1)

This constrained minimization problem leads to consider the following Lagrangian:

L(εC , λ) =
1

2

∫

Ω

(

ε
C − ε

e
)

:
(

ε
C − ε

e
)

dx +
∫

Ω

λ · div

(

ε
C − εC

33 1

)

dx (B.2)

where λ(x) is the Lagrange multiplier field associated to the constraint. Taking the derivative of

L with respect to ε leads to the local formulation of the corresponding Lagrangian minimization

problem; for any trial deviatoric tensor field ε
∗(x):

∫

Ω

[(

ε
C − ε

e
)

: ε
∗ + λ · div (ε∗ − ε∗

33 1)
]

dx = 0 (B.3)

which, with the help of the divergence theorem, is rewritten as a variational formulation:
∫

Ω

[(

ε
C − ε

e
)

: ε
∗ − ∇λ : (ε∗ − ε∗

33 1)
]

dx +
∫

∂Ω

λ · (ε∗ − ε∗

33 1) · n dω = 0 (B.4)
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where ∂/∂x3 = 0. Choosing trial fields ε
∗ with non-vanishing values on the boundary ∂Ω only,

the boundary conditions for λ are obtained:

∀x ∈ ∂Ω : λ(x) = 0 (B.5)

Next, the equality ∇λ : (ε∗ − ε∗

33 1) = (∇λ − divλ e3 ⊗ e3) : ε
∗ is used to rewrite the domain

integral (B.4). Thus, it can be shown that there exists (α, β) such as:

ε
C − ε

e − ∇λ + divλ e3 ⊗ e3 = α1 + β(e1 ⊗ e2 − e2 ⊗ e1) (B.6)

Taking the symmetrical part of this last equation gives:

ε
C = ε

e +
1

2

(

∇λ + >
∇λ

)

− divλ e3 ⊗ e3 (B.7)

which, can be rewritten under the following form:

[x ∈ Ω] ∆λ + 3div (∇λ) = −2div (εe − εe
331) (B.8)

[x ∈ ∂Ω] λ = 0 (B.9)

Thus, the correction procedure takes the form of a linear boundary value problem in the Lagrange

multiplier field λ that has to be solved over the domain. Let us notice that the right side term of

(B.8) would vanish if the initial estimation of stresses were verifying the equilibrium equation.

As a FE mesh is already defined in the DIC procedure, it is more convenient to express the

problem in a weak form. For any virtual vector field λ
∗(x) such that ∀x ∈ ∂Ω, λ

∗(x) = 0, we

rewrite (B.8) as:

∫

Ω

∇λ
∗ :

[

∇λ + 3>
∇λ

]

dx = −2
∫

Ω

∇λ
∗ : (εe − εe

331) dx (B.10)

As it contains only first-order derivatives, this formulation can be solved by the chosen P1 simplex

finite element mesh used in this work. The corrected elastic field ε
C is retrieved from (B.7) and

the corrected stresses can be deduced.

Appendix C. Geometrical effect

In this section we propose a simple spring analogy with sliding elements disposed in series for

the build direction and in parallel for the print direction (see figures C.15a and C.15b). Springs

represent a discretization of the specimen. Since the thickness is not uniform, each spring has a

different stiffness that is proportional to its thickness. Springs are indexed by i and their respective

thicknesses are denoted by hi, which is a discretization of h(z) given in (1). Since a pure monotone

tensile test is performed the cumulative plastic strain p is identical to the plastic strain εp. An

incremental procedure is proposed to deal with non-linearity. Thus, for each spring i there are

several loading increments indexed by k. Calculation is done under infinitesimal strain assumption,

and nominal stress and strain are computed.
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as well as the stress:


















εp
i,k = pi,k = pi,k−1 + ∆pi

εe
i,k = σy(pi,k)/E

εi,k = εe
i,k + εp

i,k

σi,k = σy(pi,k)

(C.4)

The strain in each spring εi,k is a discretization of a continuous strain ε(z, k). Thus, the total strain

εk of all the springs reads:

εk =
1

∆z

∫ ∆z

0

ε(z, k) dz (C.5)

For springs in parallel, stress and strain are the same in all the springs. A strain increment ∆ε
is applied. Thus the total strain reads εk = εk−1 + ∆ε. First, a trial stress σtr

k is computed as if the

step was purely elastic:

σth
k = σk−1 + E∆ε (C.6)

Hence, two cases are considered:

• If σtr
k 6 σy(pk−1), there is no plastic flow, that is to say: ∆p = 0, εe

k = σtr
k/E and σk = σtr

k .

• If σtr
k > σy(pk−1), a plastic flow should be computed.

In the second case, the flow rule gives, with ∆σk = E∆εe = E(∆ε − ∆p):

∆p =
E(∆ε − ∆p)

σ′

y(pk−1)
⇒ ∆p =

E∆ε

E + σ′

y(pk−1)
(C.7)

Thus elastic and plastic strains are obtained as well as stresses similarly to (C.4).

A single behavior is used to generate stress-strain curves for both the build direction (springs

in series) and the print direction (springs in parallel). A comparison between tensile tests (build

and print directions) and the corresponding computations using the spring analogy is shown in

figure 7, and reasonable agreement is observed. This comparison is not meant to identify precisely

the behavior, but only aims at showing that a single behavior can explain the anisotropic behavior

only by considering thickness variations.

Appendix D. Dimple size measurement

The dimple size measurement results presented in Sec. 6.1 are extracted by means of image

processing of the obtained SEM micrographs. The image segmentation procedure consists in

the following steps: (i) background deletion by high-pass filtering; (ii) contrast enhancement via

image normalization; (iii) noise removal thanks to median filtering; (iv) image segmentation by

application of the a watershed algorithm started from local gray intensity minima. The procedure

is illustrated in figure D.16 on a sub-domain of an acquired SEM micrograph.
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Figure D.16: Image segmentation procedure. Background: SEM micrograph; white lines: dimple boundaries.
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