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Abstract

Functional data contains two components: shape (or amplitude) and phase. This
paper focuses on a branch of functional data analysis (FDA), namely Shape-Based
FDA, that isolates and focuses on shapes of functions. Specifically, this paper focuses
on Scalar-on-Shape (ScoSh) regression models that incorporate the shapes of predic-
tor functions and discard their phases. This aspect sets ScoSh models apart from the
traditional Scalar-on-Function (ScoF') regression models that incorporate full predic-
tor functions. ScoSh is motivated by object data analysis, , e.g., for neuro-anatomical
objects, where object morphologies are relevant and their parameterizations are ar-
bitrary. ScoSh also differs from methods that arbitrarily pre-register data and uses
it in subsequent analysis. In contrast, ScoSh models perform registration during
regression, using the (non-parametric) Fisher-Rao inner product and nonlinear in-
dex functions to capture complex predictor-response relationships. This formulation
results in novel concepts of regression phase and regression mean of functions. Regres-
sion phases are time-warpings of predictor functions that optimize prediction errors,
and regression means are optimal regression coefficients. We demonstrate practical
applications of the ScoSh model using extensive simulated and real-data examples,
including predicting COVID outcomes when daily rate curves are predictors.

Keywords: shape regression, shape models, COVID data analysis, functional shapes, shape-
based FDA, functional regression analysis.

1 Introduction and Literature Survey

Rapid advances in data collection and storage technologies have led to a surge in problems

where the data objects are functions recorded over time and space. Functional datasets
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in neuroimaging, biology, epidemiology, meteorology, and finance have fuelled a growing
interest in Functional Data Analysis (FDA). FDA deals with statistical analysis, includ-
ing clustering, summarizing, modeling, and testing functional data. Functional regression
incorporates functional variables in regression models as predictors, responses, or both.
Specifically, Scalar-on-Function (ScoF) regression occurs when the predictors are functions
and responses are scalar (or vectors). This problem has widespread applications in many
scientific domains, with several examples presented later in this paper. Scalar-on-function
regression is a natural extension of the standard multivariate regression model for the FDA.

Our focus differs from traditional ScoF by emphasizing the shapes (amplitudes) of func-
tions rather than the functions themselves. This focus is motivated, for example, by prob-
lems in neuroimaging where morphologies of anatomical objects are used to predict clinical
measurements. Accordingly, we develop a regression model where shapes of functions are
predictors for scalar responses. Mathematically, shape is a property that is invariant to cer-
tain transformations considered nuisances in shape analysis (Kendall et al. [1999], Dryden
and Mardia [2016]). For scalar functions, {f;}, shapes relate to the number and height of
extremes (peaks and valleys), but the locations are considered nuisances. Changes in the
locations of these points, represented by diffeomorphisms {v;} and implemented using the
transformation {f; — f; 07;}, are called phase changes and are ignored in shape analysis.
Thus, the shapes of a function f; and its diffeomorphic time warping f; o ; are deemed
identical. Shape-based FDA (see Wu et al. [2024], Srivastava and Klassen [2016], Marron
et al. [2014, 2015], Stoecker et al. [2023]) is gaining interest, especially when phase variabil-
ity is less critical, such as in COVID-19 rate curves where peaks represent pandemic waves.
Several methods (e.g., Marron et al. [2014, 2015], Srivastava and Klassen [2016]) have

been developed to separate shape from phase as a stand-alone tool in FDA. This paper



introduces a regression model that separates phases and amplitudes within the statistical
model, not as a preprocessing step. This approach can enhance performance and inter-
pretation by optimizing the phases when they are uninformative. The literature on shape
regression is scarce, but extensive research exists in some related areas. We summarize

these contributions next.

e Scalar-on-Function (ScoF) Regression Models: We start with the basic (paramet-

ric) functional linear model of (FLM) of Ramsay and Silverman [2005]:

yi:a+<ﬁ7fi>+€ia7;:1727"'772'7 (1)

where f; : [0,7] — R is the predictor (element of a function space F) and y; € R is the
response. Also, o € R is the offset, § € F is the coefficient function, and ¢; € R are the
measurement errors. Here (3, f;) = [ B(t)fi(t) dt denotes the L? inner product. FLM
assumes 1.i.d observation noise, ¢; ~ N(0,0?). To estimate 3, one commonly minimizes
the term > (y; —a— (B, f;))>. Randolph et al. [2012] used principal components of the
predictor functions as an orthonormal basis for 8. To regularize (3, one adds a penalty
term AR(S), where A > 0 is a tuning parameter; see Marx and Eilers [1999], James et al.

[2009], Reiss and Ogden [2007], Lee and Park [2012], Zhao et al. [2012].

Ait-Saidi et al. [2008] introduced non-linearity to regression models by introducing a
function h : R — R to result in the model y; = h ({5, f;}) + €. They used a kernel to
estimate h, whereas Eilers et al. [2009] alternatively optimize 5 and h with smoothness

constraints. Several authors (James and Silverman [2005], Amato et al. [2006], Ferraty



Table 1: Listing of various models studied in this paper

Single-Index Scalar-on-Shape (SI-ScoSh) yi = 9(fi(0)) + h (sup.cr (B¢ * 7)) + &

Single-Index Scalar-on-Function (SI-ScoF)(L%) y; =c¢ +h (B, fi) + €

Single-Index Scalar-on-Function (SI-ScoF)(FR) y; = g(f:(0)) + h ((5,q)) + €
Scalar-on-Shape (ScoSh): yi = g(fi(0)) + SUpP,, er (B, 4 *vi) + €
Scalar-on-Function (ScoF)(L?): (f:(0) + (B, fi) + €
Scalar-on-Function (ScoF)(FR): yi = g(fi(0)) + (B, q;) + €

et al. [2013]) have studied multiple index models of the type:

yi=ao+ Y hy ({85, ) + e s (2)

J=1

for an arbitrary r. McLean et al. [2014] further generalized the model using a time-
indexed set of functions: y; = fol (B, fi(+)) dt+e;, (where 8 is now a bi-variate function).
Amongst notable nonparametric approaches, Boj et al. [2010] introduced a weighted
distance-based regression for functional predictors using semi-metrics on function spaces.
Boj et al. [2016] introduced non-parametric link functions to generalize their earlier

models.

Shape-on-Scalar (ShoSc) Regression Models: There is extensive literature on the
inverse problem, where the shapes of functions form responses, and predictors are Eu-
clidean vectors, see Lin et al. [2017], Shi et al. [2009], Tsagkrasoulis and Montana
[2018]. An example of this problem is when the scalar predictor is time, and the goal is
to fit a time curve on a shape space given finite observations. This also relates to fit-
ting smoothing splines on shapes. Intrinsic manifold valued regression models have been
studied widely by Ghosal et al. [2023], Petersen and Miiller [2019], whereas extrinsic
models have been studied by Lin et al. [2019]. A wide literature on geodesic regression

(Thomas Fletcher [2013], Shin and Oh [2022]) also belongs to this category.




e Scalar-on-Shape (ScoSh) Regression Models: Ahn et al. [2020] first studied a
ScoSh model but with a major limitation. Since y;s depend on the shapes of f;s, they
must be invariant to phase changes in f;s. Thus, the response should remain unchanged
if f; is replaced by f; o v in the model. In Eqns. 1 and 2, the L? inner-product fails to
provide this invariance because (53, f;) # (B, fi o Vi) generally. Even under identical dual
transformation, we don’t have equality, i.e., (3, f;) # (8 o+, f; o). This rules out using
sup,, (B, fi oy) to remove phase variability, as it is degenerate and not phase-invariant
(see Srivastava and Klassen [2016]). Ahn et al. [2020] replaced the [? inner-product
(B, fi) in Eqns 1, 2 with sup,, <ﬁ, (fio %)ﬁ> Although this term has some stability
to changes in 7;, it does not achieve the desired invariance. Another approach is using a

phase-invariant shape metric dy in a nonparametric model, see Delicado [2024].

We modify past regression models using the Fisher-Rao Riemannian metric (FRM),
termed drgr, to create a new ScoSh model. dpg is phase invariant in the sense that
drr(fi, f2) = drr(fi o7, fa o 7y) for all warpings 7. The use of Square-Root Velocity
Function (SRVF), specified later, simplifies the computation of dpg. Under SRVF, the
Fisher-Rao inner product becomes the L* inner product, (fi, fo)pr = (q1,¢2),2, where
¢;s are the SRVFs of f;s. This motivates an alternative term as a phase invariant inner
product for the model. FRM’s invariance complicates parameter estimation, as the phases
are nuisance variables that need to be removed through optimization, affecting parameter
estimation. Table 1 lists a summary of the regression models and their acronyms used in

this paper. The main contributions of this paper are:

e It develops a new scalar-on-shape (ScoSh) regression model that uses the Fisher-
Rao Riemannian metric to achieve invariance to the phase component of predictor

functions. It solves the function registration (phase separation) inside the regression
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model rather than treating it as a preprocessing step.

It introduces a concept of regression phase and regression mean associated with func-
tional data. While the past definitions of mean shape and phase of in FDA (Marron
et al. [2014, 2015], Srivastava and Klassen [2016]) are based on optimal alignments
of peaks and valleys, the regression phase and mean result from those optimal time

warpings that help minimize prediction error of the response variable.

It uses classical index models (single and multiple) for enveloping the Fisher-Rao

inner products to introduce nonlinear relationships in the model.

It performs exhaustive experimental evaluations of the proposed model using simu-
lated data (with known ground truths) and real data with interpretable solutions.

The modeling performances compete successfully with state-of-the-art methods.

The ScoF models can differ depending on the inner product between 3 and f;: the L2
and Fisher-Rao inner products. The 12 version is the commonly used FLM model,

but we also include the Fisher-Rao version in the experiments for comparisons.

Proposed Method

The proposed scalar-on-shape (ScoSh) regression model requires the notion of shape in

precise mathematical terms. First, we summarize the concept of shapes of scalar functions

and their treatments. We then introduce the proposed ScoSh model and its properties. In

the process, we also provide a novel concept of Regression mean and phase. We follow up

with model estimation and a Bootstrap analysis of this estimator.



2.1 Background: Quantifying Shapes of Scalar Functions

Let AC be the set of all absolutely-continuous functions on [0, 1] and ACy be a subset of
AC that satisfies f(0) = 0. Also, let I" be the space of all boundary-preserving positive
diffeomorphisms of the unit interval [0, 1] to itself, i.e., I' :== {7 : [0,1] — [0,1]|7(0) =
0,7(1) = 1,7~ is a diffcomorphism}. T' forms the time-warping group, and the action of " on
ACy is the mapping ACy xT' — AC, given by (f,) £ fo~. The mapping f +— fo~ simply
changes the phase of f but not its shape. Since the shape of f is deemed unchanged by the
mapping f +— fo~, we define f ~ g to be an equivalence relation on ACy, where g = (fo~)
for some 7 € I'. An equivalence class under this relation is given by: [f] = {fo~|y € T'}.
Such an equivalence class uniquely represents a shape, and the set of all shapes is the
quotient space S = ACy/I" = {[f]|f € ACy}.

To develop a regression model similar to Eqn 1 using elements of the shape space
S, we need an inner product on S. As discussed in Srivastava and Klassen [2016], the
classical .2 inner product is unsuitable for shape analysis. Instead, we use the Fisher-
Rao Riemannian metric with the required invariance properties. This metric is complex,
and one uses the Square-Root-Velocity-Function (SRVF) representation (Srivastava and
Klassen [2016]) for simplification. The SRVF of a function f € AC is defined to be ¢ =
Q(f) = sign(f(t)) |f(t)\ The mapping @) : f — ¢ is a bijection between ACy and L2,
with the inverse map given by Q7 '(q)(t) = f(t) = fot q(s)|q(s)| ds. Thus, the mapping
f+— (f(0),q) is a bijection between the larger set AC and R x 1.2

For any f € ACy and v € I', the SRVF of the composition f o~ is given by Q(f o) =
(qov)v/7; We will denote it by g*. For a shape class [f] C AC, the corresponding subset
in .2 given by: [q] = {(¢*7)|y € T'}. There are several advantages to using SRVFs in shape

analysis of functions. One is that the Fisher-Rao inner product between any two functions



fi and fo is the L? inner product between their SRVFs, i.e., (f1, fo)pr = (¢1,42),2 and
the Fisher-Rao distance is dpr(fi, f2) = ||¢1 — ga||2, where ¢1, g2 are the SRVFs of fi, fa,
respectively. (From hereon, we will use (-,-) and || - || to denote the [.? inner product and
norm.) With this identification, the invariance property of the Fisher-Rao metric can be

stated as:

(1, @2) = (@ *7, @2 %), or |lgn — @l = [(@a *7) — (@2 *x7)| - (3)

This invariance property leads to a well-defined shape metric ds(q1,q2) = inlfj llgr — (g2 %)
ve

Expanding the square of ds, we gt if (1 + lga? = 201,02 ¥7)) = lal? + el ~

sup 2(q1, g2 x ). This shows that if the norms of ¢;, ¢ are constant, then dg is negatively

vyel

proportional to the quantity: sup(q, g2 ). This last term motivates the phase-invariant
~yel

inner product in the proposed model.

2.2 Proposed Scalar-on-Shape (ScoSh) Regression Model

To focus on shapes of {f;}, we need invariance to the phase of {f;}, i.e., replacing any f;
with f; o; should not change the response y;. To achieve this, we use sup, < (B,q; %) as
a surrogate for (3, f;) in Eqn. 1. The invariance of the Fisher-Rao inner product and the
group structure of I' results in the property: sup.cr (8,¢ *7) = sup,cr (8, (¢ * Y0) *7),
for any vy € I". Thus, this expression is truly invariant to the phase of f; and depends
only on its shape. To add flexibility to the model, we introduce two functions: (1) an
index function h : R — R, and (2) an offset function g : R — R. We will assume that

h,g € C(R,R). The overall model can now be stated as:

w=ﬂﬁ®»+hemﬂﬁ%*%0+fmizlwum- ()

viell



Here ¢;,8 € L2, v; € T, g,h € C, and ¢; € R are i.i.d. from N(0,0%). We will call this
the Single-Index Scalar-on-Shape (SI-ScoSh) model. The parameters of this model are
{B,h,g,0%} € 12 xC xC x R. As a special case, we will also study when h(z) = z and
will call it the ScoSh model (without the SI prefix). Next, we discuss important properties

of this model and impose conditions on the parameters to enforce identifiability.

1. Fisher-Rao vs. L* Inner Product: One might ask why not use sup. - (8, fi © %)
instead of sup., cr (8, ¢ * ;) in the model? The reason is that the former is degenerate
and loses information about f;. Mathematically, the issue is (fi, fa) # (fi o7, fa07).

In contrast, the invariance property of SRVFs in Eqn. 3 is essential for this model.

2. Properties of the Supremum Term: The term sup, (B,q; %) is not linear in
gi, due to the presence of the sup operation. Also, this term is non-negative, which
limits its direct use in the regression model. However, using the index function h

allows for negative values of y;s.

3. Identifiability of 3: Note that 3 is defined only up to its equivalence class [f]
since, sup..cr (3, ¢ * i) = sup,.cr (B x 0, ¢ *x Vi), for any 7o € I'. To ensure unique-
ness, we restrict ourselves to a specific element of this class, as follows: We impose
an additional centering condition on  through the phases {7;}. We require that
%Z?:l ¥ = %ia (note that 7i(t) = t), where 7; = argmax_ . (3,q *7;). Once
all the 7;s are computed, we can simply use their average 7 = %2?21 ~; to center
any estimate of 5. In a standard FLM model (Eqn. 1), the search for 5 can be
restricted to the span of {f;} since any component of 8 lying in the orthogonal of
the span is lost after the inner product. This simplification does not hold in the
proposed model. Even when h(z) = z, § is an element of a much larger space:
span{[g;,i=1,....n} ={>° " ai(g*%) | 7., €T, a; € R}.

9



4. Identifiability of h: Another degree of freedom is associated with the scale of the
argument of h. Since h(SUP%-eF (B, xvi)) = h(é SUDP~;er (aB,qi* 7)), for any a € Ry,
this adds an ambiguity to the definition. One can remove it by imposing a constraint

such as [ h(t) dt =1, or if using a polynomial form, fixing a coefficient of h.
5. Identifiability of g: We can resolve any ambiguity in g by setting g(0) = 0.

With these constraints, the model is fully specified, and the parameters are well-defined.

2.3 Model Parameter Estimation

Next, we study the problem of estimating model parameters from the observed data
{(fi,y;) € AC xR, i =1,2,...,n}. We pre-compute the SRVFs {¢;} € [.? of the predic-
tor functions {f;}. Then, given the observations {(y;, ¢, f:(0)) € Rx 1L%,i =1,...,n}, the
inference problem is to estimate the quantities h, g, 3, and o from the data. To simplify es-
timation, we will express 3 € L? using a truncated orthogonal basis B = {b;,j =1,...,J}
according to: [B(t) = Z}]:1 cjb;j(t). B can be either a predefined basis, e.g., the Fourier
basis, or can be extracted from the training dataset through functional PCA. Then, the

maximum-likelihood estimates of h, g and ¢ = {¢;} are given by:

@ h,g) = argmin H(c,g,h), where (5)
ceR’ ,heC(R,R),geC(R,R)

H(c,g,h) = Z{yi—g(fi(o))—h<8up <chbja(%*%)>>}

i=1 wel \ o1

One can impose a roughness penalty on § to control its smoothness, if needed.
Iterative Parmeter Estimation: To minimize H with respect to g, h, and 3, we use a
coordinate-descent approach, optimizing one parameter at a time while fixing the others.

Estimating 0?2 from the residual variance is straightforward and not discussed. Algorithm

10



2 summarizes these steps with finer details about the estimation process presented in the

Supplementary Material.

Algorithm 1 Estimation of 3 keeping h and ¢ fixed

1: Input /ﬁ,ﬁ., matrix of SRVF’s ¢ = {q1,- - , ¢n}, basis functions by (t),- -, b;(%).
2: Initialize ¢ € R’. Compute initial B(t) = ijlcj.
j=
3: For each observation ¢, find the optimum time warping function : v, = arg sug < 3 L Qi * fyi>
vi€

using the Dynamic Programming algorithm( Srivastava and Klassen [2016]).
4: Update the SRVF’s registering them to B L= qix
5. Using an optimization method, (such as fminunc or simulannealbnd in MATLAB)

minimize the cost function (5): © = arg grel[g} H(c,/fz,ﬁ).
6: Update 3(t) = 3¢ - b;(t) and q; = ¢ Vi.

j

. If H (6,ﬁ,§> is large, return to step 3, else go to step 8.
8: To remove the extra degree of freedom in 3, compute 7 = = 3~ 4.

i

9: Obtain the estimate 8 = B o571,

Algorithm 2 Elastic shape regression model

1: Initialise h(z) = ho(z) , G(z) = 0.

2: Given /f;,ﬁ, estimate /3 using Algorithm 1.

3: Once obtained f3, create yi =1vy; —g(£:(0)) and estimate N using

e Define estimated inner product as y; = sup (B\, Qi * Vi)
vi €l

e Fit a polynomial or a non-parametric curve T between the responses y;’s and the

estimated inner products 7;’s.

4: Remove the scaling degree of freedom from our estimate (by fixing the highest coefficient
of h to 1 and adjusting the other coefficients of h and all of 5 accordingly).

5: With v/ = y; — ﬁ(@) calculate ¢ using

)

11



e Fit a quadratic polynomial g on the y”s. (As explained in Appendix 6.1, we

restrict our search for optimal g to a quadratic polynomial).

6: Iterate steps 3 to 5 until H converges.

7. If H (5,71,@) is small, then stop; else return to step 2.

2.4 Estimator Analysis Using Bootstrap Sampling

The estimators of /3, h, and g haev been defined using a joint optimization problem (Eqn. 5)
involving multiple parameters and nuisance variables. Ideally, one would like the distribu-
tions of estimated quantities for bias and consistency analysis. Several asymptotic distri-
butions of 5 and h have been derived for FLM and related models (e.g., Li et al. [2010],
Morris [2015]). However, estimating regression parameters in the shape context is much
more difficult. The cost function, which includes a supremum over the nuisance variables
{~:}, is nonlinear and complex. T"is an infinite-dimensional, nonlinear manifold, adding to
the complexity. Additionally, Eqn. 4 has a potentially nonlinear index function h, compli-
cating prediction error analysis. Du et al. [2015] developed a theory for regression modeling
and analysis in shape matching, but their context differs from our functional data setting.

Lacking analytical distributions, we take a computational approach and rely on boot-
strap sampling. Bootstrapping allows us to examine estimator properties (e.g., variance)
by sampling with replacement and approximating the distribution of estimators (E ,/ﬁ,ﬁ).
We will empirically analyze these estimators by generating numerous bootstrap replicates.

To illustrate this approach, we conducted an experiment with parameters: h(z) = z*—ux,
g(x) = z, and f as shown in Fig. 1 top-left, and data simulated from Eqn. 4 (simulation
details are provided later in Section 3). To evaluate estimator performance using Bootstrap,

we generated 100 randomizations of train-test sets, performed estimation using Algorithm

2, and evaluated performance. From the bootstrap replicates, we computed 95% confidence

12
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Figure 1: Top: The three panels plot 95% bootstrap confidence intervals of the estimated
quantities 3, g, and h, and their ground truth values. Bottom: The left panel shows a
histogram of the ratio of Hy;pe and Hy.e for bootstrap samples, and the right panel plots
a histogram of the R? values of these samples.

intervals and compared them to the true values. Fig. 1 shows B\ , g, and h from left to right.
The gray regions depict the 95% confidence intervals, with red and blue curves denoting
the bounds and dotted curves representing true values. These plots show that the true
values of 3, h, and g lie within the confidence intervals, validating our numerical approach.

Hfinal

The bottom-left shows a histogram (from 100 bootstrap samples) of the ratio o

where Hyipq is the converged value of H and Hy.,e is the value of H for ground truth
parameters. We can see that the final H values converge to within 0.5 — 1.5 times the
true value of the cost function. This underscores the good convergence properties of our
gradient approach. The bottom-right histogram shows R? values (prediction accuracy) on
test data for each of the 100 model fits, highlighting the excellent prediction performance

of the estimated model.
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2.5 Regression Phase and Regression Mean

Our estimation of model parameters involves aligning predictor SRVFs {¢;} to the coeffi-
cient # using time warpings 7; during estimation. This perspective allows us to define the
phase components of f;s in a different way than the traditional phase-amplitude separation.
Classical Phase-Amplitude Separation: In the past work (Tucker et al. [2013], Mar-
ron et al. [2014, 2015], Srivastava and Klassen [2016], Zhang et al. [2018]), the phases
of functions have been defined as the time-warpings required to align their peaks and
valleys. Mathematically, the phase for a function f; (with SRVF ¢;) is defined as 7; =
arg sup,cr (4, ¢; xv), where p1 € .2 is the Karcher or the Fréchet mean of the given func-

tions and is defined using:

n

@ = arg inf (inf Hq—qi*%HQ)
Y€l

€2
==

= arg inf 24 lg:lI? — 2sup (q, ¢; * Z) 6
2 int 3 (Il + = 250 (.02 ©)

Note that {7;} are defined through the optimization in Eqn 6. The left panel of Fig. 2
shows a cartoon example of this idea, where SRVFs {¢;} are warped into {(g; x7;)} to align
with the current estimate of the shape average .

Regression-Based Function Aligment: Similarly, we define optimal time-warping in

the ScoSh model using 7; = argmax,er <B\, i *7>, where the estimator of [ is:

n 2
5 g jut, 3 (- 90D - Alsup (5,007 )
Bel i1 Y€l
n 2
= arg inf <yZ —sup (B, ¢ *,m) , assuming h(z) =z, ¢g=0. (7)
BGIL2 i=1 vi €l

Comparing Eqns. 6 and 7, we see the parallels between p and B In Eqn. 6, one seeks

14



\/‘ ds™* V3
k€
i = arginf || — (g x )| yi ~ sup,,, (B, ¢ *x7i) yi = (B, fi)
Shape Registration Registration and Regression (ScoSh) Regression (ScoF)

Figure 2: Left: Alignment and shape averaging of functions using SRVFs; Middle: Align-
ment of SRVFs to regression coefficient 8 to approximate responses y; through inner prod-
ucts; Right: Approximation of responses y; through inner products without any alignment.

a p that is closest to all ¢; x7;, and in the process making 2sup, cr {(q,q; ;) as close
to [|u]|? + ||¢:||* as possible. Similarly, in Eqn. 7, the optimal B makes sup,.er (3, ¢ * Vi)
as close to y; as possible (assuming h(z) = x, g = 0). This motivates naming E as the
regression mean of the shapes of {f;} w.r.t responses {y;}. The middle panel of Fig. 2
shows a cartoon illustration of this idea. The right depicts a ScoF or FLM model where

one approximates responses {y; } using the inner products between { f;} and § without any

alignment.
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- . " . . functi
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_ 25 N
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Figure 3: Two examples contrasting amplitude-phase and regression phase. In each row,
the leftmost panel shows the original {f;}, the second shows amplitude phases, and the
third shows the aligned functions. The fourth panel shows response data {y;}, the fifth
shows regression phases, and the last shows regression registered functions.
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Next, we present two simple examples in Fig. 3 to illustrate and compare regression
means and amplitude means. Each row shows a different example. The simulation setup
for these examples is the same as in Section 3. Here f;’s are constructed using simple
Fourier basis, h and ¢ are both lower-order polynomials, and true 3 is made of five Fourier
bases. The traditional phase-amplitude separation seeks to align peaks and valleys in {f;},
while the regression-based separation tries to match the inner product of 5 and (g;x7;) with

y;- The results naturally show significant differences in the phases of the two approaches.

3 Experimental Results: Simulated Data

In this section, we simulate several datasets and use them to evaluate the proposed as well
as some current models.

Simulation Setup: In this experiment, we generate f2(t) = ¢;1v/2sin(2mt)+c;2v/2 cos(27t),
where ¢;1,¢i0 ~ N(0,1?). To create predictors with arbitrary phases, we perturb each
of these f%s by random ~;’s : f;(t) = f? o, where v(t) = t + - (T —t) {t €
0,T], « € U(—1,1)}. We calculate the corresponding SRVF’s (g;’s) of each of these f;’s
using ¢; = sign(fi(t))\/|fi(t)]. To define coefficient vector 3, we use first .J elements of the
Fourier basis {b;} = {v/2cos(2mjz),V2sin(2mjz),j = 1,2...,J/2} and some fixed coeffi-
cients ¢ = {1,--- ,1}. Also, we use low-order polynomials for h (listed in the experiments)
and a fixed g(x) = 2% — 1. Then, we calculate responses y;’s by adding ¢; ~ N(0,0.01%) as
per Eqn. 4. For a sample size of n = 100, we use 80% of the dataset for training and the
rest for testing in a five-fold cross-validation. For each random split, we use Algorithm 2
to estimate the model parameters.

Model Comparisons: Next, we compare performance of the ScoSh model with three

other models (refer to Table 1 for model acronyms and specifications): (1) SI-ScoF(FR),
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Figure 4: Simulating experimental data. Top: From left to right, some initial predictor
functions {f?} formed using a Fourier basis, random time-warpings {v;}, time-warped
functions {f; = f? ov;}, and their SRVFs {¢;}. Bottom: SRVF’s after registering with a 3
(blue line), some index functions h, some polynomial offset functions g, and the responses
{y;} generated after adding random noise.

which uses the functions without alignment, (2) ScoSh, which uses SRVFs with alignment
but sets h as identity, and (3) ScoF (FR), resembling the classical FLM but using the Fisher-
Rao inner product. During estimation, SI-ScoSh iteratively optimizes over (3, h, and g while
registering functions. SI-ScoF(FR) optimizes over 3, h, and g without registration. ScoSh

includes registration and optimization over 3, g. ScoF(FR) estimates 3, g.

3.1 Evaluating Response Prediction

We sequentially generate data from one of these stated models, apply all the models to
that data, and quantify model performances using five-fold validation. The original model
is naturally expected to perform the best, but comparing the performances of others is also
informative. We quantify prediction performance using the R? (: 1— %) statistic
(g is the mean of the y;’s and ¥; is the predicted value of y;’s ). In the tables, columns

represent different polynomial choices for true A and numbers of basis functions (J) for true

[, while rows correspond to different fitted models. The entries in cells are the means of
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R? values over five-fold replications, with standard deviations in parenthesis. Additional
tables can be found in the Supplementary Material.

1. Data from SI-ScoSh model: The left part of Table 2 shows results for data gener-
ated from the SI-ScoSh model; this model has a nonlinear predictor-response relationship
and non-informative predictor phases. The first two rows show SI-ScoSh results for dif-
ferent estimators of h, both providing very high R? values. ScoSh model, i.e., h(z) = z,
performs increasingly worse as the true h becomes more complex. SI-ScoF(FR) captures
some predictor-response relation but is inferior to ScoSh models. ScoF (FR) performs much
worse, indicating the need to remove nuisance phase variability for effective performance.

Note that a negative R? means that predicted values are worse than the fixed guess 7.

Table 2: Test (R?) prediction performance comparison for data generated from SI-ScoSh
(left three columns) and SI-ScoF (FR)(right three columns). linear: hy..(z) = 3z — 2,
quadratic: hye(r) = 2% — 32 + 2, cubic: hyye(z) = (2 — 0.5)(x — 3)(x — 4.5). BiruelJ =
4] = 3 20+ S V20 andﬁtme[ =6]= Y 2b;+ > V2b.

1=2,4

i=1,3 i=1,3,5 i=2,4,6
SI-ScoSh SI-ScoF (FR)
Rirue linear quadratic cubic linear quadratic cubic
J(of Birue) 4 6 4 4 6 4

SI-ScoSh: Poly [[[ 0.96(0.02) | 0.98(0.01) ) 110.92(0.05) [ 0.89(0.06) | 0.87(0.05)

SI-ScoSh: SVM |[[[ 0.97(0.01) | 0.98(0.01) | 0.97(0.01) || 0.94(0.02) | 0.90(0.04) | 0.89(0.04)

SI-ScoF(FR) ||| 0.72(0.09) | 0.48(0.26) | 0.23(0.30) || 0.99(0.01) | 0.99(0.01) | 0.99(0.01)
ScoSh 0.94(0.02) | 0.72(0.10) | 0.50(0.21) <0 <0 <0
ScoF (FR) <0 <0 <0 <0 <0 <0

0.98(0.01

2. Data from SI-ScoF model: The right part of Table 2 shows prediction performance for
data from the SI-ScoF(FR) model — a nonlinear index function i and an informative phase
component. As expected, SI-ScoF(FR) performs best, with SI-ScoSh also doing well. ScoSh
performs poorly, indicating the importance of the index function. Also, optimizing over {~;}
loses informative phase components and reduces performances. Prediction performance
decreases from left to right as the complexity of h increases.

3. Data from ScoSh model: Table 3 shows prediction performances for data from the
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ScoSh model, with h(z) = 2 and non-informative phase components. Both ScoSh and
SI-ScoSh give accurate predictions, with SI-ScoSh being a generalization of ScoSh. SI-
ScoF(FR), despite keeping nuisance phases, performs decently as the index function helps
compensate for the mismatch. The ScoF (FR) model, which keeps the nuisance phases but

does not use an index function, performs poorly.

Table 3: Test (R?) prediction perfor- Table 4: Test (R?) prediction perfor-
mance comparison for data generated mance comparison for data generated
from ScoSh. from ScoF(FR)
| Jorp | 4 | 6 | [ Jofp [ 4 T 6 ]
SI-ScoSh: Poly || 0.98(0.01) | 0.99(0.01) SI-ScoSh: Poly ||| 0.91(0.05) | 0.92(0.05)
SL-ScoSh: SVM || 0.97(0.01) | 0.98(0.01) S-ScoSh: SVM || 0.94(0.03) | 0.92(0.03)
SI-ScoF(FR) || 0.83(0.04) | 0.68(0.2) SL-ScoF(FR) ||| 0.99(0.01) | 0.99(0.01)
ScoSh 0.98(0.01) | 0.96(0.03) ScoSh <0 <0
ScoF (FR) <0 <0 ScoF (FR) 0.99(0.01) | 0.99(0.01)

4. Data from ScoF model: Table 4 shows results on data generated from the ScoF(FR)
model. Both SI-ScoF(FR)and ScoF(FR) show perfect R*’s. The proposed model, SI-
ScoSh, also shows near-perfect prediction. ScoSh fails to capture the predictor-response
relationship when phases are not nuisances.

From these experiments, we conclude that treating (predictor) phases as informative,
when the data is generated using arbitrary phases, reduces the performance substantially.
Conversely, ignoring the phases when they contain relevant information also impairs per-
formance. Interestingly, the index function h can compensate to some extent for phase
mistreatment, making indexed models perform better than non-indexed ones. However,
this compensation is limited to simpler .. and Bi..e; as they get more complex in shape,

the index function struggles to compensate for phase mistreatment.
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3.2 Evaluating Parameter Estimation

This section systematically evaluates estimation performances for different model parame-
ters using simulated data.

1. Estimation of Index Function h: In this experiment, we study how the varying
degree of the index function h affects the estimation performance of the SI-ScoSh model.
We generate data from a quadratic or cubic Ay, and allow different degrees (1 —4) during
estimating of h. The pictorial results are shown in Fig. 5 while error summaries are pre-
sented in Table 5. The left two panels of Fig. 5 show estimated h for different h.e. One

can see that higher-order polynomials improve estimation.

70 ‘ 250
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60 | Quadratic b 200 ¢ Quadratic
Cubic Cubic
50 | Quartic 150 Quartic 60 -
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Figure 5: The estimate h for hyoe = 22 — 4z + 4 (left) and hye = (z — 3)(z — 3)(z — 4.5)

(middle) under the SI-ScoSh model. The right panel shows estimates of g with a quadratic
Girue for SI-ScoSh and SI-ScoF (FR)models.

2. Estimation Regression Coefficient 3: Here we study estimation of g using different
basis sets of L2 space. We construct B, from 4 or 6 Fourier basis elements, and we
estimate it under the SI-ScoSh model for different J values. As seen in the left and middle
panels of Fig. 6, increasing J beyond the true degrees doesn’t improve estimation of B\ any
further. This trend is mirrored in the predictive R?’s, presented in Table 6. For J < Jyrye,

E ’s have worse prediction performance compared to J > Jy... as they fail to capture the

20



Table 5: Prediction performance comparison for different complexities of h with a quadratic
(top) and cubic (bottom) Ay having Bipue = Z?:l V2b;(t) and gyye(z) = 22 — 1.

’ hirue | Pred. Performance H SI-ScoSh : Maximum allowed degree of h ‘ SI-ScoF (FR) ‘

= Test R? linear quadratic cubic quartic

©
5 Mean(SD) 0.87(0.05) | 0.98(0.01) | 0.99(0.01) | 0.98(0.01) | 0.66(0.27)

= | RMSE (h — hyye) 4.15 0.13 0.19 0.20 9.1

o Test R? linear quadratic cubic quartic

% Mean(SD) 0.67(0.11) | 0.74(0.22) | 0.95(0.04) | 0.96(0.03) 0.51(0.2)

Z | RMSE (h — hyrue) 10.83 6.0 2.3 3.5 24.8

shape of the B.... Fig. 6 and Table 6 show that further increasing the number of basis

elements for 5 does not necessarily improve performance.

b L N S o kN oW s oW

0 0.2 0.4 0.6 0.8 1
time

Figure 6: 3’s when By has J = 4 (left) and J = 6 (middle). The numbers beside the
colored lines in the legend show J used in estimating 3. The orange diamonds show the
estimated [ for the SI-ScoF(FR) model. The right panel shows estimates of g with a cubic
Girue for SI-ScoSh and SI-ScoF (FR) models.

Note that we use the shape metric dg, rather than RMSE, for evaluating B . As discussed
in Section 2.2, the shape of § is more relevant in ScoSh model than [ itself.
3. Estimation Error for g: Here, data is generated with a fixed h (a quadratic) and
composed of four Fourier basis elements, but we set gu... to be either quadratic or cubic.
Then, we estimate g under the SI-ScoSh model and see how well we recover the structure of
Girue Under different models. The results are shown in the rightmost panels of Figs. 5 and 6.
Both the relative RMSE between the true and estimated g and the prediction performances

(see Table 7) establish the superiority of the SI-ScoSh model over the SI-ScoF (FR) model.
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Table 6: Prediction performance comparison for different complexities of 3 with Bue =
ST 204+ > V20 (top) and Bywe = >, 2bi+ > V/2b; (bottom). The used hypye(r) =

i=1,3 i=2,4 =135 i=2,4,6
72 —=3r+2and g(z) =2* -1

’ Birue ‘ Pred. Performance H SI-ScoSh : Number of basis functions for 3 ‘ SI-ScoF(FR) ‘
- Test R? J=2 J=3 J=4 J=06 J=9
i Mean(SD) 0.75(.07) | 0.93(.03) | 0.99(.01) | 0.98(.01) | 0.99(.01) | 0.62(.14)
RMSE (B — Birue) 3.6 2.8 2.4 3.8 3.2 5.6
© Test R? J=4 J=6 J=7 J=10
T Mean(SD) 0.85(0.08) | 0.96(0.02) | 0.99(0.01) | 0.99(0.01) 0.4(0.45)
RMSE (5 — Birae) 4.9 4.0 3.8 15 79

Table 7: Prediction performance comparison among different models for different gy,..’s

T + = Gtrue(T) 3 — 3z +4 5x2 —4
— + \-‘% ..\Q: Prediction R2 Hg_giruSH R2 Hg_gtrueH
8 8|5 Q llgtruell llgtruell
3 °’|° " . SI-ScoSh (Poly) || 0.99 0.33 0.98 0.36
53 3, N_ﬂ [J5 | SI-ScoSh (SVM) | 0.98 0.28 0.98 0.29

I - SI-ScoF (FR) 0.54 0.59 0.12 0.97

TUE€

3.3 Evaluatiqulg Model Invariance to Random Phases

The main goal of this paper is to design a regression model that is invariant to phase
variability in predictor functions. While the proposed ScoSh and SI-ScoSh models satisfy
this requirement theoretically, we also evaluate this property empirically. Specifically, we
design response variables y;s that are by definition invariant to phase shifts in f;. In other
words, the responses are dependent exclusively on the shape of the corresponding predictor.
We choose two cases: (1) y; = (max(f;(t)) — min(f;(¢)) + €, (2) y; = fl |fi(t)] dt + €;. Here
0

e; ~ N(0,0.5), and the predictors {f;} are generated as in Section 3. Then, we apply the
proposed model to the noisy and time-warped data and study the results.

Fig. 7 presents results from these experiments. The two rows show results for two data
cases. We train the models with a training set and evaluate them on a separate test set.
Finally, we compare the prediction performances of SI-ScoSh and SI-ScoF(FR) on test

sets. SI-ScoSh achieves R? = (.98, while SI-ScoF(FR) has R? < 0.1. SI-ScoF(FR)’s lack of
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Figure 7: Examples of f;s (left), noisy measurements of y;s (second), the original test
set in solid lines and their perturbed version in hashed lines (third panel), and SI-ScoSh
predicted y; plotted versus true y;s (last panel). Top: Responses y; are the max amplitude
of predictors f;. Bottom: Responses y; are lengths of predictors f;.

optimization over ;s results in inferior performance. The high performance of the ScoSch

model underscores its invariance to random phases of predictor functions.

4 Experimental Results: Real Data

In this section, we investigate the use of proposed ScoSh models on several real datasets.
In each case, the functions are given without any prior registration, and we investigate
the effectiveness of regressing scalar responses on the shapes of predictors. The detailed
prediction performances of the different models are provided in a table format in the Sup-

plementary Material.

1. Spanish Weather Data: This data contains daily summaries of geographical data of
73 Spanish weather stations selected from 1980-2009. Although this dataset contains

other variables measured at each weather station, we focus only on the temperatures.
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We form a predictor function f; for each station with 365 average temperature values as
follows. Each value is the average temperature recorded on a day (e.g., February 37)
for all years from 1980 to 1993. The corresponding scalar response y; is the mean of
temperatures for all days between 1994 and 2009 at that station. This data is shown in
the top row of Fig. 8. The goal is to use past temperature patterns for each station to

predict future average temperatures.
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Figure 8: Spanish weather results — Top: Predictor functions { f;} (left), the responses {y; }
(middle), and model predictions {¥;} against true test values {y;} (right). Bottom: the
estimated parameters under SI-ScoSh model - h (left), g (middle), and 3 (right).

We apply the proposed and the competing models to this dataset to evaluate their pre-
diction performances. We use two versions of SI-ScoSh. For estimating index function A
with a parametric curve, we obtain R? = 0.92 on the test set, and for the non-parametric
method (SVM) with different kernels (Polynomial/Rbf), we get R? = 0.89. SI-ScoSh
performs best among all models, while, in contrast, SI-ScoF(F'R) gives a prediction per-

formance of merely R? = 0.58 and SI-ScoF(L?) an R* = 0.45. Simpler indexed models
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fail to capture these relationships — R?*’s are less than 0.1 for ScoF (L2 & F'R) and ScoSh.

The parameter estimates of the SI-ScoSh model are shown in Fig. 8.

2. Covid Hospitalization Data: This data! contains the number of daily new COVID
hospitalizations at hospitals in 31 European countries, which serve as our predictors.
The observation period is from January 1, 2020, to October 13, 2022, so each predictor
fi contains 1016 elements. The responses y; are the total number of deaths in the
respective countries that occurred during the observation period. Our goal is to utilize
these hospitalization curves to predict the number of fatalities in a country. The data

and the results are presented in Fig. 9.
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Figure 9: Covid hospitalization results — Top: the daily hospitalization curves (left), cor-

responding fatality counts (middle), and predicted responses versus true responses (right).
Bottom: the estimated parameters under SI-ScoSh — A (left), g (middle), and S (right).

Under the SI-ScoSh model — a quadratic g, a cubic h, and a (8 using the first six Fourier
basis elements — provide the best performance (test set prediction R? > 0.92). The

estimates in the bottom of Fig. 9 show that g is relatively constant when compared to

thttps:/ /ourworldindata.org/covid-deaths
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/f;, indicating most correlation is captured by 8 and h. This is because all countries start
from a point of zero hospitalizations, i.e., { f;(0)} are all zero. Other models like SI-ScoF
(L? & FR), ScoSh and ScoF (1% & FR) fail to capture significant relationships with

prediction R?’s less than 0.2. For details, please refer to the Supplementary Material.

3. Covid Infection Data: This dataset? contains the number of new COVID-19 infec-

Number of people infected

tions per day in each of 41 countries. These daily infection rate functions serve as the
predictors. (see top left of Fig 10). The total number of people hospitalized during the
entire period is the response for each country. The raw dataset has been smoothed but

not centered or phase-shifted.
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Figure 10: Covid infection results — Top: the daily infection curves (left), correspond-

ing hospitalization counts (middle), and predicted responses versus true responses (right).

Bottom: the estimated parameters under SI-ScoSh — h (left), g (middle), and S (right).
We apply the SI-ScoSh and SI-ScoF(FR & [12) models and their simpler versions for

a prediction performance comparison. The SI-ScoSh model predicts the test responses

with R? = 0.89,but the SI-ScoF(FR) model captures a far less statistically significant

2https://ourworldindata.org/covid-hospitalizations
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predictor-response relationship (R? = 0.4). Models without the index functions provide
even worse performance. The L2 version of the ScoF model performs worse than the FR
version. Like the previous example, g, the index function does not play an important

role here. Please refer to the Supplementary Material for detailed results.

5 Extension to a Multiple Index Model

Following Ferraty et al. [2013], we can extend the SI-ScoSh model from a single index to a

multiple index model according to:

Vi €L

Yi = Z {gj(fim)) + h; (sup <Bj,qi*%,j>> +%} L i=1,-.n (8)

J=1

The estimation proceeds by treating the problem as a single-index model and estimating
{1, h1,9}. Then, we calculate the residuals and use them as responses for the next single
index model, leading to the estimation of {f, ha, g2}. We continue until the improvement
in prediction performance becomes small.
Rainfall vs Morning Humidity: We illustrate this model using a weather dataset.
The predictor functions are daily humidity at 9 am every ten days over the course of the
period Jan-1-2014 to Dec-31-2015 for 49 counties in Australia. The response variable for
each county is the total amount of rain over the same period.The raw dataset® has been
smoothed (with a moving average) to reduce noise. The results from the application of the
multi-index ScoSch model are presented in Fig. 11.

The results show that the first layer {hq, £1, 91} captures approximately a third of the

correlation between shapes of the predictors and the response, but as we add more layers,

3https://rattle.togaware.com/weather AUS.csv
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Figure 11: Top: the morning humidity curves for different counties (left) and the total
rainfall in the respective counties (right). Bottom: Results from successive index models
with R? values on top. These values improve from 0.39 for K =1 to 0.74 for K =4 .

the prediction performance R? increases to around 0.74. Further addition of layers does
not improve performance. This result contrasts SI-ScoF( FR), where R? improves less than

0.1 for each extra layer. A detailed table is presented in the Supplementary Material.

6 Conclusion

Functional data has two components: phase and shape, and they may contribute at different
levels in a functional regression model. This paper develops a novel approach, termed a
ScoSh model, that uses only the shapes of functions and ignores their original phases
in scalar predictions. Furthermore, it optimizes the phases inside the regression models
rather than as preprocessing, as is often done currently. This formalization leads to new
definitions of regression phase and regression mean. The model also imposes an index

function to result in a SI-ScoSh model. The two novel components - removal of dependence
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on the predictor phase and using a nonlinear index function - show improved performance
in various situations. Several simulated and real-data experiments demonstrate the model
and its superiority.

The proposed SI-ScoSh model is appropriate when the phase components of predictors
carry little or no information. This is often the case in image analysis and neuroimaging,
where phases correspond to different parameterizations of neuroanatomical objects. How-
ever, in general, the phase components may contain helpful information, and discarding
them would degrade prediction performance. In that situation, a more flexible model would
be to separate the phases (from shapes) and use them as separate predictors themselves.

This idea has been left for future explorations.
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