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Learning Motion Primitives for the Quantification
and Diagnosis of Mobility Deficits

Fujian Yan , Jiaqi Gong

Abstraci—The severity of mobility deficits is one of the
most critical parameters in the diagnosis of Parkinson’s
disease (PD) and rehabilitation. The current approach for
severity evaluation is clinical scaling that relies on a clini-
cian’s subjective observations and experience, and the ob-
servation in laboratories or clinics may not suffice to reflect
the severity of motion deficits as compared to daily living
activities. This paper presents an approach to modeling
and quantifying the severity of mobility deficits from mo-
tion data by using nonintrusive wearable physio-biological
sensors. The approach provides a user-specific metric that
measures mobility deficits in terms of the quantities of mo-
tion primitives that are learned from motion tracking data.
The proposed method achieved 99.84% prediction accuracy
on laboratory data and 93.95% prediction accuracy on clin-
ical data. This approach presents the potential to supplant
traditional observation-based clinical scaling, providing an
avenue for real-time feedback to fortify positive progression
throughout the course of rehabilitation.

Index Terms—Machine learning, motion tracking, wear-
able sensors.

[. INTRODUCTION

ARKINSON’S disease (PD) is a neurodegenerative disor-

der that causes mobility deficits, including tremor, bradyki-
nesia, limb rigidity, and gait-balance problems. This mobility
deficit greatly limits people’ s ability to maintain independent
living and severely depresses quality of life. Nearly 1.2 million in
the United States will be living with PD by 2030, which is more
than the combined number of people diagnosed with multiple
sclerosis, muscular dystrophy, and Lou Gehrig’s disease [1].
More than 10 million people worldwide are living with PD.
PD is common for senior citizens, and an estimated 96% of
patients are aged 50 and over. The requirement of healthcare
services and rehabilitation facilities is tremendous for patients to
recover independent mobility capabilities. The combined direct
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Fig. 1. Quantification of mobility deficits by using wearable sensors.
Raw sensory data are collected by IMU and EMG sensors. Different
levels of motion deficits are predicted.

and indirect cost of PD, including treatment, social security
payments, and lost income, is estimated to be nearly $25 billion
per year in the United States alone.

The severity of mobility deficits is the most critical parameter
in the diagnosis and rehabilitation of PD. The current approach
for severity evaluation is clinical scaling when a potential patient
performs predefined movements in a constrained environment.
The Unified Parkinson’s Disease Rating Scale (UPDRS) has
been a clinical standard in the study and diagnosis of PD [2].
These scales, however, rely on a clinician’s subjective observa-
tions and experience. The first and second parts of the UPDRS
use questionnaires to evaluate the patient’s status [3]. Moreover,
the observation in laboratories or clinics may not suffice to
reflect the severity of motion deficits compared to daily living
activities [4]. Accurate nonintrusive quantification methods and
evaluation metrics are required for diagnosing PD and timely
feedback on rehabilitation procedures. Therefore, there is a great
and vital need for an effective approach that reliably tracks body
motion and quantifies mobility deficits.

In this paper, we quantify the severity of mobility deficits
from daily activities by analyzing motion data measured by non-
intrusive wearable physio-biological sensors. The framework is
shown in Fig. 1, where wearable sensors are placed on limbs and
the torso. Signature body movements are captured and analyzed.
We developed a calibration-free motion tracking system and
designed a multi-block neural-network model to discover unique
motion primitives from time series. It is hypothesized that the
motion primitives (small segments of motion patterns) in the
motion tracking data significantly correlate with the severity of
mobility deficits. The hypothesis was tested and the effectiveness
of the motion primitives was evaluated in terms of the correlation
with physician evaluations.
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Quantification of mobility deficits for the diagnosis of PD
has attracted many researchers’ interests. Studies have been
performed to quantify PD in terms of finger-tapping severity
by extracting and synthesizing finger motion properties [S]. The
typical work to detect and quantify tremor includes the detection
and assessment of resting tremor [6], [7], discrimination and
quantification of resting/action tremor [8], [9], [10], and esti-
mation of tremor severity [11]. Recent research has promoted
motion tracking during non-standardized activities of daily liv-
ing tasks [10], [12]. Diagnosis based on long-term monitoring
is definitely valuable to understand the impact on mobility, and
it is critical for home-based rehabilitation [13]. After-treatment
rehabilitation is essential for PD patients to recover their motor
functions. It is a dynamic process to correct undesired motions
by facilities and experienced clinicians. A better way to evaluate
the rehabilitation is to continuously monitor patients’ move-
ments, identify, and rectify problematic motion patterns at an
early time. The state-of-art methods, however, could not monitor
body motions in a free-living environment throughout the day,
due to complex calibration procedures and drifting in long-term
tracking.

Wearable motion-tracking systems are built on robotic plat-
forms, visual tracking and wearable inertial sensors. In robotic-
platform-based motion tracking, exoskeletons are installed to
the participants’ limbs to track their movements. Despite high
accuracy, the cost and cumbersome procedures hinder the appli-
cation into ambulatory environments. Visual tracking system
can achieve highly accurate 3D human models by detecting
and reconstructing reflective markers attached to limbs from
different cameras, but they are expensive and usually com-
plex to use. Motion tracking using wearable inertial sensors
is convenient, low-cost, and accurate for short-term tracking.
Traditional motion tracking systems with inertial sensors focus
on accurately estimating a segment’s orientation and position,
such as the estimation of the body segment’s orientation and
position by combining the acceleration and gyroscope [14]
and estimation of limb’s orientation [15] using gyroscopes,
accelerometers and magnetometers. Biomechanics constraints
and optimization technologies were also utilized to achieve body
segment’s orientation with high accuracy [16]. The analysis
of knee joint kinematics with inertial sensors has been fully
addressed and explored, such as the knee’s flexion and extension
rotation with two Inertial Measurement Unit (IMU) sensors
mounted on the thigh and shank [17], and knee joint’s rotation by
aligning two inertial sensors on adjacent segments [18]. Though
the tracking of a joint angle has been thoroughly studied, full
body tracking with flexible placement of sensors for long-term
datarecording is still challenging. Soft-tissue artifacts are a main
source of errors either when the wearable sensors are mounted
on a garment or directly attached to skin, and multiple sensor
measurements have been integrated to increase the reliability of
sensor placement [19]. One challenge in wearable body motion
tracking is to remediate soft-tissue artifacts while reducing the
complexity of sensor calibration.

To address the challenging problems, the system of body
motion tracking is developed to simplify calibration and alleviate
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Fig. 2. Human kinematic model and placement of wearable physical-
biological sensors.

soft-tissue artifacts. From the data collected by the motion track-
ing system, a deep model of dictionary learning is designed to
discover and associate motion primitives with mobility deficits.
Specific contributions of the paper include:

1) The paper proves the existence of signature motion prim-
itives that are associated with mobility deficits in motion
tracking data;

2) The paper presents an effective approach to assisting
diagnosis of diseases that may cause mobility deficits;

3) The paper designs a calibration-free motion tracking
method and a novel deep learning model for mobility
analysis.

[I. WEARABLE MOTION SENSING

Electromyography (EMG) and Inertial Measurement Unit
(IMU) sensors are complementary in motion analysis, where
IMU tells isometric or dynamic contractions, and EMG mea-
sures whole biomechanics. Applying EMG and its combination
with inertial sensors for PD diagnosis can provide an objective
assessment of tremors through muscular fluctuations [7]. In the
early stages of PD tremor, the fluctuation of body segments is
mild, which is hardly noticed visually from acceleration or angu-
lar velocity data, whereas EMG can detect such mild fluctuations
from the muscular signal. Consequently, the fusion of EMG
and IMU sensors would help early-stage detection and severity
assessment. Motion tracking using wearable inertial sensors has
been well explored and studied [20], and commercial products
are available, such as Delsys, Nexonar, and Notch systems. In
this section, we focus on the modeling of IMU sensors in relative
configurations for reliable tracking.

A. Human Body Model

A total of eight sensors are placed on the limbs and trunk
of the human body to track joint angles, acceleration of body
parts, and electromyograph. The placement of the wearable
sensors is illustrated in Fig. 2. The structure of human bodies is
symmetric for the limbs, so we use the upper limb for modeling,
and the other limbs are obtained by analogy due to similar
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anatomical structures. The human upper limb consists of the
upper arm, forearm, and hand, which has ten degrees of freedom
(DoFs) in total. The shoulder is regarded as a ball-and-socket
joint with three DoFs. The rotation angles are composed of
flexion-extension, internal-external and abduction-adduction ro-
tations. The elbow joint is regarded as two hinge joints with two
DoFs: flexion-extension and pronation-supination rotations. The
orientation of spinal movements would be considered as some
rotations in waist joints with three DoFs.

As shown in Fig. 2, the upper limb includes four rigid bod-
ies, i.e., chest, upper arm, lower arm, and pelvis. It has eight
DoFs in total, which are respectively represented by 6; for
i={1,2,...,8}. The terms lyn, lns, lup and iy denote each
segment’s length. Body frame B is assigned to the pelvis’ center
as a global reference frame, and its direction is defined to be
aligned with sagittal and coronal planes.

Four IMU sensors Sch, Sup, Siow and Sp sharing the same
global frame determined by the gravity and earth magnetic fields
are mounted on body segments to monitor their orientations.
The term S, indicates the sensor that is attached to the chest,
and the term Sg indicates the sensor that is attached to the
pelvis’s center. The terms Sy, and Sioy denote the sensors that are
attached to the upper arm and lower arm. These IMU sensors can
record angular acceleration and rotation angles that can be used
to compute the transformation from body frames to the global
frame. This paper used two IMU sensors for Sjoy: one is at the
front arm (brachioradialis), and the other is at hand (abductor
pollicis brevis). The global frame is a stationary reference frame,
which serves as an absolute reference for spatial measurements,
and the body frame is a reference frame located at a predefined
point on the body. The IMU sensor and its corresponding body
segment are regarded as one rigid body whose orientation is
represented by quaternions. The equivalent rotation angle to
a quaternion is 6 = 2 x arccos(qp), and the unit axis vector
is w = [q1, g2, q3]T /sin(0/2) when 6 # 0. As frame B is the
global reference frame, all the representations of motions in the
global frame need to be converted into the body frame. The
initial configuration of the body frame is determined when one
stands straight and holds their arms vertically to the ground and
then performs shoulder joint’s pronation-supination rotation.
The axis of rotation relative to the initial posture will be set as the
y axis of frame B. The opposite direction of gravity is selected as
its z axis. After achieving the initial Body frame [X}, VY, Z7]7,
the initial rotation matrix of global frame RZO relative to body
frame is calculated by R, (X[, Y,?, Z{/]" = I. Representing the
rotation matrix Rgo as a quaternion qgo, the relative quaternion
between the body frame and its corresponding sensor Sp is

@, =d0®d, (1)

where qu and qu respectively denotes sensor Sp’s quaternion
with respect to body frame and global frame, and ® denotes
Hamilton product. Quaternion qu updates the body frame’s

orientation qg corresponding to human body motion. The term
qZO represents the initial orientation of the body frame. The
difference of the quaternion is computed as qg = qgo ® w. The
next timestep’s quaternion is computed as qg = qgo + qg. Since

the global frame of the sensor S is the same as its body frame,
all other sensors that are attached to other body segments can
use the Sp’s quaternion q’g’. The sensor’s reference frame can
be transferred to the body frame by ¢ = qg ® qf, where *
represents anybody segments.

Contemporary IMU sensors are capable of automatic calibra-
tion, but they cannot address the problem of sensor drift and
accumulated biases over a long period of use. The proposed
motion-tracking method uses relative values from sensor read-
ings instead of absolute values, i.e., relative joint angles instead
of absolute angular velocities of each body segment. As such, the
approach does not require calibration after initialization unless
sensor placement changes.

B. Kinematics

At initial positions, all body segments are assumed to be
aligned with the direction of gravity during the initial pos-
ture. As such, the initial positions of the joints pso, Deo
and p,o with reference to the body frame are [0, —ln, lyn]”
[0, —lns, (bun — Lup)]® and [0, —lns, (lyn — lup — low)] T Let
bho- 420 and gp,o denote the initial orientations of body seg-
ments, i.e., the initial configuration of forward kinematics. The
change in sensor’s orientation " ¢” with respect to the initial con-
figuration is "¢? = ¢* ® ("¢®)~!, from which the unit rotation
axis w] and angle 6] are computed.

By representing angular velocity w and linear velocity v € R?
by a screw axis T' = [w,v], the pose (including position and
orientation) of a part of the human body is determined by the
forward kinematics of all consecutive joints linking the part and
the global reference

N
=] po @
i=1

where N is the number of consecutive joints, [T] € R*** is
the matrix representation for the screw axis 7', and 6; is the
angle of rotation around the screw axis. Exponential mapping is
employed to delineate rotations within three-dimensional space
through exponential coordinates. This approach entails a trans-
formation from the rotation matrices to skew-symmetric matri-
ces, which encapsulate infinitesimal rotations. We used elTil0:
to represent the matrix exponents, and it can represent poses
and incremental motions of the body segment’s end-effector
using homogeneous transformation matrices. Leveraging the
properties of matrix exponential, exponential mapping provides
a unified framework for describing both rotational and transna-
tional components of motion. We developed the kinematic model
on the anatomical characteristics of the human upper limb,
incorporating the actual degrees of freedom (DoF) present in
each segment. Accordingly, we devised the shoulder model
with three interconnected joints, the upper arm with six such
joints, and the lower arm with eight joints. While more joints
increase computational demand, they also enhance the model’s
representability. The proposed kinematic model emphasizes the
representation of DoFs for each joint, particularly in the shoulder
case. This aligns with the objective of our study, which identifies
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mobility deficits through the analysis of motion primitives. As
such, the forward kinematics for the orientation of the shoulder
joint py is achieved by

3

el Tenlfen H el Ti10: 3)
i=1
where g = {6ch, wen }- Since their rotation axes intersect at
the origin of the body frame, there would be no translation of
the trunk’s movements. The orientation of the upper arm is the
product of the rotation of the waist and shoulder joints

6
e[Tup]Gup e H e[Ti]am (4)
=1

where qup = {0up, wup }. Following the same idea, the orien-
tation of the lower arm can be achieved by combining the
connecting joints

8
e[TiowlOow _ H olTi10: )

i=1

where giow = {O1ow, Wiow }-

C. Recovering Joint Angles and Limb Dynamics

The angles ¢ = {6, w} corresponding to rotation quaternions
represent a composite rotation in the 3D space. The composite
rotation can be converted to joint angles with respect to the
degree-of-freedom of the joint. The relative orientation caused
by a joint’s rotation is computed by utilizing the measured ori-
entation of two arbitrary segments. Considering the active range
of joint motion and the degree of freedom (DOF), joint angles
could be eventually determined [21]. For example, waist joints
01, 65 and 605 are directly associated with chest’s orientation,
and the relative rotation matrix between pelvis and trunk can be
calculated from (3) with

C1C2 —C351 — C18283 85153 — C1€3S52
elTenlfen C9S1 C€1C3 — S158283 —C183 — C35189
S2 C283 CaC3

(6)
where ¢; denotes cos(;) function and s; denotes sin(6;) func-
tion. By analogy, the shoulder joint is resolved by

6
(e[Tch]ech)*le[Tup]eup — H e[Ti]ei (7)
i=4
which represents the orientation of the upper arm and trunk. The
elbow joints is solved by

8
(6[Tup]9up)*16[me]91aw - H el Til0: ®)
i=7

Quaternions offer several advantages over traditional rotation
matrices when representing orientation in three-dimensional
space, including offering faster operations, seamless interpola-
tion, and overcoming issues like singularities and gimbal lock.
Likewise, the acceleration of adjacent body parts ag, ach,
ayp, and aj,, are measured by individual IMU sensors. In

Time Time Dictionary Bag of motion Fully-connected
series warping  learning primitives layer
f RBF Accumulation
0.
O
®)

Fig. 3. The structure of bag-of-motion-primitives and dictionary learn-
ing. The inputs are raw sensory data collected by the IMU and EMG
sensors, and the outputs are different levels of motion deficits.

addition to limb dynamics, the measured acceleration contains
whole-body dynamics, gravity, and soft-tissue artifacts. As a
person moves, distinct body segments have different orientations
and translations, thus taking the average of these segments can
approximate the body’s overall acceleration. A mass-weighted
average approach would be more precise; however, it is difficult
to obtain mass of each body segment. The mean acceleration is
removed as a bias, and the gravity component is filtered out by
a high-pass Butterworth filter. The gravity component in IMU
readings typically manifests as a low-frequency signal that can
be removed by the high-pass filter. The Butterworth high-pass
filter works in different environments with different gravitational
conditions when the gravity is constant.

To reduce the soft-tissue artifacts, which are typically in any
direction along skin surfaces, we project the relative acceler-
ation onto a plane perpendicular to the screw axis, which be-
tween adjacent quaternions. The presence of soft-tissue artifacts
introduces unpredictable movements orthogonal to the screw
axis, thus impacting the readings of the IMUs. Projecting the
acceleration vector onto the plane perpendicular to the screw
axis, which effectively reduces a portion of these extraneous
motions, because the captured motion caused by soft-tissue
artifacts in the directions that are not supported by the degree of
freedom, e.g., motion along the arms is eliminated by the model.
The motion of soft-tissue artifacts aligning with the degree of
freedom is, however, not removed. For instance, the normalized
relative acceleration ach.yp = @ch — &yp is projected onto the
plane perpendicular to wep-up, Where geh © Gup = {Och-up, Weh-up
with © as quaternion division. The components that does not
satisfy the constraint of body kinematics are therefore filtered
out to mitigate soft-tissue artifacts.

[lI. LEARNING THE DICTIONARY OF MOTION PRIMITIVES

We developed a machine-learning structure to learn motion
primitives and classify mobility deficits. As shown in Fig. 3,
the structure consists of four major blocks of layers for time
warping, dictionary learning, bag-of-motion primitives, and
fully connected layers for classification. The time-warping block
accepts time series with different lengths as input, and the bag-
of-motion-primitives block classifies the severity of mobility
deficits.

A. Dictionary of Motion Primitives

Let X = [x;])¥, be the time series of the collected data, where
N is the number of motion data x; = [;1,...,%im|’ € R™,
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where m stands for the number of the features, including joint an-
gles, angular velocities, acceleration, and muscular electromyo-
graphy. We utilize dictionary learning to learn a dictionary of
representative motion primitives. The dictionary D = {d;} %,
is designed to contain K time series of motion primitives
d; € R™. The length of motion time series x; depends on the
time of motion tracking and segmentation. The sparse coding of
motion tracking with time warping based on the dictionary of
motion primitives D = {d;}/<, is formulated as

E(x;, D) = ming, p ||x; — Fy(D)eu|s st el <7

9
where F;(D) = [f;(d1), ..., fi(dk)] € R">*K is the transfor-
mation of motion primitives D to a time-warped dictionary
of motion primitives f;(d;) € R™, which are aligned to orig-
inal motion tracking time series x;. The sparse codes a; =
[alﬂ;, N6 KJ]T represent the coordinates of x; with respect
to the dictionary F; (D).

The dictionary learning problem is designed to extract a group
of representative vectors for data with a fixed length; therefore,
the time warp invariant function F;(D;) is designed to map the
dictionary to time series with different lengths, as the length
of the time series vary when recorded during a long time span.
The transformation function F;(D;) is defined as an affine trans-
formation of D, f;(d;) = A;;d;, where the projection function
A;; € {0,1}m%7 specifies the temporal alignment between x;
and d;.

The elements of motion tracking x; and the elements of the
dictionary d; are aligned by a mapping

7 = [((m(1), 72(2)) , ((71(2), 72(2)) - .-, (7?1(29)7”2(19)()1]0)
where the applications 7r; and 7o are defined from {1, ..., p} to
{1,...,n}and{1,...,m}.Denote Aas the set of all alignments
between two time series. The alignment function can be com-
puted by a cosine maximization of the time series with different
lengths,

7° = arg max L(m) (11)
weA
where L£(7) is the cost function of the alignment 7 [22]. The
alignment function 7r is modeled using a multiple-layer neural
network with a linear activation function for the linear transfor-
mation A;;, as given in the Fig. 3. Neural networks are frequently
selected for temporal alignment tasks considering their profi-
ciency in discerning intricate patterns and relationships within
datasets. In contrast, traditional motion-tracking techniques,
including optical flow algorithms and feature-based methods,
often hinge on explicit assumptions on motion types or feature
structures. Although these methods may exhibit computational
efficiency under specific circumstances, they can encounter diffi-
culties in handling complex motion patterns, occlusions, or vari-
ations in lighting conditions. Moreover, traditional approaches
often necessitate manual parameter adjustment and may exhibit
limited generalization capabilities across diverse datasets or
real-world scenarios. In contrast to conventional motion tracking
methods such as motion tracking with Extended Kalman Filter
(EKF) [23], which present challenges in developing systems

with high nonlinearities for human activity monitoring [24].
Neural networks demonstrate capability in addressing nonlin-
earities. The transformation layer allows the model to take time
series with different lengths and therefore long-time tracking is
possible for diagnosis and data collection.

One level of dictionary learning finds the optimal represen-
tation of data and the dictionary atoms. We intend to discover
motion primitives that represent the mobility features of the time
series instead of the time series themselves. To represent latent
features of the time series, we further represent the time series
using a multi-level dictionaries

X =D1p1 (Da (- on (F (Dy) @)))

where ; for ¢ = 1--- N represents nonlinear activation func-
tions. The optimization problem (9) can be explicitly written out
as

(12)

miB ||Xz — Dy (D2 ( e (Fi (Dn) ai)))H;

o,

st |agfl, <7 (13)

The optimization problem can be solved in an iterative man-
ner from (D (- o(F(Dy)a))) to F(Dy)a by repeatedly
applying dictionary learning as in [25].

The learned dictionaries D represents latent motion prim-
itives that can be used to construct the tracked motion X.
For patients with PD, their motion exhibits certain unique fea-
tures, such as stiffness, imbalanced movement, or slowness. The
movement of a non-PD person does not contain these features.
Through the dictionary learning, we discover and extract the
dictionary of motion primitives D to represent the movement
of PD and non-PD people. By inspecting the way the movements
are reconstructed by the dictionary Dy, we differentiate the
movements and evaluate the severity of mobility deficits.

B. Bag of Motion Primitives

With the learned dictionary of motion primitives, we propose
a concept of the Bag of Motion Primitives (BoMP) to model the
construction of body motion in terms of motion primitives. The
BoMP is inspired by the concepts of Bag of Words (BoW) [26]
and Bag of Features (BoF) [27] models, which have been suc-
cessfully used to solve computer vision and natural language
processing problems. As compared to BoW and BoF, Bag of
Motion Primitives (BoMP) introduces a data structure tailored
to specifically capture motion deficits, and these primitives act
as signatures indicative of these deficits. The motion primitives
are not used as features or words but representative signatures
from which we can quantify the severity of mobility deficits.
The BoMP model generates a fixed-length histogram for each
segment of the tracked motion by compiling motion primitives
into codewords. The length of the generated histogram vector
does not depend on the number of available motion primitives in
the dictionary, so the BOMP model can handle time series with
different lengths.

We formulate the BoOMP model shown in Fig. 3 by using two
layers: a Radial Basis Function (RBF) layer and an accumulation
layer. The RBF layer measures the similarity of the time series
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to the learned dictionary of motion primitives, and the accumu-
lation layer computes the histogram of the motion primitives.
The output of the k-th RBF neuron is the distance between time
series and the k-th motion primitives. The RBF neurons

¢k(r) = exp (= [z — dilly /ox) (14)
measures the similarity to the motion primitives and span the
feature space, where ¢ is a scaling factor that adjusts the width
of the Gaussian function. The output of the RBF neurons is

accumulated to generate the final representation of each time
series

1 &
si =5 > Olxiy) (15)
7 j:1

where ¢(z,d) = [¢p1(z,d),...,¢n(z,d)]T € RY is the out-
put vector of the RBF layer. The output s; defines a histogram
distribution over the RBF neurons that describes the motion
primitives. The activation of RBF neurons can be selected with
a threshold such that only RBF neurons with maximal response
is counted.

The severity of mobility deficits are classified and quantified
by using the histograms. The features are designed to be rep-
resentative, so we design deep learning models after the BoMP
model as a classifier, considering the complexity of the whole
architecture, as given in Fig. 3. A fifteen-layers convolutional
neural network (CNN) model has been designed for classifying
motion primitives. To avoid overfitting, we added two dropout
layers. The first one is added after the input layer with a 0.5
dropout rate. The second one is added after the second convolu-
tional layer with a 0.3 dropout rate. The ReLLU has been adopted
as the activation function for each layer except the output layer.
The Sigmoid has been used as the activation function for the
output layer.

The severity of mobility deficits is quantified by the weights
of the motion primitives in whole-body motion. The motion
primitives are, however, not explainable, i.e., we cannot dis-
tinguish the corresponding dysfunctional body segments from
a motion primitive. Though we may be able to focus on one
particular body segment, we cannot use motion primitives to
identify the root cause of mobility deficits that may be helpful
for the intervention for muscular or biomechanical dysfunctions.

IV. EXPERIMENT

We evaluated the effectiveness of the proposed method in
detecting the level of mobility deficits caused by PD. We ap-
proximated motion primitives on the laboratory dataset that
contains EMG signals and the clinical dataset. Due to the limited
dataset, we simplified the approximation of (12) and (13) with
the K-SVD method. We compared the reconstructed results
from different sizes of approximated dictionaries. To assess the
classification accuracy of the proposed models, we have applied
the designed deep-learning models to the laboratory and clinical
datasets. A comparison study between the proposed method and
two other PD detection methods has been done. To investigate
the generalization of the proposed method, we also applied the

Fig. 4. Data collection. (a) Configuration during laboratory dataset
collection. (b) Configuration of clinical dataset collection.

method to unknown human subjects. The datasets are shared
online.!

A. Data Collection

Both laboratory data and clinical data are collected from
human subjects, in different configurations as shown in Fig. 4.
During laboratory data collection, subjects wore weights to
simulate motion deficits. During clinical data collection, both
PD patients and healthy individuals were recruited.

1) Laboratory Data: Ten healthy subjects (eight males and
two females) performed six activities (walking, squatting, pick-
ing up objects, drawing, yoga, and building toys) wearing eight
Dysystem sensors—two on the torso and three on each arm. Arm
sensors are placed on three major muscles on each arm: abductor
pollicis brevis, brachioradialis, and biceps brachii. Arm sensors
measured EMG and acceleration data along three axes (X, Y, and
Z axes), while torso sensors only measured accelerations. Each
participant performed each activity continuously for at least two
minutes.

To simulate the mobility deficits, male participants were
equipped with two five-pound sandbags, and female participants
were equipped with one five-pound sandbag. Adding weights to
the body causes mobility deficits. Participants were instructed
to wear different sandbags, starting with a 1-pound weight and
increasing incrementally to 2 1bs, 2.5 1bs, 5 Ibs, 10 1bs, and 20 Ibs.
The aim was to identify the optimal balance weight that emulates
motion instability similar to those experienced by individuals
with PD. To compare data collected from healthy subjects with
that collected from patients, each participant performed each
activity twice: once with the weights labeled as positive (illness)
and once without the weights labeled as negative (health). An
illustration of subjects wearing sandbags is shown in Fig. 4.
Although weights were equipped on only one arm, they affected
the entire body’s movement.

2) Clinical Data: Clinical data were collected from eight
participants who had different levels of Parkinson’s disease
(including level 0 means health). Five sensors were placed on
the subjects, each collecting accelerations in the X, Y, and Z
axes. Two sensors were placed on each subject’s arm, and one
was placed on the chest of each subject. An illustration of the
locations of each sensor is shown in Fig. 4. Participants are
instructed to sit in a bed in front of a table. Each participant was

Uhttps://github.com/hhelium/Quantification-and-Diagnosis-of-Mobility-
Deficits.git
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Fig. 5. Data pre-processing results. The top row shows the laboratory
data, which has 30 features, and the bottom row shows the clinical data,
which has 15 features. Each line represents a single feature.

required to complete eight actions, including raising arms, mov-
ing arms from horizontal to up, moving arms from horizontal to
down, moving arms from horizontal to left, moving arms from
horizontal to right, stacking objects, grasping items, and passing
objects from left hand to right hand.

3) Data Pre-Processing: To learn the motion primitives,
we pre-processed the data through re-sampling, gravity com-
pensation, normalization, and segmentation. Since the EMG
signal and acceleration have different sampling frequencies, we
re-sampled the EMG signal based on the acceleration signal’s
frequency. We compensated for gravity using a bandpass Butter-
worth filter [28] with a lower cutoff frequency of 0 Hz and an up-
per cutoff frequency of 0.168 Hz. The component of acceleration
caused by the local gravity was removed by the high-pass filter.
‘We then normalized the gravity-compensated signal in the region
of [—1, 1] using the MinMax method. To ensure uniform input
shape for the designed deep learning models, we segmented the
gravity-compensated data in 150 s lengths with 50 s stepping
time. The clinical data underwent the same pre-processing steps,
with the exception of re-sampling and stepping time. As the sen-
sors used in clinical data collection does not include EMG sig-
nals, re-sampling was not necessary, and the stepping time was
selected as 1 s due to limited data. To segment sensor readings in
the laboratory data, a 50-second step time was chosen to provide
adequate data for model training. In contrast, the sensors used
for laboratory and clinical data collection have discrepancies in
sampling rates. Thus, a one-second step time was employed to
gather requisite data for model training from clinical sources.
These time intervals divided sensor readings into segments of
consistent length, ensuring each segment contains a suitable
amount of data points for training purposes. The pre-processing
results for the laboratory and clinical data are shown in Fig. 5,
with the upper row displaying each pre-processing result for one
segment of the laboratory data and the lower row shows the same
for one segment of the clinical data.

Due to the limitations in clinical data collection, laboratory
and clinical data were not collected in an identical setting. Eight
sensors were placed on subjects in the laboratory data collection,
while only five were placed on subjects in the clinical setup.
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Fig. 6. Visualization of the learned dictionary, approximated motion
primitives, the reconstructed data, and the corresponding ground truth.
Colors nearing red indicate values approaching positive one, while those
nearing blue signify values approaching negative one.

The sensors used in laboratory data collection can collect four
features, including EMG and accelerations along the X, Y, and
Z axes. However, the sensors used in the clinical data collection
only collect the accelerations along the X, Y, and Z axes. Due to
physical and practical limitations, the laboratory and clinical
data were collected in different locations and with different
groups of subjects. The clinical dataset was collected before
as supported by a different project, when EMG data were not re-
quired. Based on experiment results, the classification accuracy
for motion deficits utilizing laboratory data, which include both
IMU and EMG data, surpasses that based on clinical data, which
solely comprises IMU data. This discrepancy may attribute
to the absence of EMG data during clinical data collection.
The application of the approach in the future will involve the
collection of both EMG and IMU data, as contemporary sensors
commonly integrate both functionalities.

B. Discovered Motion Primitives

We conducted two experiments to determine the best size
for the approximated dictionary. These experiments focused
on evaluating the textures of the reconstructed results and the
reconstruction error. After analyzing the results, we found that
the optimal size for the dictionary is 30, which provides the most
accurate classification accuracy for mobility deficits.

1) The Texture of Reconstructed Data With Different
Sizes of Dictionary: The first experiment was designed to
assess the impact of different dictionary sizes on the texture
difference between the reconstructed data Y~ derived from ap-
proximated motion primitives and the original data Y, measured
through the reconstruction error ¢ computed as € = ||Y — Y||s.
An example of dictionary representation and discovered motion
primitives is shown in Fig. 6, the first left one represents the
learned dictionary D from the input data, the second left one
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Fig. 7. Reconstruction results with different dictionary sizes for the
laboratory data. The original column is the corresponding ground truth.
The dictionary sizes are listed on the top of each reconstructed result.

The red rectangles are textures difference, and the blue rectangles are
missing textures.

portrays the approximated motion primitives of the input data,
a. The two right columns display the reconstructed data and
their corresponding original data.

In this experiment, we combined the data from each subject
into one dataset and learned the dictionary. The feature-length
was 150, so the vocabulary size was also 150. We adjusted the
vocabulary numbers to 15, 18, 21, 24, 27, and 30 while keeping
the non-zero coefficient fixed at three. We selected multipliers of
five, six, seven, eight, nine, and ten, as anything below five could
not approximate a valid dictionary, and the algorithm would not
converge, while those above ten dramatically increased the com-
putation time. Additionally, we investigated different dictionary
sizes’ impact on laboratory and clinical data. We found that
using larger multipliers to approximate the dictionary resulted
in lower PD detection accuracy than using smaller multipliers.

We used learned motion primitives from a dictionary and
corresponding ground truth to reconstruct laboratory data. The
reconstructed data and their corresponding original data are
shown in Fig. 7. The “illness” action involved subjects wearing
weights to simulate mobility deficits, while the “healthy” the
action involved the same motion without weights. From Fig. 7,
the major features of the original motion data were retrieved
in the reconstructed data. As the dictionary size increased, the
textures of the reconstructed results became finer, as highlighted
by the red rectangles in the “illness” and “healthy” actions.
Moreover, some parts of the reconstructed results were finer
with smaller dictionary sizes than with larger ones, as boxed
by the blue rectangles in Fig. 7. Specifically, the reconstructed
result using a dictionary size of 18 was finer than that using a
dictionary size of 21.

In Fig. 8, we compared reconstructed clinical data with its
original data. The figure uses darker colors to show higher data
values. From Fig. 8, we can see that larger dictionary sizes lead
to more detailed reconstructions of different parts, as indicated
by the green rectangles. The dictionary sizes we selected for
reconstructing clinical data are 15, 18, 21, 24, 27, and 30. We
chose to demonstrate results from one mildly affected action
from one subject, as similar patterns were observed in other
results.

Original
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Fig. 8. Reconstruction results with different dictionary sizes for the
clinical data. The original column is the corresponding ground truth. The
dictionary sizes are listed on the top of each reconstructed result.

TABLE |
RECONSTRUCTION ERRORS WITH DIFFERENT DICTIONARY SIZES

Dictionary 15 18 21 24 27 30
Size

Laboratory 163 % 159 % 154 % 151 % 148 % 145 %
Clinical 3.6% 29 % 2.2% 1.7% 1.7 % 1.6 %

2) Reconstruction Error of Dictionaries with Different
Sizes: We analyzed the reconstruction errors of different dic-
tionary sizes and presented the results in Table I. The columns
labeled ‘Laboratory’ indicate the reconstruction error for labo-
ratory data, while the columns labeled ’Clinical’ indicate the
reconstruction error for clinical data. Table I shows that the
reconstruction errors decrease as the vocabulary size of the
dictionary increase. The smallest dictionary size (15) has the
highest reconstruction error (16.47%) for laboratory data and
(3.66%) for clinical data.

In contrast, the largest dictionary size (30) has the smallest
reconstruction error (14.48%) for laboratory data and (1.59%)
for clinical data. Furthermore, the reduction in reconstruction
errors was more gradual for clinical data than laboratory data.
This is because laboratory data has more features than clinical
data, making it harder to reconstruct. Based on the analysis, we
selected the dictionaries with the smallest reconstruction errors
for both laboratory data (30) and clinical data (30).

C. Quantification of Mobility Deficit for Known Subjects

To evaluate the efficacy of the proposed methods, we investi-
gated the classification accuracy for mobility deficit severity on
the laboratory and clinical data. Twelve actions were evaluated
for each participant from the laboratory dataset: six positive
actions simulating actions under PD influence and six negative
actions considered healthy counterparts. We formulated the
problem as a binary classification, with outputs indicating either
a positive (mobility deficit) or negative (no mobility deficit)
result. We divided 3,660 inputs into 75% (2745) training data
and 25% (915) testing data.

The UPDRS categorizes the severity of Parkinson’s Disease
into three distinct levels [29], [30]. In alignment with this clas-
sification system, we structured the classification results into
three categories accordingly. We approached the clinical data
as a multi-label classification problem with outputs indicating
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TABLE Il
COMPARISON OF MOBILITY DEFICIT PREDICTION WITH DIFFERENT
METHODS FOR LABORATORY DATA

TABLE IlI
COMPARISION OF MOBILITY DEFICIT PREDICTION WITH DIFFERENT
METHODS FOR CLINICAL DATA

Precision  Recall F-1 Score  Accuracy Precision  Recall ~F-1 Score  Accuracy
. Health 1 Health 95% 97% 96%
This paper ealthy 00% 88% 93% 93.95% This paper ealthy o o o 00.84%
Illness 89% 100% 94% Mild 99% 98% 99%
Linear Healthy  64% 65% 64% Severe 97% 97% 97%
Model 64.86%
Tllness 65% 65% 65% Lincar Healthy 0 0 0
69.48%
M d ] 1 0 (v 0
SVM Healthy 92% 91% 91% 91.35% ode Mild 72% 88% 79%
Tllness 92% 91% 91% Severe 60% 40% 48%
Healthy  92% 64% 76%
SYM Mild 91% 95% 93% 90.35%
Severe 88% 85% 87%
756 21 2
vo - 472% 013% 0.01%
g
©
E w1 4 . . e data, most falsely classified results were misclassified as mildly
B affected data.
g 8 118 | 4595 We compared the proposed classifier with other methods [31],
= -1 % .74% 729 .. .
= 010 Lv2 9 005% 0.74% U [32], and the comparision results are shown in Table III. The
0247 i . . .
— Lv1:1.0 T T T proposed model achieved 99.84%, outperforming the linear
I & model with logistic regression [31] by 30.36% and SVM [32]
i T T T T T : :
0.0 02 04 06 08 10 model by. 9.49%: The propf)ged mod.els achieved the highest
False Positive Rate accuracy in classifying mobility deficits that due to the PD for
both laboratory data and clinical data. Therefore, using motion
Fig. 9. Performance of the mobility deficit classification on known clin-

ical data. The plot contains ROC curves, AUC scores, and a confusion
matrix for each label.

health, mild PD affection, and severe PD affection. In this paper,
the motion primitive is a scale to differentiate the severity of
mobility deficits. From the extracted motion primitives, we
classified the severity of the motion deficits by the amount
of primitives representing different mobility deficits. There are
64,000 data in the clinical data, 75% (48,000) of the total data is
used as training data, and 25% (19,200) is used as testing data.

The performance of the proposed methods has been inves-
tigated using both laboratory and clinical data. The proposed
CNN-based classifier achieved a mobility deficit classification
accuracy of 93.95% on laboratory data. 5% of the test data with
healthy labels were classified as an illness, and 4% of the test
data with illness labels were classified as healthy.

We have compared the proposed method with other methods,
and the comparison results are shown in Table II. The accuracy of
the proposed model achieved 93.95%, which is 29.09% higher
than the linear model with logistic regression [31] and 2.6%
higher than the support vector machine (SVM) method [32].
These results indicate that the proposed CNN-based model can
effectively classify PD-related mobility deficits on the laboratory
data and outperforms other methods in classifying PD-affected
mobility deficits.

The proposed MLP-based model achieved 99.84% accuracy
when classifying three levels of mobility deficits affected by
PD. The confusion matrix in Fig. 9 indicates that the majority of
data are mildly affected by PD. Because the unbalanced training

primitives that are learned from the approximated dictionary can
enhance the ability to classify the mobility deficits level caused
by PD.

To investigate the difference in classification accuracy be-
tween using motion primitives and without using motion prim-
itives as inputs. We conducted an experiment to compare the
effectiveness of using motion primitives versus raw sensory
data for detecting mobility deficits. Both experiments used
CNN-based classifiers with the same structures. However, one
experiment used motion primitives as training data, while the
other used raw sensory data as input. The classifier trained
with motion primitives achieved a 95% accuracy rate on known
test data and a 61.69% accuracy rate on unknown test data in
92.41 seconds. On the other hand, the classifier trained with
raw sensory data had a classification accuracy of 48.08% on
known test data and 46.56% on unknown test data. Both known
and unknown test data were not included in the training dataset.
Known test data was obtained by splitting the total dataset, while
unknown test data was gathered from participants who were not
part of the total dataset.

D. Quantification of Mobility Deficit for New Subjects

To evaluate the efficacy of the proposed method on new
subjects, we applied the models to new subjects that were not
included in the training data for both laboratory and clinical data.
The accuracy of the classifiers was 59.25% (proposed method),
48.88% [31],and 64.00% [32]. The SVM classifier [32] achieved
the highest classification accuracy. The recall of the classifiers
on unseen test subjects is shown in Fig. 1 1. The proposed method
achieved the highest recall, which is 83.27%, and it is 35.8%
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ent methods are applied to the laboratory data, which include the linear
model [31], SVM [32], and the proposed method.

higher than the linear model with logistic regression [31], and
14.22% higher than the SVM model [32].

Similar experiments were performed on the clinical data,
where 798 (4%) samples were from healthy subjects, 12725
(66.28%) were from mildly affected subjects, and 5677
(29.57%) were from the severely affected subjects. Because the
percentage of healthy subjects is low, we removed all such data
to evaluate the proposed method’s efficacy. The classification
accuracy achieved by each model was: the proposed method
(68.4%), the linear model with logistic regression [31] (72.47%),
and SVM model [32] (67.36%). The linear model with logis-
tic regression [31] achieved the highest average classification
accuracy. The recalls of classification models are shown in
Fig. 12. The proposed model achieved the highest recall, which
is 38%. It is 10.38% higher than the linear model with logistic
regression [31], and 0.61% higher than SVM model [32]. Fig. 10
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Fig. 13. Comparison of the training motion primitives and the testing
motion primitives for affected action by the same level of motion deficits.
Each dot denotes a value in the corresponding motion primitives.

presents the ROC curves and AUC values for each participant in
the clinical dataset. The level of mobility deficits varies across
tasks for the same participants. Consequently, the number of
ROC curves and AUC values differ for each level of mobility
deficit. Additionally, the ROC curve and AUC results for the
same participant vary depending on the level of mobility deficit.

In the previous section, we compared the average classifi-
cation accuracy of different models using both laboratory and
clinical data. Tables IT and ITI show that the proposed method per-
formed better than other methods on known subjects. However,
it did not achieve the highest accuracy on unknown subjects.
The proposed method is based on deep learning, which excels
at approximating data with features within the distribution,
but deep learning methods are not as effective when features
fall outside the distribution. Fig. 13 illustrates that the motion
primitives of the unknown patient fall outside the distribution.
The first row in the figure displays features of the training data
while the second row shows features of the testing data from the
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same group. Each dot represents a value of an element in the
vocabulary.

Based on the results shown in Figs. 11 and 12, the proposed
method achieved the highest recall for both laboratory and
clinical data. The proposed model can achieve better recall than
classification accuracy because the motion patterns of healthy
subjects can vary. However, the motion patterns are similar if
subjects’. mobility deficits are similar or close. Therefore, the
classification model can more easily detect mobility deficits than
a healthy subjects’ motion patterns. We need data from a broad
spectrum of patients to achieve high accuracy.

V. CONCLUSION

The paper revealed that motion primitives exist in simple
mobility measurements and demonstrated the effectiveness of
the primitives in quantifying mobility deficits. This paper has
provided a user-specific metric that quantifies the mobility
deficits in terms of the quantities of motion primitives that are
learned from motion tracking data. The approach can be used to
replace observation-based clinical scaling and provide feedback
in real-time to reinforce positive recovery during rehabilitation.
The proposed method outperformed two other PD detection
methods on known subjects and the proposed method performed
better in diagnosing unknown subjects with mobility deficits.
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