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Abstract. Problem definition: Data analytics models and machine learning algorithms are
increasingly deployed to support consequential decision-making processes, from deciding
which applicants will receive job offers and loans to university enrollments and medical
interventions. However, recent studies show these models may unintentionally amplify
human bias and yield significant unfavorable decisions to specific groups. Methodology/
results: We propose a distributionally robust classification model with a fairness constraint
that encourages the classifier to be fair in the equality of opportunity criterion. We use a
type-co Wasserstein ambiguity set centered at the empirical distribution to represent distri-
butional uncertainty and derive a conservative reformulation for the worst-case equal
opportunity unfairness measure. We show that the model is equivalent to a mixed binary
conic optimization problem, which standard off-the-shelf solvers can solve. We propose a
convex, hinge-loss-based model for large problem instances whose reformulation does not
incur binary variables to improve scalability. Moreover, we also consider the distribution-
ally robust learning problem with a generic ground transportation cost to hedge against
the label and sensitive attribute uncertainties. We numerically examine the performance of
our proposed models on five real-world data sets related to individual analysis. Compared
with the state-of-the-art methods, our proposed approaches significantly improve fairness
with negligible loss of predictive accuracy in the testing data set. Managerial implications:
Our paper raises awareness that bias may arise when predictive models are used in service
and operations. It generally comes from human bias, for example, imbalanced data collec-
tion or low sample sizes, and is further amplified by algorithms. Incorporating fairness
constraints and the distributionally robust optimization (DRO) scheme is a powerful way
to alleviate algorithmic biases.
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1. Introduction

2014) are designed to meet the needs of different clas-
ses of customers. In hospital appointment scheduling,

High-quality individual analysis is recently attracting
attention in operations management and data analytics
because of the increasing availability of data (Misi¢ and
Perakis 2020). To provide the target individuals with the
most appropriate products, services, and offers, many
companies, institutions, and governmental departments
are deploying advanced data analytics models to ana-
lyze the characteristics of the users. For example, in loan
audit (Bose and Mahapatra 2001), inductive learning
systems and credit scoring models optimize the lending
decisions based on the predicted default risk of the
applicants (Shaw and Gentry 1988, Jacobson and Rosz-
bach 2003). In retail, personalized strategies ranging
from pricing (Chen et al. 2022), product offering (Baard-
man et al. 2023), to assortment planning (Golrezaei et al.
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prediction models are deployed to identify patients
with high nonshow probability to schedule them into
or right after overbooked slots (Mak et al. 2014). In
medical interventions, machine learning algorithms
are trained to diagnose disease and provide treatment
advice to doctors (Shipp et al. 2002, Obermeyer and
Emanuel 2016). Furthermore, algorithmic recidivism
scores in criminal justice support judges assessing de-
fendants’ future criminal risk (Monahan and Skeem
2016). Finally, in company recruitment (Lohr 2013,
Dastin 2022) and university admissions (Chang 2006,
Kabakchieva 2013), statistical learning models help
reviewers screen out qualified candidates from a vast
pool of applicants efficiently.
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Data analytics models and algorithms can extract
signals from large data sets to support consequential
decision-making processes; however, they may not
be entirely objective and can even amplify existing
human biases. An exemplary case of algorithmic bias
can be described by the well-known German data set
containing the credit scores of 1,000 candidates with
20 demographical features such as age, deposit, and
income (Dua and Graff 2017). Recent studies show
that naively adopting plain vanilla prediction models
to this data set yields remarkable biased outcomes for
young people (Bellamy et al. 2018). The reason for
these biased predictions is that the algorithms may
identify age as a determining factor to the repayment
and, thus, significantly prefer old candidates to the
young. As the collected data sets may often not repre-
sent the true population across all groups, a plain
vanilla prediction model trained on such data sets can
unintentionally amplify the bias and yield highly
unfavorable decisions for certain minority groups.
Moreover, basing any algorithmic decision on sensi-
tive attributes may be considered illegal if the learning
algorithms are regulated by law. Thus, basing loan
approval decisions on the age of the applicants may
lead to possible lawsuits against discriminatory lend-
ing (Consumer Financial Protection Bureau 2013).

Similar algorithmic unfairness issues also arise in
other service and operations management applications.
For example, the hiring recommendation system of
Amazon Al discriminated against female candidates
for technical positions (Dastin 2022). Similarly, Google’s
personalized ad targeting algorithm recommended
higher-paying executive jobs more often to male than
female candidates (Datta et al. 2015). In healthcare,
existing overbooking systems may unintentionally
enlarge the correlation between races and no-show
probabilities, resulting in significantly longer waiting
times for patients of color (Samorani et al. 2022). In
addition, the judicial unfairness brought by machine
learning algorithms has also evoked widespread social
concerns. An algorithm used by the U.S. justice system
to predict future criminals is shown to be significantly
biased against African Americans: It falsely flags black
defendants as future criminals at almost twice the rate
of white defendants (Angwin et al. 2022).

This paper focuses on the training phase of a linear
classifier, arguably one of the most popular classification
methods in the literature (Hastie et al. 2009). The classi-
fier establishes a deterministic relationship between a
feature vector X € X =R and a binary response, or
label, variable Y € Y = {—1,1}. Without any loss of gen-
erality, we associate the positive response Y = 1 with the
“desirable” outcome, such as “being hired” or “receiv-
ing a loan approval.” In the linear setting, a classifier C :
X — ) is parameterized by a slope parameter w € R”
and an offset b€ R, and the classification output is

determined through an indicator function of the form

{1
Clx) =
-1

In the context of classification, we need to find a classi-
fier that maximizes the correct classification probabil-
ity. To this end, we can consider the correct classification
probability with respect to the distribution Q as

ifw'™x+b>0,

ifw™x+b < 0.

QY (w X +b) > 0).

Complementarily, the misclassification probability with
respect to Q is defined as

QY (w X +b) < 0).

By definition, we consider that any x falling exactly on
the hyperplane w'™X + b =0 is misclassified irrespec-
tive of the true label of x. The optimal linear classifier
can be defined as the solution to the misclassification
probability minimization problem:

min  Q(Y(w™X+b) < 0). (1)
(w, b)eR4*!

Using the sample average approximation of the proba-
bility term in (1) and solving the resulting approxima-
tion problem, we can obtain an empirical classifier.
Nevertheless, as previously discussed, this empirical
classifier can be unfair because it may unjustifiably pos-
sess unequal predictive performances across different
subgroups in the population.

To address the fairness concern, we assume that there
is a single, binary sensitive attribute A€ A={0,1}.Ina
real-world setting, this sensitive attribute can represent
information such as the race, gender, or age of a person,
and it distinguishes the privileged A =1 from the un-
privileged individuals A = 0. Hereby, we define the pri-
vileged group as the group for which the empirical
classifier has higher predictive performance than for
the unprivileged group. Throughout this paper, we
assume that we possess a training data set containing N
samples of the form {(%;,4;,7,)} ., and these samples are
generated independently from a single data-generating
probability distribution. Moreover, we consider the pri-
vileged learning setting in which the sensitive informa-
tion A is only available at the training stage but not at
the testing stage (Vapnik and Vashist 2009, Quadrianto
and Sharmanska 2017). It is therefore reasonable to con-
sider only classifiers C that do not take the sensitive attri-
bute A as input.

To make the linear classifier fair, we can incorporate
a measure of fairness into Problem (1), either as a con-
straint or a regularization term added to the objective
function. There are a plethora of fairness measures that
we can use to promote fairness in this case, including
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the demographic parity (Calders et al. 2009), equalized
odds, and equal opportunity (Hardt et al. 2016, Zafar
et al. 2017) among many others. The demographic par-
ity criterion requires that the predictor be statistically
independent of the sensitive attribute A. Intuitively,
demographic parity enforces the probability of getting
good outcomes to be the same across the privileged
and unprivileged groups. However, demographic par-
ity does not consider the actual label Y. It has been
argued that demographic parity is not the most rele-
vant notion of fairness in cases where we have ground
truth on the quality of the candidates (Hardt et al.
2016, Zafar et al. 2017). In contrast, equalized odds is a
much stronger definition by using the true label Y: It
requires that the positive outcome is conditionally
independent of the sensitive attributes given the true
label. However, as we associate Y =1 with positive
outcomes such as being hired, decision makers are
generally more interested in the true-positive rate than
the false-positive rate. Also, the equalized odds crite-
rion can be too strict to hurt accuracy (Hardt et al.
2016). A reasonable relaxation of equalized odds only
imposes fairness within the desirable outcome (Y =1)
group, also known as equal opportunity (EO). The
EQ criterion requires the true-positive rate of the clas-
sifier to be invariant across the sensitive groups, and
it will be the focus of this paper. We refer the reader
to the references (Corbett-Davies et al. 2017, Choulde-
chova and Roth 2020, Berk et al. 2021, Mehrabi et al.
2021) for comprehensive treatments of fairness in
machine learning in general and in the classification
problem in particular. Unfortunately, the EO unfairness
measure is challenging to formulate due to its noncon-
vexity (Donini et al. 2018). Moreover, one can verify
that the EO unfairness constraint leads to an open feasi-
ble set, which prohibits exact mixed binary program-
ming reformulations (Jeroslow 1987). To alleviate
intractability, simple functions such as linear functions
(Agarwal et al. 2018, Donini et al. 2018) and log func-
tions (Taskesen et al. 2020) have been used to approxi-
mate the unfairness measure. Recently, the paper (Ye
and Xie 2020) proposes a mixed binary model incorpo-
rating nonconvex approximations of the fairness mea-
sures as a regularization term to enhance fairness.

The existing notions of fairness proposed in the litera-
ture necessitate precise knowledge about the joint proba-
bility distribution that governs (X, A, Y). In practice, this
distribution is rarely available to the decision makers
and is typically estimated using the empirical distri-
bution generated from the imbalanced—and possibly
biased—historical observations. Although the empirical-
based methods may work well on the observed data
set, they often fail to yield fairness in practice because
they do not generalize to out-of-sample data that have
not been observed. For example, since there are fewer
females in the technical positions at Amazon, relying on

the empirical distribution can give rise to severe overfit-
ting that yields an unfair hiring decision. Conversely,
even if the true underlying distribution is available, com-
puting the fairness of the decision is generically intracta-
ble (#P-hard; Dyer and Frieze 1988) because it involves
evaluating a multidimensional integration (e.g., comput-
ing the probability of getting hired conditionally on
being an unprivileged person).

In this paper, we endeavor to address this problem
using the ideas of distributionally robust optimization
(DRO). The DRO approach does not impose a single
distribution of the features, the sensitive attributes, and
the response label of the entities in the population.
Instead, it constructs a set of plausible probability dis-
tributions that are locally consistent with the available
data set. The DRO approach then optimizes for a safe
classifier that performs best under the most adverse
distribution from within the prescribed distribution
set. This approach thus may yield a fair classifier that
has provable guarantees on the out-of-sample data.

Our paper belongs to an emerging class of fairness
aware distributionally robust algorithms. Recently, a
repeated loss minimization model with a y?-divergence
ambiguity set is considered in Hashimoto et al. (2018).
Alternatively, Rezaei et al. (2020) embeds the fairness
constraint in the ambiguity set and proposes a robust
classification model. When only the labels are noisy,
robust fairness constraints based on a total variation
ambiguity set are described in Wang et al. (2020).
In this paper, we consider adversarial perturbations
based on the Wasserstein distance (Mohajerin Esfahani
and Kuhn 2018, Blanchet and Murthy 2019, Kuhn et al.
2019, Gao and Kleywegt 2023, Ho-Nguyen and Wright
2023), in particular, the type-co Wasserstein distance
(Givens and Shortt 1984; Bertsimas et al. 2018, 2022;
Nguyen et al. 2020; Xie 2020). The Wasserstein distance
has attracted significant attention in machine learning
and robust optimization due to its statistical properties
and metric interpretation. We remark that Wasserstein
distributionally robust classification has been proposed
to promote individual fairness (Yurochkin et al. 2020).
Unfortunately, incorporating Wasserstein distance with
the aforementioned fairness measures to encourage
group fairness is more challenging because the deci-
sion maker has to solve a Wasserstein min-max statistic
learning problem (Blanchet et al. 2019, Shafieezadeh-
Abadeh et al. 2019, Nguyen et al. 2022) with nonconvex
conditional probability terms. The recent study (Taske-
sen et al. 2020) considers uncertainty only in the feature
space and convexifies the probability terms in the EO
unfairness measure using the log function. The con-
vexified log-EO unfairness measure is introduced to a
distributionally robust logistic regression model as a
fairness-driven regularization term to promote group
fairness. Although the trained log-probabilistic fair
logistic classifier demonstrates its effectiveness in the
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empirical experiments, it cannot offer any guarantee on
the misclassification probability or fairness score, even
within the training data set. Compared with Taskesen
et al. (2020), our model minimizes the misclassification
probability while controlling the EO unfairness mea-
sure, which is more interpretable than the log-prob loss
and log-EO unfairness measure used in Taskesen et al.
(2020). Unfortunately, the nominal model leads to an
open feasible region, which is challenging to write an
exact reformulation that off-the-shelf solvers can read-
ily solve (MOSEK ApS 2024). We thus propose a tight
conservative approximation to the open safety set and
derive a mixed-binary conic reformulation. In addition,
we invoke the Wasserstein robust learning framework
to handle uncertainty from the features, the sensitive
attributes, and the response label of the entities in the
population. Considering the mixed-binary model may
encounter computational difficulties with large data
sets, we also develop a conservative convex model that
can be solved efficiently with large instances. Both
models provide performance guarantees on the mis-
classification probability and unfairness score and
achieve attractive performance in the numerical
experiments.

1.1. Contributions
The contributions of this paper can be summarized as
follows.

e A new distributionally robust fairness aware
classifier model: We propose a one-sided unfairness
measure motivated by the EO criterion and impose
this unfairness measure as a constraint of a distribu-
tionally robust misclassification probability minimiza-
tion problem. Compared with the generally adopted
two-sided unfairness measures (Agarwal et al. 2018,
Taskesen et al. 2020, Ye and Xie 2020), this one-sided
unfairness measure reduces the number of constraints
by explicitly tracking the difference of true-positive
rate between the privileged and unprivileged groups.
We then consider the worst-case unfairness measure
and the worst-case misclassification probability under
the most unfavorable distributions within the type-co
Wasserstein ambiguity set constructed around the
empirical distribution. The developed distributionally
robust fairness aware classifier can manage multiple
sources of uncertainty, such as those from features,
labels, and marginal probabilities. If the radius of the
ambiguity set diminishes to zero, our formulation
reverts to the unfairness measure evaluated at the
empirical distribution. As such, our proposed robust
learning scheme can be leveraged as a regularization
of the empirical-based method.

e Tight conservative approximation and its refor-
mulation: Unfortunately, the nominal distributionally
robust fairness aware classification problem suffers
from the openness issue: its feasible region may be

open, and its objective function may not be lower-
semicontinuous. This issue prohibits an exact refor-
mulation in a form that can be readily understood and
solved by off-the-shelf optimization solvers. We pre-
sent an arbitrarily precise approximation by substitut-
ing the open safety set with a tight inner closed
approximation. The approximation admits a mixed-
binary conic reformulation, which off-the-shelf solvers
can solve.

e Hinge-loss-based fairness aware model: To en-
hance scalability, we propose a convex distributionally
robust fairness aware classification model: This model
uses the convex hinge loss function to approximate the
unfairness measure and the objective function. Experi-
mental results demonstrate that this classifier generates
a marked improvement in fairness, with a negligible
loss of predictive accuracy. Interestingly, minimizing
the expected hinge loss is precisely the conditional value
at risk (CVaR) approximation of the misclassification
probability minimization problem.

The paper is organized as follows. Section 2 describes
the distributionally robust fairness aware classification
problem. Section 3 proposes a conservative approxima-
tion to the original problem and provides a binary opti-
mization reformulation for training the model. Section 4
further proposes a convex fairness aware model for
large instances, and a convex optimization reformula-
tion is derived for training. Section 5 discusses the situa-
tion of uncertainties in the sensitive attribute and label.
Finally, Section 6 reports on the numerical experiments.

1.2. Notations

For any set S, we use M(S) to denote the set of proba-
bility measures supported on S and |S| to denote its
cardinality. For any logical expression &, the indicator
function I(€) admits value 1 if £ is true and value 0 if
€ is false. For any norm |[|-|| on R?, we use |||, to
denote its dual norm. We use R, to denote the set of
nonnegative real numbers and R, to denote the set of
strictly positive real numbers. For any vector x € R"
and y € R", we define (x,y) € R to be the combina-
tion of vectors x and y.

2. Distributionally Robust Fairness Aware
Linear Classifiers

Throughout this section, we focus on promoting the

fairness of a linear classifier with respect to the criterion

of equal opportunity, also known as equality of oppor-

tunity (Hardt et al. 2016). This criterion is formally

defined as follows.

Definition 2.1 (EO). A classifier C: X — ) satisfies the
equal opportunity criterion relative to a probability
measure Q if

QCX)=1]A=1,Y=1)=Q(CX)=1]A=0,Y =1).
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The definition requires that the true-positive rate is the
same across the privileged and unprivileged groups. In
practice, we often observe that the classifier may have
higher true-positive rate for the privileged group A = 1.
We track this performance discrepancy using the one-
sided EO unfairness measure defined by

U(w,b,Q) £ QC(X)=1]A=1Y=1)
~QCX)=1lA=0,Y=1), ()

which measures the difference between the true-
positive rate of the privileged group (A = 1) and that of
the unprivileged group (A = 0).

We say that a classifier is trivial if it is parametrized
by (w,b) =(0,0) € R**}; in this case, C(x) =1 for any
input x € X. It is easy to verify that the trivial classifier
is also fair with respect to any possible distribution
Q, but it may not attain a desirable level of predictive
performance. This paper aims to search for a nontrivial
classifier that balances fairness and predictive power.
To this end, suppose that P* € M(X X AX D) is the
data-generating distribution of the joint random vector
(X, A,Y). The fair linear classifier solves the constrained
misclassification probability minimization problem:

min P*(Y(w™X +b) < 0)
st. weR!, beR ©)]
U(w,b,P*) < 1.

The objective function of (3) minimizes the misclassifi-
cation probability, whereas the constraint of (3) imposes
an upper bound 7 on the unfairness measure with
respect to P*. A major challenge of Problem (3) is that
the data-generating distribution P* is elusive to the
decision maker. Even if P* is known, the probabilistic
program (3) is, in general, computationally intractable
because computing the probability of an event involv-
ing multiple random variables belongs to the complex-
ity class #P-hard (Dyer and Frieze 1988)—which is
perceived to be harder than the class NP-hard. In a
data-driven setting, we assume that we have access to
N training samples generated from P*. Let P be the
empirical distribution supported on {(ﬁi,zii,yAi)}f\il, we
will construct an ambiguity set around P using the
Wasserstein distance. Let &2 X' X AX ) be the joint
outcome space of the covariate, the sensitive attribute,
and the label; we endow E with a metric c. A formal
definition of the Wasserstein distance is as follows.

Definition 2.2 (Wasserstein Distance). The type-I (1 <
I < +00) Wasserstein distance between two distribu-
tions Q and Q' supported on E is defined as

Wi(Q Q) 2 inf{(Ed[c(£8) ) ;e [IQ Q) ,

where I1(Q, Q") is the set of all probability measures on
E x E with marginals Q and Q’, respectively. The type-co

Wasserstein distance is defined as the limit of W, as [ tends
to oo and amounts to

Wo(QQ) 2 inf{ ess sup{e(£, &) : (£&) €2 x E}

:neH(@,Q')}.

The Wasserstein distance is an intuitive way of com-
paring two distributions when one is derived from
the other by small, nonuniform perturbations. The
decision variable 7t can be interpreted as a transporta-
tion plan for moving a mass distribution denoted by Q
to another one denoted by Q’, where the transporta-
tion cost between two points & and & is measured
using ¢(§ &). Thus, the type-l Wasserstein distance
can be viewed as the /th root of the minimum trans-
portation cost between Q and Q’. When [ tends to oo,
the type-l Wasserstein distance W;(Q,Q’) converges
to the type-oo Wasserstein distance W (Q, Q")
(Givens and Shortt 1984), where esssup is the essential
supremum (Rudin 1964). This paper constructs the
ambiguity set based on the type-co Wasserstein dis-
tance because it offers tractable reformulations with
attractive convergent properties (Xie 2020).

The ground metric on E is supposed to be separa-
ble, meaning that c can be written as a sum of three
components as

o(,ay), (x,a,y)=lx—x||+xala—a'| +xyly —y'|

for some parameters x4 € [0, +o0] and «y € [0, +o0].
Moreover, let ﬁay = IfD(A =4a,Y =y) denote the empirical
marginals constructed from the training samples.
We will consider the following marginally-constrained
ambiguity set

B(P)
Wo(Q,P) < p,
= QEM(XXAX:)}):Q(A:a/yzy):ﬁay 4

Y(a,y)e AXY
4)

which is a neighborhood around the empirical distribu-
tion . Intuitively, B(P) contains all the distributions of
(X,A,Y), whichis of a type-co Wasserstein distance less
than or equal to p from PP, and at the same time has the
same marginal distribution on (4,Y) as P. The am-
biguity set B(P) is thus parametrized by p, and the mar-
ginals p; however, the dependence on these parameters
is implicit. Adding a marginal constraint to the ambigu-
ity set is an expedient practice to achieve tractable
reformulation, especially when dealing with condi-
tional expectation constraints that are prevalent in
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Figure 1. (Color online) Classification Hyperplanes (Dashed) Obtained by Different Approaches

(a)
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e --- Robust

Notes. Color encodes the labels and shape encodes the sensitive attributes. The arrows point to the positive halfspace determined by the classifi-
cation hyperplanes. Light-colored samples depict an exemplary distribution Q € B(P). One can verify that this exemplary distribution also serves
as an extremal distribution for the purple classification hyperplane. (a) Fair and unfair. (b) Robust and nonrobust.

fairness (Taskesen et al. 2020). Indeed, the conditional
expectation is a non-linear function of the probability
measure. However, when confining inside the set B(P),
we have

QCX)=1|A=a,Y=y)

= Doy Bl oo (X ay(A, V)] Viay) e AxY,

which are linear functions of (Q and conveniently simpli-
fies the problem. We now provide a concrete example to
illustrate the aforementioned fair classification problems
and distributionally robust classification framework.

Example 2.3 (Robust Fair Classification). We consider a
simple two-dimensional fair classification problem with
12 points partitioned into two classes. The sensitive
attribute A is denoted by the shape of samples (triangle
or circle), which in real life could represent gender,
race, or any other sensitive features. A brief summary
of samples is presented in Table 1. In Figure 1(a), the
solid hyperplane represents a linear classifier that is
optimal to the misclassification probability minimiza-
tion problem (1), denoted by LC. From the classification
outcomes of LC, all circles with a positive label are clas-
sified correctly, whereas a triangle with a positive label
is classified to the negative halfspace. Therefore, this
classifier is unfair in terms of the EO criterion because
the difference in the true-positive rate between the pri-
vileged (circle) and the unprivileged (triangle) groups is

U c=5/5-0/2=1.

Table 1. Sample Classes and Sensitive Attributes

Circle (A =1) Triangle (A = 0)

Negative class (red) 4 1
Positive class (blue) 5 2

Note. In both classes, most samples come from the privileged group
(circle).

On the contrary, the dotted line is one example of a fair
linear classifier that is optimal to Problem (3) under the
empirical distribution, denoted by FLC. In the outcomes
of FLC, the triangle with a positive label is classified cor-
rectly, and the unfairness score decreases to

Upc =4/5—-1/2=03.

Figure 1(b) compares a nonrobust and a robust FLC.
The robust FLC is optimal to the distributionally
robust model (5). Intuitively, the type-co Wasserstein
ambiguity set can be visualized using a combination
of balls with radius p centered at each sample. Any
perturbation from the original sample within the cor-
responding ball constitutes a distribution Q € B(P)
(e.g., light-colored points visualize a discrete distribu-
tion Q in the Wasserstein ambiguity set). Considering
all distributions within the ambiguity set, the DRO
model will yield a robust classifier against noises and
disturbances. Conversely, although the nonrobust fair
classifier achieves the same scores under the empirical
distribution, it may suddenly fail under small pertur-
bations from the empirical distribution.

Equipped with the ambiguity set B(P), we can con-
sider the fairness aware distributionally robust linear
classification problem:

min  sup Q(Y(w'X+b) <0)
QeB(P)

st. weR? beR, (5)

sup U(w,b,Q) < 1.
QeB(P)

The constraint of Problem (5) depends on a tolerance
neR,: It requires that the true-positive rate for the
privileged group A =1 cannot be larger than the true-
positive rate for the unprivileged group A =0 plus
a tolerance 1, uniformly over all distributions in the
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ambiguity set. It is easy to verify that the trivial classi-
fier with (w, b) = (0,0) is feasible for (5) with an objec-
tive value of one.

Unfortunately, it is challenging to write an exact refor-
mulation of Problem (5) that off-the-shelf solvers can
solve. Given any probability measure Q € M(X x A x
Y), we can leverage the finite cardinality of .4 and ) to
decompose Q using its conditional measures Q,, (X € -)
=Q(X e |A=4a,Y=y). The EO unfairness measure U
defined in (2) can be written as

U(w,b,Q) £ Qu(w X +b>0)—Qu(w'X+b20).
(6)

The set (w, b) satisfying the constraint sup g, U(w, b,
Q) < 7 is, in general, an open set, and the root cause
stems from the inequality inside Qq;(w™X +b>0) in
the previous equation. To see this, consider the special
case where p =0, which implies that B(P) = {P}, and
the constraint of (5) becomes U(w,b,P) < n. Let us
define the index set Z,; ={i€[N]:d;=a,j,=1} con-
taining indices of the samples with sensitive attribute a
and label 1. We have

U(w,b,P) =Ky [p] Ww X +b > 0)1,1(A,Y)
— Pt Hw X +b > 0)1 (g, 1y(A, Y)]

1(._ X
N (Pnlz I(w'%; +b>0)

i€l

+Po O I(w % +b < 0) —ﬁ(,fIImI)-

i€,

Thus, the fairness constraint U(w,b,P) < n can be
written as

1(._ .
N (Pnl > I(w'zi+b=0)

i€l11

+Por y_ M@ Ri+b < 0) — o | Zon |) <.
i€Zy
Consider now the simplest case where Zy; is empty.
The previous constraint is simplified into

1 Ta
~ Z]I(w Xi+b>0) <.
11 ie7qy

It can be verified that for n € (0,1), the feasible region
of (w,b) with the previous constraint is an open set,
and unfortunately, this open set cannot be reformu-
lated to a bounded mixed integer program (MIP)
problem (Jeroslow 1987, theorem 2.1). For example, if
n < 1/(Np;,), then (w, b) must satisfy w'%; +b < 0 for
all i€Z,. Because the intersection of open sets is
open, the previous constraint is not bounded-MIP

representable. Similarly, the objective function of (5)
encounters a similar issue. By setting p =0, Problem
(5) is equivalent to

min T

st. weRY, beR, teR, |(w,b)| <1,
U(w,b,P) < n
P(Y(w™X +b) <0) < 7.

When 7 =0, the last constraint requires (w, b) satisfy-
ing 7;(w'%; +b) >0 Vie[N], which cannot be refor-
mulated to a bounded MIP constraint.

In the following sections, we will develop approxi-
mations to Problem (5) that can resolve these openness
issues of the feasible set and the objective function.
To conclude this section, we describe one possible ap-
proach to choosing 1 in practice. Given a training data
set, the decision maker first finds the empirical classifier
by solving (1) with Q being replaced by the empirical
probability measure. From the empirical classifier, the
decision maker can identify the group with a higher
true-positive rate as the privileged group (A = 1). Next,
the empirical unfairness score 1] is calculated by taking
the difference in the true-positive rate between the pri-
vileged and the unprivileged group. If this empirical
unfairness score is less than the tolerance level of the
decision maker, there is no need to impose fairness
constraints and resolve the fair classification problem.
If the empirical unfairness score is too large, the deci-
sion maker could gradually decrease n starting from
the empirical unfairness score 7. During this process,
the decision maker should actively monitor the classi-
fier’s performance until a fair classifier that satisfies
the requirements is found.

3. The e-Distributionally Robust Fairness
Aware Classifier

In this section, we propose an approximation of the
original problem (5) and derive its reformulation. We
first introduce a norm constraint ||(w, b)|| < 1 to restrict
the feasible region to a compact set. This constraint is a
general approach to reformulate indicator functions
(Liittschwager and Wang 1978, equation (2.9)), and
it does not alter the classification result because of
the scaling-invariant property (Shalev-Shwartz and
Ben-David 2014). Recall that the openness of the feasi-
ble set as previously described is because the function
I(w'™%; +b>0) is an upper-semicontinuous function
in the variable (w,b). Hence, to generate a closed
approximation of the feasible set, it is necessary to
switch the inequality sign highlighted in red in (6) to a
strict inequality. For notation simplicity, we use Q,, to
denote the conditional distribution, that is, Q,,(X € )
=QX € |A=a,Y =y). We consider the modified one-
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sided EO unfairness measure U, as

U.(w,b,Q) 2 Q(w™X+b>—¢) — Qu(w' X +b>0),
(7)

which is parametrized by a strictly positive value
€ € R4.. Similarly, as the objective function of (5) does
not admit an exact reformulation, we replace it with
Q(Y(w™X +b) < ¢), which is a conservative approxi-
mation of the misclassification probability for any
¢ € Ry,. The next proposition demonstrates that these
approximations are tight in the limit as ¢ tends to zero.

Proposition 3.1 (Convergence). Fix a measure Q, the
e-unfairness measure U, converges to the EO unfairenss mea-
sure U as € — 0, that is, lim._,y Uc(w,b,Q) = U(w, b, Q).
Similarly, we have lim,_,o Q(Y(w X +b) < ¢) = Q(Y(w"
X+0b) <0).

Proposition 3.1 indicates that for any fixed distribu-
tion Q and classifier (w, b), the modified objective func-
tion and unfairness measure converges to the original
terms when ¢ goes to zero. However, we cannot set ¢
to zero because minimizing Q(Y(w™X + b) < 0) returns
a trivial optimal solution (w,b) =(0,0) with optimal
value Q(Y(0"X +0) < 0) = 0. Hence, although a small ¢
value offers a good approximation, a too-small ¢ may
induce computational errors in optimization solvers.
For example, when ¢ is smaller than the constraint error
tolerance level of the solvers, the solver may still take
the trivial value (w,b) = (0,0) as optimal. In practice,
the user can decrease ¢ from a positive value and stop
until the solver returns the trivial solution to obtain a
tight approximation. Combining the modified objective
function and unfairness measure, we consider the fol-
lowing e-distributionally robust fairness aware classifi-
cation (¢-DRFC) problem:

min sup Q(Y(w'X+Db) < ¢)
QeB(P)

st. weR, beR, ||(w,b)| <1, (8)

sup U.(w,b,Q) < 1.
QeB(P)

We now show that the e-DRFC problem (8) is a conser-
vative approximation of (5), that is, the objective value

of (8) and 1 provide upper bounds on the misclassifica-
tion rate and EO unfairness measure, respectively.

Proposition 3.2 (Conservative Approximation). Let (w*, b*)
be the optimal solution to Problem (8). Then (w*,b*) is fea-
sible for Problem (5). Moreover, let v* be the corresponding
optimal value of Problem (8), then

QY ((w*) X +b") <0) <v*  VQeB®).

The e-DRFC model (8) enables decision makers to bound
the unfairness measure in the training set explicitly using

1. Moreover, as shown in Proposition 3.2, the optimal
value of Problem (8) constitutes an upper bound on
the misclassification probability.

For any ¢ € R;., we show that Problem (8) admits a
mixed binary conic reformulation. We first consider the
case where we have absolute trust in sensitive attri-
butes and labels; that is, we use the ground metric

o, a,y), (x,a,y) = lx — x|+ coa —a’| + o]y — /],

©)

where || -|| is an arbitrary norm on R?. In this setting, we
set k 4 = Ky = oo, which indicates that we have absolute
trust in the value of the sensitive attribute A and the
label Y. When c is chosen as in (9), a simple modifica-
tion of the proof of (Taskesen et al. 2021, theorem 3.2)
shows that any distribution Q with Wo(Q,P) < o0
should satisfy Q(A =a,Y =y) =p,, forall (a,y) € A X ).
Consequently, the marginal constraint defining the set
B(P) becomes redundant and can be omitted. This sim-
plification with absolute trust in the sensitive attribute
and label has been previously exploited to derive
hypothesis tests for fair classifiers (Taskesen et al. 2021)
and to train fair logistic classifier (Taskesen et al. 2020).
In Section 5, we will further discuss the general ground
metric with finite positive values of x4 and xy. The next
theorem asserts the reformulation of the min-sup prob-
lem (8) as a mixed binary conic optimization problem.

Theorem 3.3 (¢-DRFC Reformulation). Suppose that the
ground metric is prescribed using (9), then the e-DRFC
model (8) is equivalent to the conic mixed binary optimiza-
tion problem

1 N
min Nzti
i=1
st. weR,beR, te{0,1}Y, A {0, 1}V, |(w,b)] <1,
—J,(w™x; +b) + pllw|, < Mt; — ¢ Vie[N],
! ZA#LZAi—l <1,
Zulz " 1Tl &
w'x;i+pllw|, +b+e < MA; Viely,
—w g+ pllw|l, —b < MA;  VieIpy,
(10)

where M is the big-M parameter.

For notational simplicity, we present the reformula-
tion (10) with 2N binary variables. A closer investiga-
tion into Problem (10) reveals that it suffices to use
N+ |Z;| binary variables, where 71 ={i € [N]:j, =1}
is the index set of training samples with positive labels.
If || - || is either the 1-norm or the co-norm on R?, Prob-
lem (10) is a mixed binary linear optimization problem.
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If || - || is the Euclidean norm, Problem (10) becomes a
mixed binary second-order cone optimization problem.
Both problems can be solved using off-the-shelf solvers
such as MOSEK (MOSEK ApS 2024).

For the remainder of this section, we will provide the
proof for Theorem 3.3. This proof relies on the follow-
ing auxiliary result.

Lemma 3.4 (Indicator Function Reformulation). Fix any
index set KK C{1,...,N}, a radius p € Ry, a classifier (w,

b) e R and a collectzon of samples {Xy}exc. For any ¢ € R,

we have

sup I(w'xx+b>e¢)
ke X:llee—%il <p

min Z/\k

kek
st. Ae{0, 1}V,

w i, +pllwl|, +b—e < MA, VkeK,

where M is the big-M parameter.

Equipped with Lemma 3.4, we are now ready to
prove Theorem 3.3.

Proof of Theorem 3.3. By exploiting the choice of c
with an infinite unit cost on A and Y, the ambiguity
set B(P) can be re-expressed as

B(P)
Ine M(X) Vie[N],
Q(dx x da x dy) = N1

N
={QeMXXAX)Y): Zni(dx)é(,;i,yi)(da xdy), 7,

i=1

llei — 2ill < p

Vx; € supp(m;)

(11)
where supp(7;) denotes the support of the probability
measure 7; (Aliprantis and Border 2006, p. 441). We

first provide the reformulation for the objective func-
tion of (8). For any (w, b) € R**!, we have

sup QY (w'X+Db) < ¢)
QeB(P)
1 N

N sup I(f,(w x; +b) < ¢)

i=1 xillxi—%; ”<P

1
NZ}“
=

te{0,1}V,

—J,(w % +b) +pllwl|l, < Mt;—¢ Vie[N],

where the last equality follows from an epigraphical
reformulation and the result of Lemma 3.4. Next, we
provide the reformulation for the constraints of (8).
Define the following index sets Z,; ={i€ [N]:d;=a,
7;=1} VYae A, forany (w,b) € R we have

sup Qw'X+b>—¢|A=1,Y=1)
QeB(P)

—Qw'™X+b>0/A=0,Y=1)

= sup EQ[Pn I(w™X+b>—e)lg1(4,Y)
QeB(P)

. pOl H(ZUTX +b> 0)]1(0 1)(A Y)]

1/(._
:N<P1112 sup

ieZpxitlxi—%ill<p

—Po Z

i€Zo;

1/(._
:N<P1112 sup

ieZpxidlli—%ill<p

w x;+b>—¢)

Nw'x;+b> 0))

xi: sz —% |I<P

w x;+b> —¢)

Pt (IZol =D sup Iw'x;+b < 0))>

ieZgxitli—%ill<p

1 N
<|Zu| 2 s

ieTyxitlei—%ill<p

I(w x; +b>—¢)

N N
—_— I(w x;+b < 0)———|7T
Tl 22,200, ST <O =g °1|>

ieI(nxi:foi-ll<P
> -
|Io |

min |In| Z

i€l i€Zor
_ N
={ st. Ae{01}
w xi+pllw|, +b+e < MA;  VieIp
_waCi‘*‘P“w“*—b < M/\l ‘v’ieIm,

where the last equality follows by applying Lemma 3.4
twice and by noticing that Z1; N Z¢; = 0. Setting the
optimal value of the above minimization problem to be
less than 1 completes the proof. O

Remark 3.5 (Big-M Value). For practical implementa-
tion, it is sufficient to set the big-M parameter to
M = C+ pd + ¢, where C = max;enll(Xi, Dl is the larg-
est dual norm value for all combined vectors (%;,1). A
short proof is provided in Online Appendix A.

Remark 3.6 (Out-of-Sample Guarantee). We also inves-
tigate the out-of-sample performance of Model (8).
The ambiguity set (4) contains marginal constraints
that require probability measures in the ambiguity
sets to have the same marginal distribution as the
empirical distribution. This constraint invalidates the
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finite sample guarantees unless the true distribution
shares the same marginal distribution with the empir-
ical distribution. To see this, consider a simple exam-
ple: When the true marginal probability is given by
PrA=1Y=1)=1/ V2, for any finite sample size N,
the underlying distribution will not be contained in
the ambiguity set B(P) even if p— co. In Online
Appendix B, we illustrate that relaxing the marginal
constraints does admit a solvable model with attrac-
tive theoretical results; however, the model is more
computationally intensive as we add an extra layer of
robustness.

Remark 3.7 (Balanced Accuracy). In the aforementioned
model, we minimize the misclassification rate because
the accuracy (one minus misclassification rate) is one of
the most popular model evaluation metrics. However,
accuracy can be misleading when the data set is imbal-
anced. In such cases, the decision maker should adopt
other metrics that are more suitable for the imbalanced
data set, such as balanced accuracy. We remark that our
modeling framework and reformulation tricks can be
easily extended to maximize balanced accuracy, the
average accuracy obtained from both the positive and
negative classes. A detailed discussion can be found in
Online Appendix A.

The deterministic reformulation (10) may encounter
computational difficulties as the sample size N grows
because it involves O(N) binary variables. Thus, there
is merit in studying tractable approximations that
scale better with the sample size. The following sec-
tion proposes one such approximation.

4. The Hinge Distributionally Robust
Fairness Aware Classifier

We propose a convex approximation of Problem (5),
which requires no binary variables. Observe that Prob-
lem (5) involves probability values in both the objective
function and the unfairness constraint, and we will use
conservative approximations of these probabilities in
the sequel. First, we have for any distribution QQ and for
any classifier (w, b):

QY (w'X +b) <0)=Eg[I(Y(w X +b) < 0)]
< Eg[max{0,1 - Y(w'X +)],
where the previous inequality follows from the fact that

I(z < 0) < max{0,1—z}. As a consequence, the objec-
tive function of Problem (5) can be upper-bounded as

sup Q(Y(w'™X+b) <0)
QeB(P)
< sup Eg[max{0,1—Y(w X +b)].
QeB(P)

This upper bound is also known as the hinge loss upper
bound of the misclassification error that is well known

in the machine learning literature (Chapelle et al. 2008,
Bach 2021). Next, we consider an approximation of the
EO unfairness measure. We rewrite the EO unfairness
measure (2) as

U(w,b,Q) =Qp(w'X+b>0)+Quw ' X+b < 0)—1
= Eg, [I(@ X +b>0)]
+Eq, [[(w'X+b < 0)] - 1.

Inspired by the previous hinge loss approximation, we
propose the hinge EO unfairness measure:

H(w,b,Q) £ Eg,, [max{0,1 +w"X + b}]
+Eg, [max{0,1 —w X — b}] — 1.

The hinge unfairness measure H is convex in (w,b).
To see this, each term max{0,1+w'x+b} and
max{0,1 —w'x — b} are convex in (w,b) for any reali-
zation X =x. Because taking expectation preserves
convexity (Boyd and Vandenberghe 2004, section
3.2.1), all the expectation terms in the previous equa-
tion are hence convex in (w, b). The function H is con-
vex for any fixed distribution Q because it is a
pointwise maximum of two convex functions (Boyd
and Vandenberghe 2004, section 3.2.3). Contrary to
the unfairness measure U, defined in Section 3, the
hinge unfairness measure does not constitute a tight
upper bound for the EO unfairness measure.

Combining the hinge loss objective and the hinge
unfairness measure, we propose the hinge distribution-
ally robust fairness aware classification (HDRFC) prob-
lem:

min  sup Eg[max{0,1— Y(w X + b)}]
QeB(P)

st. weR! beR, (12)

sup H(w,b,Q) < C.
QeB(P)

The constraint of Problem (8) depends on a tolerance
C € R,: It requires that the hinge unfairness measure be
smaller than C, uniformly over all distributions in the
ambiguity set. Because IH shares a different domain
with U, we deliberately use a separate parameter C €
R, in (12), which can differ from the parameter n € R,
in (5). The way to choose C is similar to the approach of
choosing 7. Given a training data set, the decision
maker first finds the empirical classifier by solving
Problem (12) without the fairness constraint under the
empirical distribution. From the empirical classifier,
the decision maker can identify the group with a higher
true-positive rate as the privileged group (A = 1). Next,
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the empirical unfairness score 7 and ( are calculated
based on the EO and hinge EO unfairness measure,
respectively. If the empirical EO unfairness score 1j is
less than the tolerance level of the decision maker, there
is no need to impose fairness constraints and resolve
the fair classification problem. If the empirical unfair-
ness score is too large, the decision maker could gradu-
ally decrease C starting from the empirical unfairness
score C. During this process, the decision maker should
actively monitor the performance of Model (12) until a
fair classifier that satisfies the requirements is found.
The following proposition illustrates that the HDRFC
model is a conservative approximation to the original
problem (5).

Proposition 4.1 (Conservative Approximation). Suppose
that Problem (12) with parameter C admits an optimal solu-
tion (w*,b*). Let v* be the corresponding optimal value of
Problem (12) associated with (w*, b*). Then

QY(w*)'X+b*) <0) <v* VQeB(P).
Furthermore, if C = 1, then (w*,b") is also feasible for Prob-
lem (5).

We next present the main result of this section, which
asserts that the HDRFC problem (12) can be reformu-
lated as a conic optimization problem.

Theorem 4.2 (HDRFC Reformulation). Suppose that the
ground metric is prescribed using (9), the HDRFC model
(12) is a convex optimization, and it is equivalent to the
conic optimization problem:

min N Zt,-

st. weR, beR, teRY, AcRY,

—J (TR +b) +pllwll, <t —1 Vie[N],
—l—§2M+ ! dAh-1<¢
Zul & |Zol &
1+w™%; + pllw|, +b < A; YieT,
1—w™%; +pllw|l, —b < A VieTo.

(13)

Proof of Theorem 4.2. Because taking pointwise
supremum over an infinite set of convex functions pre-
serves convexity (Boyd and Vandenberghe 2004, sec-
tion 3.2.3), we can observe that the objective function
and the constraint function of (12) are both convex.
Hence, (12) is a convex optimization problem. Exploit-
ing Reformulation (11) of the set B(), we first reformu-
late the objective function of (12). For any (w, b) € R,

we have

sup Eg[max{0,1—Y(w X +b)}]
QeB(P)
N

= —Z sup max{0,1—7,(w'x;+b)}
N i=1 xitllvi—%il| <p

1§5 {
=— ) max<0,1—
N i=1

inf . (w'x;+ b)}

xillei—%il| < p

N

1
min —Ejn
Ni:l
] st teRrY,

—J(w % +b) +pllw|, <t;—1 Vie[N],

where the last equality follows from an epigraphical
reformulation and the properties of the dual norm.
Next, we provide the reformulation for the constraints
of (12). For any (w, b) € R*!, we have

sup Eg, [max{0,1+w"X +b}]
QeB(P)

+Eq,, [max{0,1 —w'X - b}] -1

= sup EQ[ﬁfllmax{O,l +w X +b}g1)(A,Y)
QeB(P)

+ Py max{0,1 —w X — b} 1)(4,Y)] -1

1/(._
=% <p111 Z sup max{0,1+w x;+b}

ieIpxidllki—%ill<p

+ ﬁall Z sup max{0,1—w'x; —b}— ﬁgf | Zo1 |>

ieZgxisli—%ill<p

1 1
min Ai+—— Ai—1
|I11|g;1 |101|;;1
=) st AeRY,
1+w™; +pllwl, +b < A, Vi€,
1-—w'x;+pllwll, b < A;  VieIy,

where the last equality follows by applying Lemma 3.4
twice and by noticing that Z,1 N Z,1 = 0. Setting the
optimal value of the previous minimization problem to
be less than 17 completes the proof. [

If || -|| is either a 1-norm or an co-norm on R¢, Prob-
lem (13) is a linear optimization problem. If ||-|| is
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an Euclidean norm, Problem (13) becomes a second-
order cone optimization problem. Both problems can
be solved using off-the-shelf solvers such as MOSEK
(MOSEK ApS 2024).

Remark 4.3 (Balanced Hinge Loss). For imbalanced data
sets, one can also convexify the balanced misclassifica-
tion rate using the hinge loss function. A brief discus-
sion is provided in Online Appendix A.

We now benchmark the e-DRFC model with the
HDRFC model. The reformulation of the &e-DRFC
problem (10) involves 2N binary variables and 2N big-
M constraints. In contrast, the HDRFC reformulation
(13) only contains 2N continuous variables and 2N
convex constraints. HDRFC is more suitable for large
instances because it is a continuous problem, a signifi-
cant advantage compared with the e-DRFC problem.
The numerical results in Section 6 demonstrate that
the hinge unfairness measure performs competitively.

5. Training with General Ground Metric
Previous sections have considered the absolute trust
case of the ground cost (9) in which « 4 = ky = co. Here,
we consider a general ground metric: For some finite
values of x4 and «ky, we set

(&, a",y), (x,a,y) = llx = X'l + kala —a'| + 1y ly =y
(14)

The case for finite k4 and «y is particularly relevant
when we have noisy observations of the sensitive attri-
butes and class labels (Shafieezadeh-Abadeh et al. 2019).
Without any loss of generality, we will illustrate how
to incorporate this general ground metric using the
&-DRFC model (8). For the HDRFC model (12), we will
provide the corresponding results in Online Appendix
A. At the same time, we will consider a more general
definition of the ambiguity set B(P) in this section. To
this end, we first observe that the ambiguity set B(?) can
be re-expressed as follows (a formal proof can be found
in Online Appendix A):

An; e M(X X AX YY)

Vie[N]:
QZN_lzni/
i€[N]
B(P)=< Qe M(XXAX)): Weolrti,0(5,,4,9)) < P
Vie[N],
QA=aY=y)=p,,
Y(a,y)e AXY

Let y€[0,1] and consider the ambiguity set By(]f”)
parametrized by y as

B, (P)
Ini e M(X X AXY)
Vie[N]:
Q :N_lzni/
i€[N]
Weo(mi, 63,,4,9)) < P
Vie[N],
Q(AZQ,YZy)Zﬁay
V((,Z/y) S A X y/
Zni(A =d,Y=9,)

i€[N]

[I>

QeMXXxAXY):

>(1—-y)N
(15)

Notice that B, (P) differs from B(P) solely based on the
last constraint defining B3, (B). Intuitively, the parame-
ter y indicates the maximum proportion of the training
sample points that can be flipped in the (A,Y) dimen-
sion. When y =1, then the last constraint defining
By(]f”) collapses into

Z ‘Rz‘(A = ﬂAz‘,Y = };Z) > 0,

i€[N]
which holds trivially. Thus, we can deduce that 5; (I@))
=B(P). At the other extreme, when y =0, we arrive at
the constraint

> mA=d,Y=9)2N=>m(A=d,Y=7)=1
i€[N]
Vie [N].

The latter constraint resembles the case in Sections 2
and 4 with absolute trust in the sensitive attribute and
the label. Any value y € (0,1) thus can be considered an
interpolation of the robustness condition between these
two previously mentioned extreme cases.

We consider in this section the modified problem of
(8) that uses the ambiguity set (15):

min  sup QY (w'X+Db) < ¢)
QeB, ()

st. weR, beR, |(w,b) <1 (16)
sup U.(w,b,Q) < 1.

QeB,(B)

We now present the main result of this section, which
provides the reformulation for (16).
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Theorem 5.1 (e-DRFC Reformulation). Suppose that the
ground metric is prescribed using (14). For any y € (0,1),
Problem (16) is equivalent to the mixed binary conic pro-
gram:

. 1 N
inf N Zv,- + Z Payblay — 0(1—7y)
i€[N] (a,y)eAXY

st. weRY, beR, veRY, 0eR,, pmeR>?, 7e{0,1}"
ll(,b)ll < 1,
vV eRN, 0 eR,, w eR¥2 A e{0,1}V, A% {0,1}V
Ifxala—ail +xyly—9,1 < p:
Ti S Hyy — Qll(di,yﬂl)(a,y) +v;,
—J(wTx; +b) +(p — x4la —d;]
—xkyly = J;Dllwll, < Mt —¢
Vie[N] V(ay)e Ax)Y,
If ka1 —di| +xy|1 -9, < p:
Pl <ty — 01,51, +v,
w'xi+(p —wkall—di| —xp|1 =7l
+b < MA; —¢
Ifxal0—di| +xy[1—=9,] < p:
Por (A7) = 1) < gy — 003,90, 1) +v7,
—w X+ (p— x40 —d;| —xy|1 =7, Dllwll.
—b < MAY
Ifxall—dil +xy| —1—-7,] <p:
0< ) =010 —1)+V),
If k|0 —di| +xy| —1-7,] <p:

0< [‘l(’),—l - 6,]1(5“9:‘)(0’ - 1) +V’,"
Vie[N],

1 / A ’ ’
szi+ Z payluay_e(l_y)snl
i€[N] (a,y)eAXY

17)

where M is the big-M constant.

Reformulation (17) involves 3N binary variables and
6N big-M constraints. When || - || is either a 1-norm or
an co-norm on R?, Problem (17) is a mixed binary linear
optimization problem; when || - || is the Euclidean norm,
Problem (17) becomes a mixed binary second-order
cone optimization problem.

6. Numerical Experiments

In this section, we present the numerical experiments
and examine the performance of different distribution-
ally robust fair classifiers. Except for the DOB+ method
(Donini et al. 2018) that is solved by an sklearn built-in
solver and the DRFLR method (Taskesen et al. 2020)
that is solved by MOSEK 10.0, all other optimization
problems are implemented in Python 3.11 with pack-
age CVXPY 1.3.2 and solved by Gurobi 10.0.3 (Gurobi
Optimization, LLC 2023). All experiments were run on
a 2.2-GHz Intel Core i7 CPU laptop with 8 GB RAM.

6.1. Synthetic Experiments

In the first part of numerical experiments, we will use a
synthetic data set to visually illustrate the performance
of different fairness measures and the effect of intro-
ducing the DRO scheme. The data-generating distribu-
tion and the procedure of constructing this synthetic
data set are presented in Online Appendix E. We use
stratified sampling to obtain N =25 samples as the
training set and depict the classification hyperplanes
determined by the e-DRFC model (8) and the HDRFC
model (12) on it. For each of the classifiers, we will plot
three variants. The ¢-C and HC classification hyper-
planes are obtained by dropping the fairness con-
straints and setting the Wasserstein radius to zero. The
e-FC and the HFC classifiers include the fairness con-
straint but still without robustness consideration. The
e-DRFC and HDRFC models include both the fairness
constraints and the robustification scheme. We choose
the ground cost of the form (9) with ||-||, being the
li-norm and x 4 = ky = co.

We first demonstrate how the unfairness constraints
and the robustification influence the classifiers. The
sensitive attribute A (represented by circles and trian-
gles) is correlated with the feature X; on the horizontal
axis. In Figure 2, (a) and (b), all of the four fairness
aware classifiers (e-FC, e-DRFC, HFC, HDRFC) assign
lower absolute value for the weight w; corresponding
to feature X;j. Visually, this shift is reflected by the
hyperplane determined by them becoming more hori-
zontal compared with that of ¢-C and HC. Moreover,
by being robust, the e-DRFC model shifts its hyper-
plane a bit higher to hedge against potential violations
from disturbances, and the HDRFC model becomes
even more horizontal to reduce the dependence of the
classifiers on Xj.

We then assess the unfairness and accuracy scores on
the training and testing sets. The unfairness score is
evaluated by the absolute EO unfairness measure:

|U(w,b,Q)| £ |QCX) =1|A=1,Y =1) - Q(C(X)
=1]A=0,Y =1)].

Compared with the EO unfairness measure, the absolute
EO unfairness measure is more suitable for performance
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Figure 2. (Color online) Classification Hyperplanes (Dashed) Obtained by Different Approaches
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Notes. Color encodes the labels and shape encodes the sensitive attributes. (a) Classification hyperplanes obtained by the mixed binary conic
model. (b) Classification hyperplanes obtained by the convex model. (a) e-DREC. (b) HDRFC.

evaluation because it reflects if the trained fair classifier
overdampens the classifier’s performance on the privi-
leged group in the test set. From Table 2, we observe
that all the fairness aware classifiers reduce the unfair-
ness score with a moderate cost of accuracy. In addi-
tion, although including robustness yields identical
scores in the in-sample test, the out-of-sample perfor-
mances improve significantly. With the distributionally
robust model, the generated classifiers slightly deviate
from the nonrobust classifiers to hedge against possible
noises from the observed training samples, making the
decisions more stable in the unseen testing set.

In the second set of synthetic experiments, we compare
the performance of our models against the DOB+ (Donini
et al. 2018) and DRFLR (Taskesen et al. 2020). The DOB+
model is the state-of-the-art method in deterministic lin-
ear classification. It minimizes the empirical hinge loss
in the objective function and adopts a linear-loss—based
unfairness measure to approximate the EO unfairness
measure in the constraint. The DRFLR model is a distri-
butionally robust logistic regression model. It minimizes
the empirical log-loss and a fairness-driven regularization
term in the objective function. Specifically, the paper pro-
poses a log-probabilistic equalized opportunities unfairness
measure, which is a convex approximation of the EO
unfairness measure, as the fairness-driven regularization

term. The DRFLR model is also considered the state-of-
the-art method in distributionally robust fair logistic
regression.

We plot the Pareto frontiers of the ¢-FC, e-DRFC,
HFC, and HDRFC against those of DOB+ and DRFLR
in Figure 3. We draw 200 samples from the well-known
COMPAS data set (Brennan et al. 2009) and then sepa-
rate them into a group of 50 samples used for the train-
ing, whereas the remaining 150 samples are used as the
test set. For the ¢-FC and e-DRFC models, we examine
the models with different values of the unfairness con-
trolling parameter 1 on [0.05, 0.25] with five equidistant
points. Similarly, we examine the HFC and HDRFC
models with C on [1.2, 1.6] with five equidistant points,
and the DRFLR model with 1y on [0.1, min{p,, P, }] as
the DRFLR model admits tractable reformulations only
if 7, < min{py, Py, }. We fix the Wasserstein radius of
the e-DRFC and HDRFC models to 0.1 and the radius
of the DRFLR model to 0.005. Because the authors of
the DOB+ method argue that zero is a reasonable selec-
tion for the unfairness controlling parameter in their
model, and their code is implemented under this pre-
requisite, to be consistent with their paper, we fix this
parameter for the DOB+ method in our experiment.
The hyperparameter C of the DOB+ method is chosen
from [10~,10'] by cross-validation using the authors’

Table 2. Predictive Accuracy and Unfairness on Training and Test Data for the

Synthetic Experiment

Train Train Test
Classifier accuracy unfairness (|U]) Test accuracy unfairness (|U])
e-C 84.00% 1.000 72.92% 0.9303
e-FC 68.00% 0.056 58.56% 0.3560
e-DRFC 68.00% 0.056 57.33% 0.3316
HC 84.00% 1.000 70.76% 0.9269
HEC 68.00% 0.056 56.92% 0.3284
HDRFC 68.00% 0.056 57.23% 0.3984
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Figure 3. (Color online) Out-of-Sample Unfairness Accuracy
Pareto Frontiers for Different Approaches
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code. The described procedure is repeated 50 times inde-
pendently, and the results are averaged over 50 trials.
Figure 3 visualizes the Pareto frontiers of six fairness
aware models in the out-of-sample test, where the
dashed lines represent the nonrobust models (e-FC and
HFC), the solid lines represent the distributionally
robust models (e-DRFC and HDRFC), and the dotted-
solid line represents the DRFLR model. The ¢-FC and
e-DRFC models benefited from their tight conservative
approximation reformulation and dominate the DRFLR
and HFC models across all unfairness scores. Addition-
ally, the HDRFC model performs better than the DOB+
method, and because of its excellent scalability, it is
more suitable for practical problems. Finally, all robust
models (e-DRFC and HDRFC) outperform their nonro-
bust counterparts (e-FC and HFC), demonstrating the
advantages of our proposed robustification schemes.

6.2. Experiments with Real Data

We then assess the performance of the ¢-DRFC and
HDRFC models and demonstrate their superior perfor-
mances compared with competitive benchmarks. The

experiments focus on five publicly available data sets
(German, Adult, Drug, COMPAS, and Arrhythmia).
The German Credit Risks data set classifies people
described by a set of attributes as good or bad credit
risks. The data are collected from 1,000 individuals,
and we consider age (converted to binary values of
“less than or equal to 30years old” or “greater than
30years old”) as the sensitive attribute. The Adult data
set is also relevant to candidates scoring in loan audits,
where the prediction task is to determine if a person’s
annual income exceeds $50,000. It contains 13 features
concerning demographic characteristics of 45,222 in-
stances, and we consider gender as the sensitive attri-
bute. The Drug and COMPAS data sets concern
criminal assessment: The Drug data set includes 12 fea-
tures of 1,885 respondents, and the objective is to pre-
dict whether a respondent has ever used heroin or not.
COMPAS (Correctional Offender Management Profil-
ing for Alternative Sanctions) is a popular commercial
algorithm judges and parole officers use to score crimi-
nal defendants’ likelihood of reoffending. The data set
contains variables used by the COMPAS algorithm in
scoring defendants and their outcomes within two
years of the decision for more than 10,000 criminal
defendants. In both data sets, we consider ethnicity
(Black versus non-Black) as the sensitive attribute. The
Arrhythmia data set is related to medical interventions,
where the task is to distinguish between the presence
and absence of cardiac arrhythmia and to classify it in 1
of the 16 groups. In our experiment, we consider gen-
der as the sensitive attribute and reset the task with the
binary classification between normal arrhythmia and
15 other arrhythmia classes.

A summary of these five data sets is presented in
Table 3. Although the Adult data set has already been
divided into the training and testing sets, we randomly
select two-thirds of the samples for training and keep
the rest of the data for testing in all other four data sets.
It is worth noting that the Adult and Drug data sets
contain many more negative samples, indicating that
they are imbalanced.

Table 3. Data Sets Statistics and Their Sensitive Feature

Sensitive Number Positive (+) vs.
Data set Features d attribute A of samples negative (—)
German 19 Age 1,000 40.0% : 60.0%
Adult 12 Gender 32,561, 12,661 24.9%:75.1%
Drug 11 Ethnicity 1,885 21.9% :78.1%
COMPAS 10 Ethnicity 6,172 47.0% : 53.0%
Arrhythmia 279(12) Gender 452 54.2% : 45.8%

Notes. Age considers age groups greater than 30 years old and less than or equal to 30 years
old. Gender considers the two groups male and female. Ethnicity considers the ethnic groups
white and other ethnic groups. The adult data set has preassigned training and test sets. The
last column represents the proportion of positive and negative samples in each data set.
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Table 4. Test Accuracy, F; Score, and Different Unfairness Measures (Average * Standard Deviation) for N = 100

Data set Metric SVM DOB+ DRFLR HDREC &-DRFC
German Accuracy 0.71%0.02 0.70 +0.02 0.70+0.01 0.71+0.01 0.71%+0.01
Fi-score 0.80=0.01 0.81+0.02 0.79+0.02 0.81+0.01 0.82+0.02
Unfairness (|U[) 0.08 +0.04 0.05*0.03 0.03£0.02 0.02+0.01 0.03+0.01
Unfairness (|ID]) 0.09+0.05 0.06 =0.03 0.03=0.01 0.01+0.01 0.02x£0.01
Unfairness (|O|) 0.11+0.05 0.08 =0.03 0.05+0.02 0.03+0.01 0.03+0.02
COMPAS Accuracy 0.63+0.02 0.59+0.04 0.58 £0.03 0.58 +0.03 0.62+0.03
Fi-score 0.58+0.02 0.48 £0.02 0.46 =0.02 0.48+0.01 0.58+0.02
Unfairness (|U]) 0.27 £0.05 0.17+0.07 0.16 £0.06 0.15+0.05 0.17 £0.05
Unfairness (|ID|) 0.23+0.13 0.15+0.07 0.14+0.07 0.14+0.06 0.16 £0.07
Unfairness (|O]) 0.29+0.13 0.17+0.07 0.17+0.08 0.16+0.08 0.17 £0.08
Arrhythmia Accuracy 0.65+0.03 0.63+0.03 0.63 +0.02 0.62*0.02 0.61 £0.02
Fi-score 0.72+0.02 0.72+0.02 0.71+0.02 0.71+0.01 0.71+0.01
Unfairness (|U]) 0.22+0.07 0.10£0.08 0.08 =0.06 0.06+0.04 0.08 =0.05
Unfairness (|ID]) 0.26+0.11 0.15+0.08 0.14+0.07 0.11+0.05 0.10+0.05
Unfairness (|O]) 0.26=0.10 0.16 £0.07 0.140.06 0.12+0.05 0.12+0.05
Adult Accuracy 0.79+0.03 0.79+0.02 0.78 £0.02 0.72+0.02 0.72£0.02
Fy-score 0.45+0.02 0.36 20.01 0.34+0.02 0.52+0.03 0.53+0.02
Unfairness (|U]) 0.21+0.11 0.11+0.08 0.10+0.08 0.15%=0.11 0.14£0.10
Unfairness (|ID) 0.18+0.13 0.06+0.04 0.07 £0.04 0.12*0.07 0.12+0.07
Unfairness (|©]) 0.22+0.11 0.11+0.08 0.11+0.08 0.16 =0.11 0.15£0.10
Drug Accuracy 0.79+0.03 0.78 +0.02 0.78 +0.02 0.70 £ 0.02 0.71+0.02
Fi-score 0.42+0.04 0.30£0.01 0.26 +0.02 0.51+0.02 0.52+0.02
Unfairness (|WU[) 0.13%0.08 0.08 £0.07 0.07+0.06 0.08=0.06 0.09 =0.05
Unfairness (|ID]) 0.07+0.05 0.06 =0.03 0.05+0.04 0.06 £0.05 0.08 +=0.05
Unfairness (|O]) 0.13%0.06 0.08+0.07 0.08+0.06 0.11*0.05 0.13£0.06

Notes. The best results for each data set are highlighted in bold. For the imbalanced Adult and Drug data sets, we adopt balanced

accuracy—driven objectives in the HDRFC and ¢-DRFC models.

We formally benchmark the models following a
cross-validation, training, and testing procedure. The
hyperparameters of the HDRFC, and ¢-DRFC models
are determined following a cross-validation procedure
similar to Donini et al. (2018). We first determine 1 and
C under the empirical distribution. In each trial, we
solve two plain vanilla classifiers to determine the pri-
vileged group and the empirical unfairness scores 7
and (f Then, we set 1 to half of the empirical EO unfair-
ness score and C to half of the empirical Hinge unfair-
ness score. With 1 and C being fixed, we tune the
hyperparameters of the ambiguity set (15). We adopt
the general ground metric (14) illustrated in Section 5
and set x4 =2xy =0.5, because the difference of the
two sensitive attributes is |a —a’| = 1, whereas the dif-
ference of the two labels is |y —y’| =2. We split the
training set into a subtraining set with two-thirds of
the samples while keeping the remainder as a subvali-
dation set. Then, we collect statistics of accuracy and
absolute EO unfairness scores for p € [0.001,1] on a log-
arithm scale with 30 discretization points evaluated on
the subvalidation sets. The maximal value in the grid
search for p equals 2xy + x4, which suffices to induce
the perturbation on the label Y and the sensitive attri-
bute A. Next, if the radius p obtained in the first step is
greater than or equal to 0.5, then we fix it and tune y
from {0,0.01,0.02, ...,0.05}; otherwise, we set y to zero
as the radius is less than the cost of perturbing the label

Y or the sensitive attribute A. In this case, the ¢-DRFC
and HDRFC revert to the simplified models discussed
in Sections 3 and 4, respectively. Finally, we select the
values with the highest (Accuracy — 0.5 x Unfairness)
score from the search grid. Similarly, the tuning para-
meters of the DOB+ and DRFLR methods are also
determined by cross-validation using the authors’ code.
Next, we evaluate the accuracy and unfairness mea-
sures of all classifiers on the test set. We repeat this
procedure for K = 50 times and report the average accu-
racy scores and unfairness measures in Table 4.

Table 4 suggests that our proposed HDRFC and
e-DRFC models perform favorably relative to their
competitors. They yield low unfairness scores across
the three balanced data sets with only a moderate loss
in accuracy. For the imbalanced data sets, our proposed
methods adopt balanced accuracy and balanced hinge
loss as the objective functions. Benefiting from the
modified objective functions, our methods perform
well in all evaluation metrics: accuracy, Fq-score, and
unfairness scores. As a comparison, the DOB+ and
DRFLR methods work well for accuracy and unfairness
but perform poorly in terms of Fi-score. The reason for
getting low F; scores is that both methods are accuracy
driven, which is a misleading metric for imbalanced
data sets. To see this, let us illustrate using the Drug
data set. Because the Drug data set contains 78% nega-
tive samples, the decision maker can easily design an
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accurate (78% accuracy) and fair (0% positive rate for
both groups) classifier by assigning all data points
to the negative halfspace. However, this classifier is
trivial since it does not identify qualified samples.
Similar issues arise in other accuracy-driven methods.
In the Adult and Drug data sets, the DOB+ and
DRFLR models attempt to maintain fairness by
naively rejecting most samples. Although the gener-
ated classifiers achieve deceivingly high scores in
accuracy and unfairness, they inevitably fail in terms
of Fy score. In contrast, by minimizing the balanced
misclassification rate and balanced hinge loss, our
methods achieve much better F; scores in the imbal-
anced data set with only a slight loss in accuracy.

We also evaluate the performances of the aforemen-
tioned methods in terms of other unfairness measures.
Specifically, we consider two popular fairness notions
called demographic parity (Calders et al. 2009) and
equalized odds (Hardt et al. 2016, Zafar et al. 2017).
Similar to the EO unfairness measure, we define the
demographic parity unfairness measure by

|D(w, b, Q)|
£1QCX)=1lA=1) - Q(CX) =1|A=0)|,

and the equalized odds unfairness measure (Bird et al. 2020)

Table 5. Running Time (s) of Different Methods

by
|O(w,b,Q)| 2 max{|QC(X)=1|A=1,Y=1)
-QCX)=1A=0Y=1),
QECX)=1]A=1,Y = -1)
—QECX)=1]A=0,Y = —1)|}.

Table 4 shows that promoting fairness in terms of equal
opportunity will also improve demographic parity and
equalized odds fairness scores, at least empirically. In
addition, we also observe that the unfairness score
using equalized odds always serves as an upper bound
to the score using equal opportunity, which coincides
with the definition that equal opportunity is a relaxa-
tion of the equalized odds criterion.

6.3. Solution Time

We report the running time of different methods on six
data sets (German, Adult, Drug, COMPAS, Arrhythmia,
and Synthetic) with the sample size varying from 25
to 1,000. We set the unfairness controlling parameters
n=0.1 for e-FC and ¢-DRFC, C =1.1 for HDRFC, N =
min{p,,p;;}/2 for DRFLR, Wasserstein radius p =0.5
for all distributionally robust models. The e-DRFC and
HDREFC are trained with the general ground metric with

Sample size N

Data set Classifier 25 50 100 250 500 1,000
German &e-DRFC 1.87 2.36 13.66 148.25 3,432.71 /
HDRFC 0.02 0.02 0.04 0.09 0.13 0.15
DOB+ 0.02 0.03 0.07 0.14 0.32 0.41
DRFLR 2.53 3.61 8.70 20.18 44.32 80.62
Adult &e-DRFC 3.56 17.91 265.47 / / /
HDRFC 0.02 0.03 0.05 0.10 0.13 0.16
DOB+ 0.02 0.03 0.08 0.16 0.33 0.47
DRFLR 3.02 3.79 8.01 21.59 40.52 85.90
Drug &-DRFC 4.27 26.73 1,072.14 / / /
HDRFC 0.02 0.03 0.05 0.08 0.11 0.15
DOB+ 0.03 0.03 0.07 0.16 0.21 0.34
DRFLR 2.58 3.66 7.13 20.57 43.69 93.42
COMPAS e-DRFC 142 3.72 15.26 122.49 3,749.28 /
HDRFC 0.03 0.04 0.05 0.11 0.14 0.18
DOB+ 0.02 0.03 0.02 0.15 0.18 0.17
DRFLR 3.04 4.10 7.48 19.32 45.64 91.57
Arrhythmia &e-DRFC 2.31 4.58 22.40 626.50
HDRFC 0.03 0.06 0.24 0.39
DOB+ 0.04 0.05 0.17 0.32
DRFLR 2.12 4.37 11.59 21.28
Synthetic e-DRFC 0.43 0.91 2.78 10.57 147.84 4,741.72
HDRFC 0.12 0.01 0.02 0.03 0.05 0.08
DOB+ 0.09 0.16 0.19 0.29 0.38 0.59
DRFLR 2.56 3.84 8.02 19.91 42.54 91.70

Notes. The Arrhythmia data set only contains 452 examples. Hence, we examine its performance up to N = 250. The / symbol represents that the

solver fails to achieve optimality within 7,200 seconds.
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¥y =0.01, k4 = 2xy = 0.5. All results are averaged over 10
independent trials.

Table 5 suggests that the e-DRFC model is applicable
to moderate-size problems. However, it encounters
computational difficulties at large sample sizes. In
addition, the model becomes even more computation-
ally intensive for the imbalanced Adult and Drug data
sets. The DRFLR model involves solving an exponen-
tial cone program, and we use the popular cone optimi-
zation solver MOSEK (MOSEK ApS 2024) to solve the
problem. We observe that the DRFLR model is less effi-
cient than the linear-program-based method HDRFC
and the gradient-descent-based method DOB+. The
sample size is the factor that affects the running time
the most because the number of variables and con-
straints is proportional to the sample size. Compared
with the e-DRFC and DRFLR models, the HDRFC and
the DOB+ methods are more efficient across all data
sets. For all sample sizes, these methods can be solved
in one second. Therefore, this result suggests that the
HDRFC model is more suitable for large instances.

7. Concluding Remarks

In this paper, we developed a new principled approach
to fair classification by incorporating the equality of
opportunity criterion as a constraint and robustifying
the resulting optimization problem using the frame-
work of Wasserstein min-max learning. We use the
type-co Wasserstein ambiguity set, which enables a
scalable conic programming reformulation with attrac-
tive statistical performance guarantees. Our proposed
model can also handle problem instances with noisy
adversarially sensitive attributes and labels.

Because the original problem cannot be reformulated
exactly, we propose a tight conservative Approximation
(8) that is amenable to a mixed binary linear program-
ming reformulation. To the best of our knowledge, this
is the first approximation that enables decision-makers
to control the worst-case EO unfairness measure explic-
itly using a constraint formulation. However, this refor-
mulation is not as efficiently solvable due to the number
of binary variables growing polynomially with the num-
ber of data samples. To address this issue, we further
approximate both the objective function and the unfair-
ness measure using the hinge loss function to obtain a
convex continuous approximation. We find that the
hinge-loss-based distributionally robust fairness aware
model performs favorably compared with the state-of-
the-art method DOB+ and DRFLR in the numerical
experiments.
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