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Abstract. Problem definition: Data analytics models and machine learning algorithms are 
increasingly deployed to support consequential decision-making processes, from deciding 
which applicants will receive job offers and loans to university enrollments and medical 
interventions. However, recent studies show these models may unintentionally amplify 
human bias and yield significant unfavorable decisions to specific groups. Methodology/ 
results: We propose a distributionally robust classification model with a fairness constraint 
that encourages the classifier to be fair in the equality of opportunity criterion. We use a 
type-→ Wasserstein ambiguity set centered at the empirical distribution to represent distri-
butional uncertainty and derive a conservative reformulation for the worst-case equal 
opportunity unfairness measure. We show that the model is equivalent to a mixed binary 
conic optimization problem, which standard off-the-shelf solvers can solve. We propose a 
convex, hinge-loss-based model for large problem instances whose reformulation does not 
incur binary variables to improve scalability. Moreover, we also consider the distribution-
ally robust learning problem with a generic ground transportation cost to hedge against 
the label and sensitive attribute uncertainties. We numerically examine the performance of 
our proposed models on five real-world data sets related to individual analysis. Compared 
with the state-of-the-art methods, our proposed approaches significantly improve fairness 
with negligible loss of predictive accuracy in the testing data set. Managerial implications: 
Our paper raises awareness that bias may arise when predictive models are used in service 
and operations. It generally comes from human bias, for example, imbalanced data collec-
tion or low sample sizes, and is further amplified by algorithms. Incorporating fairness 
constraints and the distributionally robust optimization (DRO) scheme is a powerful way 
to alleviate algorithmic biases.
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1. Introduction
High-quality individual analysis is recently attracting 
attention in operations management and data analytics 
because of the increasing availability of data (Mišić and 
Perakis 2020). To provide the target individuals with the 
most appropriate products, services, and offers, many 
companies, institutions, and governmental departments 
are deploying advanced data analytics models to ana-
lyze the characteristics of the users. For example, in loan 
audit (Bose and Mahapatra 2001), inductive learning 
systems and credit scoring models optimize the lending 
decisions based on the predicted default risk of the 
applicants (Shaw and Gentry 1988, Jacobson and Rosz-
bach 2003). In retail, personalized strategies ranging 
from pricing (Chen et al. 2022), product offering (Baard-
man et al. 2023), to assortment planning (Golrezaei et al. 

2014) are designed to meet the needs of different clas-
ses of customers. In hospital appointment scheduling, 
prediction models are deployed to identify patients 
with high nonshow probability to schedule them into 
or right after overbooked slots (Mak et al. 2014). In 
medical interventions, machine learning algorithms 
are trained to diagnose disease and provide treatment 
advice to doctors (Shipp et al. 2002, Obermeyer and 
Emanuel 2016). Furthermore, algorithmic recidivism 
scores in criminal justice support judges assessing de-
fendants’ future criminal risk (Monahan and Skeem 
2016). Finally, in company recruitment (Lohr 2013, 
Dastin 2022) and university admissions (Chang 2006, 
Kabakchieva 2013), statistical learning models help 
reviewers screen out qualified candidates from a vast 
pool of applicants efficiently.
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Data analytics models and algorithms can extract 
signals from large data sets to support consequential 
decision-making processes; however, they may not 
be entirely objective and can even amplify existing 
human biases. An exemplary case of algorithmic bias 
can be described by the well-known German data set 
containing the credit scores of 1,000 candidates with 
20 demographical features such as age, deposit, and 
income (Dua and Graff 2017). Recent studies show 
that naively adopting plain vanilla prediction models 
to this data set yields remarkable biased outcomes for 
young people (Bellamy et al. 2018). The reason for 
these biased predictions is that the algorithms may 
identify age as a determining factor to the repayment 
and, thus, significantly prefer old candidates to the 
young. As the collected data sets may often not repre-
sent the true population across all groups, a plain 
vanilla prediction model trained on such data sets can 
unintentionally amplify the bias and yield highly 
unfavorable decisions for certain minority groups. 
Moreover, basing any algorithmic decision on sensi-
tive attributes may be considered illegal if the learning 
algorithms are regulated by law. Thus, basing loan 
approval decisions on the age of the applicants may 
lead to possible lawsuits against discriminatory lend-
ing (Consumer Financial Protection Bureau 2013).

Similar algorithmic unfairness issues also arise in 
other service and operations management applications. 
For example, the hiring recommendation system of 
Amazon AI discriminated against female candidates 
for technical positions (Dastin 2022). Similarly, Google’s 
personalized ad targeting algorithm recommended 
higher-paying executive jobs more often to male than 
female candidates (Datta et al. 2015). In healthcare, 
existing overbooking systems may unintentionally 
enlarge the correlation between races and no-show 
probabilities, resulting in significantly longer waiting 
times for patients of color (Samorani et al. 2022). In 
addition, the judicial unfairness brought by machine 
learning algorithms has also evoked widespread social 
concerns. An algorithm used by the U.S. justice system 
to predict future criminals is shown to be significantly 
biased against African Americans: It falsely flags black 
defendants as future criminals at almost twice the rate 
of white defendants (Angwin et al. 2022).

This paper focuses on the training phase of a linear 
classifier, arguably one of the most popular classification 
methods in the literature (Hastie et al. 2009). The classi-
fier establishes a deterministic relationship between a 
feature vector X ↑ X ↓ Rd and a binary response, or 
label, variable Y ↑ Y ↓ { 1, 1}. Without any loss of gen-
erality, we associate the positive response Y ↓ 1 with the 
“desirable” outcome, such as “being hired” or “receiv-
ing a loan approval.” In the linear setting, a classifier C :
X ↔ Y is parameterized by a slope parameter w ↑ Rd 

and an offset b ↑ R, and the classification output is 

determined through an indicator function of the form

C(x) ↓
1 if w↗x + b ↘ 0,

 1 if w↗x + b < 0:

(

In the context of classification, we need to find a classi-
fier that maximizes the correct classification probabil-
ity. To this end, we can consider the correct classification 
probability with respect to the distribution Q as

Q(Y(w↗X + b) > 0):

Complementarily, the misclassification probability with 
respect to Q is defined as

Q(Y(w↗X + b) ≃ 0):

By definition, we consider that any x falling exactly on 
the hyperplane w↗X + b ↓ 0 is misclassified irrespec-
tive of the true label of x. The optimal linear classifier 
can be defined as the solution to the misclassification 
probability minimization problem:

min
(w,b)↑Rd+1

Q(Y(w↗X + b) ≃ 0): (1) 

Using the sample average approximation of the proba-
bility term in (1) and solving the resulting approxima-
tion problem, we can obtain an empirical classifier. 
Nevertheless, as previously discussed, this empirical 
classifier can be unfair because it may unjustifiably pos-
sess unequal predictive performances across different 
subgroups in the population.

To address the fairness concern, we assume that there 
is a single, binary sensitive attribute A ↑A ↓ {0, 1}. In a 
real-world setting, this sensitive attribute can represent 
information such as the race, gender, or age of a person, 
and it distinguishes the privileged A ↓ 1 from the un-
privileged individuals A ↓ 0. Hereby, we define the pri-
vileged group as the group for which the empirical 
classifier has higher predictive performance than for 
the unprivileged group. Throughout this paper, we 
assume that we possess a training data set containing N 
samples of the form {(x̂i, âi, ŷi)}

N
i↓1, and these samples are 

generated independently from a single data-generating 
probability distribution. Moreover, we consider the pri-
vileged learning setting in which the sensitive informa-
tion A is only available at the training stage but not at 
the testing stage (Vapnik and Vashist 2009, Quadrianto 
and Sharmanska 2017). It is therefore reasonable to con-
sider only classifiers C that do not take the sensitive attri-
bute A as input.

To make the linear classifier fair, we can incorporate 
a measure of fairness into Problem (1), either as a con-
straint or a regularization term added to the objective 
function. There are a plethora of fairness measures that 
we can use to promote fairness in this case, including 
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the demographic parity (Calders et al. 2009), equalized 
odds, and equal opportunity (Hardt et al. 2016, Zafar 
et al. 2017) among many others. The demographic par-
ity criterion requires that the predictor be statistically 
independent of the sensitive attribute A. Intuitively, 
demographic parity enforces the probability of getting 
good outcomes to be the same across the privileged 
and unprivileged groups. However, demographic par-
ity does not consider the actual label Y. It has been 
argued that demographic parity is not the most rele-
vant notion of fairness in cases where we have ground 
truth on the quality of the candidates (Hardt et al. 
2016, Zafar et al. 2017). In contrast, equalized odds is a 
much stronger definition by using the true label Y: It 
requires that the positive outcome is conditionally 
independent of the sensitive attributes given the true 
label. However, as we associate Y ↓ 1 with positive 
outcomes such as being hired, decision makers are 
generally more interested in the true-positive rate than 
the false-positive rate. Also, the equalized odds crite-
rion can be too strict to hurt accuracy (Hardt et al. 
2016). A reasonable relaxation of equalized odds only 
imposes fairness within the desirable outcome (Y ↓ 1) 
group, also known as equal opportunity (EO). The 
EO criterion requires the true-positive rate of the clas-
sifier to be invariant across the sensitive groups, and 
it will be the focus of this paper. We refer the reader 
to the references (Corbett-Davies et al. 2017, Choulde-
chova and Roth 2020, Berk et al. 2021, Mehrabi et al. 
2021) for comprehensive treatments of fairness in 
machine learning in general and in the classification 
problem in particular. Unfortunately, the EO unfairness 
measure is challenging to formulate due to its noncon-
vexity (Donini et al. 2018). Moreover, one can verify 
that the EO unfairness constraint leads to an open feasi-
ble set, which prohibits exact mixed binary program-
ming reformulations (Jeroslow 1987). To alleviate 
intractability, simple functions such as linear functions 
(Agarwal et al. 2018, Donini et al. 2018) and log func-
tions (Taskesen et al. 2020) have been used to approxi-
mate the unfairness measure. Recently, the paper (Ye 
and Xie 2020) proposes a mixed binary model incorpo-
rating nonconvex approximations of the fairness mea-
sures as a regularization term to enhance fairness.

The existing notions of fairness proposed in the litera-
ture necessitate precise knowledge about the joint proba-
bility distribution that governs (X, A, Y). In practice, this 
distribution is rarely available to the decision makers 
and is typically estimated using the empirical distri-
bution generated from the imbalanced—and possibly 
biased—historical observations. Although the empirical- 
based methods may work well on the observed data 
set, they often fail to yield fairness in practice because 
they do not generalize to out-of-sample data that have 
not been observed. For example, since there are fewer 
females in the technical positions at Amazon, relying on 

the empirical distribution can give rise to severe overfit-
ting that yields an unfair hiring decision. Conversely, 
even if the true underlying distribution is available, com-
puting the fairness of the decision is generically intracta-
ble (#P-hard; Dyer and Frieze 1988) because it involves 
evaluating a multidimensional integration (e.g., comput-
ing the probability of getting hired conditionally on 
being an unprivileged person).

In this paper, we endeavor to address this problem 
using the ideas of distributionally robust optimization 
(DRO). The DRO approach does not impose a single 
distribution of the features, the sensitive attributes, and 
the response label of the entities in the population. 
Instead, it constructs a set of plausible probability dis-
tributions that are locally consistent with the available 
data set. The DRO approach then optimizes for a safe 
classifier that performs best under the most adverse 
distribution from within the prescribed distribution 
set. This approach thus may yield a fair classifier that 
has provable guarantees on the out-of-sample data.

Our paper belongs to an emerging class of fairness 
aware distributionally robust algorithms. Recently, a 
repeated loss minimization model with a χ2-divergence 
ambiguity set is considered in Hashimoto et al. (2018). 
Alternatively, Rezaei et al. (2020) embeds the fairness 
constraint in the ambiguity set and proposes a robust 
classification model. When only the labels are noisy, 
robust fairness constraints based on a total variation 
ambiguity set are described in Wang et al. (2020). 
In this paper, we consider adversarial perturbations 
based on the Wasserstein distance (Mohajerin Esfahani 
and Kuhn 2018, Blanchet and Murthy 2019, Kuhn et al. 
2019, Gao and Kleywegt 2023, Ho-Nguyen and Wright 
2023), in particular, the type-→ Wasserstein distance 
(Givens and Shortt 1984; Bertsimas et al. 2018, 2022; 
Nguyen et al. 2020; Xie 2020). The Wasserstein distance 
has attracted significant attention in machine learning 
and robust optimization due to its statistical properties 
and metric interpretation. We remark that Wasserstein 
distributionally robust classification has been proposed 
to promote individual fairness (Yurochkin et al. 2020). 
Unfortunately, incorporating Wasserstein distance with 
the aforementioned fairness measures to encourage 
group fairness is more challenging because the deci-
sion maker has to solve a Wasserstein min-max statistic 
learning problem (Blanchet et al. 2019, Shafieezadeh- 
Abadeh et al. 2019, Nguyen et al. 2022) with nonconvex 
conditional probability terms. The recent study (Taske-
sen et al. 2020) considers uncertainty only in the feature 
space and convexifies the probability terms in the EO 
unfairness measure using the log function. The con-
vexified log-EO unfairness measure is introduced to a 
distributionally robust logistic regression model as a 
fairness-driven regularization term to promote group 
fairness. Although the trained log-probabilistic fair 
logistic classifier demonstrates its effectiveness in the 
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empirical experiments, it cannot offer any guarantee on 
the misclassification probability or fairness score, even 
within the training data set. Compared with Taskesen 
et al. (2020), our model minimizes the misclassification 
probability while controlling the EO unfairness mea-
sure, which is more interpretable than the log-prob loss 
and log-EO unfairness measure used in Taskesen et al. 
(2020). Unfortunately, the nominal model leads to an 
open feasible region, which is challenging to write an 
exact reformulation that off-the-shelf solvers can read-
ily solve (MOSEK ApS 2024). We thus propose a tight 
conservative approximation to the open safety set and 
derive a mixed-binary conic reformulation. In addition, 
we invoke the Wasserstein robust learning framework 
to handle uncertainty from the features, the sensitive 
attributes, and the response label of the entities in the 
population. Considering the mixed-binary model may 
encounter computational difficulties with large data 
sets, we also develop a conservative convex model that 
can be solved efficiently with large instances. Both 
models provide performance guarantees on the mis-
classification probability and unfairness score and 
achieve attractive performance in the numerical 
experiments.

1.1. Contributions
The contributions of this paper can be summarized as 
follows. 

• A new distributionally robust fairness aware 
classifier model: We propose a one-sided unfairness 
measure motivated by the EO criterion and impose 
this unfairness measure as a constraint of a distribu-
tionally robust misclassification probability minimiza-
tion problem. Compared with the generally adopted 
two-sided unfairness measures (Agarwal et al. 2018, 
Taskesen et al. 2020, Ye and Xie 2020), this one-sided 
unfairness measure reduces the number of constraints 
by explicitly tracking the difference of true-positive 
rate between the privileged and unprivileged groups. 
We then consider the worst-case unfairness measure 
and the worst-case misclassification probability under 
the most unfavorable distributions within the type-→
Wasserstein ambiguity set constructed around the 
empirical distribution. The developed distributionally 
robust fairness aware classifier can manage multiple 
sources of uncertainty, such as those from features, 
labels, and marginal probabilities. If the radius of the 
ambiguity set diminishes to zero, our formulation 
reverts to the unfairness measure evaluated at the 
empirical distribution. As such, our proposed robust 
learning scheme can be leveraged as a regularization 
of the empirical-based method.

• Tight conservative approximation and its refor-
mulation: Unfortunately, the nominal distributionally 
robust fairness aware classification problem suffers 
from the openness issue: its feasible region may be 

open, and its objective function may not be lower- 
semicontinuous. This issue prohibits an exact refor-
mulation in a form that can be readily understood and 
solved by off-the-shelf optimization solvers. We pre-
sent an arbitrarily precise approximation by substitut-
ing the open safety set with a tight inner closed 
approximation. The approximation admits a mixed- 
binary conic reformulation, which off-the-shelf solvers 
can solve.

• Hinge-loss–based fairness aware model: To en-
hance scalability, we propose a convex distributionally 
robust fairness aware classification model: This model 
uses the convex hinge loss function to approximate the 
unfairness measure and the objective function. Experi-
mental results demonstrate that this classifier generates 
a marked improvement in fairness, with a negligible 
loss of predictive accuracy. Interestingly, minimizing 
the expected hinge loss is precisely the conditional value 
at risk (CVaR) approximation of the misclassification 
probability minimization problem.

The paper is organized as follows. Section 2 describes 
the distributionally robust fairness aware classification 
problem. Section 3 proposes a conservative approxima-
tion to the original problem and provides a binary opti-
mization reformulation for training the model. Section 4
further proposes a convex fairness aware model for 
large instances, and a convex optimization reformula-
tion is derived for training. Section 5 discusses the situa-
tion of uncertainties in the sensitive attribute and label. 
Finally, Section 6 reports on the numerical experiments.

1.2. Notations
For any set S, we use M(S) to denote the set of proba-
bility measures supported on S and |S | to denote its 
cardinality. For any logical expression E, the indicator 
function I(E) admits value 1 if E is true and value 0 if 
E is false. For any norm ⇐ · ⇐ on Rd, we use ⇐ · ⇐⇒ to 
denote its dual norm. We use R+ to denote the set of 
nonnegative real numbers and R++ to denote the set of 
strictly positive real numbers. For any vector x ↑ Rn 

and y ↑ Rm, we define (x, y) ↑ R(n+m) to be the combina-
tion of vectors x and y.

2. Distributionally Robust Fairness Aware 
Linear Classifiers

Throughout this section, we focus on promoting the 
fairness of a linear classifier with respect to the criterion 
of equal opportunity, also known as equality of oppor-
tunity (Hardt et al. 2016). This criterion is formally 
defined as follows.
Definition 2.1 (EO). A classifier C : X ↔ Y satisfies the 
equal opportunity criterion relative to a probability 
measure Q if

Q(C(X) ↓ 1 |A ↓ 1, Y ↓ 1) ↓Q(C(X) ↓ 1 |A ↓ 0, Y ↓ 1):
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The definition requires that the true-positive rate is the 
same across the privileged and unprivileged groups. In 
practice, we often observe that the classifier may have 
higher true-positive rate for the privileged group A ↓ 1. 
We track this performance discrepancy using the one- 
sided EO unfairness measure defined by

U(w, b,Q)¢Q(C(X) ↓ 1 |A ↓ 1, Y ↓ 1)

 Q(C(X) ↓ 1 |A ↓ 0, Y ↓ 1), (2) 

which measures the difference between the true- 
positive rate of the privileged group (A ↓ 1) and that of 
the unprivileged group (A ↓ 0).

We say that a classifier is trivial if it is parametrized 
by (w, b) ↓ (0, 0) ↑ Rd+1; in this case, C(x) ↓ 1 for any 
input x ↑ X . It is easy to verify that the trivial classifier 
is also fair with respect to any possible distribution 
Q, but it may not attain a desirable level of predictive 
performance. This paper aims to search for a nontrivial 
classifier that balances fairness and predictive power. 
To this end, suppose that P? ↑M(X ⇑A ⇑ Y) is the 
data-generating distribution of the joint random vector 
(X, A, Y). The fair linear classifier solves the constrained 
misclassification probability minimization problem:

min P?(Y(w↗X + b) ≃ 0)

s:t: w ↑ Rd, b ↑ R

U(w, b,P?) ≃ η:

(3) 

The objective function of (3) minimizes the misclassifi-
cation probability, whereas the constraint of (3) imposes 
an upper bound η�on the unfairness measure with 
respect to P?. A major challenge of Problem (3) is that 
the data-generating distribution P? is elusive to the 
decision maker. Even if P? is known, the probabilistic 
program (3) is, in general, computationally intractable 
because computing the probability of an event involv-
ing multiple random variables belongs to the complex-
ity class #P-hard (Dyer and Frieze 1988)—which is 
perceived to be harder than the class NP-hard. In a 
data-driven setting, we assume that we have access to 
N training samples generated from P?. Let P̂ be the 
empirical distribution supported on {(x̂i, âi, ŷi)}

N
i↓1, we 

will construct an ambiguity set around P̂ using the 
Wasserstein distance. Let Ξ¢X ⇑A ⇑ Y be the joint 
outcome space of the covariate, the sensitive attribute, 
and the label; we endow Ξ�with a metric c. A formal 
definition of the Wasserstein distance is as follows.

Definition 2.2 (Wasserstein Distance). The type-l (1 ≃
l < +→) Wasserstein distance between two distribu-
tions Q and Q⇓ supported on Ξ�is defined as

Wl(Q,Q⇓)¢ inf (Eπ[c(!, !⇓)l])1
l : π ↑Π(Q,Q⇓)

n o
, 

where Π(Q,Q⇓) is the set of all probability measures on 
Ξ ⇑ Ξ�with marginals Q and Q⇓, respectively. The type-→

Wasserstein distance is defined as the limit of Wl as l tends 
to → and amounts to

W→(Q,Q⇓)¢ inf
n

ess sup
π

{c(!, !⇓) : (!, !⇓) ↑ Ξ ⇑ Ξ}

: π ↑Π(Q,Q⇓)
o
:

The Wasserstein distance is an intuitive way of com-
paring two distributions when one is derived from 
the other by small, nonuniform perturbations. The 
decision variable π�can be interpreted as a transporta-
tion plan for moving a mass distribution denoted by Q 
to another one denoted by Q⇓, where the transporta-
tion cost between two points ! and !⇓ is measured 
using c(!, !⇓). Thus, the type-l Wasserstein distance 
can be viewed as the lth root of the minimum trans-
portation cost between Q and Q⇓. When l tends to →, 
the type-l Wasserstein distance Wl(Q,Q⇓) converges 
to the type-→ Wasserstein distance W→(Q,Q⇓)
(Givens and Shortt 1984), where esssup is the essential 
supremum (Rudin 1964). This paper constructs the 
ambiguity set based on the type-→ Wasserstein dis-
tance because it offers tractable reformulations with 
attractive convergent properties (Xie 2020).

The ground metric on Ξ�is supposed to be separa-
ble, meaning that c can be written as a sum of three 
components as

c((x⇓, a⇓, y⇓), (x, a, y)) ↓ ⇐x x⇓⇐+ κA |a a⇓ | + κY |y y⇓ |

for some parameters κA ↑ [0, +→] and κY ↑ [0, +→]. 
Moreover, let p̂ay ↓ P̂(A ↓ a, Y ↓ y) denote the empirical 
marginals constructed from the training samples. 
We will consider the following marginally-constrained 
ambiguity set

B(P̂)

↓ Q ↑M(X ⇑A ⇑ Y) :

W→(Q, P̂) ≃ ρ,

Q(A ↓ a, Y ↓ y) ↓ p̂ay∀(a, y) ↑A ⇑ Y

8
>><

>>:

9
>>=

>>;
,

(4) 

which is a neighborhood around the empirical distribu-
tion P̂. Intuitively, B(P̂) contains all the distributions of 
(X, A, Y), which is of a type-→Wasserstein distance less 
than or equal to ρ�from P̂, and at the same time has the 
same marginal distribution on (A, Y) as P̂. The am-
biguity set B(P̂) is thus parametrized by ρ, and the mar-
ginals p̂; however, the dependence on these parameters 
is implicit. Adding a marginal constraint to the ambigu-
ity set is an expedient practice to achieve tractable 
reformulation, especially when dealing with condi-
tional expectation constraints that are prevalent in 
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fairness (Taskesen et al. 2020). Indeed, the conditional 
expectation is a non-linear function of the probability 
measure. However, when confining inside the set B(P̂), 
we have

Q(C(X) ↓ 1 |A ↓ a, Y ↓ y)

↓ p̂ 1
ay EQ[1{x:C(x)↓1}(X)1(a, y)(A, Y)] ∀(a, y) ↑A ⇑ Y, 

which are linear functions of Q and conveniently simpli-
fies the problem. We now provide a concrete example to 
illustrate the aforementioned fair classification problems 
and distributionally robust classification framework.

Example 2.3 (Robust Fair Classification). We consider a 
simple two-dimensional fair classification problem with 
12 points partitioned into two classes. The sensitive 
attribute A is denoted by the shape of samples (triangle 
or circle), which in real life could represent gender, 
race, or any other sensitive features. A brief summary 
of samples is presented in Table 1. In Figure 1(a), the 
solid hyperplane represents a linear classifier that is 
optimal to the misclassification probability minimiza-
tion problem (1), denoted by LC. From the classification 
outcomes of LC, all circles with a positive label are clas-
sified correctly, whereas a triangle with a positive label 
is classified to the negative halfspace. Therefore, this 
classifier is unfair in terms of the EO criterion because 
the difference in the true-positive rate between the pri-
vileged (circle) and the unprivileged (triangle) groups is

ULC ↓ 5=5 0=2 ↓ 1:

On the contrary, the dotted line is one example of a fair 
linear classifier that is optimal to Problem (3) under the 
empirical distribution, denoted by FLC. In the outcomes 
of FLC, the triangle with a positive label is classified cor-
rectly, and the unfairness score decreases to

UFLC ↓ 4=5 1=2 ↓ 0:3:

Figure 1(b) compares a nonrobust and a robust FLC. 
The robust FLC is optimal to the distributionally 
robust model (5). Intuitively, the type-→ Wasserstein 
ambiguity set can be visualized using a combination 
of balls with radius ρ�centered at each sample. Any 
perturbation from the original sample within the cor-
responding ball constitutes a distribution Q ↑ B(P̂)
(e.g., light-colored points visualize a discrete distribu-
tion Q in the Wasserstein ambiguity set). Considering 
all distributions within the ambiguity set, the DRO 
model will yield a robust classifier against noises and 
disturbances. Conversely, although the nonrobust fair 
classifier achieves the same scores under the empirical 
distribution, it may suddenly fail under small pertur-
bations from the empirical distribution.

Equipped with the ambiguity set B(P̂), we can con-
sider the fairness aware distributionally robust linear 
classification problem:

min sup
Q↑B(P̂)

Q(Y(w↗X + b) ≃ 0)

s:t: w ↑ Rd, b ↑ R,

sup
Q↑B(P̂)

U(w, b,Q) ≃ η:

(5) 

The constraint of Problem (5) depends on a tolerance 
η ↑ R+: It requires that the true-positive rate for the 
privileged group A ↓ 1 cannot be larger than the true- 
positive rate for the unprivileged group A ↓ 0 plus 
a tolerance η, uniformly over all distributions in the 

Figure 1. (Color online) Classification Hyperplanes (Dashed) Obtained by Different Approaches 

(a) (b)

Notes. Color encodes the labels and shape encodes the sensitive attributes. The arrows point to the positive halfspace determined by the classifi-
cation hyperplanes. Light-colored samples depict an exemplary distribution Q ↑ B(P̂). One can verify that this exemplary distribution also serves 
as an extremal distribution for the purple classification hyperplane. (a) Fair and unfair. (b) Robust and nonrobust.

Table 1. Sample Classes and Sensitive Attributes

Circle (A ↓ 1) Triangle (A ↓ 0)

Negative class (red) 4 1
Positive class (blue) 5 2

Note. In both classes, most samples come from the privileged group 
(circle).
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ambiguity set. It is easy to verify that the trivial classi-
fier with (w, b) ↓ (0, 0) is feasible for (5) with an objec-
tive value of one.

Unfortunately, it is challenging to write an exact refor-
mulation of Problem (5) that off-the-shelf solvers can 
solve. Given any probability measure Q ↑M(X ⇑A ⇑
Y), we can leverage the finite cardinality of A and Y to 
decompose Q using its conditional measures Qay(X ↑ ·)
↓Q(X ↑ · |A ↓ a, Y ↓ y). The EO unfairness measure U 
defined in (2) can be written as

U(w, b,Q)¢Q11(w↗X + b ↘ 0) Q01(w↗X + b ↘ 0):
(6) 

The set (w, b) satisfying the constraint supQ↑B(P̂)U(w, b, 
Q) ≃ η�is, in general, an open set, and the root cause 
stems from the inequality inside Q11(w↗X + b ↘ 0) in 
the previous equation. To see this, consider the special 
case where ρ ↓ 0, which implies that B(P̂) ↓ {P̂}, and 
the constraint of (5) becomes U(w, b, P̂) ≃ η. Let us 
define the index set I a1 ↓ {i ↑ [N] : âi ↓ a, ŷi ↓ 1} con-
taining indices of the samples with sensitive attribute a 
and label 1. We have

U(w, b, P̂) ↓ EP̂[p̂ 1
11 I(w↗X + b ↘ 0)1(1, 1)(A, Y)

 p̂ 1
01 I(w↗X + b ↘ 0)1(0, 1)(A, Y)]

↓ 1
N

 

p̂ 1
11

X

i↑I11

I(w↗x̂i + b ↘ 0)

+ p̂ 1
01
X

i↑I01

I(w↗x̂i + b < 0) p̂ 1
01 |I01 |

!

:

Thus, the fairness constraint U(w, b, P̂) ≃ η�can be 
written as

1
N

 

p̂ 1
11
X

i↑I11

I(w↗x̂i + b ↘ 0)

+ p̂ 1
01
X

i↑I01

I(w↗x̂i + b < 0) p̂ 1
01 |I01 |

!

≃ η:

Consider now the simplest case where I 01 is empty. 
The previous constraint is simplified into

1
Np̂11

X

i↑I11

I(w↗x̂i + b ↘ 0) ≃ η:

It can be verified that for η ↑ (0, 1), the feasible region 
of (w, b) with the previous constraint is an open set, 
and unfortunately, this open set cannot be reformu-
lated to a bounded mixed integer program (MIP) 
problem (Jeroslow 1987, theorem 2.1). For example, if 
η < 1=(Np̂11), then (w, b) must satisfy w↗x̂i + b < 0 for 
all i ↑ I a1. Because the intersection of open sets is 
open, the previous constraint is not bounded-MIP 

representable. Similarly, the objective function of (5) 
encounters a similar issue. By setting ρ ↓ 0, Problem 
(5) is equivalent to

min τ

s:t: w ↑ Rd, b ↑ R, τ ↑ R, ⇐(w, b)⇐ ≃ 1,

U(w, b, P̂) ≃ η

P̂(Y(w↗X + b) ≃ 0) ≃ τ:

When τ ↓ 0, the last constraint requires (w, b) satisfy-
ing ŷi(w↗x̂i + b) > 0 ∀i ↑ [N], which cannot be refor-
mulated to a bounded MIP constraint.

In the following sections, we will develop approxi-
mations to Problem (5) that can resolve these openness 
issues of the feasible set and the objective function. 
To conclude this section, we describe one possible ap-
proach to choosing η�in practice. Given a training data 
set, the decision maker first finds the empirical classifier 
by solving (1) with Q being replaced by the empirical 
probability measure. From the empirical classifier, the 
decision maker can identify the group with a higher 
true-positive rate as the privileged group (A ↓ 1). Next, 
the empirical unfairness score η̂�is calculated by taking 
the difference in the true-positive rate between the pri-
vileged and the unprivileged group. If this empirical 
unfairness score is less than the tolerance level of the 
decision maker, there is no need to impose fairness 
constraints and resolve the fair classification problem. 
If the empirical unfairness score is too large, the deci-
sion maker could gradually decrease η�starting from 
the empirical unfairness score η̂. During this process, 
the decision maker should actively monitor the classi-
fier’s performance until a fair classifier that satisfies 
the requirements is found.

3. The "-Distributionally Robust Fairness 
Aware Classifier

In this section, we propose an approximation of the 
original problem (5) and derive its reformulation. We 
first introduce a norm constraint ⇐(w, b)⇐ ≃ 1 to restrict 
the feasible region to a compact set. This constraint is a 
general approach to reformulate indicator functions 
(Liittschwager and Wang 1978, equation (2.9)), and 
it does not alter the classification result because of 
the scaling-invariant property (Shalev-Shwartz and 
Ben-David 2014). Recall that the openness of the feasi-
ble set as previously described is because the function 
I(w↗x̂i + b ↘ 0) is an upper-semicontinuous function 
in the variable (w, b). Hence, to generate a closed 
approximation of the feasible set, it is necessary to 
switch the inequality sign highlighted in red in (6) to a 
strict inequality. For notation simplicity, we use Qay to 
denote the conditional distribution, that is, Qay(X ↑ ·)
↓Q(X ↑ · |A ↓ a, Y ↓ y). We consider the modified one- 
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sided EO unfairness measure Uε�as

Uε(w, b,Q)¢Q11(w↗X + b > ε) Q01(w↗X + b ↘ 0),
(7) 

which is parametrized by a strictly positive value 
ε ↑ R++. Similarly, as the objective function of (5) does 
not admit an exact reformulation, we replace it with 
Q(Y(w↗X + b) < ε), which is a conservative approxi-
mation of the misclassification probability for any 
ε ↑ R++. The next proposition demonstrates that these 
approximations are tight in the limit as ε�tends to zero.

Proposition 3.1 (Convergence). Fix a measure Q, the 
ε-unfairness measure Uε�converges to the EO unfairenss mea-
sure U as ε↔ 0, that is, limε↔0 Uε(w, b,Q) ↓U(w, b,Q):
Similarly, we have limε↔0 Q(Y(w↗X + b) < ε) ↓Q(Y(w↗

X + b) ≃ 0):
Proposition 3.1 indicates that for any fixed distribu-

tion Q and classifier (w, b), the modified objective func-
tion and unfairness measure converges to the original 
terms when ε�goes to zero. However, we cannot set ε�
to zero because minimizing Q(Y(w↗X + b) < 0) returns 
a trivial optimal solution (w, b) ↓ (0, 0) with optimal 
value Q(Y(0↗X + 0) < 0) ↓ 0. Hence, although a small ε�
value offers a good approximation, a too-small ε�may 
induce computational errors in optimization solvers. 
For example, when ε�is smaller than the constraint error 
tolerance level of the solvers, the solver may still take 
the trivial value (w, b) ↓ (0, 0) as optimal. In practice, 
the user can decrease ε�from a positive value and stop 
until the solver returns the trivial solution to obtain a 
tight approximation. Combining the modified objective 
function and unfairness measure, we consider the fol-
lowing ε-distributionally robust fairness aware classifi-
cation (ε-DRFC) problem:

min sup
Q↑B(P̂)

Q(Y(w↗X + b) < ε)

s:t: w ↑ Rd, b ↑ R, ⇐(w, b)⇐ ≃ 1,

sup
Q↑B(P̂)

Uε(w, b,Q) ≃ η:

(8) 

We now show that the ε-DRFC problem (8) is a conser-
vative approximation of (5), that is, the objective value 
of (8) and η�provide upper bounds on the misclassifica-
tion rate and EO unfairness measure, respectively.
Proposition 3.2 (Conservative Approximation). Let (w?, b?)
be the optimal solution to Problem (8). Then (w?, b?) is fea-
sible for Problem (5). Moreover, let v? be the corresponding 
optimal value of Problem (8), then

Q(Y((w?)↗X + b?) ≃ 0) ≃ v? ∀Q ↑ B(P̂):
The ε-DRFC model (8) enables decision makers to bound 
the unfairness measure in the training set explicitly using 

η. Moreover, as shown in Proposition 3.2, the optimal 
value of Problem (8) constitutes an upper bound on 
the misclassification probability.

For any ε ↑ R++, we show that Problem (8) admits a 
mixed binary conic reformulation. We first consider the 
case where we have absolute trust in sensitive attri-
butes and labels; that is, we use the ground metric

c((x⇓, a⇓, y⇓), (x, a, y)) ↓ ⇐x x⇓⇐+→ |a a⇓ | +→ |y y⇓ | ,
(9) 

where ⇐ · ⇐ is an arbitrary norm on Rd. In this setting, we 
set κA ↓ κY ↓→, which indicates that we have absolute 
trust in the value of the sensitive attribute A and the 
label Y. When c is chosen as in (9), a simple modifica-
tion of the proof of (Taskesen et al. 2021, theorem 3.2) 
shows that any distribution Q with W→(Q, P̂) < →
should satisfy Q(A ↓ a, Y ↓ y) ↓ p̂ay for all (a, y) ↑A ⇑ Y. 
Consequently, the marginal constraint defining the set 
B(P̂) becomes redundant and can be omitted. This sim-
plification with absolute trust in the sensitive attribute 
and label has been previously exploited to derive 
hypothesis tests for fair classifiers (Taskesen et al. 2021) 
and to train fair logistic classifier (Taskesen et al. 2020). 
In Section 5, we will further discuss the general ground 
metric with finite positive values of κA and κY. The next 
theorem asserts the reformulation of the min-sup prob-
lem (8) as a mixed binary conic optimization problem.

Theorem 3.3 (ε-DRFC Reformulation). Suppose that the 
ground metric is prescribed using (9), then the ε-DRFC 
model (8) is equivalent to the conic mixed binary optimiza-
tion problem

min 1
N
XN

i↓1
ti

s:t: w ↑ Rd, b ↑ R, t ↑ {0, 1}N, # ↑ {0, 1}N, ⇐(w, b)⇐ ≃ 1,

 ŷi(w↗x̂i + b) + ρ⇐w⇐⇒ ≃ Mti ε ∀i ↑ [N],
1

|I11 |
X

i↑I11

λi +
1

|I01 |
X

i↑I01

λi  1 ≃ η,

w↗x̂i + ρ⇐w⇐⇒ + b + ε ≃ Mλi ∀i ↑ I11,

 w↗x̂i + ρ⇐w⇐⇒  b ≃ Mλi ∀i ↑ I01,
(10) 

where M is the big-M parameter.

For notational simplicity, we present the reformula-
tion (10) with 2N binary variables. A closer investiga-
tion into Problem (10) reveals that it suffices to use 
N + |I1 | binary variables, where I1 ↓ {i ↑ [N] : ŷi ↓ 1}
is the index set of training samples with positive labels. 
If ⇐ · ⇐ is either the 1-norm or the →-norm on Rd, Prob-
lem (10) is a mixed binary linear optimization problem. 
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If ⇐ · ⇐ is the Euclidean norm, Problem (10) becomes a 
mixed binary second-order cone optimization problem. 
Both problems can be solved using off-the-shelf solvers 
such as MOSEK (MOSEK ApS 2024).

For the remainder of this section, we will provide the 
proof for Theorem 3.3. This proof relies on the follow-
ing auxiliary result.
Lemma 3.4 (Indicator Function Reformulation). Fix any 
index set K ⇔ {1, : : : , N}, a radius ρ ↑ R+, a classifier (w, 
b) ↑ Rd+1 and a collection of samples {x̂k}k↑K. For any ε ↑ R, 
we have
X

k↑K
sup

xk:⇐xk x̂k⇐≃ρ
I(w↗xk + b > ε)

↓

min
X

k↑K
λk

s:t: # ↑ {0, 1}N,

w↗x̂k + ρ⇐w⇐⇒ + b ε ≃ Mλk ∀k ↑K,

8
>>>><

>>>>:

where M is the big-M parameter.

Equipped with Lemma 3.4, we are now ready to 
prove Theorem 3.3.
Proof of Theorem 3.3. By exploiting the choice of c 
with an infinite unit cost on A and Y, the ambiguity 
set B(P̂) can be re-expressed as

B(P̂)

↓ Q ↑M(X ⇑A ⇑ Y) :

↖πi ↑M(X ) ∀i ↑ [N],
Q(dx ⇑ da ⇑ dy) ↓N 1

XN

i↓1
πi(dx)δ(â i, ŷ i)(da ⇑ dy),

⇐xi x̂i⇐ ≃ ρ∀xi ↑ supp(πi)

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

,

(11) 
where supp(πi) denotes the support of the probability 
measure πi (Aliprantis and Border 2006, p. 441). We 
first provide the reformulation for the objective func-
tion of (8). For any (w, b) ↑ Rd+1, we have

sup
Q↑B(P̂)

Q(Y(w↗X + b) < ε)

↓ 1
N
XN

i↓1
sup

xi:⇐xi x̂i⇐≃ρ
I(ŷi(w↗xi + b) < ε)

↓
min 1

N
XN

i↓1
ti

s:t: t ↑ {0, 1}N,
 ŷi(w↗x̂i + b) + ρ⇐w⇐⇒ ≃ Mti ε ∀i ↑ [N],

8
>>>>><

>>>>>:

where the last equality follows from an epigraphical 
reformulation and the result of Lemma 3.4. Next, we 
provide the reformulation for the constraints of (8). 
Define the following index sets I a1 ↓ {i ↑ [N] : âi ↓ a, 
ŷi ↓ 1} ∀a ↑A, for any (w, b) ↑ Rd+1, we have

sup
Q↑B(P̂)

Q(w↗X + b > ε |A ↓ 1, Y ↓ 1)

 Q(w↗X + b ↘ 0 |A ↓ 0, Y ↓ 1)
↓ sup
Q↑B(P̂)

EQ[p̂ 1
11 I(w↗X + b > ε)1(1, 1)(A, Y)

 p̂ 1
01 I(w↗X + b ↘ 0)1(0, 1)(A, Y)]

↓ 1
N

 

p̂ 1
11
X

i↑I11

sup
xi:⇐xi x̂i⇐≃ρ

I(w↗xi + b > ε)

 p̂ 1
01

X

i↑I01

inf
xi:⇐xi x̂i⇐≃ρ

I(w↗xi + b ↘ 0)
!

↓ 1
N

 

p̂ 1
11
X

i↑I11

sup
xi:⇐xi x̂i⇐≃ρ

I(w↗xi + b > ε)

 p̂ 1
01 ( |I 01 |  

X

i↑I01

sup
xi:⇐xi x̂i⇐≃ρ

I(w↗xi + b < 0))
!

↓ 1
N

 
N

|I11 |
X

i↑I11

sup
xi:⇐xi x̂i⇐≃ρ

I(w↗xi + b > ε)

+ N
|I 01 |

X

i↑I01

sup
xi:⇐xi x̂ i⇐≃ρ

I(w↗xi + b < 0) N
|I01 |

|I 01 |
!

↓

min 1
|I 11 |

X

i↑I11

λi +
1

|I01 |
X

i↑I01

λi 1

s:t: # ↑ {0, 1}N

w↗x̂i + ρ⇐w⇐⇒ + b + ε ≃ Mλi ∀i ↑ I 11

 w↗x̂i + ρ⇐w⇐⇒  b ≃ Mλi ∀i ↑ I01,

8
>>>>>>><

>>>>>>>:

where the last equality follows by applying Lemma 3.4
twice and by noticing that I 11 ↙ I01 ↓ ∝. Setting the 
optimal value of the above minimization problem to be 
less than η�completes the proof. w

Remark 3.5 (Big-M Value). For practical implementa-
tion, it is sufficient to set the big-M parameter to 
M ↓ C + ρd + ε, where C ↓maxi↑[N]⇐(x̂i, 1)⇐⇒ is the larg-
est dual norm value for all combined vectors (x̂i, 1). A 
short proof is provided in Online Appendix A.

Remark 3.6 (Out-of-Sample Guarantee). We also inves-
tigate the out-of-sample performance of Model (8). 
The ambiguity set (4) contains marginal constraints 
that require probability measures in the ambiguity 
sets to have the same marginal distribution as the 
empirical distribution. This constraint invalidates the 
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finite sample guarantees unless the true distribution 
shares the same marginal distribution with the empir-
ical distribution. To see this, consider a simple exam-
ple: When the true marginal probability is given by 
P?(A ↓ 1, Y ↓ 1) ↓ 1=

   
2

′
, for any finite sample size N, 

the underlying distribution will not be contained in 
the ambiguity set B(P̂) even if ρ↔→. In Online 
Appendix B, we illustrate that relaxing the marginal 
constraints does admit a solvable model with attrac-
tive theoretical results; however, the model is more 
computationally intensive as we add an extra layer of 
robustness.

Remark 3.7 (Balanced Accuracy). In the aforementioned 
model, we minimize the misclassification rate because 
the accuracy (one minus misclassification rate) is one of 
the most popular model evaluation metrics. However, 
accuracy can be misleading when the data set is imbal-
anced. In such cases, the decision maker should adopt 
other metrics that are more suitable for the imbalanced 
data set, such as balanced accuracy. We remark that our 
modeling framework and reformulation tricks can be 
easily extended to maximize balanced accuracy, the 
average accuracy obtained from both the positive and 
negative classes. A detailed discussion can be found in 
Online Appendix A.

The deterministic reformulation (10) may encounter 
computational difficulties as the sample size N grows 
because it involves O(N) binary variables. Thus, there 
is merit in studying tractable approximations that 
scale better with the sample size. The following sec-
tion proposes one such approximation.

4. The Hinge Distributionally Robust 
Fairness Aware Classifier

We propose a convex approximation of Problem (5), 
which requires no binary variables. Observe that Prob-
lem (5) involves probability values in both the objective 
function and the unfairness constraint, and we will use 
conservative approximations of these probabilities in 
the sequel. First, we have for any distribution Q and for 
any classifier (w, b):
Q(Y(w↗X + b) ≃ 0) ↓ EQ[I(Y(w↗X + b) ≃ 0)]

≃ EQ[max{0, 1 Y(w↗X + b)], 
where the previous inequality follows from the fact that 
I(z ≃ 0) ≃ max{0, 1 z}. As a consequence, the objec-
tive function of Problem (5) can be upper-bounded as

sup
Q↑B(P̂)

Q(Y(w↗X + b) ≃ 0)

≃ sup
Q↑B(P̂)

EQ[max{0, 1 Y(w↗X + b)]:

This upper bound is also known as the hinge loss upper 
bound of the misclassification error that is well known 

in the machine learning literature (Chapelle et al. 2008, 
Bach 2021). Next, we consider an approximation of the 
EO unfairness measure. We rewrite the EO unfairness 
measure (2) as

U(w, b,Q) ↓Q11(w↗X + b ↘ 0) +Q01(w↗X + b < 0) 1

↓ EQ11[I(w↗X + b ↘ 0)]

+EQ01[I(w↗X + b < 0)] 1:

Inspired by the previous hinge loss approximation, we 
propose the hinge EO unfairness measure:

H(w, b,Q)¢EQ11[max{0, 1 + w↗X + b}]

+ EQ01[max{0, 1 w↗X  b}] 1:

The hinge unfairness measure H is convex in (w, b). 
To see this, each term max{0, 1 + w↗x + b} and 
max{0, 1 w↗x b} are convex in (w, b) for any reali-
zation X ↓ x. Because taking expectation preserves 
convexity (Boyd and Vandenberghe 2004, section 
3.2.1), all the expectation terms in the previous equa-
tion are hence convex in (w, b). The function H is con-
vex for any fixed distribution Q because it is a 
pointwise maximum of two convex functions (Boyd 
and Vandenberghe 2004, section 3.2.3). Contrary to 
the unfairness measure Uε�defined in Section 3, the 
hinge unfairness measure does not constitute a tight 
upper bound for the EO unfairness measure.

Combining the hinge loss objective and the hinge 
unfairness measure, we propose the hinge distribution-
ally robust fairness aware classification (HDRFC) prob-
lem:

min sup
Q↑B(P̂)

EQ[max{0, 1 Y(w↗X + b)}]

s:t: w ↑ Rd, b ↑ R,

sup
Q↑B(P̂)

H(w, b,Q) ≃ ζ:

(12) 

The constraint of Problem (8) depends on a tolerance 
ζ ↑ R+: It requires that the hinge unfairness measure be 
smaller than ζ, uniformly over all distributions in the 
ambiguity set. Because H shares a different domain 
with U, we deliberately use a separate parameter ζ ↑
R+ in (12), which can differ from the parameter η ↑ R+
in (5). The way to choose ζ�is similar to the approach of 
choosing η. Given a training data set, the decision 
maker first finds the empirical classifier by solving 
Problem (12) without the fairness constraint under the 
empirical distribution. From the empirical classifier, 
the decision maker can identify the group with a higher 
true-positive rate as the privileged group (A ↓ 1). Next, 
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the empirical unfairness score η̂�and ζ̂�are calculated 
based on the EO and hinge EO unfairness measure, 
respectively. If the empirical EO unfairness score η̂�is 
less than the tolerance level of the decision maker, there 
is no need to impose fairness constraints and resolve 
the fair classification problem. If the empirical unfair-
ness score is too large, the decision maker could gradu-
ally decrease ζ�starting from the empirical unfairness 
score ζ̂. During this process, the decision maker should 
actively monitor the performance of Model (12) until a 
fair classifier that satisfies the requirements is found. 
The following proposition illustrates that the HDRFC 
model is a conservative approximation to the original 
problem (5).
Proposition 4.1 (Conservative Approximation). Suppose 
that Problem (12) with parameter ζ�admits an optimal solu-
tion (w?, b?). Let v? be the corresponding optimal value of 
Problem (12) associated with (w?, b?). Then

Q(Y((w?)↗X + b?) ≃ 0) ≃ v? ∀Q ↑ B(P̂):

Furthermore, if ζ ↓ η, then (w?, b?) is also feasible for Prob-
lem (5).

We next present the main result of this section, which 
asserts that the HDRFC problem (12) can be reformu-
lated as a conic optimization problem.
Theorem 4.2 (HDRFC Reformulation). Suppose that the 
ground metric is prescribed using (9), the HDRFC model 
(12) is a convex optimization, and it is equivalent to the 
conic optimization problem:

min 1
N
XN

i↓1
ti

s:t: w ↑ Rd, b ↑ R, t ↑ RN
+ , # ↑ RN

+ ,

 ŷi(w↗x̂i + b) + ρ⇐w⇐⇒ ≃ ti  1 ∀i ↑ [N],

1
|I11 |

X

i↑I11

λi +
1

|I01 |
X

i↑I01

λi  1 ≃ ζ,

1 + w↗x̂i + ρ⇐w⇐⇒ + b ≃ λi ∀i ↑ I 11,

1 w↗x̂i + ρ⇐w⇐⇒  b ≃ λi ∀i ↑ I 01:

(13) 

Proof of Theorem 4.2. Because taking pointwise 
supremum over an infinite set of convex functions pre-
serves convexity (Boyd and Vandenberghe 2004, sec-
tion 3.2.3), we can observe that the objective function 
and the constraint function of (12) are both convex. 
Hence, (12) is a convex optimization problem. Exploit-
ing Reformulation (11) of the set B(P̂), we first reformu-
late the objective function of (12). For any (w, b) ↑ Rd+1, 

we have

sup
Q↑B(P̂)

EQ[max{0, 1 Y(w↗X + b)}]

↓ 1
N
XN

i↓1
sup

xi:⇐xi x̂i⇐≃ρ
max{0, 1 ŷi(w↗xi + b)}

↓ 1
N
XN

i↓1
max

!
0, 1 inf

xi:⇐xi x̂i⇐≃ρ
ŷi(w↗xi + b)

"

↓

min 1
N
XN

i↓1
ti

s:t: t ↑ RN
+ ,

 ŷi(w↗x̂i + b) + ρ⇐w⇐⇒ ≃ ti  1 ∀i ↑ [N],

8
>>>>>><

>>>>>>:

where the last equality follows from an epigraphical 
reformulation and the properties of the dual norm. 
Next, we provide the reformulation for the constraints 
of (12). For any (w, b) ↑ Rd+1, we have

sup
Q↑B(P̂)

EQ11[max{0, 1 + w↗X + b}]

+EQ01[max{0, 1 w↗X b}] 1

↓ sup
Q↑B(P̂)

EQ[p̂ 1
11 max{0,1 + w↗X + b}1(1, 1)(A, Y)

+ p̂ 1
01 max{0,1 w↗X b}1(0, 1)(A, Y)] 1

↓ 1
N

 

p̂ 1
11
X

i↑I11

sup
xi:⇐xi x̂i⇐≃ρ

max{0, 1 + w↗xi + b}

+ p̂ 1
01
X

i↑I01

sup
xi:⇐xi x̂i⇐≃ρ

max{0, 1 w↗xi b} p̂ 1
01 |I01 |

!

↓

min 1
|I11 |

X

i↑I11

λi +
1

|I01 |
X

i↑I01

λi 1

s:t: # ↑ RN
+ ,

1 + w↗x̂i + ρ⇐w⇐⇒ + b ≃ λi ∀i ↑ I 11,

1 w↗x̂i + ρ⇐w⇐⇒ b ≃ λi ∀i ↑ I 01,

8
>>>>>>>>><

>>>>>>>>>:

where the last equality follows by applying Lemma 3.4
twice and by noticing that I a1 ↙ I a⇓1 ↓ ∝. Setting the 
optimal value of the previous minimization problem to 
be less than η�completes the proof. w

If ⇐ · ⇐ is either a 1-norm or an →-norm on Rd, Prob-
lem (13) is a linear optimization problem. If ⇐ · ⇐ is 
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an Euclidean norm, Problem (13) becomes a second- 
order cone optimization problem. Both problems can 
be solved using off-the-shelf solvers such as MOSEK 
(MOSEK ApS 2024).

Remark 4.3 (Balanced Hinge Loss). For imbalanced data 
sets, one can also convexify the balanced misclassifica-
tion rate using the hinge loss function. A brief discus-
sion is provided in Online Appendix A.

We now benchmark the ε-DRFC model with the 
HDRFC model. The reformulation of the ε-DRFC 
problem (10) involves 2N binary variables and 2N big- 
M constraints. In contrast, the HDRFC reformulation 
(13) only contains 2N continuous variables and 2N 
convex constraints. HDRFC is more suitable for large 
instances because it is a continuous problem, a signifi-
cant advantage compared with the ε-DRFC problem. 
The numerical results in Section 6 demonstrate that 
the hinge unfairness measure performs competitively.

5. Training with General Ground Metric
Previous sections have considered the absolute trust 
case of the ground cost (9) in which κA ↓ κY ↓→. Here, 
we consider a general ground metric: For some finite 
values of κA and κY , we set

c((x⇓, a⇓, y⇓), (x, a, y)) ↓ ⇐x x⇓⇐+ κA |a a⇓ | + κY |y y⇓ | :
(14) 

The case for finite κA and κY is particularly relevant 
when we have noisy observations of the sensitive attri-
butes and class labels (Shafieezadeh-Abadeh et al. 2019). 
Without any loss of generality, we will illustrate how 
to incorporate this general ground metric using the 
ε-DRFC model (8). For the HDRFC model (12), we will 
provide the corresponding results in Online Appendix 
A. At the same time, we will consider a more general 
definition of the ambiguity set B(P̂) in this section. To 
this end, we first observe that the ambiguity set B(P̂) can 
be re-expressed as follows (a formal proof can be found 
in Online Appendix A):

B(P̂)↓ Q ↑M(X ⇑A⇑Y) :

↖πi ↑M(X ⇑A⇑Y)

∀i ↑ [N] :

Q↓N 1
X

i↑[N]
πi,

W→(πi,δ(x̂i, â i, ŷ i)) ≃ ρ∀i ↑ [N],

Q(A↓ a,Y ↓ y)↓ p̂ay

∀(a,y) ↑A⇑Y

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>;

:

Let γ ↑ [0, 1] and consider the ambiguity set Bγ(P̂)
parametrized by γ�as

Bγ(P̂)

¢ Q ↑M(X ⇑A ⇑ Y) :

↖πi ↑M(X ⇑A ⇑ Y)∀i ↑ [N] :

Q ↓N 1
X

i↑[N]
πi,

W→(πi,δ(x̂i, â i, ŷ i)) ≃ ρ∀i ↑ [N],
Q(A ↓ a, Y ↓ y) ↓ p̂ay∀(a, y) ↑A ⇑ Y,
X

i↑[N]
πi(A ↓ âi, Y ↓ ŷi)

↘ (1 γ)N

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>;

:

(15) 
Notice that Bγ(P̂) differs from B(P̂) solely based on the 
last constraint defining Bγ(P̂). Intuitively, the parame-
ter γ�indicates the maximum proportion of the training 
sample points that can be flipped in the (A, Y) dimen-
sion. When γ ↓ 1, then the last constraint defining 
Bγ(P̂) collapses into

X

i↑[N]
πi(A ↓ âi, Y ↓ ŷi) ↘ 0, 

which holds trivially. Thus, we can deduce that B1(P̂)
↓ B(P̂). At the other extreme, when γ ↓ 0, we arrive at 
the constraint
X

i↑[N]
πi(A ↓ âi, Y ↓ ŷi) ↘N ∞ πi(A ↓ âi, Y ↓ ŷi) ↓ 1

∀i ↑ [N]:
The latter constraint resembles the case in Sections 2
and 4 with absolute trust in the sensitive attribute and 
the label. Any value γ ↑ (0, 1) thus can be considered an 
interpolation of the robustness condition between these 
two previously mentioned extreme cases.

We consider in this section the modified problem of 
(8) that uses the ambiguity set (15):

min sup
Q↑Bγ(P̂)

Q(Y(w↗X + b) < ε)

s:t: w ↑ Rd, b ↑ R, ⇐(w, b)⇐ ≃ 1
sup

Q↑Bγ(P̂)
Uε(w, b,Q) ≃ η:

(16) 

We now present the main result of this section, which 
provides the reformulation for (16).
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Theorem 5.1 (ε-DRFC Reformulation). Suppose that the 
ground metric is prescribed using (14). For any γ ↑ (0, 1), 
Problem (16) is equivalent to the mixed binary conic pro-
gram:

inf 1
N
X

i↑[N]
νi +

X

(a,y)↑A⇑Y

p̂ayµay θ(1 γ)

s:t: w ↑Rd, b ↑R, $ ↑RN, θ ↑R+, % ↑R2⇑2, & ↑ {0, 1}N

⇐(w, b)⇐ ≃ 1,

$⇓ ↑RN, θ⇓ ↑R+, %⇓ ↑R2⇑2, #1 ↑ {0, 1}N, #0 ↑ {0, 1}N

If κA |a âi | +κY |y ŷi | ≃ ρ :

τi ≃ µay θ1(â i , ŷ i)(a, y) + νi,

 ŷi(w↗x̂i + b) + (ρ κA |a âi |

 κY |y ŷi | )⇐w⇐⇒ ≃ Mτi ε

9
>>>>>>=

>>>>>>;

∀i ↑ [N] ∀(a,y) ↑A ⇑ Y,

If κA |1 âi | +κY |1 ŷi | ≃ ρ :

p̂ 1
11 λ

1
i ≃ µ⇓1,1 θ

⇓1(â i, ŷ i)(1,1) + ν⇓i ,

w↗x̂i + (ρ κA |1 âi |  κY |1 ŷi | )⇐w⇐⇒
+b ≃ Mλ1

i  ε

If κA |0 âi | +κY |1 ŷi | ≃ ρ :

p̂ 1
01 (λ0

i  1) ≃ µ⇓01 θ
⇓1(â i, ŷ i)(0,1) + ν⇓i ,

 w↗x̂i + (ρ κA |0 âi |  κY |1 ŷi | )⇐w⇐⇒
 b ≃ Mλ0

i

If κA |1 âi | +κY |  1 ŷi | ≃ ρ :

0 ≃ µ⇓1, 1 θ
⇓1(â i , ŷ i)(1,  1) + ν⇓i ,

If κA |0 âi | +κY |  1 ŷi | ≃ ρ :

0 ≃ µ⇓0, 1 θ
⇓1(â i , ŷ i)(0,  1) + ν⇓i ,

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

∀i ↑ [N],
1
N
X

i↑[N]
ν⇓i +

X

(a,y)↑A⇑Y

p̂ayµ
⇓
ay θ

⇓(1 γ) ≃ η,

(17) 

where M is the big-M constant.
Reformulation (17) involves 3N binary variables and 

6N big-M constraints. When ⇐ · ⇐ is either a 1-norm or 
an →-norm on Rd, Problem (17) is a mixed binary linear 
optimization problem; when ⇐ · ⇐ is the Euclidean norm, 
Problem (17) becomes a mixed binary second-order 
cone optimization problem.

6. Numerical Experiments
In this section, we present the numerical experiments 
and examine the performance of different distribution-
ally robust fair classifiers. Except for the DOB+ method 
(Donini et al. 2018) that is solved by an sklearn built-in 
solver and the DRFLR method (Taskesen et al. 2020) 
that is solved by MOSEK 10.0, all other optimization 
problems are implemented in Python 3.11 with pack-
age CVXPY 1.3.2 and solved by Gurobi 10.0.3 (Gurobi 
Optimization, LLC 2023). All experiments were run on 
a 2.2-GHz Intel Core i7 CPU laptop with 8 GB RAM.

6.1. Synthetic Experiments
In the first part of numerical experiments, we will use a 
synthetic data set to visually illustrate the performance 
of different fairness measures and the effect of intro-
ducing the DRO scheme. The data-generating distribu-
tion and the procedure of constructing this synthetic 
data set are presented in Online Appendix E. We use 
stratified sampling to obtain N ↓ 25 samples as the 
training set and depict the classification hyperplanes 
determined by the ε-DRFC model (8) and the HDRFC 
model (12) on it. For each of the classifiers, we will plot 
three variants. The ε-C and HC classification hyper-
planes are obtained by dropping the fairness con-
straints and setting the Wasserstein radius to zero. The 
ε-FC and the HFC classifiers include the fairness con-
straint but still without robustness consideration. The 
ε-DRFC and HDRFC models include both the fairness 
constraints and the robustification scheme. We choose 
the ground cost of the form (9) with ⇐ · ⇐⇒ being the 
l1-norm and κA ↓ κY ↓→.

We first demonstrate how the unfairness constraints 
and the robustification influence the classifiers. The 
sensitive attribute A (represented by circles and trian-
gles) is correlated with the feature X1 on the horizontal 
axis. In Figure 2, (a) and (b), all of the four fairness 
aware classifiers (ε-FC, ε-DRFC, HFC, HDRFC) assign 
lower absolute value for the weight w1 corresponding 
to feature X1. Visually, this shift is reflected by the 
hyperplane determined by them becoming more hori-
zontal compared with that of ε-C and HC. Moreover, 
by being robust, the ε-DRFC model shifts its hyper-
plane a bit higher to hedge against potential violations 
from disturbances, and the HDRFC model becomes 
even more horizontal to reduce the dependence of the 
classifiers on X1.

We then assess the unfairness and accuracy scores on 
the training and testing sets. The unfairness score is 
evaluated by the absolute EO unfairness measure:

|U(w, b,Q) | ¢ |Q(C(X) ↓ 1 |A ↓ 1, Y ↓ 1) Q(C(X)

↓ 1 |A ↓ 0, Y ↓ 1) | :
Compared with the EO unfairness measure, the absolute 
EO unfairness measure is more suitable for performance 
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evaluation because it reflects if the trained fair classifier 
overdampens the classifier’s performance on the privi-
leged group in the test set. From Table 2, we observe 
that all the fairness aware classifiers reduce the unfair-
ness score with a moderate cost of accuracy. In addi-
tion, although including robustness yields identical 
scores in the in-sample test, the out-of-sample perfor-
mances improve significantly. With the distributionally 
robust model, the generated classifiers slightly deviate 
from the nonrobust classifiers to hedge against possible 
noises from the observed training samples, making the 
decisions more stable in the unseen testing set.

In the second set of synthetic experiments, we compare 
the performance of our models against the DOB+ (Donini 
et al. 2018) and DRFLR (Taskesen et al. 2020). The DOB+
model is the state-of-the-art method in deterministic lin-
ear classification. It minimizes the empirical hinge loss 
in the objective function and adopts a linear-loss–based 
unfairness measure to approximate the EO unfairness 
measure in the constraint. The DRFLR model is a distri-
butionally robust logistic regression model. It minimizes 
the empirical log-loss and a fairness-driven regularization 
term in the objective function. Specifically, the paper pro-
poses a log-probabilistic equalized opportunities unfairness 
measure, which is a convex approximation of the EO 
unfairness measure, as the fairness-driven regularization 

term. The DRFLR model is also considered the state-of- 
the-art method in distributionally robust fair logistic 
regression.

We plot the Pareto frontiers of the ε-FC, ε-DRFC, 
HFC, and HDRFC against those of DOB+ and DRFLR 
in Figure 3. We draw 200 samples from the well-known 
COMPAS data set (Brennan et al. 2009) and then sepa-
rate them into a group of 50 samples used for the train-
ing, whereas the remaining 150 samples are used as the 
test set. For the ε-FC and ε-DRFC models, we examine 
the models with different values of the unfairness con-
trolling parameter η�on [0.05, 0.25] with five equidistant 
points. Similarly, we examine the HFC and HDRFC 
models with ζ�on [1.2, 1.6] with five equidistant points, 
and the DRFLR model with ηf on [0:1, min{p̂01, p̂11}] as 
the DRFLR model admits tractable reformulations only 
if ηf ≃ min{p̂01, p̂11}. We fix the Wasserstein radius of 
the ε-DRFC and HDRFC models to 0.1 and the radius 
of the DRFLR model to 0.005. Because the authors of 
the DOB+ method argue that zero is a reasonable selec-
tion for the unfairness controlling parameter in their 
model, and their code is implemented under this pre-
requisite, to be consistent with their paper, we fix this 
parameter for the DOB+ method in our experiment. 
The hyperparameter C of the DOB+ method is chosen 
from [10 1, 101] by cross-validation using the authors’ 

Figure 2. (Color online) Classification Hyperplanes (Dashed) Obtained by Different Approaches 

(a) (b)

Notes. Color encodes the labels and shape encodes the sensitive attributes. (a) Classification hyperplanes obtained by the mixed binary conic 
model. (b) Classification hyperplanes obtained by the convex model. (a) ε-DRFC. (b) HDRFC.

Table 2. Predictive Accuracy and Unfairness on Training and Test Data for the 
Synthetic Experiment

Classifier
Train 

accuracy
Train 

unfairness ( |U |) Test accuracy
Test 

unfairness ( |U | )

ε-C 84.00% 1.000 72.92% 0.9303
ε-FC 68.00% 0.056 58.56% 0.3560
ε-DRFC 68.00% 0.056 57.33% 0.3316
HC 84.00% 1.000 70.76% 0.9269
HFC 68.00% 0.056 56.92% 0.3284
HDRFC 68.00% 0.056 57.23% 0.3984
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code. The described procedure is repeated 50 times inde-
pendently, and the results are averaged over 50 trials.

Figure 3 visualizes the Pareto frontiers of six fairness 
aware models in the out-of-sample test, where the 
dashed lines represent the nonrobust models (ε-FC and 
HFC), the solid lines represent the distributionally 
robust models (ε-DRFC and HDRFC), and the dotted- 
solid line represents the DRFLR model. The ε-FC and 
ε-DRFC models benefited from their tight conservative 
approximation reformulation and dominate the DRFLR 
and HFC models across all unfairness scores. Addition-
ally, the HDRFC model performs better than the DOB+
method, and because of its excellent scalability, it is 
more suitable for practical problems. Finally, all robust 
models (ε-DRFC and HDRFC) outperform their nonro-
bust counterparts (ε-FC and HFC), demonstrating the 
advantages of our proposed robustification schemes.

6.2. Experiments with Real Data
We then assess the performance of the ε-DRFC and 
HDRFC models and demonstrate their superior perfor-
mances compared with competitive benchmarks. The 

experiments focus on five publicly available data sets 
(German, Adult, Drug, COMPAS, and Arrhythmia). 
The German Credit Risks data set classifies people 
described by a set of attributes as good or bad credit 
risks. The data are collected from 1,000 individuals, 
and we consider age (converted to binary values of 
“less than or equal to 30years old” or “greater than 
30 years old”) as the sensitive attribute. The Adult data 
set is also relevant to candidates scoring in loan audits, 
where the prediction task is to determine if a person’s 
annual income exceeds $50,000. It contains 13 features 
concerning demographic characteristics of 45,222 in-
stances, and we consider gender as the sensitive attri-
bute. The Drug and COMPAS data sets concern 
criminal assessment: The Drug data set includes 12 fea-
tures of 1,885 respondents, and the objective is to pre-
dict whether a respondent has ever used heroin or not. 
COMPAS (Correctional Offender Management Profil-
ing for Alternative Sanctions) is a popular commercial 
algorithm judges and parole officers use to score crimi-
nal defendants’ likelihood of reoffending. The data set 
contains variables used by the COMPAS algorithm in 
scoring defendants and their outcomes within two 
years of the decision for more than 10,000 criminal 
defendants. In both data sets, we consider ethnicity 
(Black versus non-Black) as the sensitive attribute. The 
Arrhythmia data set is related to medical interventions, 
where the task is to distinguish between the presence 
and absence of cardiac arrhythmia and to classify it in 1 
of the 16 groups. In our experiment, we consider gen-
der as the sensitive attribute and reset the task with the 
binary classification between normal arrhythmia and 
15 other arrhythmia classes.

A summary of these five data sets is presented in 
Table 3. Although the Adult data set has already been 
divided into the training and testing sets, we randomly 
select two-thirds of the samples for training and keep 
the rest of the data for testing in all other four data sets. 
It is worth noting that the Adult and Drug data sets 
contain many more negative samples, indicating that 
they are imbalanced.

Table 3. Data Sets Statistics and Their Sensitive Feature

Data set Features d
Sensitive 

attribute A
Number 

of samples
Positive (+) vs. 

negative ( )

German 19 Age 1,000 40:0% : 60:0%
Adult 12 Gender 32,561, 12,661 24:9% : 75:1%
Drug 11 Ethnicity 1,885 21:9% : 78:1%
COMPAS 10 Ethnicity 6,172 47:0% : 53:0%
Arrhythmia 279(12) Gender 452 54:2% : 45:8%

Notes. Age considers age groups greater than 30 years old and less than or equal to 30 years 
old. Gender considers the two groups male and female. Ethnicity considers the ethnic groups 
white and other ethnic groups. The adult data set has preassigned training and test sets. The 
last column represents the proportion of positive and negative samples in each data set.

Figure 3. (Color online) Out-of-Sample Unfairness Accuracy 
Pareto Frontiers for Different Approaches 
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We formally benchmark the models following a 
cross-validation, training, and testing procedure. The 
hyperparameters of the HDRFC, and ε-DRFC models 
are determined following a cross-validation procedure 
similar to Donini et al. (2018). We first determine η�and 
ζ�under the empirical distribution. In each trial, we 
solve two plain vanilla classifiers to determine the pri-
vileged group and the empirical unfairness scores η̂�
and ζ̂. Then, we set η�to half of the empirical EO unfair-
ness score and ζ�to half of the empirical Hinge unfair-
ness score. With η�and ζ�being fixed, we tune the 
hyperparameters of the ambiguity set (15). We adopt 
the general ground metric (14) illustrated in Section 5
and set κA ↓ 2κY ↓ 0:5, because the difference of the 
two sensitive attributes is |a a⇓ | ↓ 1, whereas the dif-
ference of the two labels is |y y⇓ | ↓ 2. We split the 
training set into a subtraining set with two-thirds of 
the samples while keeping the remainder as a subvali-
dation set. Then, we collect statistics of accuracy and 
absolute EO unfairness scores for ρ ↑ [0:001, 1] on a log-
arithm scale with 30 discretization points evaluated on 
the subvalidation sets. The maximal value in the grid 
search for ρ�equals 2κY + κA, which suffices to induce 
the perturbation on the label Y and the sensitive attri-
bute A. Next, if the radius ρ�obtained in the first step is 
greater than or equal to 0.5, then we fix it and tune γ�
from {0, 0:01, 0:02, : : : , 0:05}; otherwise, we set γ�to zero 
as the radius is less than the cost of perturbing the label 

Y or the sensitive attribute A. In this case, the ε-DRFC 
and HDRFC revert to the simplified models discussed 
in Sections 3 and 4, respectively. Finally, we select the 
values with the highest (Accuracy  0:5 ⇑ Unfairness) 
score from the search grid. Similarly, the tuning para-
meters of the DOB+ and DRFLR methods are also 
determined by cross-validation using the authors’ code. 
Next, we evaluate the accuracy and unfairness mea-
sures of all classifiers on the test set. We repeat this 
procedure for K ↓ 50 times and report the average accu-
racy scores and unfairness measures in Table 4.

Table 4 suggests that our proposed HDRFC and 
ε-DRFC models perform favorably relative to their 
competitors. They yield low unfairness scores across 
the three balanced data sets with only a moderate loss 
in accuracy. For the imbalanced data sets, our proposed 
methods adopt balanced accuracy and balanced hinge 
loss as the objective functions. Benefiting from the 
modified objective functions, our methods perform 
well in all evaluation metrics: accuracy, F1-score, and 
unfairness scores. As a comparison, the DOB+ and 
DRFLR methods work well for accuracy and unfairness 
but perform poorly in terms of F1-score. The reason for 
getting low F1 scores is that both methods are accuracy 
driven, which is a misleading metric for imbalanced 
data sets. To see this, let us illustrate using the Drug 
data set. Because the Drug data set contains 78% nega-
tive samples, the decision maker can easily design an 

Table 4. Test Accuracy, F1 Score, and Different Unfairness Measures (Average 6 Standard Deviation) for N ↓ 100

Data set Metric SVM DOB+ DRFLR HDRFC ε-DRFC

German Accuracy 0:7160:02 0:70 60:02 0:70 60:01 0:7160:01 0:7160:01
F1-score 0:806 0:01 0:81 60:02 0:79 60:02 0:816 0:01 0:8260:02

Unfairness ( |U |) 0:086 0:04 0:05 60:03 0:03 60:02 0:0260:01 0:03 60:01
Unfairness ( |D |) 0:096 0:05 0:06 60:03 0:03 60:01 0:0160:01 0:02 60:01
Unfairness ( |O | ) 0:116 0:05 0:08 60:03 0:05 60:02 0:0360:01 0:0360:02

COMPAS Accuracy 0:6360:02 0:59 60:04 0:58 60:03 0:586 0:03 0:62 60:03
F1-score 0:5860:02 0:48 60:02 0:46 60:02 0:486 0:01 0:5860:02

Unfairness ( |U |) 0:276 0:05 0:17 60:07 0:16 60:06 0:1560:05 0:17 60:05
Unfairness ( |D |) 0:236 0:13 0:15 60:07 0:1460:07 0:1460:06 0:16 60:07
Unfairness ( |O | ) 0:296 0:13 0:17 60:07 0:17 60:08 0:1660:08 0:17 60:08

Arrhythmia Accuracy 0:6560:03 0:63 60:03 0:63 60:02 0:626 0:02 0:61 60:02
F1-score 0:7260:02 0:72 60:02 0:71 60:02 0:716 0:01 0:71 60:01

Unfairness ( |U |) 0:226 0:07 0:10 60:08 0:08 60:06 0:0660:04 0:08 60:05
Unfairness ( |D |) 0:266 0:11 0:15 60:08 0:14 60:07 0:116 0:05 0:1060:05
Unfairness ( |O | ) 0:266 0:10 0:16 60:07 0:14 60:06 0:1260:05 0:1260:05

Adult Accuracy 0:7960:03 0:7960:02 0:78 60:02 0:726 0:02 0:72 60:02
F1-score 0:456 0:02 0:36 60:01 0:34 60:02 0:526 0:03 0:5360:02

Unfairness ( |U |) 0:216 0:11 0:11 60:08 0:1060:08 0:156 0:11 0:14 60:10
Unfairness ( |D |) 0:186 0:13 0:0660:04 0:07 60:04 0:126 0:07 0:12 60:07
Unfairness ( |O | ) 0:226 0:11 0:1160:08 0:1160:08 0:166 0:11 0:15 60:10

Drug Accuracy 0:7960:03 0:78 60:02 0:78 60:02 0:706 0:02 0:71 60:02
F1-score 0:426 0:04 0:30 60:01 0:26 60:02 0:516 0:02 0:5260:02

Unfairness ( |U |) 0:136 0:08 0:08 60:07 0:0760:06 0:086 0:06 0:09 60:05
Unfairness ( |D |) 0:076 0:05 0:06 60:03 0:0560:04 0:066 0:05 0:08 60:05
Unfairness ( |O | ) 0:136 0:06 0:0860:07 0:0860:06 0:116 0:05 0:13 60:06

Notes. The best results for each data set are highlighted in bold. For the imbalanced Adult and Drug data sets, we adopt balanced 
accuracy–driven objectives in the HDRFC and ε-DRFC models.
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accurate (78% accuracy) and fair (0% positive rate for 
both groups) classifier by assigning all data points 
to the negative halfspace. However, this classifier is 
trivial since it does not identify qualified samples. 
Similar issues arise in other accuracy-driven methods. 
In the Adult and Drug data sets, the DOB+ and 
DRFLR models attempt to maintain fairness by 
naively rejecting most samples. Although the gener-
ated classifiers achieve deceivingly high scores in 
accuracy and unfairness, they inevitably fail in terms 
of F1 score. In contrast, by minimizing the balanced 
misclassification rate and balanced hinge loss, our 
methods achieve much better F1 scores in the imbal-
anced data set with only a slight loss in accuracy.

We also evaluate the performances of the aforemen-
tioned methods in terms of other unfairness measures. 
Specifically, we consider two popular fairness notions 
called demographic parity (Calders et al. 2009) and 
equalized odds (Hardt et al. 2016, Zafar et al. 2017). 
Similar to the EO unfairness measure, we define the 
demographic parity unfairness measure by

|D(w, b,Q) |

¢ |Q(C(X) ↓ 1 |A ↓ 1) Q(C(X) ↓ 1 |A ↓ 0) | , 

and the equalized odds unfairness measure (Bird et al. 2020) 

by
|O(w, b,Q) | ¢ max{ |Q(C(X) ↓ 1 |A ↓ 1, Y ↓ 1)

 Q(C(X) ↓ 1 |A ↓ 0, Y ↓ 1) | ,

|Q(C(X) ↓ 1 |A ↓ 1, Y ↓  1)

 Q(C(X) ↓ 1 |A ↓ 0, Y ↓  1) |}:
Table 4 shows that promoting fairness in terms of equal 
opportunity will also improve demographic parity and 
equalized odds fairness scores, at least empirically. In 
addition, we also observe that the unfairness score 
using equalized odds always serves as an upper bound 
to the score using equal opportunity, which coincides 
with the definition that equal opportunity is a relaxa-
tion of the equalized odds criterion.

6.3. Solution Time
We report the running time of different methods on six 
data sets (German, Adult, Drug, COMPAS, Arrhythmia, 
and Synthetic) with the sample size varying from 25 
to 1,000. We set the unfairness controlling parameters 
η ↓ 0:1 for ε-FC and ε-DRFC, ζ ↓ 1:1 for HDRFC, ηf ↓
min{p̂01, p̂11}=2 for DRFLR, Wasserstein radius ρ ↓ 0:5 
for all distributionally robust models. The ε-DRFC and 
HDRFC are trained with the general ground metric with 

Table 5. Running Time (s) of Different Methods

Data set Classifier

Sample size N

25 50 100 250 500 1,000

German ε-DRFC 1.87 2.36 13.66 148.25 3,432.71 /
HDRFC 0.02 0.02 0.04 0.09 0.13 0.15
DOB+ 0.02 0.03 0.07 0.14 0.32 0.41
DRFLR 2.53 3.61 8.70 20.18 44.32 80.62

Adult ε-DRFC 3.56 17.91 265.47 / / /
HDRFC 0.02 0.03 0.05 0.10 0.13 0.16
DOB+ 0.02 0.03 0.08 0.16 0.33 0.47
DRFLR 3.02 3.79 8.01 21.59 40.52 85.90

Drug ε-DRFC 4.27 26.73 1,072.14 / / /
HDRFC 0.02 0.03 0.05 0.08 0.11 0.15
DOB+ 0.03 0.03 0.07 0.16 0.21 0.34
DRFLR 2.58 3.66 7.13 20.57 43.69 93.42

COMPAS ε-DRFC 1.42 3.72 15.26 122.49 3,749.28 /
HDRFC 0.03 0.04 0.05 0.11 0.14 0.18
DOB+ 0.02 0.03 0.02 0.15 0.18 0.17
DRFLR 3.04 4.10 7.48 19.32 45.64 91.57

Arrhythmia ε-DRFC 2.31 4.58 22.40 626.50
HDRFC 0.03 0.06 0.24 0.39
DOB+ 0.04 0.05 0.17 0.32
DRFLR 2.12 4.37 11.59 21.28

Synthetic ε-DRFC 0.43 0.91 2.78 10.57 147.84 4,741.72
HDRFC 0.12 0.01 0.02 0.03 0.05 0.08
DOB+ 0.09 0.16 0.19 0.29 0.38 0.59
DRFLR 2.56 3.84 8.02 19.91 42.54 91.70

Notes. The Arrhythmia data set only contains 452 examples. Hence, we examine its performance up to N ↓ 250. The / symbol represents that the 
solver fails to achieve optimality within 7,200 seconds.
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γ ↓ 0:01, κA ↓ 2κY ↓ 0:5. All results are averaged over 10 
independent trials.

Table 5 suggests that the ε-DRFC model is applicable 
to moderate-size problems. However, it encounters 
computational difficulties at large sample sizes. In 
addition, the model becomes even more computation-
ally intensive for the imbalanced Adult and Drug data 
sets. The DRFLR model involves solving an exponen-
tial cone program, and we use the popular cone optimi-
zation solver MOSEK (MOSEK ApS 2024) to solve the 
problem. We observe that the DRFLR model is less effi-
cient than the linear-program-based method HDRFC 
and the gradient-descent-based method DOB+. The 
sample size is the factor that affects the running time 
the most because the number of variables and con-
straints is proportional to the sample size. Compared 
with the ε-DRFC and DRFLR models, the HDRFC and 
the DOB+ methods are more efficient across all data 
sets. For all sample sizes, these methods can be solved 
in one second. Therefore, this result suggests that the 
HDRFC model is more suitable for large instances.

7. Concluding Remarks
In this paper, we developed a new principled approach 
to fair classification by incorporating the equality of 
opportunity criterion as a constraint and robustifying 
the resulting optimization problem using the frame-
work of Wasserstein min-max learning. We use the 
type-→ Wasserstein ambiguity set, which enables a 
scalable conic programming reformulation with attrac-
tive statistical performance guarantees. Our proposed 
model can also handle problem instances with noisy 
adversarially sensitive attributes and labels.

Because the original problem cannot be reformulated 
exactly, we propose a tight conservative Approximation 
(8) that is amenable to a mixed binary linear program-
ming reformulation. To the best of our knowledge, this 
is the first approximation that enables decision-makers 
to control the worst-case EO unfairness measure explic-
itly using a constraint formulation. However, this refor-
mulation is not as efficiently solvable due to the number 
of binary variables growing polynomially with the num-
ber of data samples. To address this issue, we further 
approximate both the objective function and the unfair-
ness measure using the hinge loss function to obtain a 
convex continuous approximation. We find that the 
hinge-loss–based distributionally robust fairness aware 
model performs favorably compared with the state-of- 
the-art method DOB+ and DRFLR in the numerical 
experiments.
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