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A B S T R A C T

This paper presents a novel method for control of overlay errors in photolithography processes in semicon-
ductor manufacturing. It minimizes the largest overlay error across all measurement markers on a pattern
layer, and this minimization is done for the worst-case scenario regarding bounded process bias and model-
ing noise terms. This large-scale robust optimization problem was formulated as a linear program which can
be solved within seconds to generate optimal control commands. Simulations based on wafer data obtained
from a major 300 mm semiconductor fab illustrate consistent and significant advantages of this approach
over the benchmark control strategies.
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1. Introduction

In the field of semiconductor manufacturing, photolithography
processes are used to successively transfer patterns from masks onto
wafers and thus build circuits up layer by layer [1]. Adequate align-
ment between consecutive pattern layers is critical to the production
of functioning microelectronic devices [2]. Therefore, precise control
of misalignments between pattern layers on a wafer, referred to as
overlay errors, is a problem of great importance to the industry [3].

Due to wave behavior of light at sub-nanometer scales relevant to
overlay errors, their characterization errors on a given wafer requires
measurements of overlay errors from a number of overlay measure-
ment markers dispersed across the wafer [4]. There could be hun-
dreds of such markers on a wafer and their locations are
predetermined and known. In the foundation of all overlay control
approaches are Zernike-polynomial based models that relate overlay
errors in those markers to controllable parameters on the photoli-
thography tool on which the process is performed [5]. At such small
scales, significant uncertainties in the behavior of controllable param-
eters on the tool are inevitable and because of them, there is always a
difference between what a control parameter on a lithography tool is
commanded to do and what the tool actually executes. Those differ-
ences are commonly referred to as biases in controllable parameters
of the tool and their uncertain, time-varying effects on overlay errors
need to be countered through the control process.

The most commonly utilized overlay control strategy in the indus-
try is the so-called run-to-run (R2R) strategy. R2R controlmethods uti-
lize historical records of overlay errors and Zernike-polynomial based
overlay models to estimate behavior of biases in tool parameters over
time, based onwhich various prediction techniques are used to predict
those biases for the next wafer. Predicted biases are then countered by
pre-compensating control parameters for the next wafer in the

opposite direction of predicted biases in those control parameters. A
comprehensive review of R2R control strategies and their use in semi-
conductormanufacturing canbe found in [6] and references therein.

Regardless of theunderlyingestimationandpredictionapproaches,
R2R control strategies naturally deal with overlay errors of an individ-
ual pattern layer only. Nevertheless, production of a functioning circuit
requires fabrication and alignment of dozens of pattern layers. In the
recent years, Stream of Variation (SoV) type models [7] were used to
model this inherentmultistage character of lithography processes and
augment R2R control paradigm with considerations of stack-up over-
lay errors across non-neighboring pattern layers. In [8], an algorithm
for optimal stochastic control of overlay and stack-up overlay errors
was developed under Bayesian assumptions of perfectly knownmodel
parameters,withmodel noise andbias prediction errors assumed to be
normal, independent, and identically distributed (NIID) random varia-
bles. However, the tractability and convincing nature of results from
[8] are predicated on the aforementioned assumptions, which are
overly restrictive, especially in the area of semiconductor photolithog-
raphy, where extremely minute scale of the relevant phenomena
implies that the correspondingmodels are rarely (never) perfect,while
model noise termsare rarely (never)NIID.

This problem is recognized in [9], where the authors introduced a
control approach robust to imperfections in the knowledge of the
variance characteristics of modeling noise and errors in bias predic-
tions. Results in [9] showed significant benefits, especially when the
bounds on the unknown parameters become wide. These results
were further expanded in [10], where SoV-form models were used to
devise a generalized method for robust control of multistage
manufacturing quality in the presence of bounded noise terms and
uncertainties in model parameters. Applications of this control
approach in simulations based on the data and models of lithography
overlay processes from a real fab demonstrated consistent and signif-
icant benefits of robust, distribution-agnostic control paradigm from
[10] over traditional R2R approach [6], or Bayesian multistage
method from [8].
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Nevertheless, in all overlay control research thus far [6,10], char-
acterization of overlays in any given pattern layer is approached
using the standard Euclidean norm of the vector consisting of overlay
errors measured in all available markers. On the other hand, perfor-
mance of the resulting microelectronic device is often (usually)
driven by the worst overlay in the wafer area relevant to that device.
Therefore, rather than minimizing the Euclidean L2 norm of the vec-
tor of overlay errors in a given pattern layer, as was done in [6,10],
one needs to minimize the L1 norm (maximum element) of that vec-
tor. This is a much more difficult, less tractable problem and it will be
addressed in this paper.

Specifically,thispaperpresentsacontrolstrategythatminimizesthe
maximumof the overlay errors across all measurementmarkers in the
entire pattern layer, andwe seek to do that robustly, for theworst-case
scenario of bounded modeling noise terms and errors in bias predic-
tions. The remainder of this paper is structured as follows. Section 2
describes the formulation of the underlying min-max-max optimiza-
tionproblem, aswell as its transformation intoa tractable formthat can
be efficiently solved. Section 3 evaluates the performance of the newly
proposedcontrol strategyandcompares itwiththatof theconventional
R2R control, as well as with the overlay control approach from [10],
whichrobustlyminimizestheL2normofoverlayerrors.Allcomparisons
are done using data and models from a major 300 mm semiconductor
manufacturing fab. Finally, Section 4 offers conclusions of the research
presentedinthispaperanddetailsdirectionsforpossible futurework.

2. Methods

As demonstrated in [10], the vectors oxk and o
y
k consisting of over-

lay errors in the x and y directions in all measurement markers across
pattern layer k can be expressed as:

oxk ¼ Dx ¢ ðux
k þ cxkÞ þ rxk ; o

y
k ¼ Dy ¢ ðuy

k þ cykÞ þ ryk ð1Þ

where matrices Dx and Dy denote regression matrices that are fully
defined by locations of measurement markers on the wafer, vectors u
consist of control commands issued to the tool, vectors c denote ran-
dom vectors of process biases which inherently exist due to actuator
uncertainties and minute scale of overlay errors, while vectors r con-
tain residuals that account for unmodeled effects and process noise.
The goal of the control strategy presented in this paper is to minimize
the largest magnitude of overlay errors present on a pattern layer, sub-
ject to the worst-case scenario regarding process bias terms and
model residuals, which are unknown, but are assumed to reside
within known limits.

The magnitude of overlay errors at measurement marker j of pat-
tern layer k is naturally defined using the Euclidean L2 norm as

k ok;j k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oxk;j2þ oyk;j2

q
. However, minimization of the maximum of

such Euclidean overlay norms across all markers j, which is also
robust to bounded uncertainties in model noise terms and bias pre-
diction errors ends up being an intractable, large-scale nonlinear
optimization problem. Instead, standard inequality
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can be used to establish an upper bound on the Euclidean magnitude
of overlay errors. This allows for the robust optimal control problem
for pattern layer k of wafer t to be formulated as
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where ðux&t;k; u
y&
t;kÞ are resulting vectors of optimal control commands

that are to be given to the lithography tool to fabricate pattern layer k
on wafer t, limits clb;xt;k ; c

lb;y
t;k ; rlb;xt;k and r

lb;y
t;k denote the lower bounds on

the bias vectors c and modeling noise terms r, limits cub;xt;k ; cub;yt;k ; rub;xt;k
and r

ub;y
t;k denote the corresponding upper bounds, while integers J, Nx

and Ny respectively denote the number of markers on the wafer and
the numbers of controllable tool parameters in the x and y directions
of the wafer.

Let us now transform formulation (2) into a tractable linear pro-
gram (LP), which can be solved in times comparable to cycle-times
relevant to the underlying process (seconds). To simplify notation,
we will observe that optimization (2) is performed for a given pattern
layer on a given wafer and hence the subscripts t and k can be
neglected. Let us now define vector ξ as

ξ ¼ c0xT c0yT r0xT r0yT
h iT

i.e., as the vector containing all uncertain terms in the optimization
(2). Also, let us define matrices

Mcx ¼ INcx 0Ncx x Ncy 0Ncx x Nrx 0Ncx x Nry

% &

Mcy ¼ 0Ncy x Ncx INcy 0Ncy x Nrx 0Ncy x Nry

% &

Mrx ¼ 0Nrx x Ncx 0Nrx x Ncy INrx 0Nrx x Nry

% &

Mry ¼ 0Nry x Ncx 0Nry x Ncy 0Nry x Nrx INry

% &

where In denotes an n-by-n identity matrix, while 0p;q denotes a p-
by-q matrix of zeros. Then, if we define matrix S as

S ¼ MT
cx !MT

cx MT
cy !MT

cy MT
rx !MT

rx MT
ry !MT

ry

h iT

and vector g as

g ¼ cub;xT ! clb;xT cub;yT ! clb;yT rub;xT ! rlb;xT rub;yT ! rlb;yT
h iT

constraints

clb;xt;k !c0xt;k!cub;xt;k ; clb;xt;k !c0yt;k!cub;yt;k

rlb;xt;k !r0xt;k!rub;xt;k ; rlb;yt;k !r0yt;k!rub;yt;k

ontheuncertainbiasvectorsc and model residuals r in (2) can be com-
pactly expressed as S ¢ j!g, and the uncertainty set ξ can be defined as
j ¼ fj2RNj : S ¢ j!g g, where Nξ is the number of elements in ξ .

Following [11], the two maximizations in (2) can be brought into
the constraints, which allows us to reformulate (2) as

u&x;u
&
y
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Constraint (4) is equivalent to

t"max
j2 j

joxj jþ
$$$$o

y
j

$$$$ 8 j2 1;2; . . . ; Jf g ð6Þ

which can be used to replace the nested max-max optimization in (4)
with J constraints (6), each containing a single optimization within it.
By using this new set of constraints and defining vectors ej as a J-
dimensional vectors with a 1 in the jth position and zeros in all other
positions, optimization (3)-(5) can be rewritten as

u&
x;u

&
y

" #
¼ argmin

ux 2RNx ;

uy 2RNy

mint 2Rt

s:t: ¢ t" maxξ 2 j

$$$$e
T
j ¢Dcx ¢ ux þMcx ¢ jð Þ þM rx ¢ j

$$$$þ
)
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þ
$$$$e

T
j ¢Dcy ¢ uþ

y Mcy ¢ ξ
" #
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For overlay errors oxj and oyj in marker j, expression joxj jþ joyj j can
take on the form of either oxj + oyj , o

x
j - oyj , -o

x
j + oyj , or -o

x
j - oyj . Thus,

each absolute value in the constraints on the variable t in (7) can be
replaced with four constraints - one for each possible permutation of
the signs. Then, by defining indices sx;i and sy;i as follows:

sx;i ¼ 1 8 i2 1;2; . . . ;2Jf g; ¢ sx;i ¼ !1 8 i2 2J þ 1;2J þ 2; . . . ;4Jf g

sy;i ¼ 1 8 i2 1;2; . . . ; Jf g[ 2J þ 1;2J þ 2; . . . ;3Jf g

sy;i ¼ !1 8 i2 J þ 1; J þ 2; . . . ;2Jf g[ 3J þ 1;3J þ 2; . . . ;4Jf g

as well as vectors

aTi ¼ sx;i ¢ eTi ¢ Dcx ¢Mcx þMrxð Þ þ sy;i ¢ eTi ¢ Dcx ¢Mcy þMry
' (

and functions

bi ux ;uy
' (

¼ sx;i ¢ eTi ¢Dcx ¢ ux þ sy;i ¢ eTi ¢Dcy ¢ uy
for i2 f1;2; . . . ;4Jg, optimization (7) can be rewritten as
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Functions bi do not depend on ξ and hence, (8) can be rewritten as

u&x; u
&
y

" #
¼ argmin

ux 2RNx ;

uy 2RNy

mint 2Rt ð9Þ

s:t ¢ t ! bi ux; uy
' (
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aTi ¢ j
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Following [12], one can dualize optimization problems (10), trans-
forming them into

t ! bi ux; uy
' (

" min
ui 2R

Nj
þ

uTi ¢ g
* +

8 i2 1;2; . . . ;4Jf g ð11Þ

s:t: aTi ! uTi ¢ S ¼ 0: ð12Þ

where ui is the vector of dual variables corresponding to the con-
straint j2 j in the ith optimization problem described by (10).

Let us observe that (11) is always satisfied as long as we have

t ! bi ux;uy
' (

"uTi ¢ g

This more stringent constraint can now be used to eliminate the
minimization in (11) the final formulation of the optimization prob-
lem can be expressed as the following LP

u&x; u
&
y

" #
¼ argmin

ux 2RNx ;

uy 2RNy

min t 2R
ui 2RNu

þ

t

s:t:
t ! bi ux; uy

' (
"uTi ¢ g 8 i2 1;2; . . . ;4Jf g

aTi ! uTi ¢ S ¼ 0 8 i2 1;2; . . . ;4Jf g

(
ð13Þ

This LP can be solved within seconds using standard solvers.
Hence, one can use (13) to obtain control vectors u&x and u&y for the
lithography tool which will minimize the maximum of overlay errors
in the relevant pattern, under the worst-case scenario of bounded
uncertainties in the bias terms and modeling residuals.

3. Results

The min-max-max robust control method described in the previ-
ous section is evaluated using lithography overlay error models and
measurements of overlay errors obtained from 4 consecutive pattern
layers of more than 80 wafers processed in a major 300 mm fab. Due

to its proprietary nature, the raw data was altered via random, but
consistent scaling, which removed physical units from the data, but
still allowed relative comparison of controller performances in terms
of outgoing overlay errors.

Performance of the newly proposed control algorithm was com-
pared to that of R2R control approach commonly utilized by indus-
trial practitioners, as well as with performance of the overlay control
method described in [10], where Euclidean L2 norms of overlay errors
rather than their worst magnitudes are controlled. Gaussian process
regression (GPR) based prediction [13] was used to predict process
biases and thus realize the R2R control approach. Even though other
prediction methods, such as Kalman Filtering or Exponentially
Weighted Moving Average based prediction, are more commonly
used in the industry [6], GPR was used in this paper because it allows
for the modeling of non-stationary, heteroscedastic processes typi-
cally observed in a fab. It also naturally yields predictions of process
biases, along with the corresponding uncertainty bounds needed for
the underlying robust optimization.

Following suggestion from fab engineers, predictions of process
biases and corresponding uncertainty bounds were obtained using a
moving window of 30 wafers which was sliding through the actual
fab data. For each of those windows of 30 wafers, stochastic behavior
of overlays for the next wafer was simulated by the following proce-
dure.We drew100 samples of process biases from the corresponding
GPR-predicted normal distributions, and for each marker location,
we drew 100 samples of residuals from actual, location-specific dis-
tributions of those residuals, modelled based on the data from the
fab. Then, for each of those 100 samples of vectors of biases and resid-
uals, we calculated the overlays at each measurement marker using
Zernike polynomial models of the form (1), with control signals u
given by the R2R controller (labelled as R2R control strategy), by the
controlmethod from [10] (labelled as Robust L2 control strategy) and
by the novel robust control method introduced in this paper
(labelled as L1 control strategy). This produced 3 distributions of
vectors of overlay errors: one for R2R control strategy, one for the
L2 control strategy and one for the L1 control strategy. Those distri-
butions were then compared and results of those comparisons are
presented here. Please note that the actual values have been
removed from all figures due to the proprietary nature of the data.

Fig. 1 and Table 1 show results from 100 simulations of the 31st
wafer,which correspond to simulations basedon thedata records from
the first window of 30 wafers. These simulations produced 100 values
for the mean, standard deviation, median, and maxima of overlay
errors in all measurement markers across the 31st wafer. Fig. 1 shows
box-and-whisker plots of those distributions for the three controllers,
while Table 1 offers a summarized results of comparisons of several
metricsof thosedistributions.Namely, top entries ineach cell of Table 1
showpercent reductions in theaverage,maximumandstandarddevia-
tion of the distribution of overlay error magnitudes produced by the
newly proposed L1 -robust controller, when compared to the corre-
sponding metrics in the distribution of overlay error magnitudes pro-
duced by the R2R controller. Similarly, bottom entries in each cell of
Table 1 show the corresponding percent reductions given by the
L2-robust controller from [10], when compared to the distribution
metrics produced by the R2R controller. It is clearly visible that on
this wafer, the newly proposed L1 -robust control strategy outper-
formed the benchmark control strategies in every metric, with that
improvement being even larger relative to the R2R controller.

Fig. 2 shows averages, standard deviations, medians and maxima
of distributions of overlay magnitudes obtained when the above-
described simulations were performed for 20 consecutive wafers (i.
e. with 20 consecutive windows of 30 wafers sliding through the
historical data from the fab). Visual inspection of these results
shows that the novel L1 -robust control strategy consistently out-
performs the benchmark strategies in every metric, with that
improvement being quite remarkable when compared to the R2R
control performance. This is confirmed by the data shown in Table 1,
which lists statistical metrics of the distributions shown in Fig. 1.
Furthermore, the novel control scheme significantly outperforms
both benchmark controllers when it comes to the maximal overlay
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error magnitudes on each wafer, which is not surprising given that
the new controller was indeed designed to robustly control the
worst-case overlay magnitudes. Finally, in terms of computational
speed, the novel control scheme generates control commands
within a few seconds, while the iterative optimization in the foun-
dation of the L2-robust strategy from [10] truncated its iterations
after about 15 min per pattern layer. This demonstrates yet another
clear advantage of the newly proposed control strategy and
explains why it kept outperforming the L2-robust strategy even in
terms of the average and median of overlay error magnitudes.

Finally, let us note that the R2R methods rely on the assumption
that the distributions of process biases and residuals are NIID. Since
simulations conducted in this paper generated process biases by sam-
pling from a normal distribution, one can infer that the R2R controller
performed better in these simulations than it would have under a
more realistic distribution of process biases. Therefore, implementa-
tion of the newly proposed controller in a real system would likely
lead to even more pronounced performance improvements over the
traditional R2R controller.

4. Conclusions and future work

This paper presents a novel method for control of overlay errors in
photolithography processes which minimizes the maximum of the
overlay errors across all measurement markers in the entire pattern
layer, and does that robustly, for the worst case of uncertainties in bias
prediction errors and overlay modeling residuals. When compared
with the industrial standard of R2R control strategy, simulations of this
method produce pattern layers with significantly smaller average and
maximum overlay errors, as well as smaller standard deviations of
overlay errors. These improvedmetrics could lead to higher yields and
smallerminimumfeature sizes for semiconductormanufacturers.

There are several directions for future work that could build upon
the results of this paper. Firstly, this paper does not consider stack-up
overlay errors, i.e. errors across non-neighboring pattern layers. Stack-
up overlay errors are highly impacting on the performance metrics of
the resulting products and future adaptations of the approach pre-
sented in this paper areneeded to account for them.However, straight-
forward expansion of the methods presented in this paper would not
bepossible.Namely, theuseof absolute values in theobjective function
(2), which does not account for stack-up overlay errors, required 4 . J

constraints in Eq. (5) to account for each permutation of the signs. Fol-
lowing such an approach to include an additional layer into (2) and
thus account for stack-upoverlay errorswould require 16 . J constraints
and this number would be multiplied by 4 with each additional layer.
This exponential scaling becomes unfeasible with modern semicon-
ductor manufacturing which requires dozens of layers to be aligned
properly. Future inclusion of stack-up overlay errors would require
some reformulation of the problem (2) which would allow for more
manageable scaling. Finally, the newly proposed control strategy is
ready for implementation in an industrial settingwhere its true effects
onoverlay errors andyield rates canbeobserved.
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