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Abstract. This paper presents an extension of Naor’s analysis on the join-or-balk problem 
in observable M/M/1 queues. Although all other Markovian assumptions still hold, we 
explore this problem assuming uncertain arrival rates under the distributionally robust set-
tings. We first study the problem with the classical moment ambiguity set, where the sup-
port, mean, and mean-absolute deviation of the underlying distribution are known. Next, 
we extend the model to the data-driven setting, where decision makers only have access to 
a finite set of samples. We develop three optimal joining threshold strategies from the per-
spectives of an individual customer, a social optimizer, and a revenue maximizer such that 
their respective worst-case expected benefit rates are maximized. Finally, we compare our 
findings with Naor’s original results and the traditional sample average approximation 
scheme.
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1. Introduction
Imposing tolls to regulate queueing systems was first studied by Naor (1969). He considers a single-server first 
come, first served (FCFS) queue with stationary Poisson arrivals at a known rate λ. Service times are independent 
and identically and exponentially distributed with the rate µ. Customers are assumed to be risk neutral and 
homogenous from an economic perspective. Each customer receives a reward of $R upon service completion 
and incurs a cost of $C per unit of time spent in the system (including in service). In the observable model, every 
arriving customer inspects the queue length and decides whether to join (reneging is not allowed) or balk (i.e., 
not join the queue). This strategic decision making is the key factor differentiating this model from the classic 
M/M/1 queueing model.

Naor (1969) derives an optimal threshold strategy n. The customer joins the queue if and only if the system 
length is less than n. He computes this threshold value under three different control strategies: (1) individual opti-
mization (ne) where the customers act in isolation, aiming to maximize their own expected net benefit rate; (2) 
social optimization (ns) where the objective is to maximize the long-run rate at which customers accrue net benefit; 
and (3) revenue maximization (nr) where the agency imposes a toll on the customers joining the queue with the 
goal of maximizing its own revenue. The most important result by Naor (1969) is the relation nr → ns → ne, which 
implies that the customers tend to join the system at a higher rate when left to themselves than is socially opti-
mal. This is because customers do not consider the negative externalities they impose on customers who arrive 
later. The result also implies that the revenue-maximizing firms allow fewer customers to join their system than 
the socially optimal case.

Many authors have expanded on the seminal work by Naor (1969); a detailed review of these game-theoretic 
models is presented in a recent book by Hassin and Haviv (2003). Some of the other recent works (Burnetas and 
Economou 2007, Economou and Kanta 2008, Guo and Hassin 2011) involve deriving threshold strategies in a 
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classic Naor setting with server shutdowns. Although Economou and Kanta (2008) study the system with server 
breakdowns and repairs, Burnetas and Economou (2007) analyze the system where the server shuts off when 
idle and incurs a setup time to resume. A slight variant of this model is given by Guo and Hassin (2011), where 
the server resumes only when the queue length exceeds a given critical length. Also, Guo and Zipkin (2007) 
explore the effects of three different levels of delay information and identify the specific cases that do and do not 
require such information to improve the performance. Haviv and Oz (2016) review the properties of several 
existing regulation schemes and devise a new mechanism where customers are given priority based on the queue 
length. Afèche and Ata (2013) study the observable M/M/1 queue with heterogenous customers, with some 
patient and some impatient of given proportions.

All the aforementioned works explore the Naor (1969) model by assuming deterministic arrival or service 
rates. However, in many real-world scenarios, customers may behave differently during different periods. 
Hence, there is merit in building a model that performs well under uncertainty. A possible approach is to con-
sider distributional uncertainty on the customers’ interarrival times (Bandi et al. 2015). Unfortunately, such gran-
ular data are usually inaccessible or simply not stored in practice. In addition, even if the granular data are 
collected, the problem is still theoretically challenging as the M/M/1 structure no longer holds. In this case, cal-
culating the long-run expected social benefit or revenue rates would be difficult, and there is no such study in 
the context of strategic queues. To avoid these shortcomings, some recent studies propose to address uncertainty 
by taking the arrival or service rate as a random variable (Liu and Hasenbein 2019, Hassin et al. 2023). For exam-
ple, they assume that the customer arrival rate is a random variable for each weekday, and the queue manager 
seeks a strategy that maximizes the long-run social benefits or revenue. This modeling assumption is an expedi-
ent approach to account for customer arrival variation while considering the issues of data accessibility and 
model complexity. Compared with granular data, historical arrival rates are much easier to obtain; most restau-
rants can collect the historical daily arrival rates by referring to the recorded sales quantity in their accounting 
books, but only a tiny portion of restaurants keep records of the exact arrival time of each customer. In addition, 
by assuming that the arrival rate is a fixed random variable within each time slot, the model preserves the 
M/M/1 structure, which enables the use of many elegant results from the paper of Naor (1969).

Papers with related assumptions as in our model include Debo and Veeraraghavan (2014), who consider a sys-
tem where the arriving customers cannot completely observe the service rate and value. They assume that the 
server belongs to one of two known types and that the service rate and prior probability for each type are known. 
Liu and Hasenbein (2019) study a stochastic extension of the Naor (1969) model by relaxing the assumption of a 
certain arrival rate. They assume that the arrival rate is drawn from a probability distribution that is known to 
the decision maker. Chen and Hasenbein (2020) further extend the stochastic model to the unobservable setting. 
They show that the social optimizer induces a lower expected arrival rate than the revenue maximizer in this set-
ting. Hassin et al. (2023) also investigate the unobservable stochastic model from the perspective of strategic cus-
tomers and demonstrate that the model exhibits a rate-biased arrivals see time averages property. Despite their 
conceptual appeal, all these works require that the arrival or service rate distribution is known precisely to deci-
sion makers, which may not be realistic in practice. In this paper, we extend the classical Naor model for observ-
able systems by relaxing these assumptions, where we assume the arrival rate is uncertain and governed by an 
unknown underlying distribution, whereas the service rate is deterministic.

To this end, we consider an alternate modeling paradigm called the distributionally robust optimization (DRO) 
(Scarf 1957, Žáčková 1966, Shapiro and Kleywegt 2002). Unlike the traditional stochastic optimization model, 
DRO acknowledges the lack of full distributional information on the random arrival rate. Instead, the decision 
maker is assumed to have access to partial information, such as the moments and structural properties of the 
arrival rate distribution, or some limited historical observations. In this setting, the objective is to derive optimal 
threshold strategies that maximize the worst-case expected benefit rate, where the worst case is taken over an 
ambiguity set of all distributions consistent with the available information about the true distribution. Such max- 
min problems have been studied since the seminal work by Scarf (1957), but they have only received more atten-
tion with the advent of modern robust optimization techniques (Bertsimas and Sim 2004, Ben-Tal et al. 2009). 
Since then, a substantial body of literature has been devoted to studying well-known optimization problems 
under uncertainty in a distributionally robust setting; see Delage and Ye (2010), Li et al. (2014), Wiesemann et al. 
(2014), Hanasusanto et al. (2015), Shafieezadeh-Abadeh et al. (2015), and Ardestani-Jaafari and Delage (2021). 
Nevertheless, the distributionally robust framework has not been considered in the context of the classical Naor 
observable strategic queue model. The paper fills this gap in the literature.

We first study the distributionally robust queue model with a mean-absolute deviation (MAD) ambiguity set 
(Postek et al. 2018), where partial information about the distribution mean and MAD are known. Next, we extend 
our model to the data-driven setting, where queue system managers only have access to a finite number of 
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independent and identically distributed training samples collected from historical observations. We construct a 
data-driven mean-absolute deviation (DD-MAD) ambiguity set that mitigates estimation errors from the empiri-
cal moment estimators. The resulting distributionally robust model with a data-driven ambiguity set admits a 
semidefinite programming (SDP) reformulation for the social optimization problem and a linear programming 
reformulation for the revenue maximization problem. To properly determine the robustness parameters, we 
establish a new distribution-free confidence interval for the empirical MAD. Although such confidence intervals 
exist for the empirical mean and variance (Delage and Ye 2010), to the best of our knowledge, none are available 
for the empirical MAD. Herrey (1965) derives the confidence interval for the empirical MAD under normal distri-
bution data, whereas other works mostly focus on median-absolute deviation; see Bonett and Seier (2003), Abu- 
Shawiesh et al. (2018), and Arachchige and Prendergast (2019). Using this result, we further derive finite-sample 
guarantees for the data-driven MAD model, in which optimal values provide high-confidence lower bounds on 
the expected social benefit or revenue rate. We also benchmark our data-driven MAD ambiguity set with the 
popular Wasserstein ambiguity set (Pflug and Wozabal 2007, Esfahani and Kuhn 2018, Esfahani et al. 2018, Gao 
and Kleywegt 2023), which is widely used in the data-driven setting as it can offer attractive finite-sample guar-
antees. The results demonstrate that our proposed data-driven MAD model shares a similar guarantee as the 
Wasserstein model while generating a significantly more tractable reformulation.

The main contributions of this paper can be summarized as follows. 
1. We propose a new model to tackle the uncertain arrival rate in the Naor strategic queue problem using the 

emerging DRO framework. The model does not impose any specific distributional assumption; instead, it opti-
mizes in view of the worst-case distribution within a prescribed ambiguity set. Benefitting from this robustification 
framework, the model alleviates the overfitting issue and yields attractive out-of-sample performance.

2. We prove that the revenue rate function is concave, whereas the social benefit rate function is either concave 
or unimodal under some mild prerequisites. We then show that these properties enable a closed-form solution for 
the worst-case expectation problem with an MAD ambiguity set. For the general cases, we derive an SDP reformu-
lation for the social optimization problem and a linear programming reformulation for the revenue optimization 
problem.

3. We extend the distributionally robust model to the data-driven setting, where queue system managers only 
have access to a finite set of historical observations. To mitigate the adverse effect of the estimation errors from the 
empirical MAD, we robustify the ambiguity set by adding an extra layer of robustness to the empirical mean and 
MAD estimators. The data-driven MAD model admits an SDP reformulation for the social optimization problem 
and a linear programming reformulation for the revenue maximization problem. We then establish a distribution- 
free confidence interval for the empirical MAD and derive finite-sample guarantees for the distributionally robust 
model with a data-driven MAD ambiguity set. Compared with the Wasserstein ambiguity set, the data-driven 
MAD ambiguity set admits a more efficient reformulation of fixed complexity, where the number of constraints 
does not scale with the sample size.

The remainder of the paper is structured as follows. In Section 2, we propose the distributionally robust queue 
model and analyze the relationship between different thresholds under the distributionally robust setting. Sec-
tion 3 presents tractable reformulations for the worst-case expectation problem with a classical MAD ambiguity 
set. Section 4 explores the distributionally robust model with a data-driven MAD ambiguity set and derives theo-
retical finite-sample guarantees. Finally, the out-of-sample performances of our distributionally robust models 
are assessed empirically in Section 5.

1.1. Notations
The set of all probability measures supported on Ξ�is written as P0(Ξ) :↑ {µ ↓M+ :

R
Ξµ(dξ) ↑ 1}, where M+

denotes the set of nonnegative Borel measures. All random variables are designated by tilde signs (e.g., ρ̃), 
whereas their realizations are denoted without tildes (e.g., ρ). We denote by EP[c(ρ̃)] the expectation of a cost 
function with respect to the random variable ρ̃�under distribution P. We define ↔n↗ to be the largest integer less 
than or equal to n and ↘x↘p to be the p-norm of a vector x. For any set Ξ, we let int(Ξ) denote its interior. The cone 
of k ≃ k positive semidefinite matrices is denoted by Sk

+.

2. Distributionally Robust Strategic Queues Model
The extension of the Naor (1969) seminal queue model to the stochastic optimization setting with an uncertain 
arrival rate was first proposed by Liu and Hasenbein (2019), who consider an M/M/1 queue system with a ran-
dom arrival rate λ̃ ~ P? and a deterministic service rate µ. The queue system operates under a first come, first 
served discipline, and the true distribution of the uncertain arrival rate λ̃�is known by the system manager. 

Wang et al.: Distributionally Robust Observable Strategic Queues 
Stochastic Systems, 2024, vol. 14, no. 3, pp. 337–361, © 2024 The Author(s) 339 



Because the service rate µ is deterministic, without loss of generality, we consider the traffic intensity ρ̃ :↑ λ̃µ as the 
uncertain parameter throughout the remainder of the paper. The stochastic model aims to find an optimal thresh-
old that maximizes the expected benefit rate: that is,

max
n↓Z+

EP?[cn(ρ̃)]:

Here, cn(ρ̃) is a general return function, which can be replaced with the social benefit rate function or the revenue 
rate function depending on the system manager’s objective.

In practice, the true distribution P? is never available to the system manager and typically has to be estimated 
using the empirical distribution generated from the historical observations. Although the empirical-based meth-
ods may work well on the observed data set, they often fail to achieve an acceptable out-of-sample performance 
because they do not consider any possible disturbances from the limited historical observations.

In this paper, we endeavor to address this fundamental shortcoming using ideas of DRO. The DRO approach 
does not impose any single distribution on the uncertain arrival rate. Instead, it constructs an ambiguity set P 
containing all plausible probability distributions that are consistent with the partial information as well as histor-
ical observations. In this setting, the objective is to derive an optimal threshold strategy n̂ that maximizes the 
worst-case expected benefit rate, where the worst case is taken over all distributions from within this ambiguity 
set: that is,

max
n↓Z+

inf
P↓P

EP[cn(ρ̃)]: (1) 

Because the model optimizes the expected benefit rate in view of the worst-case distribution, it mitigates overfit-
ting to the observed samples and helps improve the performance in out-of-sample circumstances.

In this paper, we study the distributionally robust model from the perspective of an individual customer, a 
social optimizer, and a revenue maximizer. We first derive the results that hold for any generic ambiguity set P.

2.1. Individual Optimization
We determine a pure threshold strategy in which each arriving customer decides to join or not join the queue 
based on the observed queue length, independent of the strategy adopted by other customers. A newly arrived 
customer makes a decision (to join or not join) based on the net gain R (i + 1)C=µ, where i is the number of peo-
ple currently in the queue, and will join the queue if it is nonnegative. Note that net gain is deterministic because 
it is independent of the random arrival rate. Thus, the optimal joining threshold for any arriving customer is 
given by

n̂e ↑
 

Rµ
C

!
: (2) 

This result coincides with the original result of Naor (1969) (i.e., n̂e ↑ ne) because the net gain of a newly arrived 
customer only depends on the current queue length and the service rate, which are all deterministic. On the other 
hand, as an individual optimizer, the customer can ignore the rates of future arrivals because they will not affect 
the time to service.

2.2. Social Optimization
We next analyze the distributionally robust threshold for a social optimizer. The social benefit rate for a realiza-
tion of the traffic intensity ρ�and a fixed threshold n is given by

fn(ρ) :↑
Rµ ρ(1 ρ

n)
1 ρn+1  C ρ

1 ρ 
(n + 1)ρn+1

1 ρn+1

" #
if ρ ≠ 1

Rµ n
n + 1 C n

2 if ρ ↑ 1:

8
>><

>>:
(3) 

One can verify that limρ⇐1Rµ ρ(1 ρ
n)

1 ρn+1  C ρ
1 ρ 

(n+1)ρn+1

1 ρn+1

$ %
↑ Rµ n

n+1 C n
2, which indicates that the function fn(ρ) is 

continuous in ρ. The distributionally robust model determines an optimal threshold n̂s that maximizes the 
worst-case expected social benefit rate Zs(n): that is, n̂s ↓ arg maxn↓Z+Zs(n), where

Zs(n) :↑ inf
P↓P

EP[fn(ρ̃)]: (4) 

We first investigate the relationship between the optimal thresholds n̂e and n̂s.
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Proposition 1. There exists an optimal threshold of the social optimizer less than or equal to the optimal threshold of an 
individual customer: that is, ⇒n̂s s:t: n̂s → n̂e:

Proposition 1 enables decision makers to search for the best threshold from {1, : : : , n̂e}. We remark that the par-
ticipation of customers is not affected by the distributionally robust setting because the queue adopts the FCFS 
discipline, so subsequent arrivals are immaterial after the customer has joined the queue. Thus, the socially opti-
mal threshold is always achievable by reducing the individual threshold from ne to n̂s.

2.3. Revenue Optimization
We now consider a profit-maximizing firm that aims to maximize its expected revenue rate by imposing a toll t 
on every joining customer. In this setting, customers base their joining decision on this imposed toll t and evalu-
ate the service completion only by R  t. Recall that customers join the queue if and only if the expected net gain 
is nonnegative. Therefore, determining an optimal toll t is equivalent to choosing a queue-length threshold n that 
maximizes the expected revenue rate, where n ↑ ↔(R t)µ

C ↗:
The revenue rate for a realization of the traffic intensity and a fixed threshold n is given by

rn(ρ) :↑
(Rµ Cn)ρ(1 ρ

n)
1 ρn+1 if ρ ≠ 1

(Rµ Cn) n
n + 1 if ρ ↑ 1:

8
>>><

>>>:
(5) 

One can show that limρ⇐1
ρ(1 ρn)
1 ρn+1 ↑ n

n+1, which indicates that fn(ρ) is continuous. The distributionally robust model 
determines an optimal threshold n̂r that maximizes the worst-case expected revenue rate Zr(n): that is, 
n̂r ↓ arg maxn↓Z+Zr(n), where

Zr(n) :↑ inf
P↓P

EP[rn(ρ̃)]: (6) 

Similarly, we first investigate the relationship between the optimal thresholds n̂e and n̂r.
Proposition 2. There exists an optimal threshold of the revenue maximizer less than or equal to the optimal threshold of an 
individual customer: that is, ⇒n̂r s:t: n̂r → n̂e:

So far, we have presented the generic distributionally robust observable queue models for an individual cus-
tomer, a social optimizer, and a revenue maximizer. However, we have not specified the ambiguity set for the 
social and revenue optimization problems. In the following sections, we will investigate different types of ambi-
guity sets and derive their tractable reformulations.

3. Distributionally Robust Strategic Queues with an MAD Ambiguity Set
We study the DRO model with an MAD ambiguity set. Suppose the support [a, b], mean m, and MAD d of the 
random parameter ρ̃�are known to the decision makers. Then, we can construct an ambiguity set containing all 
possible distributions that are consistent with the partial information, defined as

P :↑ {P ↓ P0([a, b]) : EP[ρ̃] ↑ m, EP[ | ρ̃ m | ] ↑ d}: (7) 

We develop efficient solution schemes to find the optimal threshold strategies for a social optimizer and a reve-
nue maximizer, given by n̂s and n̂r, respectively, such that the worst-case expected benefit rates are maximized. 
In order to derive tractable reformulations for the distributionally robust models, we assume m ↓ (a, b) and 
d ↓ (0, d), where d :↑ 2(m a)(b m)

b a is the largest possible mean-absolute deviation attained by any distribution with 
the given support and mean.

3.1. Social Optimization
To determine an optimal joining threshold for a social optimizer, we compute the worst-case expected social ben-
efit rate Zs(n) for every n ↓ Z+ satisfying 1 → n → ne and choose an n̂s such that n̂s ↓ arg maxn↓Z+Zs(n). To this 
end, we show how to compute the worst-case expected social benefit rate for a fixed n. Suppose the distribution 
mean and MAD of ρ̃�are precisely known; then, the worst-case expected social benefit rate is given by the 
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optimal value of the moment problem

Zs(n) ↑ inf
ν↓M+

Z

Ξ
fn(ρ)ν(dρ)

s:t:
Z

Ξ
|ρ m | ν(dρ) ↑ d

Z

Ξ
ρν(dρ) ↑ m

Z

Ξ
ν(dρ) ↑ 1,

(8) 

where Ξ :↑ [a, b] is the support of ρ̃. The third constraint of (8) restricts the nonnegative measure ν�to be a proba-
bility distribution, whereas the first and second constraints impose that the distribution’s MAD and mean are 
equal to d and m, respectively. The objective of the problem is to find a feasible distribution that minimizes the 
expected social benefit rate.

The semi-infinite linear optimization Problem (8) is hard to solve because it searches for the best decision from 
an infinite-dimensional space of probability measures. To derive a tractable reformulation, we focus on the dual 
problem. We first define F(ρ) :↑ α |ρ m | + βρ+ γ�and derive the dual problem as

sup
α,β,γ↓R

αd + βm + γ

s:t: F(ρ) → fn(ρ) ∀ρ ↓ [a, b]:
(9) 

Notice that F(ρ) is a two-piece piecewise affine function majorized by fn(ρ). We know that if fn(ρ) is a piecewise 
affine function or a concave function, the semi-infinite constraint will reduce to a linear constraint because we 
only need to check the satisfaction of the constraint at points ρ ↑ a, m, and b. However, the social benefit rate 
function is neither concave nor piecewise affine, making the problem difficult. To solve this optimization prob-
lem, we first investigate the properties of the social benefit rate function fn(ρ). For clarity of exposition, we rele-
gate some of the proofs to Appendix B.
Lemma 1. The social benefit rate function fn(ρ) has the following properties if RµC ⇑ n + 1. 

1. fn(ρ) is strictly concave for ρ ↓ [0, 1].
2. fn(ρ) is either concave increasing or unimodal for ρ ↓ [0,⇓).
3. The sign of the second derivative f ⇔⇔n (ρ) changes at most once over [0,⇓).
From Lemma 1, we know that the social benefit rate function has some appealing properties. Specifically, the 

function is either concave increasing or unimodal on the nonnegative axis, and when it is unimodal, the function 
changes from a concave function to a convex function at some point. The next lemma further asserts that the 
complementary slackness property holds for the primal and dual problems, which will later help us determine 
the worst-case distribution.
Lemma 2. The optimal values of the primal-dual pair (8) and (9) coincide, and their optimal solutions ν? and (α?,β?,γ?), 
respectively, satisfy the complementary slackness condition

(fn(ρ) α? |ρ m |  β?ρ γ?)ν?(dρ) ↑ 0 ∀ρ ↓ [a, b]:

The proofs of the lemmas are relegated to Appendix B. Combining Lemmas 1 and 2, we are ready to show that 
Problem (8) can be solved analytically under certain conditions. Specifically, we divide this problem into three 
cases and derive an explicit expression of the worst-case distribution for each case.
Proposition 3. Assume m ↓ [0, 1] and RµC ⇑ n + 1. Let (ρt, fn(ρt)) be the tangent point on fn for the line that passes through 
(m, fn(m)). For any n ⇑ 1, we have one of the following three cases. 

1. If fn(b) + f ⇔n(b)(m b) ⇑ fn(m), then the extremal distribution that solves (4) is a three-point distribution supported on 
ρ1 ↑ a, ρ2 ↑ m, ρ3 ↑ b, with corresponding probabilities

p1 ↑
d

2(m a) , p2 ↑ 1 d
2(m a) 

d
2(b m) , p3 ↑

d
2(b m) :
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2. If fn(b) + f ⇔n(b)(m b) < fn(m) and d < d0 :↑ 2(m a)(ρt m)
ρt a , then the extremal distribution is a three-point distribution 

supported on ρ1 ↑ a, ρ2 ↑ m, ρ3 ↑ ρt, with probabilities

p1 ↑
d

2(m a) , p2 ↑ 1 d
2(m a) 

d
2(ρt m) , p3 ↑

d
2(ρt m) :

3. If fn(b) + f ⇔n(b)(m b) < fn(m) and d ⇑ d0 :↑ 2(m a)(ρt m)
ρt a , then the extremal distribution is a two-point distribution sup-

ported on ρ1 ↑ a, ρ2 ↑
ad+2m(a m)

d+2(a m) , with probabilities

p1 ↑
d

2(m a) , p2 ↑ 1 d
2(m a) :

Figure 1 depicts the optimal two-piece piecewise affine function described in Proposition 3. We remark that 
the tangent point (ρt, fn(ρt)) in Figure 1(b) can be determined efficiently by the bisection method. Specifically, we 
set [l, u] ↑ [m, b] as the initial search interval for the algorithm. In each iteration, we compute the derivative at the 

Figure 1. Visualization of the Three Cases 

(a) (b)

(c)

Notes. In panel (a), the optimal piecewise affine function is determined by points (a, fn(a)), (m, fn(m)), and (b, fn(b)). In panel (b), the parameters sat-
isfy fn(m) ⇑ fn(b) + f ⇔n(b)(m b) and d < d0. Thus, the optimal two-piece piecewise affine function touches fn(ρ) at (a, fn(a)), (m, fn(m)), and 
(ρt, fn(ρt)), where (ρt, fn(ρt) is the tangent point. In panel (c), fn(m) ⇑ fn(b) + f ⇔n(b)(m b) still holds, whereas d ⇑ d0. In this case, the extremal distri-
bution degenerates to a two-point distribution. (a) fn(m) → fn(b) + f ⇔n(b)(m b). (b) fn(m) ⇑ fn(b) + f ⇔n(b)(m b) and d < d0. (c) fn(m) ⇑ fn(b) +
f ⇔n(b)(m b) and d ⇑ d0.
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midpoint ρ ↑ u+l
2 , and we check whether it is the tangent point by calculating the difference between fn(m) and 

f ⇔n u+l
2

& ’
m u+l

2
& ’

+ fn u+l
2

& ’
. If the difference is small enough, we terminate the algorithm; otherwise, we set u ↑ u+l

2 if 
the difference is positive or set l ↑ u+l

2 if the difference is negative, and then, we go back to the first step with the 
updated interval [l, u].

We remark that the use of the MAD ambiguity set and its geometric interpretation is motivated by a recent work 
by van Eekelen et al. (2022), who analyze the worst-case performance of the GI/G/1 queue (Bhat 2008) under 
mean-dispersion constraints. The authors demonstrate that measuring the dispersion by MAD, instead of variance, 
significantly simplifies the analysis and enables a closed-form solution for the extremal distribution whenever the 
loss function is convex. Unfortunately, our problem is different as the social benefit rate function is neither convex 
nor concave. Nevertheless, by establishing some useful properties of the social benefit rate function and exploiting 
its geometric interpretation in the dual Problem (9), we are able to explicitly express the extremal distribution when 
m → 1 and RµC ⇑ n + 1. Using this result, we can compute the worst-case expected social benefit rate Zs(n) efficiently.

Theorem 1. Assume m ↓ [0, 1] and RµC ⇑ n + 1. Let (ρt, fn(ρt)) be the tangent point on fn(ρ) for the line that passes through 
(m, fn(m)). For any n ⇑ 1, we have the following three cases. 

1. If fn(b) + f ⇔n(b)(m b) ⇑ fn(m), then

Zs(n) ↑ d
2(m a) fn(a) + 1 d

2(m a) 
d

2(b m)

" #
fn(m) + d

2(b m) fn(b):

2. If fn(b) + f ⇔n(b)(m b) < fn(m) and d < d0 :↑ 2(m a)(ρt m)
ρt a , then

Zs(n) ↑ d
2(m a) fn(a) + 1 d

2(m a) 
d

2(ρt m)

" #
fn(m) + d

2(ρt m) fn(ρt):

3. If fn(b) + f ⇔n(b)(m b) < fn(m) and d ⇑ d0 :↑ 2(m a)(ρt m)
ρt a , then

Zs(n) ↑ d
2(m a) fn(a) + 1 d

2(m a)

" #
fn

ad + 2m(a m)
d + 2(a m)

" #
:

Theorem 1 enables us to solve the worst-case expectation problem analytically under certain conditions. How-
ever, for the more general case, we are unable to solve it in a closed form. In the following theorem, we show 
that the worst-case expectation problem admits a semidefinite programming reformulation that can be solved in 
polynomial time using standard off-the-shelf solvers, such as SDPT3 (Toh et al. 1999) and MOSEK (ApS 2022).
Theorem 2. For any n ⇑ 1, the worst-case expected social benefit rate Zs(n) coincides with the optimal value of the follow-
ing semidefinite program:

sup αd + βm + γ
s:t: α,β,γ ↓ R,y, z ↓ Rn+3,X,X⇔ ↓ Sn+3

+
y1 ↑ Rµ C y0 + yn+3, y2 ↑ Rµ yn+3,
y3, : : : , yn ↑ 0, yn+1 ↑ Rµ+ C(n + 1) y0,
yn+2 ↑ Rµ Cn + y0 yn+3,
y0 ↑ αm + γ, yn+3 ↑ α+ βX

i+j↑2l 1
xij ↑ 0 ∀l ↓ [n + 4]

X

i+j↑2l
xij ↑

Xl

q↑0

Xn+3+q l

r↑q
yr

r
q

" #
n + 3 r

l q

" #
ar qmq ∀l ↓ [n + 4] ↖ {0}

z1 ↑ Rµ C z0 + zn+3, z2 ↑ Rµ zn+3,
z3, : : : , zn ↑ 0, zn+1 ↑ Rµ+ C(n + 1) z0,
zn+2 ↑ Rµ Cn + z0 zn+3
z0 ↑ αm + γ, zn+3 ↑ α+ βX

i+j↑2l 1
x⇔ij ↑ 0 ∀l ↓ [n + 4]

X

i+j↑2l
x⇔ij ↑

Xl

q↑0

Xn+3+q l

r↑q
y⇔r

r
q

" #
n + 3 r

l q

" #
mr qbq ∀l ↓ [n + 4] ↖ {0}:

(10) 
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The proof of this theorem relies on the following lemma, which expresses a univariate polynomial inequality 
in terms of semidefinite constraints.
Lemma 3 (Bertsimas and Popescu 2005, Proposition 3.1(f)). The polynomial g(ρ) ↑Pk

r↑0 yrρr satisfies g(ρ) ⇑ 0 for all 
ρ ↓ [a, b] if and only if there exists a positive semidefinite matrix X ↑ [xij]i, j↑0, : : : , k ↓ Sk+1

+ such that

0 ↑
X

i, j:i+j↑2l 1
xij ∀l ↑ 1, : : : , k

Xl

q↑0

Xk+q l

r↑q
yr

r
q

" # k r
l q

" #
ar qbq ↑

X

i, j:i+j↑2l
xij ∀l ↑ 0, : : : , k:

Proof of Theorem 2. Recall that the dual of infP↓PEP[fn(ρ̃)] for ρ̃�supported on the interval [a, b] is given by (see 
Problem (9))

sup
α,β,γ↓R

αd + βm + γ

s:t: α |ρ m | + βρ+ γ → fn(ρ) ∀ρ ↓ [a, b]:

We can deal with the semi-infinite constraint separately for the cases ρ → m and ρ ⇑ m:

sup
α,β,γ↓R

αd + βm + γ

s:t: α(m ρ) + βρ+ γ → fn(ρ) ∀ρ ↓ [a, m]

α(ρ m) + βρ+ γ → fn(ρ) ∀ρ ↓ [m, b]:

Substituting the definition of fn(ρ) in (3) and applying algebraic reductions yield the following polynomial 
inequalities:

 (αm + γ)ρ0 + (Rµ C β+ γ+ αm + α)ρ+ ( Rµ α+ β)ρ2 + ( Rµ+ Cn + C + αm + γ)ρn+1

+ (Rµ Cn αm α+ β γ)ρn+2 + (α β)ρn+3 ⇑ 0 ∀ρ ↓ [a, m], and

(αm γ)ρ0 + (Rµ C αm α β+ γ)ρ+ ( Rµ+ α+ β)ρ2 + ( Rµ+ Cn + C αm + γ)ρn+1

+ (Rµ Cn + αm + α+ β γ)ρn+2 (α+ β)ρn+3 ⇑ 0 ∀ρ ↓ [m, b]: (11) 

The inequalities are of the form g1(ρ) ↑
Pn+3

r↑0 yrρr ⇑ 0 for ρ ↓ [a, m] and g2(ρ) ↑
Pn+3

r↑0 zrρr ⇑ 0 for ρ ↓ [m, b], where 
y ↑ (y1, : : : , yn+3) and z ↑ (z1, : : : , zn+3) represent the coefficients of the respective polynomial inequalities. We now 
invoke the result of Lemma 3 with k ↑ n + 3 to express the inequalities in (11) as semidefinite constraints. The 
resulting semidefinite problem is equivalent to the original problem, which completes the proof. w

Remark 1. In this subsection, we present two results. Theorem 1 provides a closed-form solution under certain 
prerequisites, whereas Theorem 2 derives an SDP reformulation for the general cases. It is worth noting that The-
orem 1 requires the parameters to satisfy n → Rµ

C  1. By Proposition 1, there exists an optimal threshold n̂s less 
than or equal to n̂e (i.e., ⇒n̂s → n̂e ↑ ↔Rµ

C ↗). Thus, for a strategic queue with mean arrival rate m → 1, Theorem 1 can 
be applied to compute the worst-case expected social benefit rate for the first ↔Rµ

C ↗ 1 cases. This greatly speeds 
up the time to solve (4) because we only need to solve an SDP once for the remaining case n ↑ ↔Rµ

C ↗. On the other 
hand, for a strategic queue with mean arrival rate m > 1, we cannot invoke Theorem 1 anymore, and we need to 
solve an SDP for each n satisfying 1 → n → n̂e, n ↓ Z+.

3.2. Revenue Optimization
To determine an optimal joining threshold for a revenue maximizer, we compute the worst-case expected reve-
nue rate Zr(n) for every n ↓ Z+, 1 → n → ne, and we choose an n̂r such that n̂r ↓ arg maxn↓Z+{Zr(n)}. To this end, 
we show how to compute the worst-case expected revenue for each n. Suppose the mean and MAD of the ran-
dom parameter ρ̃�are known; then, the worst-case expected revenue rate is given by the following optimization 
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problem:

Zr(n) ↑ inf
ν↓M+

Z

Ξ
rn(ρ)ν(dρ)

s:t:
Z

Ξ
|ρ m | ν(dρ) ↑ d

Z

Ξ
ρν(dρ) ↑ m

Z

Ξ
ν(dρ) ↑ 1:

(12) 

To derive a tractable reformulation, we first investigate the property of the revenue rate function rn(ρ).
Lemma 4. The revenue rate function rn(ρ) is concave for ρ ↓ R+.

Equipped with Lemma 4, we now show that the worst-case expectation Problem (12) admits a closed-form 
solution.
Theorem 3. For any n ⇑ 1, the worst-case expected revenue rate can be derived as

Zr(n) ↑ d
2(m a) rn(a) + 1 d

2(m a) 
d

2(b m)

" #
rn(m) + d

2(b m) rn(b):

To prove this theorem, we invoke a classical result that characterizes the worst-case distribution from the 
MAD ambiguity set for a concave loss function.
Lemma 5 (Ben-Tal and Hochman 1972, Theorem 3). Suppose f (ρ) is a concave function and the ambiguity set is defined as 
P ↑ {P ↓ P0([a, b]) : EP[ρ̃] ↑ m, EP[ | ρ̃ m | ] ↑ d}. The extremal distribution that solves infP↓PEP[f (ρ̃)] is a three-point 
distribution supported on ρ1 ↑ a, ρ2 ↑ m, ρ3 ↑ b with probabilities

p1 ↑
d

2(m a) , p2 ↑ 1 d
2(m a) 

d
2(b m) , p3 ↑

d
2(b m) : (13) 

Proof of Theorem 3. From Lemma 4, the revenue rate function rn(ρ) is concave. Therefore, applying Lemma 5
yields the result. w

Theorem 3 provides practical managerial insight for the decision maker. Observe that the extremal distribution 
is usually a discrete distribution supported on the mean and the lower and upper bounds of the support. Hence, 
instead of optimizing over the empirical distribution, the DRO scheme simplifies the problem into three cases: 
when the traffic intensity is extremely small (ρ ↑ a), extremely large (ρ ↑ b), or as expected (ρ ↑ m). The weight 
for each scenario is determined by the MAD, which reflects the variation level of samples. This result aligns well 
with human intuition. To design a robust queue-regulating strategy, the decision maker may intuitively think 
about “how the queue behaves when the traffic intensity is extremely large, small, or as usual” and “what is the 
probability of these scenarios happening.” The closed-form solution provides an answer to these questions. For 
example, the quantities p1, p2, p3 answer the question “What are the probabilities of these scenarios happening?,” 
whereas the quantities rn(a), rn(b), rn(m) answer the question “How does the queue behave when the traffic inten-
sity is extremely large, small, or as expected?”

4. Extension to Data-Driven Problems
In this section, we apply the MAD ambiguity set to data-driven optimization problems. As we observed in the 
previous section, distributionally robust models with a moment ambiguity set necessitate decision makers to 
have access to exact values of the mean m or MAD d of the true unknown distribution, which may not be realistic 
in practice. A common approach is to construct such moment ambiguity sets by plugging in the point estimators 
generated from the historical samples. However, it is rarely the case that one can be entirely confident in these 
empirical estimators. For example, when the sample size is small, these empirical estimators might be far away 
from the true values; furthermore, some estimators, such as the empirical MAD, are even biased. In order to miti-
gate the adverse effects of the estimation errors, we design a data-driven MAD ambiguity set that contains the 
true underlying distribution with high confidence.
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Unlike the setting in the previous section, here we assume that the queue system manager only has access to N 
independent and identically distributed samples of the traffic intensity given by {ρ̂i}i↓[N], where ρ̂i ↑ λ̂i=µ. In 
addition, we assume that decision makers have some prior knowledge or an educated estimate of the distribu-
tion support. Suppose the true mean and MAD of the underlying distribution are unknown and with high prob-
abilities, belong to two confidence intervals T ↑ [ml, mu] and D ↑ [dl, du] constructed using the samples. Then, the 
proposed data-driven distributionally robust model is formulated as

Z(n) :↑ inf
P↓P⇔

N

EP[cn(ρ̃)], (14) 

where the modified data-driven ambiguity set is defined as
P⇔

N ↑ {P ↓ P0([a, b]) : ml → EP[ρ̃] → mu, dl → EP[ | ρ̃ m | ] → du}: (15) 

One can verify that the results of Propositions 1 and 2 still hold, and we can obtain the optimal value of (14) by 
solving Z(n) for each n ↓ Z+ satisfying 1 → n → ne and select the one with the largest objective value.

We now derive the reformulations for the worst-case expected social benefit and revenue rates. To this end, 
we define the worst-case expected social benefit rate with the data-driven MAD ambiguity set by

Zs(n) :↑ inf
P↓P⇔

N

EP[fn(ρ̃)], 

and we define the worst-case expected revenue rate with the data-driven MAD ambiguity set by

Zr(n) :↑ inf
P↓P⇔

N

EP[rn(ρ̃)]:

The next theorem presents the reformulation of the worst-case expected social benefit rate. Some of the proofs of 
the results in this section are relegated to Appendix C.
Theorem 4. For any n ⇑ 1, the worst-case expected social benefit rate Zs(n) coincides with the optimal value of the follow-
ing semidefinite program:

sup γ+θ1dl θ2du +θ3ml θ4mu

s:t: γ ↓ R,θ1,θ2,θ3,θ4 ↓ R+,y, z ↓ Rn+3,X,X⇔ ↓ Sn+3
+

y1 ↑ Rµ C y0 + yn+3, y2 ↑ Rµ yn+3,
y3, : : : , yn ↑ 0, yn+1 ↑ Rµ+ C(n + 1) y0,
yn+2 ↑ Rµ Cn + y0 yn+3,
y0 ↑ (θ1 θ2)m̂ + γ, yn+3 ↑ θ1 +θ2 +θ3 θ4X

i+j↑2l 1
xij ↑ 0 ∀l ↓ [n + 4]

X

i+j↑2l
xij ↑

Xl

q↑0

Xn+3+q l

r↑q
yr

r
q

 !
n + 3 r

l q

 !

ar qm̂q ∀l ↓ [n + 4] ↖ {0}

z1 ↑ Rµ C z0 + zn+3, z2 ↑ Rµ zn+3,
z3, : : : , zn ↑ 0, zn+1 ↑ Rµ+ C(n + 1) z0,
zn+2 ↑ Rµ Cn + z0 zn+3

z0 ↑ (θ1 θ2)m̂ + γ, zn+3 ↑ θ1 θ2 +θ3 θ4X

i+j↑2l 1
x⇔ij ↑ 0 ∀l ↓ [n + 4]

X

i+j↑2l
x⇔ij ↑

Xl

q↑0

Xn+3+q l

r↑q
y⇔r

r
q

 !
n + 3 r

l q

 !

m̂r qbq ∀l ↓ [n + 4] ↖ {0}:

Note that when dl ↑ du and ml ↑ mu, setting α ↑ θ1 θ2 and β ↑ θ3 θ4 recovers the dual Problem (9) in the 
view of the primitive MAD ambiguity set, which corresponds to the case when we have absolute trust on the 
mean and MAD estimators.

The next theorem presents the reformulation of the worst-case expected revenue rate.
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Theorem 5. For any n ⇑ 1, the worst-case expected revenue rate Zr(n) is equal to the optimal value of the following linear 
problem:

sup
θ↓R4

+,γ↓R
γ+θ1dl θ2du +θ3ml θ4mu

s:t: (θ1 θ2) |a m̂ | + (θ3 θ4)a + γ → rn(a)

(θ3 θ4)m̂ + γ → rn(m̂)

(θ1 θ2) |b m̂ | + (θ3 θ4)b + γ → rn(b):

Theorems 4 and 5 provide tractable reformulations for the social and revenue optimization problems. An 
advantage of the proposed data-driven model is that it can offer attractive finite-sample guarantees. Compared 
with the original MAD ambiguity set that imposes unique mean and MAD, the data-driven MAD ambiguity 
set allows these parameters to vary within the confidence intervals. In this way, we can assure that the set con-
tains the true underlying distribution with a high probability, which immediately generates out-of-sample per-
formance guarantees for the solution.
Theorem 6. Let {ρ̂i}i↓[N] be a set of N samples generated independently at random from P? and v? denote the optimal value 
of (14). Define m̂ and d̂ as the empirical mean and MAD obtained from samples {ρ̂i}i↓[N]. By setting

T ↑ m̂ (b a)
((((((((((((((((
log 4=δ

2N

r
, m̂ + (b a)

((((((((((((((((
log 4=δ

2N

r" #

D ↑ d̂ (b a)
(((((((((((((((((((
9 log 4=δ

2N

r
, d̂ + (b a)

(((((((((((((((((((
9 log 4=δ

2N

r" #

,
(16) 

we have
Prob(v? → EP?[cn̂(ρ̃)]) ⇑ 1 δ, 

where n̂ is the optimal threshold obtained from (14).
Proof. The error of the empirical MAD estimate is given by

1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m̂ | ]

)))))

)))))

↑ max 1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m̂ | ],  1

N
XN

i↑1
| ρ̂i  m̂ | + E[ | ρ̃  m̂ | ]

( )

:

We upper bound both terms inside the max operator. The first term is bounded by

1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m̂ | ] → 1

N
XN

i↑1
| ρ̂i  m̂ |  E[ | | ρ̃  m |  |m̂  m | | ]

→ 1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m |  |m̂  m | ]

→ 1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m | ]

)))))

))))) + |m̂  m | , 

where the second inequality follows from reverse triangle inequality. Meanwhile, the second term is bounded by

 1
N
XN

i↑1
| ρ̂i  m̂ | + E[ | ρ̃  m̂ | ] →  1

N
XN

i↑1
| ρ̂i  m̂ | + E[ | ρ̃  m | + |m̂  m | ]

→ 1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m | ]

)))))

))))) + |m̂  m | :
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Because both of these two terms have the same upper bound, we have

1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m̂ | ]

)))))

))))) →
1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m | ]

)))))

))))) + |m̂  m | :

As E[m̂] ↑ E[m] is an unbiased estimator, we can invoke the Hoeffding inequality to directly derive a confidence 
interval for the second term. However, the empirical MAD is biased (i.e., E[ 1

N
PN

i↑1 |ρi m̂ | ] ≠ E[ |ρ m | ]), mak-
ing the Hoeffding inequality not applicable. To derive a confidence interval for this term, we rewrite it as

1
N
XN

i↑1
| ρ̂i m̂ |  E[ | ρ̃ m | ]

)))))

)))))

↑ max 1
N
XN

i↑1
| ρ̂i m̂ |  E[ | ρ̃ m | ],  1

N
XN

i↑1
| ρ̂i  m̂ | +E[ | ρ̃ m | ]

( )

:

We further upper bound the two terms inside the max operator. For the first term, we have

1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m | ] → 1

N
XN

i↑1
| ρ̂i  m | + |m m̂ |  E[ | ρ̃  m | ]

→ 1
N
XN

i↑1
| ρ̂i  m |  E[ | ρ̃  m | ]

)))))

))))) + |m m̂ | :

For the second term, applying the reverse triangle inequality yields

E[ | ρ̃  m | ] 1
N
XN

i↑1
| ρ̂i  m̂ | → E[ | ρ̃  m | ] 1

N
XN

i↑1
|| ρ̂i  m |  |m̂  m ||

→ E[ | ρ̃  m | ] 1
N
XN

i↑1
| ρ̂i  m | + |m̂  m |

→ E[ | ρ̃  m | ] 1
N
XN

i↑1
| ρ̂i  m |

)))))

))))) + |m̂  m | :

Thus, we have

1
N
XN

i↑1
| ρ̂i  m̂ |  E[ | ρ̃  m | ]

)))))

))))) → E[ | ρ̃  m | ] 1
N
XN

i↑1
| ρ̂i  m |

)))))

))))) + 2 |m̂  m | :

Because both of these two terms are unbiased, we can apply the Hoeffding inequality and obtain

Prob E[ | ρ̃  m | ] 1
N
XN

i↑1
| ρ̂i  m |

)))))

))))) ⇑ r1

 !

→ 2 exp  2Nr2
1

(b a)2

 !

and

Prob( |m̂  m | ⇑ r2) → 2 exp  2Nr2
2

(b a)2

 !

:

By applying the union bound and setting r1 ↑ r2 ↑ r=3, we arrive at the desired confidence intervals that the true 
mean m and MAD d satisfy

m̂ (b a)
((((((((((((((((
log 4=δ

2N

r
→ m → m̂ + (b a)

((((((((((((((((
log 4=δ

2N

r

d̂ (b a)
(((((((((((((((((((
9 log 4=δ

2N

r
→ d → d̂ + (b a)

(((((((((((((((((((
9 log 4=δ

2N

r

with probability at least 1 δ. Therefore, by setting the confidence interval T and D as in (16), we have
Prob(P⇔

N �P?) ⇑ 1 δ, 
where P⇔

N is the data-driven ambiguity set (15) constructed by N random samples drawn from the underlying 
distribution P?. Because v? :↑ infP↓P⇔

N
EP[cn(ρ̃)] and the probability that P⇔

N contains the true distribution P? is at 
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least 1 δ, we have
Prob(v? → EP?[cn̂(ρ̃)]) ⇑ 1 δ, 

which completes the proof. w

The theorem establishes that with judicious choices of the confidence interval lengths, the optimal value of the 
data-driven DRO model v? provides a high-confidence lower bound on the expected benefit rate of the robust 
solution n̂ under the true underlying distribution P?.
Remark 2. An avid reader may be interested in employing the popular Wasserstein DRO model in the data- 
driven setting. Indeed, the model has been widely adopted because it can generate asymptotically consistent 
solutions and offer similarly attractive finite-sample guarantees. Unfortunately, the reformulation of this data- 
driven DRO model involves O(N) semidefinite constraints, which make the problem computationally intensive. 
For readers who are interested in the use of the Wasserstein ambiguity set, we provide a detailed discussion in 
Appendix B.

5. Numerical Experiments
In this section, we present the numerical experiments and examine the performance of different DRO policies. 
All optimization problems are implemented in MATLAB and solved by SDPT3 (Toh et al. 1999) via the YALMIP 
interface (Lofberg 2004). The experiments are run on a 2.2-GHz Intel Core i7 CPU laptop with 8 GB RAM.

We assess the out-of-sample performance of the data-driven policies for a social optimizer and a revenue maxi-
mizer through a fair out-of-sample experiment. We assume we have access to N independent samples {ρ̂i}i↓[N] of 
the traffic intensity drawn from the true underlying distribution P?, and we construct four ambiguity sets: an 
empirical MAD ambiguity set, an empirical variance ambiguity set, a DD-MAD ambiguity set, and a Wasserstein 
ambiguity set. The empirical MAD ambiguity set is defined in (7), where we directly substitute the empirical 
mean and MAD for m and d, respectively. The empirical variance model is another popular moment model that 
constructs its ambiguity set based on the empirical mean and variance (i.e., E[(ρ̃ m)2] ↑ σ2). Because its formu-
lation and derivation parallel those of the empirical MAD model, we omit its discussion for brevity. The 
DD-MAD ambiguity set is defined in (15), where rather than carelessly plugging in the empirical estimators, we 
construct a confidence interval around the empirical mean and MAD. The Wasserstein ambiguity set (Esfahani 
and Kuhn 2018, Gao and Kleywegt 2023) is a popular data-driven ambiguity set. However, its complexity scales 
with the number of samples, making the problem computationally intensive with large sample sizes. We derive 
the reformulation of the Wasserstein model in Appendix D. Once we constructed the different ambiguity sets, 
we then proceed to compute the distributionally robust thresholds that maximize the respective worst-case 
expected benefit rates. Finally, we compare the three solutions in a fair out-of-sample experiment relative to the 
sample average approximation (SAA) method, which naively assumes that the empirical distribution generated 
from the N samples is the true underlying distribution. The SAA method also represents the stochastic model 
(Liu and Hasenbein 2019) under the empirical distribution.

We conduct the out-of-sample trials for data sets containing N ↑ 2, 4, : : : , 10, 20, 40: : : , 100 independent samples. 
We assume the arrival rate is generated by λ ↑ 4b̃, where b̃ ~ Beta(0:1, 0:5). In addition, we assume the experi-
enced decision maker has an educated guess for the distribution support as [0, 5]. In each trial, we draw N inde-
pendent training samples and obtain {ρ̂i}i↓[N] from P?. We then compute the optimal thresholds n̂d, nv,n̂dd, and 
n̂w for the MAD, variance, DD-MAD, and Wasserstein DRO models, respectively. We also compute the SAA 
threshold n̂SAA by solving the sample average approximation model. Based on the scaling rates derived in Theo-
rem 6 and Esfahani and Kuhn (2018, theorem 3.4), the size of the confidence intervals in (14) is set to be C1=

((((
N

↙
, 

and the Wasserstein radius is set to be C2=
((((
N

↙
, where C1 and C2 are chosen from the set {5, 1, 0:5, 0:1, 0:05, 0:01}

using a k-fold cross validation procedure. Specifically, we partition the in-sample data {ρ̂i}i↓[N] into k ↑ min{N, 5}
folds and repeat the following procedure for each fold; the ith fold is taken as a validation data set, and the 
remaining k  1 folds are merged to be a subtraining set. We repeat this process for each fold and choose the 
interval length that performs best in average. The reason why we do not directly plug in the theoretical values 
from Theorem 6 is that the bound holds for any underlying distributions, which can be overly conservative in 
practice. Finally, the out-of-sample expected benefit/revenue rate EP?[cn̂(ρ̃)] for each of the strategies is then esti-
mated at high accuracy using 10,000 test samples from P?.

Figure 2 depicts the out-of-sample performances of a social optimizer and a revenue optimizer under different 
DRO policies with R ↑ 10, C ↑ 1, and µ ↑ 1. The expected values and 95 percentiles are computed from 50 inde-
pendent trials. The y axis represents the improvements of the DRO policies relative to the SAA policy, whereas 
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the x axis denotes the sample size. In the social optimization problem, the curve of the Wasserstein model termi-
nates at n ↑ 6 because the solver fails to converge when the sample size reaches eight. Meanwhile, the Wasser-
stein model dominates the SAA model uniformly across all sample sizes in the revenue maximization problem, 
whereas the MAD, variance, and DD-MAD models outperform the SAA model for small to medium sample 
sizes. This is because the Wasserstein ambiguity set converges to the true distribution as the number of samples 
grows, whereas the moment ambiguity sets fail to converge to the true distribution. We also find that the MAD 
model performs poorly when the sample size is small because the empirical MAD constitutes a biased estimator 
with significant estimation errors. On the other hand, the DD-MAD model—by optimizing in view of the most 
adverse mean and MAD—mitigates the detrimental effects of poor empirical estimations and generates high- 
quality policies. Moreover, we notice that the empirical MAD and variance models yield similar scores, suggest-
ing that measuring dispersion by MAD or variance does not influence the performance of the model. Finally, we 
observe that the advantages of the DRO policies relative to the SAA method are generally more substantial in 
terms of the 95th percentiles of improvements. This underlines a major advantage of incorporating the DRO 
scheme as it reduces the likelihood of realizing inferior performance in the out-of-sample tests.

Table 1 reports the computation time of different models with the sample sizes varying from 2 to 100. We set 
the length of the confidence intervals and the radius of the Wasserstein ball to 0.1. In this experiment, the running 
time limit of SDPT3 is set to 600 seconds, and the number of iterations is set to 5,000. All computational times are 
averaged over 10 trials.

Figure 2. Improvements of the DRO Policies Relative to the SAA Policy in Terms of the Social Optimizer and the Revenue Maxi-
mizer, Respectively 
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The results in Table 1 indicate that the computational times of the MAD, variance, and DD-MAD models are 
size invariant because the number of constraints is independent of the number of samples. For the social optimi-
zation problem, the Wasserstein model is applicable to small-size instances. However, it encounters computa-
tional difficulties for moderate-size problem instances; when the sample size reaches 10, the SDP solver fails to 
converge within the time/iteration limit. Benefiting from the closed-form solution, the MAD model is more 
efficient than the variance and DD-MAD models in both the social and revenue optimization problems. For the 
revenue optimization problem, the DD-MAD and Wasserstein models admit a linear programming (LP) refor-
mulation, whereas the variance model still leads to an SDP reformulation. This underlines a major advantage of 
using MAD at the moment ambiguity set as it can significantly improve the model’s efficiency.

The DD-MAD model is still size invariant, and its linear programming reformulation yields a much shorter com-
putational time than the SDP reformulation for the social optimization problem. In addition, the Wasserstein model 
can be solved efficiently even for large sample sizes, benefiting from the linear programming reformulation.

Finally, we report the performance of the DRO models under different scaling parameters C in Figure 3. The 
expected improvements are computed with n ↑ 5 samples from 50 independent trials. We observe that both 
models have large variations in performance with different scaling parameters. The Wasserstein and DD-MAD 
models yield unimodal curves in both the social and revenue optimization problems, implying a trade-off 
between performance and conservatism. Intuitively, including robustness can improve the out-of-sample perfor-
mance, whereas being too conservative may also adversely affect the results. To achieve the best performance, 
one could set the size of the ambiguity set or confidence interval to the best radius. Unfortunately, we do not 
have access to this information. Although one can plug in the theoretical values obtained from concentration 
inequalities, these values are usually too conservative. In practice, decision makers can rely on a crossvalidation 

Figure 3. Improvements of the DRO Policies Relative to the SAA Policy with Different Scaling Parameters 

(a) Expected Value - Social Optimizer (b) Expected Value - Revenue Optimizer

Table 1. Running Time (in Seconds) of Different Methods

Model name

Sample size N

2 5 10 25 50 100

Social
MAD 18.63 17.44 19.28 18.15 19.62 20.31
DD-MAD 31.46 32.58 30.19 33.64 32.84 31.52
Wasserstein 39.26 78.53 — — — —
Variance 29.11 30.62 29.94 31.47 30.53 30.72

Revenue
MAD 0.05 0.04 0.04 0.05 0.06 0.06
DD-MAD 1.48 1.52 1.66 1.92 1.73 1.70
Wasserstein 1.69 1.92 2.41 2.63 2.95 4.68
Variance 31.42 30.73 31.61 31.55 31.79 32.80

Note. The — symbol indicates that the model fails to converge in the maximal iteration/time.
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or bootstrap procedure to obtain a suitable size for the ambiguity set (Gotoh et al. 2021, Bates et al. 2023). From 
the figure, we further observe that the two models perform quite differently when the scaling parameter C is 
small; the DD-MAD model achieves significant improvement, whereas the Wasserstein model only yields a 
slight improvement. The reason is that the Wasserstein ambiguity set is centered on the empirical distribution. 
When the scaling parameter is small, all the distributions within this ambiguity set are close to the empirical dis-
tribution. Thus, it generates similar results to SAA and cannot achieve a large improvement. Conversely, the 
DD-MAD model converges to the empirical MAD model when C ↑ 0. As illustrated in the first set of experi-
ments, the MAD model outperforms the SAA method for small sample sizes. Hence, the DD-MAD method 
yields a substantial improvement when the scaling parameter is small.

6. Conclusion
This paper developed an extension of the Naor (1969) strategic queue model with uncertain arrival rates using 
the DRO framework. We showed that under the DRO setting, the optimal threshold of an individual optimizer 
coincides with the original result of Naor (1969), and there exist optimal thresholds of the social and revenue 
optimizers not larger than the optimal individual threshold. We then proved that the revenue rate function is 
concave, whereas the social benefit rate function is concave or unimodal under some mild conditions. These nice 
properties lead to a closed-form solution for the revenue maximization problem and an analytical solution for 
the social optimization problem.

Next, we considered the data-driven optimization setting, where decision makers only have access to limited 
historical samples. We proposed a data-driven MAD model by introducing an extra layer of robustness to the 
primitive MAD ambiguity set. As the model mitigates the detrimental estimation errors from the empirical mean 
and MAD, it achieves attractive performance in out-of-sample tests. We derived an SDP reformulation for the 
social optimization problem and a linear programming reformulation for the revenue maximization problem. 
We further established finite-sample guarantees for the data-driven model, which provide valuable guidance for 
choosing the robustness parameters in practice. Our experimental results demonstrate that a system manager 
who disregards ambiguities in the arrival rate distribution as well as errors from the empirical parameter estima-
tions may incur large out-of-sample costs. Future work includes extending the DRO scheme to the unobservable 
strategic queues, where newly arrived customers cannot observe the current length of the queue system.

Appendix A. Proofs of Section 2
Proof of Proposition 1. It is established in Naor (1969, equation 30) that for any deterministic arrival rate λ�and service rate µ, 
the optimal threshold from the perspective of a public goods regulator will be less than or equal to the optimal threshold of an 
individual customer. Suppose that every optimal threshold that maximizes the worst-case expected social benefit rate is strictly 
greater than the optimal threshold of an individual customer (i.e., n̂s > n̂e for all n̂s ↓ arg maxn↓Z+ infP↓PEP[fn(ρ̃)]). Then, based 
on our previous statement, for any fixed ρ�and any optimal n̂s, we have ns(ρ) → ne ↑ n̂e < n̂s, where ns(ρ) is the corresponding 
optimal social threshold under the deterministic setting. Because fn(ρ) is discretely unimodal for any fixed ρ�(Naor 1969, p. 20), 
the relationship of the benefit rate can consequently be derived as

fns(ρ)(ρ) ⇑ fn̂e (ρ) ⇑ fn̂s (ρ) ∀ρ ↓ R+:

Using this relationship, one can further establish that for any ambiguity set P,
inf
P↓P

EP[fn̂e (ρ̃)] ⇑ inf
P↓P

EP[fn̂s (ρ̃)]:

Conversely, by the definition of n̂s, we also have infP↓PEP[fn̂e (ρ̃)] → infP↓PEP[fn̂s (ρ̃)]. This implies that infP↓PEP[fn̂e (ρ̃)] ↑
infP↓PEP[fn̂s (ρ̃)]. Therefore, n̂e is also an optimal threshold of the social optimization problem, which contradicts our previous 
assumption. This completes the proof. w

Proof of Proposition 2. The proof parallels that of Proposition 1—we omit it for brevity. w

Appendix B. Proofs of Section 3
Lemma B.1. The first and second derivatives of the social benefit rate function fn(ρ) are continuous.

Proof. To show the continuity of the first and second derivatives of fn(ρ), we will show that

fn(ρ) ↑ Rµ 1 1Pn
k↑0 ρk

" #
 C ρ(Pn 1

k↑0 ρ
k) + ρ2(Pn 2

k↑0 ρ
k)+ ⋯ +ρn

(Pn
k↑0 ρk)

 !

, (B.1) 

which has continuous first and second derivatives.
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First, we perform the transformation for the term ρ(1 ρ
n)

1 ρn+1 when ρ≠ 1. Note that ρ(1 ρ
n)

1 ρn+1 ↑ 1 1 ρ
1 ρn+1, and the denominator is equal 

to (1 ρ)(1 + ρ+ ρ2 + ⋯ +ρn). We can consequently rewrite the first term as

ρ(1 ρn)
1 ρn+1 ↑ 1 1Pn

k↑0 ρk :

Next, we prove the equivalence of the remaining part (n+1)ρn+1

1 ρn+1  ρ
1 ρ�when ρ≠ 1. Similarly, by the fact that (1 ρn+1) ↑

(1 ρ)(Pn
k↑0 ρ

k), we can rewrite this part as

(n + 1)ρn+1

1 ρn+1  ρ
1 ρ ↑

(n + 1)ρn+1

(1 ρ)(Pn
k↑0 ρk) 

ρ(Pn
k↑0 ρ

k)
(1 ρ)(Pn

k↑0 ρk)

↑ ρ ρ
2 ⋯ ρn + nρn+1

(1 ρ)(Pn
k↑0 ρk)

↑ ρ
n+1  ρ+ ρn+1 ρ2 + ⋯ +ρn+1  ρn

(1 ρ)(Pn
k↑0 ρk)

↑ ρ(ρ 1)(1 + ρ+ ⋯ +ρn 1) + ρ2(ρ 1)(1 + ρ+ ⋯ +ρn 2)+ ⋯ +ρn(ρ 1)
(1 ρ)(Pn

k↑0 ρk)

↑ ρ(
Pn 1

k↑0 ρ
k) + ρ2(Pn 2

k↑0 ρ
k)+ ⋯ +ρn

(Pn
k↑0 ρk) :

When ρ�↑ 1, Rµ 1 1Pn
k↑0 ρ

k

" #
 C ρ(

Pn 1
k↑0 ρ

k)+ρ2(
Pn 2

k↑0 ρ
k)+⋯+ρn

(
Pn

k↑0 ρ
k)

" #
↑ Rµ 1 1

1+n
& ’

 C n
2, which coincides with fn(1). Therefore, fn(ρ) is 

equal to (B.1). One can verify that the first and second derivatives of (B.1) are continuous; hence, fn(ρ) also has these 
properties. w

Lemma B.2. The function hn(ρ) ↑ ρ(1 ρ
n)

1 ρn+1 is strictly concave and monotone increasing on [0, 1) ↖ (1,⇓).

Proof. When ρ ↓ [0, 1) ↖ (1,⇓), the first derivative of hn(ρ) is

h⇔n(ρ) ↑
nρn+1  (n + 1)ρn + 1

(1 ρn+1)2 :

Define the numerator as ωn(ρ) ↑ nρn+1 (n + 1)ρn + 1. The first derivative of ωn(ρ) is given by ω⇔n(ρ) ↑ n(n + 1)ρn 1(ρ 1): Note 
that when 0 < ρ < 1, ω⇔n(ρ) is negative and that when ρ > 1, ω⇔n(ρ) is positive. Therefore, the function ωn(ρ) is decreasing on (0, 1) 
and increasing on (1,⇓). Meanwhile, by the fact that ωn(1) ↑ 1 + n (n + 1) ↑ 0, we know that the numerator ωn(ρ) is positive on 
[0, 1) ↖ (1,⇓). Because the denominator (1 ρn+1)2 is positive, the first derivative h⇔n(ρ) is positive on [0, 1) ↖ (1,⇓). Thus, we 
conclude that hn(ρ) is increasing on [0, 1) ↖ (1,⇓).

Next, we show that the second derivative of hn(ρ) is negative. We have

h⇔⇔n (ρ) ↑ (n + 1)ρn 1[nρn+2  (n + 2)ρn+1 + (n + 2)ρ n]
(1 ρn+1)3 :

Because the term (n+1)ρn 1

(1 ρn+1)3 is positive on [0, 1) and is negative on (1,⇓), we simply need to determine the sign of 
[nρn+2  (n + 2)ρn+1 + (n + 2)ρ n]. For convenience, define

ψn(ρ) :↑ nρn+2  (n + 2)ρn+1 + (n + 2)ρ n:

Note that ψn(0) ↑ n < 0 and ψn(1) ↑ 0, whereas limρ⇐⇓ψn(ρ) ↑ +⇓. Therefore, if ψn(ρ) is increasing on [0, 1) ↖ (1,⇓), the sec-
ond derivative h⇔⇔n (ρ) will be negative on [0, 1) ↖ (1,⇓). To show this, we take the first derivative of ψn(ρ) and obtain

ψ⇔n(ρ) ↑ n(n + 2)ρn+1  (n + 2)(n + 1)ρn + (n + 2):
Taking specific values into this function, we can obtain ψ⇔n(0) ↑ n + 2 > 0, ψ⇔n(1) ↑ 0, and limρ⇐⇓ψn(ρ) ↑ +⇓. Similarly, if ψ⇔n(ρ) is 
decreasing on [0, 1) and increasing on (1,⇓), then ψ⇔n(ρ) will be positive on [0, 1) ↖ (1,⇓). To verify this, we can take the second 
derivative of ψn(ρ), which gives

ψ⇔⇔n (ρ) ↑ (n + 2)(n + 1)nρn 1(ρ 1):
One can verify that ψ⇔⇔n (ρ) is negative on [0, 1) and positive on (1,⇓). Thus, we have established that h⇔⇔n (ρ) is negative on [0, 1) ↖
(1,⇓) and hn(ρ) is concave on [0, 1) ↖ (1,⇓). w

Lemma B.3. For any v ↓ R, v ⇑ 1, the function gv(ρ) ↑ vρ
1 ρv  ρ

1 ρ�is concave on [0, 1).
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Proof. For any v ↓ R, v ⇑ 1, one can verify that gv(ρ) is continuous and second-order differentiable on [0, 1). Thus, gv(ρ) is con-
cave if and only if its second derivative

g⇔⇔v (ρ) ↑ v2ρv 1(1 + v + ρv(v 1))
(1 ρv)3  2

(1 ρ)3 

is nonpositive for every ρ ↓ [0, 1). Notice that when ρ�↑ 0, g⇔⇔v (ρ) ↑ 2 is less than zero. We now prove that the second derivative 
is also nonpositive on (0, 1). We first observe that g⇔⇔v (ρ) ↑ 0 at v ↑ 1 for all ρ ↓ [0, 1). Consider the partial derivative with respect 
to v:

εvg⇔⇔v (ρ) ↑ v(((v2  v)ln(ρ) 3 v + 2)ρ3 v 1 + (4 v2 ln(ρ) 4)ρ2 v 1 + ρv 1((v2 + v)ln(ρ) + 3 v + 2))
(1 ρv)4 :

If this function is nonpositive for all v ↓ R, v ⇑ 1, then we can establish that the second derivative g⇔⇔v (ρ) is nonpositive for all 
ρ ↓ (0, 1).

Consider a fixed v ↓ R, v ⇑ 1. Defining ψ(ρ) as the product of εvg⇔⇔v (ρ) and (1 ρ
v)4

vρv 1 > 0 yields

ψv(ρ) :↑ (v(v 1)ρ2 v + 4 v2ρv + v2 + v)ln(ρ) + ( 3 v + 2)ρ2 v  4ρv + 3 v + 2:

We show that ψv(ρ) is nonpositive for ρ ↓ (0, 1). Observe that ψn(ρ) goes to negative infinity as ρ⇐ 0+ and equals to zero at ρ�↑
1. Thus, it is sufficient to show that ψv(ρ) is increasing on ρ ↓ (0, 1) for every fixed v. Taking the derivative with respect to ρ�and 
dividing it by vρv 1 > 0 yields

τn(ρ) :↑ ψ
⇔
n(ρ)

vρv 1 ↑ 2 v((v 1)ρv + 2 v)ln(ρ) + (v + 1)ρ v + ( 5 v + 3)ρv + 4 v 4:

Similarly, one can verify that this expression goes to positive infinity as ρ⇐ 0+ and is equal to zero at ρ�↑ 1. Therefore, to show 
that ψ⇔n(ρ) is positive on (0, 1), it is sufficient to show that τn(ρ) is decreasing on (0, 1). Again, taking the derivative with respect 
to ρ�and dividing it by vρv 1 > 0, we get

ω(ρ) :↑ τ
⇔
n(ρ)

vρv 1 ↑ 2v(v 1)ln(ρ) (v + 1)ρ 2 v + 4vρ v  3 v + 1:

This expression again vanishes at ρ�↑ 1 and goes to negative infinity as ρ⇐ 0+. Thus, it is sufficient to show that it is increasing on 
(0, 1). Taking the derivative with respect to ρ�and multiplying with ρ

2v+1

2v > 0 yield

θn(ρ) :↑ ω⇔(ρ)ρ2v+1

2v ↑ (v 1)ρ2 v  2 vρv + v + 1:

At ρ�↑ 0, θn(ρ) is equal to v + 1, which is greater than zero, and vanishes at ρ�↑ 1. Taking the derivative with respect to ρ�and 
dividing by 2nρn 1 > 0, we have

φn(ρ) :↑ θ
⇔
n(ρ)

2nρn 1 ↑ (v 1)ρv  v:

One can verify that when v ⇑ 1, φ(ρ) is always nonpositive, which completes our proof. w

Proof of Lemma 1, Statement (1). Using the lemmas, we are ready to show that when RµC ⇑ n + 1, the social benefit rate func-
tion fn(ρ) is strictly concave on [0, 1]. For ρ ↓ [0, 1), we can rewrite fn(ρ) as

fn(ρ) ↑ (Rµ C(n + 1))ρ(1 ρ
n)

1 ρn+1 + C (n + 1)ρ
1 ρn+1  

Cρ
1 ρ :

From Lemma B.2 and Lemma B.3, we know that ρ(1 ρ
n)

1 ρn+1 is strictly concave and that (n+1)ρ
1 ρn+1  ρ

1 ρ�is concave. Therefore, fn(ρ) is the 
sum of a strictly concave function and a concave function, which is strictly concave for ρ ↓ [0, 1). w

Proof of Lemma 1, Statement (2). When n ↑ 1, one can verify that f1(ρ) is a concave increasing function for ρ ↓ R+. We now 
proceed to show that the function is unimodal for n ⇑ 2. A sufficient condition for fn(ρ) to be unimodal is f ⇔n(0) > 0, limρ⇐⇓f ⇔n(ρ)
< 0, and f ⇔n(ρ) ↑ 0 has a unique solution. Taking the derivative of fn(ρ) yields

f ⇔n(ρ) ↑
Rµ nρn+1  (n + 1)ρn + 1

(ρn+1 1)2

 !

+ C (n + 1)(nρn+1 + 1)
(ρn+1 1)2  1

(ρ 1)2

 !

if ρ≠ 1

lim
ρ⇐1

Rµ nρn+1  (n + 1)ρn + 1
(ρn+1 1)2

 !

+ C (n + 1)(nρn+1 + 1)
(ρn+1  1)2  1

(ρ 1)2

 !

if ρ ↑ 1:

8
>>>>><

>>>>>:
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Showing that f ⇔n(ρ) ↑ 0 has exactly one positive root directly is nontrival. However, it is equivalent to showing that (1 ρ)2f ⇔n(ρ)
↑ 0 has exactly three positive roots. One can verify that this new term can be written explicitly as (1 ρ)2f ⇔n(ρ) ↑ Rµ nρn+1 (n+1)ρn+1

(1+ρ+⋯+ρn)2

$ %

+ C (n+1)(nρn+1+1)
(1+ρ +⋯+ ρn)2  1

$ %
, ∀ρ ↓ R+. We then reformulate the root equation to a polynomial form:

Rµ nρn+1  (n + 1)ρn + 1
(1 + ρ+ ⋯ +ρn)2

 !
+ C (n + 1)(nρn+1 + 1)

(1 + ρ+ ⋯ +ρn)2  1
 !

↑ 0

�

Rµ(nρn+1  (n + 1)ρn + 1) + C(n + 1)(nρn+1 + 1) ↑ C(1 + ρ+ ⋯ +ρn)2

�

C(1 + ρ+ ⋯ +ρn)2  n(Rµ+ C(n + 1))ρn+1 + Rµ(n + 1)ρn Rµ C(n + 1) ↑ 0:
The left-hand side of the equation is a single-variable polynomial, and one can verify that it has three sign changes. Based on 
Descartes’ rule of signs, the number of positive roots is at most three. By the fact that f ⇔n(0) > 0 and limρ⇐⇓f ⇔n(ρ) < 0, f ⇔n(ρ) must 
has at least one root. Because the term (1 ρ)2 has two roots, we know that this polynomial has at least three roots. Therefore, 
this polynomial has exactly three roots, and f ⇔n(ρ) has exactly one root. This shows that fn(ρ) is a unimodal function. w

Proof of Lemma 1, Statement (3). The second derivative of fn(ρ) is

f ⇔⇔n (ρ) ↑

Rµ (n + 1)ρn 1((n + 1)(ρ 1)(ρn+1 + 1) 2ρ(ρn+1  1))
(1 ρn+1)3

+C (n + 1)2ρn(2 + n + nρn+1)
(1 ρn+1)3  2

(1 ρ)3

 !
if ρ≠ 1

lim
ρ⇐1

Rµ (n + 1)ρn 1((n + 1)(ρ 1)(ρn+1 + 1) 2ρ(ρn+1  1))
(1 ρn+1)3

+C (n + 1)2ρn(2 + n + nρn+1)
(1 ρn+1)3  2

(1 ρ)3

 !
if ρ ↑ 1:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

Showing that f ⇔⇔n (ρ) ↑ 0 only has one root is equivalent to showing that (1 ρ)3fn(ρ) ↑ 0 has exactly four roots. One can check 
that (1 ρ)3f ⇔⇔n (ρ) coincides with Rµ (n+1)ρn 1((n+1)(ρ 1)(ρn+1+1) (ρ+1)(ρn+1 1))

(1+ρ+⋯+ρn)3 + C (n+1)2ρn(2+n+nρn+1)
(1+ρ+⋯+ρn)3  2

$ %
: Similar to the previous proof, 

we transform the root equation to a polynomial form:

(1 ρ)3f ⇔⇔n (ρ) ↑ 0
�

Rµ (n + 1)ρn 1((n + 1)(ρ 1)(ρn+1 + 1) (ρ+ 1)(ρn+1  1))
(1 + ρ+ ⋯ +ρn)3 + C (n + 1)2ρn(2 + n + nρn+1)

(1 + ρ+ ⋯ +ρn)3

 2C ↑ 0
�

2C(1 + ρ+ ⋯ +ρn)3 + (n + 1)ρn 1(Rµ(n + 1) (4C(n + 1) + Rµ(n + 3))ρ Rµ(n + 1)ρ2

+ Rµ(n + 1)ρn+1 + (Rµ(n 1) + C(n2 + n)ρn+2) ↑ 0:

One can verify that this polynomial has four sign changes. Based on Descartes’ rule of signs, the number of positive roots is four 
or two. Because the term (1 ρ)3 already has three roots, f ⇔⇔n (ρ) has exactly one root, which also implies that the sign of f ⇔⇔n (ρ)
changes at most once. w

Proof of Lemma 2. We first show that strong duality holds, and both the primal and dual optimal solutions are attained, which 
is a sufficient condition for complementary slackness. To show this, we need to prove that both the primal and dual problems 
have interior points.

Showing the existence of interior points of the primal problem is equivalent to finding a point (1, m, d) that resides in the inte-
rior of the convex cone

V ↑ (l, t, u) ↓ R3 : ⇒ν ↓M+ such that

R
Ξν(dρ) ↑ l
R
Ξρν(dρ) ↑ t
R
Ξ |ρ t | ν(dρ) ↑ u

8
><

>:

9
>=

>;
, 
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where Ξ ↑ [a, b]. Let Bκ(c) be the closed Euclidean ball of radius κ ⇑ 0 centered at c. We will show that Bκ(1) ≃ Bκ(m) ≃ Bκ(d) for 
a sufficiently small κ > 0. To this end, choose any point (ls, ts, us) ↓ Bκ(1) ≃ Bκ(m) ≃ Bκ(d), and consider the measure

νs ↑
ns

2(ms  a) · δa + ls  
us

2(ts  a) 
us

2(b ts)

" #
· δt +

us
2(b ts)

· δb, 

where s · δm denotes a measure that places mass s at m. By construction, this measure satisfies 
R
ρνs(dρ) ↑ ls,

R
ρρ νs(dρ) ↑ ts, and R

ρ |ρ ts |νs(dρ) ↑ us for a sufficiently small κ�(because m ↓ (a, b) and d ↓ (0, 2(m a)(b m)
b a )).

Therefore, (1, m, d) is an interior point of V, and strong duality holds (i.e., the optimal values of the primal and dual problems 
coincide). Moreover, because there exists an interior point of the primal problem and because the common optimal value is 
finite, we have that the dual optimal solution is also attained (Shapiro 2001, proposition 3.4). Noticing that the support [a, b] is 
compact, whereas the social benefit rate function fn(ρ) and the moment functions ρ�and |ρ m | are continuous, we can invoke 
Shapiro (2001, corollary 3.1) to establish that the primal optimal solution is attained.

In summary, we have strong duality and the attainment of both the primal and dual optimal solutions, which imply that com-
plementary slackness holds (Shapiro 2001, proposition 2.1). w

Proof of Lemma 4. We know that the revenue rate function is continuous for ρ ↓ R+. Therefore, employing Lemma B.2 yields 
the desired result. w

Proof of Proposition 3. The dual Problem (9) can be equivalently written as

sup
α, β,γ↓R

EP[α |ρ m | + βρ + γ]

s:t: α |ρ m | + βρ + γ → fn(ρ) ∀ρ ↓ [a, b], 

where P ↓ P is an arbitrary probability measure in the ambiguity set. Observe that the left-hand side of the constraint is a two-piece 
piecewise affine function with a breakpoint at the mean m. Therefore, we can interpret the dual problem as finding a feasible two- 
piece piecewise affine function with the largest expected value. We now use this interpretation to derive the desired results.

First, we illustrate the case when fn(b) + f ⇔n(b)(m b) ⇑ fn(m). The constraint of the dual problem indicates that fn(ρ) majorizes 
α |ρ m | + βρ+ γ. One can verify that the two-piece piecewise affine function with the largest expected value is the one that 
touches fn(ρ) at three points: ρ ↑ a, m, and b; see Figure 1(a) for an illustrative example. By complementary slackness in Lemma 2, 
the optimal distribution can only assign positive mass to these three points, which yields the following system of linear equations:

p1(a m) + p2(m m) + p3(b m) ↑m
p1 |a m | + p2 |m m | + p3 |b m | ↑ d

p1 + p2 + p3 ↑ 1:

Solving this system of linear equations leads to the first result in Proposition 3.
Next, we prove the two cases when fn(b) + f ⇔n(b)(m b) → fn(m). If 0 < d < d0 :↑ 2(m a)(ρt m)

ρt a , we claim that the extremal distribu-
tion that solves (8) is a three-point distribution. To see this, we know that complementary slackness holds from Lemma 2, which 
means that the extremal distribution is supported on points where the dual constraint is binding. Because the two-piece piece-
wise affine function can touch fn(ρ) on at most three points under constraint

α |ρ m | + βρ+ γ → fn(ρ) ∀ρ ↓ [a, b], 

the extremal distribution is a one-point, two-point, or three-point distribution. We readily exclude the possibility that the extre-
mal distribution is a one-point distribution because the mean-absolute deviation of a one-point distribution is zero. Next, we 
illustrate why the extremal distribution cannot be a two-point distribution. Suppose there exists a two-point distribution sup-
ported on {ρ1,ρ2} that solves the worst-case expectation problem. Then, by complementary slackness, the dual constraint fn(ρ) ↑
α |ρ m | + βρ+ γ�will be binding at these two points. Without loss of generality, we assume ρ1 ↓ [a, m) and ρ2 ↓ (m, b]. Because 
fn(ρ) is strictly concave for ρ ↓ [a, m) and the dual constraint requires α |ρ t | + βρ+ γ → fn(ρ), we thus have ρ1 ↑ a. Because ρt is 
defined as the ρ�coordinate of the point such that the line segment between (m, fn(m)) and (ρt, fn(ρt)) is tangent with fn(ρ), we 
must have ρ2 ⇑ ρt; otherwise, the dual constraint will be violated. Because ρ2  ρ1 ⇑ ρt a, the corresponding mean-absolute 
deviation will be greater than d0. Therefore, the extremal distribution cannot be a two-point distribution (i.e., it is a three-point 
distribution). Next, it can be shown that if fn(ρ) intersects α |ρ m | + βρ+ γ�at three points, then these three points must be 
ρ ↑ a, m, and ρt. Therefore, we have the following system of linear equations:

p1(a m) + p2(m m) + p3(ρt m) ↑ m
p1 |a m | + p2 |m m | + p3 |ρt  m | ↑ d

p1 + p2 + p3 ↑ 1:

Solving this system of linear equations leads to the second result in Proposition 3.
We now establish that if d0 → d, the extremal distribution is a two-point distribution. Similarly, by the fact that the extremal dis-

tribution is a discrete distribution supported on at most three points, we just need to show that there does not exist a one-point 
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or three-point extremal distribution that solves (8). We can exclude the possibility of one-point distribution easily because its 
mean-absolute deviation is zero. As we described previously, the extremal three-point distribution is supported on ρ ↑ a,ρt, and 
b, and the largest mean-absolute deviation that can be achieved within this support is given by d0 :↑ 2(m a)(ρt m)

ρt a . Because d ⇑ d0, 
the extremal distribution can only be a two-point distribution. One of the support points is given by ρ ↑ a, whereas the other one 
is determined by the value of d, which yields the following linear equations:

p1(a m) + p2(ρ2  m) ↑ m

p1 |a m | + p2 |ρ2  m | ↑ d

p1 + p2 ↑ 1: (B.2) 

Solving this system of equations, we obtain the optimal solution explicitly as

p1 ↑
d

2(m a) , ρ1 ↑ a; p2 ↑ 1 d
2(m a) , ρ2 ↑

da + 2m(a m)
d + 2(a m) :

This completes the proof. w

Appendix C. Proofs of Section 4
Proof of Theorem 4. Problem (14) can be equivalently written as

inf
ν↓M+

Z

Ξ
fn(ρ)ν(dρ)

s:t:
Z

Ξ
|ρ m̂ | ν(dρ) ↑ d

Z

Ξ
ρ ν(dρ) ↑ m

Z

Ξ
ν(dρ) ↑ 1

ml → m → mu

dl → d → du:

Dualizing this optimization problem yields
sup

θ↓R4
+,γ↓R

γ + θ1dl  θ2du + θ3ml  θ4mu

s:t: (θ1  θ2) |ρ m̂ | + (θ3  θ4)ρ + γ → fn(ρ) ∀ρ ↓ [a, b]:
Applying algebraic reductions and invoking Lemma 3 lead to the desired reformulation. The derivation straightforwardly fol-
lows that of Theorem 1, and we omit for brevity. w

Proof of Theorem 5. The dual problem is given by
sup

θ↓R4
+,γ↓R

γ + θ1dl  θ2du + θ3ml  θ4mu

s:t: (θ1  θ2) |ρ m̂ | + (θ3  θ4)ρ + γ → rn(ρ) ∀ρ ↓ [a, b]:
Because the revenue rate function rn(ρ) is concave for ρ ⇑ 0, the semi-infinite constraints are satisfied if and only if each con-
straint is satisfied at points ρ ↑ a, ρ̂i, b, which completes the proof. w

Appendix D. Distributionally Robust Model with a Wasserstein Ambiguity Set
In this section, we study the DRO model with a Wasserstein ambiguity set (Esfahani and Kuhn 2018, Gao and Kleywegt 2023). We 
develop solution schemes to find the optimal threshold strategies for a social optimizer and a revenue maximizer given by n̂s and 
n̂r, respectively, such that the worst-case expected benefit rates are maximized. Here, the worst case is taken over the Wasserstein 
ambiguity set containing all probability distributions (discrete or continuous) sufficiently close to the discrete empirical distribu-
tion, where the closeness between two distributions is measured in terms of the Wasserstein metric (Esfahani et al. 2018).

Definition D.1 (Wasserstein Metric). For any r ⇑ 1, let Mr(Ξ) be the set of all probability distributions P supported on Ξ�satisfy-
ing EP[↘!↘r] ↑

R
Ξ↘!↘

rP(d!) <⇓. The r-Wasserstein distance between two distributions P1,P2 ↓ Pr
0(Ξ) is defined as

Wr(P1,P2) ↑ inf
Z

Ξ2
↘!1  !2↘rQ(d!1 , d!2)

" #1
r

( )

, 

where Q is a joint distribution of !̃1 and !̃2 with marginals P1 and P2, respectively.
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The Wasserstein distance Wr(P1,P2) can be viewed as the (rth root of the) minimum cost for moving the distribution P1 to P2, 
where the cost of moving a unit mass from !1 to !2 amounts to ↘!1  !2↘r. The joint distribution Q of !̃1 and !̃2 is, therefore, natu-
rally interpreted as a mass transportation plan (Esfahani et al. 2018). Similarly to the data-driven setting in Section 4, we assume 
that we have observed a finite set of N independent realizations given by {ρ̂ i}i↓[N], where ρ̂i ↑ λ̂i=µ. Using the observations, we 
define the empirical distribution P̂N :↑ 1

N
P

i↓[N]δρ̂ i 
as the discrete uniform distribution on the samples.

In this paper, we consider the Wasserstein ambiguity set defined as

Bϑ(P̂N) :↑ {P ↓ P0(Ξ) : W1(P, P̂N) → ϑ}, (D.1) 

which is a neighborhood around the empirical distribution. The ambiguity set contains all distributions supported on Ξ�that are 
of type 1 Wasserstein distance less than or equal to ϑ from P̂N. By adjusting the radius ϑ of the ball, one can control the degree of 
conservatism of the DRO model. If ϑ ↑ 0, the Wasserstein ball shrinks to a singleton set containing only the empirical distribution 
P̂N. One can further show that this data-driven DRO model converges to the corresponding true stochastic program as the sam-
ple size N tends to infinity (Esfahani and Kuhn 2018).

We derive the optimal threshold strategies n̂s and n̂r for a social optimizer and a revenue maximizer, respectively. As stated in 
Section 2, the optimal joining threshold ñe for an individual customer is independent of the arrival rate, and we have ñe ↑ ne 
from (2).

D.1. Social Optimizer
The objective of a social optimizer is to obtain an optimal joining threshold n̂s that maximizes the worst-case expected benefit: 
that is, n̂s ↓ arg maxn↓Z+{Zs(n)}, where

Zs(n) :↑ inf
P↓Bϑ(P̂N)

EP[fn(ρ̃)]: (D.2) 

The worst-case expectation is computed over all distributions in the Wasserstein ambiguity set Bϑ(P̂N) with the support set 
Ξ ↑ [a, b].
Theorem D.1. For any n ⇑ 1 and P ↑ Bϑ(P̂N), the worst-case expectation Zs(n) coincides with the optimal objective value of the following 
semidefinite program:

sup  αϑ+ 1
N
X

i↓[N]
si

s:t: α ↓ R+, s ↓ RNyi,zi ↓ Rn+3, Xi, Wi ↓ Sn+3
+ ∀i ↓ [N]

yi
0 ↑ si + αρ̂ i, yi

1 ↑ si  α αρ̂ i + Rµ C, yi
2 ↑ α Rµ

yi
3, : : : , yi

n ↑ 0, yi
n+1 ↑ si  αρ̂i  Rµ+ C(n + 1),

yi
n+2 ↑ si +α+αρ̂ i + Rµ+ C C(n + 1), yi

n+3 ↑ α ∀i ↓ [N]
zi

0 ↑ si  αρ̂i, zi
1 ↑ si +α+ αρ̂i + Rµ C, zi

2 ↑ α Rµ
zi

3, : : : , zi
n ↑ 0, zi

n+1 ↑ si + αρ̂i  Rµ+ C(n + 1),
zi

n+2 ↑ si  α αρ̂ i + Rµ+ C C(n + 1), zi
n+3 ↑ α ∀i ↓ [N]

X

u+v↑2l 1
xi

uv ↑ 0 ∀l ↓ [n + 3] i ↓ [N]

Xl

q↑0

Xn+3+q l

r↑q
yi

r
r
q

 !
n + 3 r

l q

 !
ar qρ̂q

i ↑
X

u+v↑2l
xi

uv ∀l ↓ [n + 3] ↖ {0} i ↓ [N]

X

u+v↑2l 1
wi

uv ↑ 0 ∀l ↓ [n + 3] i ↓ [N]

Xl

q↑0

Xn+3+q l

r↑q
zi

r
r
q

 !
n + 3 r

l q

 !

ρ̂r q
i bq ↑

X

u+v↑2l
wi

uv ∀l ↓ [n + 3] ↖ {0} i ↓ [N]:

Proof. The distributionally robust model with the ambiguity set (D.1) can be equivalently written as

inf 1
N
X

i↓[N]

Z

Ξ
fn(ρ)Pi(dρ)

s:t: Pi ↓ P0(Ξ) ∀i ↓ [N]
1
N
X

i↓[N]

Z

Ξ
↘ρ ρ̂i↘Pi(dρ) → ϑ:
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Its strong dual problem is given by Esfahani and Kuhn (2018, theorem 4.2):

sup
α↓R+, s↓RN

 αϑ + 1
N
X

i↓[N]
si

s:t: si  α↘ρ ρ̂i↘ → fn(ρ) ∀i ↓ [N] ∀ρ ↓ [a, b]:
We can deal with each constraint separately for the cases ρ → ρ̂i and ρ ⇑ ρ̂i, and consequently, we have

sup
α↓R+, s↓RN

 αϑ+ 1
N
X

i↓[N]
si

s:t: si +α(ρ ρ̂i) → fn(ρ) ∀i ↓ [N] ∀ρ ↓ [a, ρ̂ i]
si  α(ρ ρ̂ i) → fn(ρ) ∀i ↓ [N] ∀ρ ↓ [ρ̂i, b]:

Substituting the definition of fn(ρ) in (3) and applying algebraic reductions yield the following polynomial inequalities for each 
i ↓ [N]:

( si + αρ̂i)ρ0 + (si α αρ̂i + Rµ C)ρ+ (α Rµ)ρ2 + (si  αρ̂ i Rµ+ C(n + 1))ρn+1

+ ( si + α+αρ̂ i + Rµ+ C C(n + 1))ρn+2 αρn+3 ⇑ 0 ∀ρ ↓ [a, ρ̂ i],
( si αρ̂ i)ρ0 + (si +α+αρ̂ i + Rµ C)ρ+ ( α Rµ)ρ2 + (si + αρ̂i  Rµ+ C(n + 1))ρn+1

+ ( si  α αρ̂ i + Rµ+ C C(n + 1))ρn+2 + αρn+3 ⇑ 0 ∀ρ ↓ [ρ̂i, b]: (D.3) 

The inequalities are of the form gi
1(ρ) ↑

Pn+3
r↑0 yi

rρ
r ⇑ 0 for ρ ↓ [a, ρ̂i] and gi

2(ρ) ↑
Pn+3

r↑0 zi
rρ

r ⇑ 0 for ρ ↓ [ρ̂i, b], where yi and zi repre-
sent the coefficients of the respective polynomial inequalities. We next invoke the result of Lemma 3 for every i ↓ [N] to express 
the inequalities in (D.3) as semidefinite constraints. This leads to the desired semidefinite program, which completes the 
proof. w

To determine an optimal joining threshold, we compute the worst-case expected benefit rate Zs(n) for every n ↓ Z+, 
1 → n → ne, using the result of Theorem D.1, and then, we select the best threshold n̂s ↓ arg maxn↓Z+{Zs(n)}.

D.2. Revenue Maximizer
The objective of a revenue maximizer is to find an optimal threshold n̂r that maximizes the worst-case expected revenue rate of a 
firm (i.e., n̂r ↓ arg maxn↓Z+{Zr(n)}, where the worst-case expectation is computed over all the distributions in the Wasserstein 
ambiguity set Bϑ(P̂N) defined by (D.1) with support set Ξ ↑ [a:b]). The worst-case expected profit rate Zr(n) is given by

Zr(n) :↑ inf
P↓Bϑ(P̂N)

EP[rn(ρ̃)]: (D.4) 

Theorem D.2. For any n ⇑ 1, the worst-case expectation Zr(n) coincides with the optimal objective value of the following linear program:

sup
α↓R+, s↓RN

 αϑ+ 1
N
X

i↓[N]
si

s:t: si + α(a ρ̂i) → rn(a) ∀i ↓ [N]
si → rn(ρ̂ i) ∀i ↓ [N]
si α(b ρ̂ i) → rn(b) ∀i ↓ [N]:

Proof. The strong dual problem of infP↓Bϑ(P̂N)EP[rn(ρ̃)] is given by

sup
α↓R+, s↓RN

 αϑ+ 1
N
X

i↓[N]
si

s:t: si α↘ρ ρ̂ i↘ → rn(ρ) ∀i ↓ [N] ∀ρ ↓ [a, b]:

Because the revenue rate function rn(ρ) is concave for ρ ⇑ 0, the semi-infinite constraints are satisfied if and only if each con-
straint is satisfied at three points ρ ↑ a, ρ̂i, b. Consequently, we have

Zr(n) :↑ sup
α↓R+, s↓RN

 αϑ+ 1
N
X

i↓[N]
si

s:t: si +α(a ρ̂i) → rn(a) ∀i ↓ [N]
si +α(ρ̂ i  ρ̂i) → rn(ρ̂ i) ∀i ↓ [N]
si  α(b ρ̂ i) → rn(b) ∀i ↓ [N], 

and thus, the claim follows. w
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To determine an optimal joining threshold n̂r, we compute the worst-case expected profit rate Zr(n) for every n ↓ Z+, 1 → n →
n̂e using the result of Theorem D.2, and we select n̂r ↓ arg maxn↓Z+{Zr(n)}.
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