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1. Introduction

Imposing tolls to regulate queueing systems was first studied by Naor (1969). He considers a single-server first
come, first served (FCFS) queue with stationary Poisson arrivals at a known rate A. Service times are independent
and identically and exponentially distributed with the rate y. Customers are assumed to be risk neutral and
homogenous from an economic perspective. Each customer receives a reward of $R upon service completion
and incurs a cost of $C per unit of time spent in the system (including in service). In the observable model, every
arriving customer inspects the queue length and decides whether to join (reneging is not allowed) or balk (i.e.,
not join the queue). This strategic decision making is the key factor differentiating this model from the classic
M/M/1 queueing model.

Naor (1969) derives an optimal threshold strategy n. The customer joins the queue if and only if the system
length is less than n. He computes this threshold value under three different control strategies: (1) individual opti-
mization (n,) where the customers act in isolation, aiming to maximize their own expected net benefit rate; (2)
social optimization (n;) where the objective is to maximize the long-run rate at which customers accrue net benefit;
and (3) revenue maximization (n,) where the agency imposes a toll on the customers joining the queue with the
goal of maximizing its own revenue. The most important result by Naor (1969) is the relation n, < ny < n,, which
implies that the customers tend to join the system at a higher rate when left to themselves than is socially opti-
mal. This is because customers do not consider the negative externalities they impose on customers who arrive
later. The result also implies that the revenue-maximizing firms allow fewer customers to join their system than
the socially optimal case.

Many authors have expanded on the seminal work by Naor (1969); a detailed review of these game-theoretic
models is presented in a recent book by Hassin and Haviv (2003). Some of the other recent works (Burnetas and
Economou 2007, Economou and Kanta 2008, Guo and Hassin 2011) involve deriving threshold strategies in a
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classic Naor setting with server shutdowns. Although Economou and Kanta (2008) study the system with server
breakdowns and repairs, Burnetas and Economou (2007) analyze the system where the server shuts off when
idle and incurs a setup time to resume. A slight variant of this model is given by Guo and Hassin (2011), where
the server resumes only when the queue length exceeds a given critical length. Also, Guo and Zipkin (2007)
explore the effects of three different levels of delay information and identify the specific cases that do and do not
require such information to improve the performance. Haviv and Oz (2016) review the properties of several
existing regulation schemes and devise a new mechanism where customers are given priority based on the queue
length. Afeéche and Ata (2013) study the observable M/M/1 queue with heterogenous customers, with some
patient and some impatient of given proportions.

All the aforementioned works explore the Naor (1969) model by assuming deterministic arrival or service
rates. However, in many real-world scenarios, customers may behave differently during different periods.
Hence, there is merit in building a model that performs well under uncertainty. A possible approach is to con-
sider distributional uncertainty on the customers’ interarrival times (Bandi et al. 2015). Unfortunately, such gran-
ular data are usually inaccessible or simply not stored in practice. In addition, even if the granular data are
collected, the problem is still theoretically challenging as the M/M/1 structure no longer holds. In this case, cal-
culating the long-run expected social benefit or revenue rates would be difficult, and there is no such study in
the context of strategic queues. To avoid these shortcomings, some recent studies propose to address uncertainty
by taking the arrival or service rate as a random variable (Liu and Hasenbein 2019, Hassin et al. 2023). For exam-
ple, they assume that the customer arrival rate is a random variable for each weekday, and the queue manager
seeks a strategy that maximizes the long-run social benefits or revenue. This modeling assumption is an expedi-
ent approach to account for customer arrival variation while considering the issues of data accessibility and
model complexity. Compared with granular data, historical arrival rates are much easier to obtain; most restau-
rants can collect the historical daily arrival rates by referring to the recorded sales quantity in their accounting
books, but only a tiny portion of restaurants keep records of the exact arrival time of each customer. In addition,
by assuming that the arrival rate is a fixed random variable within each time slot, the model preserves the
M/M/1 structure, which enables the use of many elegant results from the paper of Naor (1969).

Papers with related assumptions as in our model include Debo and Veeraraghavan (2014), who consider a sys-
tem where the arriving customers cannot completely observe the service rate and value. They assume that the
server belongs to one of two known types and that the service rate and prior probability for each type are known.
Liu and Hasenbein (2019) study a stochastic extension of the Naor (1969) model by relaxing the assumption of a
certain arrival rate. They assume that the arrival rate is drawn from a probability distribution that is known to
the decision maker. Chen and Hasenbein (2020) further extend the stochastic model to the unobservable setting.
They show that the social optimizer induces a lower expected arrival rate than the revenue maximizer in this set-
ting. Hassin et al. (2023) also investigate the unobservable stochastic model from the perspective of strategic cus-
tomers and demonstrate that the model exhibits a rate-biased arrivals see time averages property. Despite their
conceptual appeal, all these works require that the arrival or service rate distribution is known precisely to deci-
sion makers, which may not be realistic in practice. In this paper, we extend the classical Naor model for observ-
able systems by relaxing these assumptions, where we assume the arrival rate is uncertain and governed by an
unknown underlying distribution, whereas the service rate is deterministic.

To this end, we consider an alternate modeling paradigm called the distributionally robust optimization (DRO)
(Scarf 1957, Zatkové 1966, Shapiro and Kleywegt 2002). Unlike the traditional stochastic optimization model,
DRO acknowledges the lack of full distributional information on the random arrival rate. Instead, the decision
maker is assumed to have access to partial information, such as the moments and structural properties of the
arrival rate distribution, or some limited historical observations. In this setting, the objective is to derive optimal
threshold strategies that maximize the worst-case expected benefit rate, where the worst case is taken over an
ambiguity set of all distributions consistent with the available information about the true distribution. Such max-
min problems have been studied since the seminal work by Scarf (1957), but they have only received more atten-
tion with the advent of modern robust optimization techniques (Bertsimas and Sim 2004, Ben-Tal et al. 2009).
Since then, a substantial body of literature has been devoted to studying well-known optimization problems
under uncertainty in a distributionally robust setting; see Delage and Ye (2010), Li et al. (2014), Wiesemann et al.
(2014), Hanasusanto et al. (2015), Shafieezadeh-Abadeh et al. (2015), and Ardestani-Jaafari and Delage (2021).
Nevertheless, the distributionally robust framework has not been considered in the context of the classical Naor
observable strategic queue model. The paper fills this gap in the literature.

We first study the distributionally robust queue model with a mean-absolute deviation (MAD) ambiguity set
(Postek et al. 2018), where partial information about the distribution mean and MAD are known. Next, we extend
our model to the data-driven setting, where queue system managers only have access to a finite number of
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independent and identically distributed training samples collected from historical observations. We construct a
data-driven mean-absolute deviation (DD-MAD) ambiguity set that mitigates estimation errors from the empiri-
cal moment estimators. The resulting distributionally robust model with a data-driven ambiguity set admits a
semidefinite programming (SDP) reformulation for the social optimization problem and a linear programming
reformulation for the revenue maximization problem. To properly determine the robustness parameters, we
establish a new distribution-free confidence interval for the empirical MAD. Although such confidence intervals
exist for the empirical mean and variance (Delage and Ye 2010), to the best of our knowledge, none are available
for the empirical MAD. Herrey (1965) derives the confidence interval for the empirical MAD under normal distri-
bution data, whereas other works mostly focus on median-absolute deviation; see Bonett and Seier (2003), Abu-
Shawiesh et al. (2018), and Arachchige and Prendergast (2019). Using this result, we further derive finite-sample
guarantees for the data-driven MAD model, in which optimal values provide high-confidence lower bounds on
the expected social benefit or revenue rate. We also benchmark our data-driven MAD ambiguity set with the
popular Wasserstein ambiguity set (Pflug and Wozabal 2007, Esfahani and Kuhn 2018, Esfahani et al. 2018, Gao
and Kleywegt 2023), which is widely used in the data-driven setting as it can offer attractive finite-sample guar-
antees. The results demonstrate that our proposed data-driven MAD model shares a similar guarantee as the
Wasserstein model while generating a significantly more tractable reformulation.

The main contributions of this paper can be summarized as follows.

1. We propose a new model to tackle the uncertain arrival rate in the Naor strategic queue problem using the
emerging DRO framework. The model does not impose any specific distributional assumption; instead, it opti-
mizes in view of the worst-case distribution within a prescribed ambiguity set. Benefitting from this robustification
framework, the model alleviates the overfitting issue and yields attractive out-of-sample performance.

2. We prove that the revenue rate function is concave, whereas the social benefit rate function is either concave
or unimodal under some mild prerequisites. We then show that these properties enable a closed-form solution for
the worst-case expectation problem with an MAD ambiguity set. For the general cases, we derive an SDP reformu-
lation for the social optimization problem and a linear programming reformulation for the revenue optimization
problem.

3. We extend the distributionally robust model to the data-driven setting, where queue system managers only
have access to a finite set of historical observations. To mitigate the adverse effect of the estimation errors from the
empirical MAD, we robustify the ambiguity set by adding an extra layer of robustness to the empirical mean and
MAD estimators. The data-driven MAD model admits an SDP reformulation for the social optimization problem
and a linear programming reformulation for the revenue maximization problem. We then establish a distribution-
free confidence interval for the empirical MAD and derive finite-sample guarantees for the distributionally robust
model with a data-driven MAD ambiguity set. Compared with the Wasserstein ambiguity set, the data-driven
MAD ambiguity set admits a more efficient reformulation of fixed complexity, where the number of constraints
does not scale with the sample size.

The remainder of the paper is structured as follows. In Section 2, we propose the distributionally robust queue
model and analyze the relationship between different thresholds under the distributionally robust setting. Sec-
tion 3 presents tractable reformulations for the worst-case expectation problem with a classical MAD ambiguity
set. Section 4 explores the distributionally robust model with a data-driven MAD ambiguity set and derives theo-
retical finite-sample guarantees. Finally, the out-of-sample performances of our distributionally robust models
are assessed empirically in Section 5.

1.1. Notations

The set of all probability measures supported on Z is written as Po(E) :={u € M, : [cu(dé) =1}, where M.,
denotes the set of nonnegative Borel measures. All random variables are designated by tilde signs (e.g., p),
whereas their realizations are denoted without tildes (e.g., p). We denote by Ep[c(p)] the expectation of a cost
function with respect to the random variable p under distribution P. We define | 7] to be the largest integer less
than or equal to 7 and [|x]|, to be the p-norm of a vector x. For any set E, we let int(Z) denote its interior. The cone
of k X k positive semidefinite matrices is denoted by S.

2. Distributionally Robust Strategic Queues Model

The extension of the Naor (1969) seminal queue model to the stochastic optimization setting with an uncertain
arrival rate was first proposed by Liu and Hasenbein (2019), who consider an M/M/1 queue system with a ran-
dom arrival rate 1 ~P* and a deterministic service rate y. The queue system operates under a first come, first
served discipline, and the true distribution of the uncertain arrival rate A is known by the system manager.
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Because the service rate p is deterministic, without loss of generality, we consider the traffic intensity p := A as the
uncertain parameter throughout the remainder of the paper. The stochastic model aims to find an optimal thresh-
old that maximizes the expected benefit rate: that is,

max Ep-[cq(p)]-

Here, c,(p) is a general return function, which can be replaced with the social benefit rate function or the revenue
rate function depending on the system manager’s objective.

In practice, the true distribution P* is never available to the system manager and typically has to be estimated
using the empirical distribution generated from the historical observations. Although the empirical-based meth-
ods may work well on the observed data set, they often fail to achieve an acceptable out-of-sample performance
because they do not consider any possible disturbances from the limited historical observations.

In this paper, we endeavor to address this fundamental shortcoming using ideas of DRO. The DRO approach
does not impose any single distribution on the uncertain arrival rate. Instead, it constructs an ambiguity set P
containing all plausible probability distributions that are consistent with the partial information as well as histor-
ical observations. In this setting, the objective is to derive an optimal threshold strategy 7 that maximizes the
worst-case expected benefit rate, where the worst case is taken over all distributions from within this ambiguity
set: that is,

max inf Ep[c,(p)]. ¢y
Because the model optimizes the expected benefit rate in view of the worst-case distribution, it mitigates overfit-
ting to the observed samples and helps improve the performance in out-of-sample circumstances.

In this paper, we study the distributionally robust model from the perspective of an individual customer, a
social optimizer, and a revenue maximizer. We first derive the results that hold for any generic ambiguity set P.

2.1. Individual Optimization

We determine a pure threshold strategy in which each arriving customer decides to join or not join the queue
based on the observed queue length, independent of the strategy adopted by other customers. A newly arrived
customer makes a decision (to join or not join) based on the net gain R — (i + 1)C/p, where i is the number of peo-
ple currently in the queue, and will join the queue if it is nonnegative. Note that net gain is deterministic because
it is independent of the random arrival rate. Thus, the optimal joining threshold for any arriving customer is

given by
.| Ru
= | ). @

This result coincides with the original result of Naor (1969) (i.e., 7i, = n.) because the net gain of a newly arrived
customer only depends on the current queue length and the service rate, which are all deterministic. On the other
hand, as an individual optimizer, the customer can ignore the rates of future arrivals because they will not affect
the time to service.

2.2. Social Optimization
We next analyze the distributionally robust threshold for a social optimizer. The social benefit rate for a realiza-
tion of the traffic intensity p and a fixed threshold 7 is given by

p(1—p") p (m+1)p™ .
Rul—p’l*lc(l—p 1= gt ifp#1

—Cg ifp=1.

fu(p) = 3)

RMn+1

One can verify that lim,.;Ru p(;npj) - C(li — (lp M) = Ryt — C%, which indicates that the function f,(p) is

1 —p 17Pn+1
continuous in p. The distributionally robust model determines an optimal threshold 7, that maximizes the

worst-case expected social benefit rate Z;(n): that is, i, € arg maxez, Zs(1), where
Zs(n) = Inf Epfu(p)]- )

We first investigate the relationship between the optimal thresholds 7, and 7i;.
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Proposition 1. There exists an optimal threshold of the social optimizer less than or equal to the optimal threshold of an
individual customer: that is, Anss.t. Mg < 1.

Proposition 1 enables decision makers to search for the best threshold from {1, ...,7.}. We remark that the par-
ticipation of customers is not affected by the distributionally robust setting because the queue adopts the FCFS
discipline, so subsequent arrivals are immaterial after the customer has joined the queue. Thus, the socially opti-
mal threshold is always achievable by reducing the individual threshold from n, to 7i;.

2.3. Revenue Optimization
We now consider a profit-maximizing firm that aims to maximize its expected revenue rate by imposing a toll ¢
on every joining customer. In this setting, customers base their joining decision on this imposed toll ¢ and evalu-
ate the service completion only by R — f. Recall that customers join the queue if and only if the expected net gain
is nonnegative. Therefore, determining an optimal toll ¢ is equivalent to choosing a queue-length threshold 7 that
maximizes the expected revenue rate, where n = L%J.

The revenue rate for a realization of the traffic intensity and a fixed threshold 7 is given by

n+1
ru(p) == )

n
(Ry—Cn)n+1

e PP
(Ru Cn)l_p ifp#1

ifp=1.

p(d=p") _ un_
17P"+1  n+l’

determines an optimal threshold 71, that maximizes the worst-case expected revenue rate Z,(n): that is,
i, € arg maxyez, Z,(n), where

One can show that lim, which indicates that f,(p) is continuous. The distributionally robust model

Z.(n) := %275 Ep[r(p)]- (6)

Similarly, we first investigate the relationship between the optimal thresholds 7, and 7.

Proposition 2. There exists an optimal threshold of the revenue maximizer less than or equal to the optimal threshold of an
individual customer: that is, 1, s.t. 7, < .

So far, we have presented the generic distributionally robust observable queue models for an individual cus-
tomer, a social optimizer, and a revenue maximizer. However, we have not specified the ambiguity set for the
social and revenue optimization problems. In the following sections, we will investigate different types of ambi-
guity sets and derive their tractable reformulations.

3. Distributionally Robust Strategic Queues with an MAD Ambiguity Set

We study the DRO model with an MAD ambiguity set. Suppose the support [a,b], mean m, and MAD d of the
random parameter p are known to the decision makers. Then, we can construct an ambiguity set containing all
possible distributions that are consistent with the partial information, defined as

P:={P € Po(la,b]) : Ep[p]=m, Ep[|p —m[] =d}. @)

We develop efficient solution schemes to find the optimal threshold strategies for a social optimizer and a reve-
nue maximizer, given by 7i; and 7,, respectively, such that the worst-case expected benefit rates are maximized.
In order to derive tractable reformulations for the distributionally robust models, we assume m € (a,b) and
d€(0,d), where d := W is the largest possible mean-absolute deviation attained by any distribution with
the given support and mean.

3.1. Social Optimization

To determine an optimal joining threshold for a social optimizer, we compute the worst-case expected social ben-
efit rate Zs(n) for every n € Z, satisfying 1 < n < n, and choose an 7i; such that 7i; € arg max,ez. Zs(n). To this
end, we show how to compute the worst-case expected social benefit rate for a fixed n. Suppose the distribution
mean and MAD of p are precisely known; then, the worst-case expected social benefit rate is given by the



Wang et al.: Distributionally Robust Observable Strategic Queues
342 Stochastic Systems, 2024, vol. 14, no. 3, pp. 337-361, © 2024 The Author(s)

optimal value of the moment problem

z= it [ f(pwidp)

s.t. Hlp —m|v(dp) =d
B ®)

where E := [a,b] is the support of p. The third constraint of (8) restricts the nonnegative measure v to be a proba-
bility distribution, whereas the first and second constraints impose that the distribution’s MAD and mean are
equal to d and m, respectively. The objective of the problem is to find a feasible distribution that minimizes the
expected social benefit rate.

The semi-infinite linear optimization Problem (8) is hard to solve because it searches for the best decision from
an infinite-dimensional space of probability measures. To derive a tractable reformulation, we focus on the dual
problem. We first define F(p) := a|p — m| + Bp + y and derive the dual problem as

sup ad+pm+y
a,B,7eER (9)
st. F(p) <fulp)  Vpelab].

Notice that F(p) is a two-piece piecewise affine function majorized by f,(p). We know that if f,(p) is a piecewise
affine function or a concave function, the semi-infinite constraint will reduce to a linear constraint because we
only need to check the satisfaction of the constraint at points p =a,m, and b. However, the social benefit rate
function is neither concave nor piecewise affine, making the problem difficult. To solve this optimization prob-
lem, we first investigate the properties of the social benefit rate function f,(p). For clarity of exposition, we rele-
gate some of the proofs to Appendix B.

Lemma 1. The social benefit rate function f,(p) has the following properties if R—é‘ >n+1.
1. fu(p) is strictly concave for p € [0,1].
2. fu(p) is either concave increasing or unimodal for p € [0, 00).
3. The sign of the second derivative f, (p) changes at most once over [0, o).

From Lemma 1, we know that the social benefit rate function has some appealing properties. Specifically, the
function is either concave increasing or unimodal on the nonnegative axis, and when it is unimodal, the function
changes from a concave function to a convex function at some point. The next lemma further asserts that the
complementary slackness property holds for the primal and dual problems, which will later help us determine
the worst-case distribution.

Lemma 2. The optimal values of the primal-dual pair (8) and (9) coincide, and their optimal solutions v* and (a*, *,y”),
respectively, satisfy the complementary slackness condition

(fulp) —a*|lp—m| =p*p—y"v*(dp)=0  Vpelab]

The proofs of the lemmas are relegated to Appendix B. Combining Lemmas 1 and 2, we are ready to show that
Problem (8) can be solved analytically under certain conditions. Specifically, we divide this problem into three
cases and derive an explicit expression of the worst-case distribution for each case.

Proposition 3. Assume m € [0,1] and % >n+1. Let (p,,fa(p,)) be the tangent point on f, for the line that passes through
(m, fu(m)). For any n > 1, we have one of the following three cases.

1. If fu(b) + £ (b)(m — b) = f,,(m), then the extremal distribution that solves (4) is a three-point distribution supported on
Py =a, py =m, p, = b, with corresponding probabilities

4 4 d 4
U= otm—ay P~ " 2tm=a) 20—m)’P* " 20—m)
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2. If fu(b) + £(b)(m — b) < fu(m) and d < dy := MW, then the extremal distribution is a three-point distribution
supported on p, = a, p, =m, py = p,, with probabilities
_d —1_ d d B d
pl_Z(m—a)'pz_ 2(m —a) Z(pt—m)'ps_Z(pt—m)'

3. Iffu(b) + £ (b)(m — b) < fy(m) and d > d, := w, then the extremal distribution is a two-point distribution sup-

—a
ported on p; =a, p, = %, with probabilities

o o d
pl_Z(m—a)'pz_ 2(m—a)’

Figure 1 depicts the optimal two-piece piecewise affine function described in Proposition 3. We remark that
the tangent point (p,,f.(p,)) in Figure 1(b) can be determined efficiently by the bisection method. Specifically, we
set [I,u] = [m, b] as the initial search interval for the algorithm. In each iteration, we compute the derivative at the

Figure 1. Visualization of the Three Cases
(@) fu(m) < fu(b) + fr(b)(m — D) (b) fn(1m) = fn(b)

T
[ [—
' all-m)l + Bp+y

I | —f.)
al(p-m)|+Bp+y

benefit rate fn(p)

benefit rate fn(p)

I I I [—t 0
al(p-m)+Bp+y

benefit rate fn(p)

P

Notes. In panel (a), the optimal piecewise affine function is determined by points (4, f,(a)), (m, f,,(m)), and (b, f,,(b)). In panel (b), the parameters sat-
isfy fu(m) > f(b) + £, (b)(m — b) and d <dy. Thus, the optimal two-piece piecewise affine function touches f,(p) at (a,f,(a)), (m,f,(m)), and
(p, fu(p,)), where (p,,fu(p,) is the tangent point. In panel (c), f,(m) > f,,(b) + £, (b)(m — b) still holds, whereas d > dy. In this case, the extremal distri-
bution degenerates to a two-point distribution. (a) f,(m) < f,,(b) +f(b)(m — ). (b) fu(m) > f,(b) +f,(b)(m —b) and d <dp. (c) fu(m) = f.(b) +
fa(b)(m —b) and d > dy.
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midpoint p = %, and we check whether it is the tangent point by calculating the difference between f, () and
fr (&) (m ””) + fn (44). If the difference is small enough, we terminate the algorithm; otherwise, we set u = % if
the difference is positive or set | = & if the difference is negative, and then, we go back to the first step with the
updated interval [/, u].

We remark that the use of the MAD ambiguity set and its geometric interpretation is motivated by a recent work
by van Eekelen et al. (2022), who analyze the worst-case performance of the GI/G/1 queue (Bhat 2008) under
mean-dispersion constraints. The authors demonstrate that measuring the dispersion by MAD, instead of variance,
significantly simplifies the analysis and enables a closed-form solution for the extremal distribution whenever the
loss function is convex. Unfortunately, our problem is different as the social benefit rate function is neither convex
nor concave. Nevertheless, by establishing some useful properties of the social benefit rate function and exploiting
its geometrlc interpretation in the dual Problem (9), we are able to explicitly express the extremal distribution when
m < 1and ’ > n + 1. Using this result, we can compute the worst-case expected social benefit rate Z;(n) efficiently.

Theorem 1. Assume m € [0,1] and %” >n+1. Let (p,,fu(p,)) be the tangent point on f,(p) for the line that passes through
(m, fu(m)). For any n > 1, we have the following three cases.

L. Iffu(b) + £,(b)(m — b) zfn<m> then

d

2400 = =9+ (1~ 2=y~ 5 =) 25 O
2. Iffu(b) + f1(b)(m — b) < fn(m)andd<d W,then

d

20 = g+ (1= 5 . )+ S

3. Iffu(b) +£,(b)(m — b) < f,,(m) and d > do := "0, fhen
d ad +2m(a — m)
2= )f"(”“( s (o )

Theorem 1 enables us to solve the worst-case expectation problem analytically under certain conditions. How-
ever, for the more general case, we are unable to solve it in a closed form. In the following theorem, we show
that the worst-case expectation problem admits a semidefinite programming reformulation that can be solved in
polynomial time using standard off-the-shelf solvers, such as SDPT3 (Toh et al. 1999) and MOSEK (ApS 2022).

Theorem 2. For any n > 1, the worst-case expected social benefit rate Z(n) coincides with the optimal value of the follow-
ing semidefinite program:
sup  ad+pm+y
st.  a,p,yeERyzeR"™3 X X €S
=Ry —C—yo+Yn3, Y2 = —Rit —Yni3,
Y3 Yn =0, Ypo1 = =R+ C(n+1) —yo,
Yne2 =Ry = Cn+yo — Yuss,
Yo=am+y,Ypsz = —a+f

Z % =0 Vie [n+4]
i+j=21-1
1 n+3+q-I
,:Z yr< )(n+3 ) a~im1 Ve [n+4]U{0} (10)
i+j=21 =0 r=q 1

=Ru—C—zy+zu43,20=—Ru —zp13,
23,20 =0, Zp41 = —Ru+C(n+1) — 2,
Znv2 = Rpp — Cn+ 20 — 243
Zo=—am+Y,Zyz=a+ff

> x=0 Vie[n+4]

| n+3+q-1
, S (r\(n+3—1\
=2 S w0 (72 ) vicmeao ),
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The proof of this theorem relies on the following lemma, which expresses a univariate polynomial inequality
in terms of semidefinite constraints.

Lemma 3 (Bertsimas and Popescu 2005, Proposition 3.1(f)). The polynomial g(p) ZV oyrp" satisfies g(p) >0 for all
p € [a,b] if and only if there exists a positive semidefinite matrix X = [xy]; i, x €S} 1 such that

.....

0= Z x,‘]‘ Vl=1,...,k
i, jritj=21-1
1 k+g—I
> yr< )< ) = 3 VI=0,...k
q=0 r=q -4 i,jii+j=21

Proof of Theorem 2. Recall that the dual of infpepEp[f,(p)] for p supported on the interval [a,b] is given by (see
Problem (9))

sup ad+pm+y
a, B, 7eR

alp—m|+pp+y <fulp)  Vpelab].
We can deal with the semi-infinite constraint separately for the cases p < m and p > m:

sup ad+pm+y
a,B,7€R

am—p)+Bp+y < fulp)  Vpelam]
alp—m)+pp+y < fulp)  Vpe[m,b].

Substituting the definition of f,(p) in (3) and applying algebraic reductions yield the following polynomial
inequalities:

—(am+y)p° + Ry —C—B+y+am+a)p+(—Ru —a+p)p* + (—Rp + Cn+C +am +y)p"*!
+(Rp—Cn—am—a+p—y)p"™?+(a—p)p"™ >0 Vpela,m], and

n+1

(am—y)p° + Ry —C—am—a—B+y)p+(—Ru+a+p)p?+(—Ru+Cn+C—am+y)p
+(Ru—Cn+am+a+p—y)p™ 2 —(a+p)p"*>0  Vpe[m,b] (11)

The inequalities are of the form g1(p) = Zf:g’ yrp" >0 for p € [a,m] and g»(p) = Z:”g z,p" >0 for p € [m,b], where
Y=0n,..., Yns3) and z = (z1,...,zy43) represent the coefficients of the respective polynomial inequalities. We now

invoke the result of Lemma 3 with k=743 to express the inequalities in (11) as semidefinite constraints. The
resulting semidefinite problem is equivalent to the original problem, which completes the proof. O

Remark 1. In this subsection, we present two results. Theorem 1 provides a closed-form solution under certain
prerequisites, whereas Theorem 2 derives an SDP reformulation for the general cases. It is worth noting that The-
orem 1 requires the parameters to satlsfy n < —“ — 1. By Proposition 1, there exists an optimal threshold 7, less
than or equal to 7, (i.e., 311; < 7, = |_—”J) Thus, for a strategic queue with mean arrlval rate m < 1, Theorem 1 can
be applied to compute the worst-case expected social benefit rate for the first |+ Rit| 1 cases. This greatly speeds
up the time to solve (4) because we only need to solve an SDP once for the remaining case n = [ Ry |. On the other
hand, for a strategic queue with mean arrival rate m > 1, we cannot invoke Theorem 1 anymore, and we need to
solve an SDP for each n satisfying 1 < n < i, n € Z,.

3.2. Revenue Optimization

To determine an optimal joining threshold for a revenue maximizer, we compute the worst-case expected reve-
nue rate Z,(n) for every n€Z,,1 < n < n,, and we choose an 7, such that 71, € arg max,ez, {Z,(n)}. To this end,
we show how to compute the worst-case expected revenue for each n. Suppose the mean and MAD of the ran-
dom parameter p are known; then, the worst-case expected revenue rate is given by the following optimization
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problem:

Z,(n) = inf Ammwwm

s.t. H|p—m|v(dp)=d
Loviap=m

/Ev(dp) =1.

To derive a tractable reformulation, we first investigate the property of the revenue rate function r,(p).
Lemma 4. The revenue rate function r,(p) is concave for p € R,.

Equipped with Lemma 4, we now show that the worst-case expectation Problem (12) admits a closed-form
solution.
Theorem 3. For any n > 1, the worst-case expected revenue rate can be derived as

d d d d
Z,(n) =mrn(a) + (1 “3m—a) —Z(b_m))rn(m)+mrn(b).

To prove this theorem, we invoke a classical result that characterizes the worst-case distribution from the
MAD ambiguity set for a concave loss function.

Lemma 5 (Ben-Tal and Hochman 1972, Theorem 3). Suppose f(p) is a concave function and the ambiguity set is defined as
P={PePy(la,bl): Ep[p]l =m, Ep[|p — m|] =d}. The extremal distribution that solves infpepEp|[f(p)] is a three-point
distribution supported on p, = a, p, = m, p, = b with probabilities
_d _1_ d  d _d
pl_Z(m—u)'p2_ 2(m —a) 2(b—m)'p3_2(b—m)'

(13)

Proof of Theorem 3. From Lemma 4, the revenue rate function r,(p) is concave. Therefore, applying Lemma 5
yields the result. O

Theorem 3 provides practical managerial insight for the decision maker. Observe that the extremal distribution
is usually a discrete distribution supported on the mean and the lower and upper bounds of the support. Hence,
instead of optimizing over the empirical distribution, the DRO scheme simplifies the problem into three cases:
when the traffic intensity is extremely small (p = a), extremely large (p =), or as expected (p = m). The weight
for each scenario is determined by the MAD, which reflects the variation level of samples. This result aligns well
with human intuition. To design a robust queue-regulating strategy, the decision maker may intuitively think
about “how the queue behaves when the traffic intensity is extremely large, small, or as usual” and “what is the
probability of these scenarios happening.” The closed-form solution provides an answer to these questions. For
example, the quantities p1,p,, p3 answer the question “What are the probabilities of these scenarios happening?,”
whereas the quantities r,(a), 7,(b), r,(m) answer the question “How does the queue behave when the traffic inten-
sity is extremely large, small, or as expected?”

4. Extension to Data-Driven Problems

In this section, we apply the MAD ambiguity set to data-driven optimization problems. As we observed in the
previous section, distributionally robust models with a moment ambiguity set necessitate decision makers to
have access to exact values of the mean m or MAD d of the true unknown distribution, which may not be realistic
in practice. A common approach is to construct such moment ambiguity sets by plugging in the point estimators
generated from the historical samples. However, it is rarely the case that one can be entirely confident in these
empirical estimators. For example, when the sample size is small, these empirical estimators might be far away
from the true values; furthermore, some estimators, such as the empirical MAD, are even biased. In order to miti-
gate the adverse effects of the estimation errors, we design a data-driven MAD ambiguity set that contains the
true underlying distribution with high confidence.
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Unlike the setting in the previous section, here we assume that the queue system manager only has access to N
independent and identically distributed samples of the traffic intensity given by {p,},c;n), where p; = Ai/p. In
addition, we assume that decision makers have some prior knowledge or an educated estimate of the distribu-
tion support. Suppose the true mean and MAD of the underlying distribution are unknown and with high prob-
abilities, belong to two confidence intervals 7 = [m;, m,] and D = [d}, d,,] constructed using the samples. Then, the
proposed data-driven distributionally robust model is formulated as

Z(n) = 11}ier})f/ Ep[cq(p)], (14)

where the modified data-driven ambiguity set is defined as

Py ={P€Po([a,b]): m; < Ep[p] < my, di < Ep[|p —m[] < du}. (15)
One can verify that the results of Propositions 1 and 2 still hold, and we can obtain the optimal value of (14) by
solving Z(n) for each n € Z, satisfying 1 < n < n, and select the one with the largest objective value.

We now derive the reformulations for the worst-case expected social benefit and revenue rates. To this end,
we define the worst-case expected social benefit rate with the data-driven MAD ambiguity set by

Z.(n) = inf Elfu(p)],

and we define the worst-case expected revenue rate with the data-driven MAD ambiguity set by

Z,n) = inf Eelr(p)]

The next theorem presents the reformulation of the worst-case expected social benefit rate. Some of the proofs of
the results in this section are relegated to Appendix C.

Theorem 4. For any n > 1, the worst-case expected social benefit rate Z(n) coincides with the optimal value of the follow-
ing semidefinite program:
sup v+ 01d; — Od, + O3m; — Oymy,
st. Y€ER,01,0,,030,€R,,y,ze R™3 X, X €S
Y1 =Ry —C—yo+Yui3, 2 = —Ru — Y3,
Yoo Yn=0,Yp1 = —Ru+Cn+1) —yo,
Yns2 = Ru — Cn+yo — Ynys,
Yo=(01—02)it +y,Yyu3=—01+0,+ 03— 0,4

> x=0 Vie[n+4]
i+j=21-1
L3l (N (n+3 -7
inf:z y,( >< l >ar“7ﬁ1” Vie[n+4]U{0}
i+j=21 q=0 r=q q —1q

z1 =Ry —C—z0+2y43, 22 = =Rl — Zy43,
23,...,2n =0, 2p01 = —Ru+ C(n+1) — z,

Zny2 = R — Cn+ 29 — Zy43

20 =—(01 — Ot +y,zp43 =01 — 02+ 03 — 04

Z X =0 Vie[n+4]
i+j=21-1
L3l (N (n+3 -7
doxp=) y;< >< >m’%q Vi e [n+4]U{0}.
< I—
i+j=21 q=0 r=q q q

Note that when d; = d,, and m; = m,, setting a = 61 — 0, and 8 = 03 — 0, recovers the dual Problem (9) in the
view of the primitive MAD ambiguity set, which corresponds to the case when we have absolute trust on the
mean and MAD estimators.

The next theorem presents the reformulation of the worst-case expected revenue rate.
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Theorem 5. For any n > 1, the worst-case expected revenue rate Z () is equal to the optimal value of the following linear
problem:

sup Y + 01d; — O2d,, + O3my — Oam,
OeR?,yeR
s.t. (01 —62)|a—1i]| + (03 — Og)a+y < ry(a)
(03 — Ou)tit +y < ru(ift)
(01— 02)|b—1it| + (03 — Oa)b+y < 1u(b).

Theorems 4 and 5 provide tractable reformulations for the social and revenue optimization problems. An
advantage of the proposed data-driven model is that it can offer attractive finite-sample guarantees. Compared
with the original MAD ambiguity set that imposes unique mean and MAD, the data-driven MAD ambiguity
set allows these parameters to vary within the confidence intervals. In this way, we can assure that the set con-
tains the true underlying distribution with a high probability, which immediately generates out-of-sample per-
formance guarantees for the solution.

Theorem 6. Let {{}icqn; be a set of N samples generated independently at random from P* and v* denote the optimal value
of (14). Define 11 and d as the empirical mean and MAD obtained from samples {p,}ic(n- By setting

_[ i — (b —a) 10g4/6 F(b—a) 10g4/(5]

(16)
- [& —(b—a) 971028 40 44 (b — a2 108 2/ lozgl\;"/ﬂ,

we have
Prob(v* < Ep[ca(p)]) =1-0,
where i is the optimal threshold obtained from (14).

Proof. The error of the empirical MAD estimate is given by

Iﬁi—iﬁl —E[lp —ml]

Z\H

/—’H
MZ
§>
ﬁl
|
Zl-
g
S
=
+
=
=
=
—_——

1 1

N0 =l —Ellp =] < 5> 19— | —El[l|p —m| — |1t —m||]
i=1 i=1
1 N

< 21—l = Ellp —m| = |1t —m|]
i=1

1., . .
< |G 218 =] Ellp —ml]| + [ = m],

where the second inequality follows from reverse triangle inequality. Meanwhile, the second term is bounded by
1

-5 Iﬁ | +E[|p - m|]<——2|pl—m|+1E[|p m| + |it —m]]

i= i=1

N
— p —ml]
N; Lp —m

+ it —m|.
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Because both of these two terms have the same upper bound, we have

1 N
<2 10—l —E[lp 1p; — E[lp —ml]
N; NZ

As E[r] = E[m] is an unbiased estimator, we can invoke the Hoeffding inequality to directly derive a confidence
interval for the second term. However, the empirical MAD is biased (i.e., E[ Zf\il |p;, —nt|] #E[|p —m]]), mak-
ing the Hoeffding inequality not applicable. To derive a confidence interval for this term, we rewrite it as

+ | —m|.

l N
D16, il = Ellp —ml]
i=1

1SN, .
:max{ﬁg |p; — | —E[|p —ml], E |p, —m| +E[[p— ml]}
i=1

We further upper bound the two terms inside the max operator. For the first term, we have

1L 3 1M . 3
K];Ipi—ml —E[|p —m]] < NZIpi—ml + |m—rit] —E[|p —m]]

NZIPI—MI EL|p — ml]|+ |m — 1],
For the second term, applying the reverse triangle inequality yields
1 N
E[Iﬁ—ml]—ﬁ Iﬁ—n%l Ellp — ml]——ZIIpl—m| [ — ml|
i=1
N
SE[IP—MI]— |p; —m| + |1t —m]
i=1
1 N
< Eﬂﬁ—ml]—ﬁl:llﬁ —m|| + |t —m|.
Thus, we have
N N
Z ~E[|p —ml]| < [E[Ip —m|] - Z — ||+ 2] —m|.

i=1 i=1

Because both of these two terms are unbiased, we can apply the Hoeffding inequality and obtain

Prob | |E[|p —m]|] — le —m||=r| < 2exp| - ZNV% and
’ (b—ay’
2N73
Prob(|rit —m| > 1) < 2 exp| ——2
(=l 27 < 2exp| = =2

By applying the union bound and setting r, = r, =r/3, we arrive at the desired confidence intervals that the true
mean m and MAD d satisfy

1og 4/6 log 4/6

i — (b —a) N

—(b-a) /910g4/5<d§ﬁ+(b—a) /9102gN4/6

with probability at least 1 — 6. Therefore, by setting the confidence interval 7 and D as in (16), we have
Prob(Py 2P*) >1 -5,

<m<m+((b-—a)

where P} is the data-driven ambiguity set (15) constructed by N random samples drawn from the underlying
distribution P*. Because v* := infpep; Ep[c,(p)] and the probability that P} contains the true distribution P* is at
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least 1 — 0, we have
Prob(v* < Ep[ca(p)]) >1-36,
which completes the proof. O

The theorem establishes that with judicious choices of the confidence interval lengths, the optimal value of the
data-driven DRO model v* provides a high-confidence lower bound on the expected benefit rate of the robust
solution 71 under the true underlying distribution P*.

Remark 2. An avid reader may be interested in employing the popular Wasserstein DRO model in the data-
driven setting. Indeed, the model has been widely adopted because it can generate asymptotically consistent
solutions and offer similarly attractive finite-sample guarantees. Unfortunately, the reformulation of this data-
driven DRO model involves O(N) semidefinite constraints, which make the problem computationally intensive.
For readers who are interested in the use of the Wasserstein ambiguity set, we provide a detailed discussion in
Appendix B.

5. Numerical Experiments

In this section, we present the numerical experiments and examine the performance of different DRO policies.
All optimization problems are implemented in MATLAB and solved by SDPT3 (Toh et al. 1999) via the YALMIP
interface (Lofberg 2004). The experiments are run on a 2.2-GHz Intel Core i7 CPU laptop with 8 GB RAM.

We assess the out-of-sample performance of the data-driven policies for a social optimizer and a revenue maxi-
mizer through a fair out-of-sample experiment. We assume we have access to N independent samples {p, };cn; of
the traffic intensity drawn from the true underlying distribution P*, and we construct four ambiguity sets: an
empirical MAD ambiguity set, an empirical variance ambiguity set, a DD-MAD ambiguity set, and a Wasserstein
ambiguity set. The empirical MAD ambiguity set is defined in (7), where we directly substitute the empirical
mean and MAD for m and d, respectively. The empirical variance model is another popular moment model that
constructs its ambiguity set based on the empirical mean and variance (i.e., E[(p — m)2] = ¢2). Because its formu-
lation and derivation parallel those of the empirical MAD model, we omit its discussion for brevity. The
DD-MAD ambiguity set is defined in (15), where rather than carelessly plugging in the empirical estimators, we
construct a confidence interval around the empirical mean and MAD. The Wasserstein ambiguity set (Esfahani
and Kuhn 2018, Gao and Kleywegt 2023) is a popular data-driven ambiguity set. However, its complexity scales
with the number of samples, making the problem computationally intensive with large sample sizes. We derive
the reformulation of the Wasserstein model in Appendix D. Once we constructed the different ambiguity sets,
we then proceed to compute the distributionally robust thresholds that maximize the respective worst-case
expected benefit rates. Finally, we compare the three solutions in a fair out-of-sample experiment relative to the
sample average approximation (SAA) method, which naively assumes that the empirical distribution generated
from the N samples is the true underlying distribution. The SAA method also represents the stochastic model
(Liu and Hasenbein 2019) under the empirical distribution.

We conduct the out-of-sample trials for data sets containing N = 2,4, ...,10,20,40...,100 independent samples.
We assume the arrival rate is generated by A = 4b, where b~ Beta(0.1,0.5). In addition, we assume the experi-
enced decision maker has an educated guess for the distribution support as [0,5]. In each trial, we draw N inde-
pendent training samples and obtain {p },y) from P*. We then compute the optimal thresholds 7, 1,744, and
il for the MAD, variance, DD-MAD, and Wasserstein DRO models, respectively. We also compute the SAA
threshold 7igaa by solving the sample average approximation model. Based on the scaling rates derived in Theo-
rem 6 and Esfahani and Kuhn (2018, theorem 3.4), the size of the confidence intervals in (14) is set to be C1/VN,
and the Wasserstein radius is set to be C,/ \/N, where C; and C, are chosen from the set {5,1,0.5,0.1,0.05,0.01}
using a k-fold cross validation procedure. Specifically, we partition the in-sample data {p},y) into k = min{N, 5}
folds and repeat the following procedure for each fold; the ith fold is taken as a validation data set, and the
remaining k — 1 folds are merged to be a subtraining set. We repeat this process for each fold and choose the
interval length that performs best in average. The reason why we do not directly plug in the theoretical values
from Theorem 6 is that the bound holds for any underlying distributions, which can be overly conservative in
practice. Finally, the out-of-sample expected benefit/revenue rate Ep-[c;(p)] for each of the strategies is then esti-
mated at high accuracy using 10,000 test samples from P*.

Figure 2 depicts the out-of-sample performances of a social optimizer and a revenue optimizer under different
DRO policies with R = 10, C = 1, and p = 1. The expected values and 95 percentiles are computed from 50 inde-
pendent trials. The y axis represents the improvements of the DRO policies relative to the SAA policy, whereas
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Figure 2. Improvements of the DRO Policies Relative to the SAA Policy in Terms of the Social Optimizer and the Revenue Maxi-
mizer, Respectively
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the x axis denotes the sample size. In the social optimization problem, the curve of the Wasserstein model termi-
nates at n = 6 because the solver fails to converge when the sample size reaches eight. Meanwhile, the Wasser-
stein model dominates the SAA model uniformly across all sample sizes in the revenue maximization problem,
whereas the MAD, variance, and DD-MAD models outperform the SAA model for small to medium sample
sizes. This is because the Wasserstein ambiguity set converges to the true distribution as the number of samples
grows, whereas the moment ambiguity sets fail to converge to the true distribution. We also find that the MAD
model performs poorly when the sample size is small because the empirical MAD constitutes a biased estimator
with significant estimation errors. On the other hand, the DD-MAD model—by optimizing in view of the most
adverse mean and MAD—mitigates the detrimental effects of poor empirical estimations and generates high-
quality policies. Moreover, we notice that the empirical MAD and variance models yield similar scores, suggest-
ing that measuring dispersion by MAD or variance does not influence the performance of the model. Finally, we
observe that the advantages of the DRO policies relative to the SAA method are generally more substantial in
terms of the 95th percentiles of improvements. This underlines a major advantage of incorporating the DRO
scheme as it reduces the likelihood of realizing inferior performance in the out-of-sample tests.

Table 1 reports the computation time of different models with the sample sizes varying from 2 to 100. We set
the length of the confidence intervals and the radius of the Wasserstein ball to 0.1. In this experiment, the running
time limit of SDPT3 is set to 600 seconds, and the number of iterations is set to 5,000. All computational times are
averaged over 10 trials.
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Table 1. Running Time (in Seconds) of Different Methods

Sample size N

Model name 2 5 10 25 50 100
Social
MAD 18.63 17.44 19.28 18.15 19.62 20.31
DD-MAD 31.46 32.58 30.19 33.64 32.84 31.52
Wasserstein 39.26 78.53 — — — —
Variance 29.11 30.62 29.94 31.47 30.53 30.72
Revenue
MAD 0.05 0.04 0.04 0.05 0.06 0.06
DD-MAD 1.48 1.52 1.66 1.92 1.73 1.70
Wasserstein 1.69 1.92 2.41 2.63 2.95 4.68
Variance 31.42 30.73 31.61 31.55 31.79 32.80

Note. The — symbol indicates that the model fails to converge in the maximal iteration/time.

The results in Table 1 indicate that the computational times of the MAD, variance, and DD-MAD models are
size invariant because the number of constraints is independent of the number of samples. For the social optimi-
zation problem, the Wasserstein model is applicable to small-size instances. However, it encounters computa-
tional difficulties for moderate-size problem instances; when the sample size reaches 10, the SDP solver fails to
converge within the time/iteration limit. Benefiting from the closed-form solution, the MAD model is more
efficient than the variance and DD-MAD models in both the social and revenue optimization problems. For the
revenue optimization problem, the DD-MAD and Wasserstein models admit a linear programming (LP) refor-
mulation, whereas the variance model still leads to an SDP reformulation. This underlines a major advantage of
using MAD at the moment ambiguity set as it can significantly improve the model’s efficiency.

The DD-MAD model is still size invariant, and its linear programming reformulation yields a much shorter com-
putational time than the SDP reformulation for the social optimization problem. In addition, the Wasserstein model
can be solved efficiently even for large sample sizes, benefiting from the linear programming reformulation.

Finally, we report the performance of the DRO models under different scaling parameters C in Figure 3. The
expected improvements are computed with n = 5 samples from 50 independent trials. We observe that both
models have large variations in performance with different scaling parameters. The Wasserstein and DD-MAD
models yield unimodal curves in both the social and revenue optimization problems, implying a trade-off
between performance and conservatism. Intuitively, including robustness can improve the out-of-sample perfor-
mance, whereas being too conservative may also adversely affect the results. To achieve the best performance,
one could set the size of the ambiguity set or confidence interval to the best radius. Unfortunately, we do not
have access to this information. Although one can plug in the theoretical values obtained from concentration
inequalities, these values are usually too conservative. In practice, decision makers can rely on a crossvalidation

Figure 3. Improvements of the DRO Policies Relative to the SAA Policy with Different Scaling Parameters
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or bootstrap procedure to obtain a suitable size for the ambiguity set (Gotoh et al. 2021, Bates et al. 2023). From
the figure, we further observe that the two models perform quite differently when the scaling parameter C is
small; the DD-MAD model achieves significant improvement, whereas the Wasserstein model only yields a
slight improvement. The reason is that the Wasserstein ambiguity set is centered on the empirical distribution.
When the scaling parameter is small, all the distributions within this ambiguity set are close to the empirical dis-
tribution. Thus, it generates similar results to SAA and cannot achieve a large improvement. Conversely, the
DD-MAD model converges to the empirical MAD model when C = 0. As illustrated in the first set of experi-
ments, the MAD model outperforms the SAA method for small sample sizes. Hence, the DD-MAD method
yields a substantial improvement when the scaling parameter is small.

6. Conclusion

This paper developed an extension of the Naor (1969) strategic queue model with uncertain arrival rates using
the DRO framework. We showed that under the DRO setting, the optimal threshold of an individual optimizer
coincides with the original result of Naor (1969), and there exist optimal thresholds of the social and revenue
optimizers not larger than the optimal individual threshold. We then proved that the revenue rate function is
concave, whereas the social benefit rate function is concave or unimodal under some mild conditions. These nice
properties lead to a closed-form solution for the revenue maximization problem and an analytical solution for
the social optimization problem.

Next, we considered the data-driven optimization setting, where decision makers only have access to limited
historical samples. We proposed a data-driven MAD model by introducing an extra layer of robustness to the
primitive MAD ambiguity set. As the model mitigates the detrimental estimation errors from the empirical mean
and MAD, it achieves attractive performance in out-of-sample tests. We derived an SDP reformulation for the
social optimization problem and a linear programming reformulation for the revenue maximization problem.
We further established finite-sample guarantees for the data-driven model, which provide valuable guidance for
choosing the robustness parameters in practice. Our experimental results demonstrate that a system manager
who disregards ambiguities in the arrival rate distribution as well as errors from the empirical parameter estima-
tions may incur large out-of-sample costs. Future work includes extending the DRO scheme to the unobservable
strategic queues, where newly arrived customers cannot observe the current length of the queue system.

Appendix A. Proofs of Section 2

Proof of Proposition 1. It is established in Naor (1969, equation 30) that for any deterministic arrival rate A and service rate y,
the optimal threshold from the perspective of a public goods regulator will be less than or equal to the optimal threshold of an
individual customer. Suppose that every optimal threshold that maximizes the worst-case expected social benefit rate is strictly
greater than the optimal threshold of an individual customer (i.e., i > 71, for all 71, € arg max,ez, infpepEp[f,(p)]). Then, based
on our previous statement, for any fixed p and any optimal 7i;, we have ny(p) <n, =7, <1, where n,(p) is the corresponding
optimal social threshold under the deterministic setting. Because f,,(p) is discretely unimodal for any fixed p (Naor 1969, p. 20),
the relationship of the benefit rate can consequently be derived as

fu0)(P) 2 i (p) 2 fa.(p)  VpER,.
Using this relationship, one can further establish that for any ambiguity set P,
inf Eplfs. ()] 2 inf Eelfi.(p)]-

Conversely, by the definition of s, we also have infpepEp[fs,(p)] < infpepEp(fi,(p)]. This implies that infpepEp(f;,(D)] =
infpepEp[fs,(p)]. Therefore, 7, is also an optimal threshold of the social optimization problem, which contradicts our previous
assumption. This completes the proof. O

Proof of Proposition 2. The proof parallels that of Proposition 1—we omit it for brevity. O

Appendix B. Proofs of Section 3
Lemma B.1. The first and second derivatives of the social benefit rate function f,(p) are continuous.

Proof. To show the continuity of the first and second derivatives of f,(p), we will show that

fulp) = Ru (1 ! ) e <P<Z’k’-& P +p* (S P + - +p">, (B.1)

B > k=0 PX (k=0 Pb)

which has continuous first and second derivatives.
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- . .
ﬁ, and the denominator is equal

First, we perform the transformation for the term 22— when p # 1. Note that 2% ,ﬂl) =1-

to (1 — p)(1+ p+ p*+ -+ +p"). We can consequently rewrite the first term as

pd—p")_. 1
1—pr > ko P*
(n+1)p"

Next, we prove the equivalence of the remaining part

—% when p # 1. Similarly, by the fact that (1 —p"*!) =
(1 - p)(3 i, P), we can rewrite this part as

1— p1+1

(m+Dp™  p D™ p(3 P
L—p  1-p (1-p)(inp) (1—p)(ipb)
B 7p7p27 7pn +n‘0n+l
-
_ pn+1 P+Pn+l P2+ +pn+1 P
(1—=p)> iz PH)
_plp-D(A+p+-- +" DN +p2(p =D +p+ - +p" )+ +p"(p—1)
(1-p) (i PH)
Py P+ PP P+
(Zk:o k) '

D!
equal to (B.1). One can verify that the first and second derivatives of (B.1) are continuous; hence, f,(p) also has these
properties. [

n—1 § ) n—2 K - "
When p =1, Ru (1 - Zk - ) -C (p(Zk:(’ D g P4 ) Ru(1 —1L) — C% which coincides with f,,(1). Therefore, f,(p) is

Lemma B.2. The function h,(p) =5 a ,ﬂl) is strictly concave and monotone increasing on [0,1) U (1, 0).

Proof. When p € [0,1) U (1, o), the first derivative of ,(p) is

np™l —(m+1)p" +1
(1- pn+1)2

h(p) =

Define the numerator as ¢, (p) = np"*! — (n + 1)p" + 1. The first derivative of ¢, (p) is given by ¢’ ,(p) = n(n +1)p"(p — 1). Note
that when 0 < p < 1, ¢/,(p) is negative and that when p > 1, ¢/, (p) is positive. Therefore, the function ¢, (p) is decreasing on (0, 1)
and increasing on (1, 00). Meanwhile, by the fact that @, (1) = 1 +n — (n + 1) = 0, we know that the numerator ¢, (p) is positive on
[0,1) U (1, 00). Because the denominator (1 — p”*l) is positive, the first derivative I/(p) is positive on [0,1) U (1, 00). Thus, we
conclude that 1, (p) is increasing on [0, 1) U (1, 00).

Next, we show that the second derivative of /1,(p) is negative. We have

(n+1D)p" Hnp™? — (n+2)p" ! + (n+2)p — n]

h// —
( ) (1 pn+1)

Because the term (”H))fi — is positive on [0,1) and is negative on (1,00), we simply need to determine the sign of

[np"*? — (n+2)p"*! + (n +2)p — n]. For convenience, define

Y, (p) = np"? — (n+2)p" +(n+2)p —n.

Note that 1, (0) = —n <0 and ¢, (1) = 0, whereas lim, .., (p) = +oo. Therefore, if 1, (p) is increasing on [0, 1) U (1, ), the sec-
ond derivative k], (p) will be negative on [0,1) U (1, c0). To show this, we take the first derivative of ¢, (p) and obtain

Y (p)=n(n+ 2)p”+1 —(m+2)n+1)p" +(n+2).

Taking specific values into this function, we can obtain ¢;,(0) = n +2 >0, ¢/,(1) = 0, and lim, 1, (p) = +co. Similarly, if ¢} (p) is
decreasing on [0, 1) and increasing on (1, ), then 17 (p) will be positive on [0,1) U (1, c0). To verify this, we can take the second
derivative of ¢, (p), which gives

V()= (n+2)(n+np"(p—1).

One can verify that ¢/ (p) is negative on [0, 1) and positive on (1, c0). Thus, we have established that 1}/ (p) is negative on [0,1) U
(1, 00) and hy(p) is concave on [0,1) U (1,00). O

Lemma B.3. Foranyv € R, v > 1, the function g,(p) = 1?’;1, 1fp is concave on [0,1).
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Proof. For any v € R, v > 1, one can verify that g,(p) is continuous and second-order differentiable on [0,1). Thus, g,(p) is con-
cave if and only if its second derivative
P 4o+ p’o-1) 2
(1—p?)° (1—p)’
is nonpositive for every p € [0,1). Notice that when p = 0, g/ (p) = —2 is less than zero. We now prove that the second derivative

is also nonpositive on (0, 1). We first observe that g//(p) = 0 at v = 1 for all p € [0,1). Consider the partial derivative with respect
tow:

g, (p) =

_ v(((0? = v)In(p) —3v+2)p3*~L + (402 In(p) — 4)p** 1 + p* 1((v? + v)In(p) + 30 + 2))
(1-p2)*

If this function is nonpositive for all v € R, v > 1, then we can establish that the second derivative g//(p) is nonpositive for all

pe(01).
Consider a fixed v € R, v > 1. Defining ¢/(p) as the product of d,g,/(p) and

98, (p) =

(1 p)

> 0 yields
¥, (p) = (v(v — 1)p** +40%p” + 0* + v)In(p) + (—3v+2)p*’ —4p” +30+2.

We show that 1, (p) is nonpositive for p € (0,1). Observe that ¢, (p) goes to negative infinity as p — 0, and equals to zero at p =
1. Thus, it is sufficient to show that 1, (p) is increasing on p € (0, 1) for every fixed v. Taking the derivative with respect to p and
dividing it by vp?~! > 0 yields

Ta(p) = 1’1}57(‘0) =20((v—1)p” +20v)In(p) + (v+1)p™ "+ (=5v+3)p” +4v —4.

Similarly, one can verify that this expression goes to positive infinity as p — 0, and is equal to zero at p = 1. Therefore, to show
that ¢/ (p) is positive on (0, 1), it is sufficient to show that 7,(p) is decreasing on (0, 1). Again, taking the derivative with respect
to p and dividing it by vp?~! > 0, we get

()

o(p) = =20(v — DIn(p) — (v +1)p > +4vp* —3v+1.

This expression again vanishes at p = 1 and goes to negative mf]mty asp — 0.. Thus, it is sufficient to show that it is increasing on
(0, 1). Taking the derivative with respect to p and multiplying with p— > 0 yield
20+1
O,(p) = 2 0P "(p)p =

7 —1)p*” —2vp’ +v+1.

At p =0, 0,(p) is equal to v + 1, which is greater than zero, and vanishes at p = 1. Taking the derivative with respect to p and
dividing by 21 p"~! > 0, we have

0,(p)
2n pn 1

¢,(p) =

One can verify that when v > 1, ¢(p) is always nonpositive, which completes our proof. [

=(@v-1)p"—

Proof of Lemma 1, Statement (1). Using the lemmas, we are ready to show that when ‘ > n + 1, the social benefit rate func-
tion f,,(p) is strictly concave on [0, 1]. For p € [0,1), we can rewrite f,,(p) as

1- 1 C
fulp) = Ry —C(n+ 1)) i np+1) + an_+pn)+pl K] _pp'

From Lemma B.2 and Lemma B.3, we know that p p,ﬁ 1) is strictly concave and that ("Hn)ﬂ — % is concave. Therefore, f,(p) is the

sum of a strictly concave function and a concave functlon which is strictly concave for pel0,1).

Proof of Lemma 1, Statement (2). When # = 1, one can verify that fi(p) is a concave increasing function for p € R.. We now
proceed to show that the function is unimodal for 1 > 2. A sufficient condition for f,,(p) to be unimodal is f;(0) > 0, lim,—,«f; (p)
<0, and f;(p) = 0 has a unique solution. Taking the derivative of f,(p) yields

np™t —(m+1)p"+1 (n+Dmp™' +1) 1 .
() e (M ) e

< n+1 (n+1)p +1> +C<(1’l+1)(7’lp"+12+1) 1 2) ifp=1~
(pr+t —1)° et=1" (=1

falp) =

lim Ry
p—1



Wang et al.: Distributionally Robust Observable Strategic Queues
356 Stochastic Systems, 2024, vol. 14, no. 3, pp. 337361, © 2024 The Author(s)

Showing that f/(p) = 0 has exactly one positive root directly is nontrival. However, it is equivalent to showing that (1 — p)*f’(p)
np"*! —(n+1)p”+1>

= 0 has exactly three positive roots. One can verify that this new term can be written explicitly as (1 — p)*f(p) = Ru ( EvS—T

(n+1)(np"*1+1)
+ C(-—L—3—-1), VYpeR,. We then reformulate the root equation to a polynomial form:

(1+p +- +p")
n+l n n+1
Ry np (n+1)p -24-1 L (n+1)(np +12)71 -0
(L+p+--+p") (L+p+-+p")

—~

Ru(np™! —(n+1)p" +1) + C(n+ 1) (np" 1 + 1) = C(A + p+ - +p")*

(==

CA+p+ - +p") —n(Ru+C(n+1))p™" + Ru(n +1)p" — Ry — C(n+1) = 0.

The left-hand side of the equation is a single-variable polynomial, and one can verify that it has three sign changes. Based on
Descartes’ rule of signs, the number of pos1t1ve roots is at most three. By the fact that f;(0) > 0 and lim,_.f;(p) <0, f;(p) must
has at least one root. Because the term (1 — p)* has two roots, we know that this polynomial has at least three roots. Therefore,
this polynomial has exactly three roots, and f;(p) has exactly one root. This shows thatf,(p) is a unimodal function. O

Proof of Lemma 1, Statement (3). The second derivative of f,,(p) is

(n +1)p" 1 (n+1)(p — 1)(p™! +1) — 2p(p"*! — 1))
(1 11+1)3

1)%p"(2 n+1 2 .
+C<(Tl+ )(fiip:i;np )_(1—p)3) ifp#1
llmRy (n+ 1)Pn—1((7”l + 1)(p - 1)(pn+1 +1)— ZP(P"H ~1))

p—1 (1 _ an)S

(n+1)*p"(2+n +np™1) 2 .
+C — ifp=1.
( (1 p1) a—pp ’

;;’(P) =

Showing that f”’(p) = 0 only has one root is equivalent to showing that (1 — p)*f,(p) = 0 has exactly four roots. One can check

 N3em - . (n+1)p" 1 (n+1)(p— l)(p”*1+1) (p+1)(p"*1=1)) (11+1) o (2+n+np"*1) ) A .
that (1 — p)’f,’(p) coincides with Ru Ew—— +C A tot 1) . Similar to the previous proof,

we transform the root equation to a polynomial form:

(1-p’f(p)=0

d

(n+1)p” Hn+1D(p - +1) - (p+1)(p" — ))+ (n+1)> P2 +n+np™th)
1+p+- +p") I+p+- +p”)

—-2C=0
=
2C(1+p+ - +p”)3 +(n+1)p" "(Ru(n+1) — (4C(n+1) + Ru(n +3))p — Ru(n +1)p?
+Ru(n+1)p"" + (Ru(n — 1) + C(n* +n)p"*?) = 0.

One can verify that this polynormal has four sign changes. Based on Descartes’ rule of signs, the number of positive roots is four
or two. Because the term (1 — p) already has three roots, f;’(p) has exactly one root, which also implies that the sign of £, (p)
changes at most once. [

Proof of Lemma 2. We first show that strong duality holds, and both the primal and dual optimal solutions are attained, which
is a sufficient condition for complementary slackness. To show this, we need to prove that both the primal and dual problems
have interior points.

Showing the existence of interior points of the primal problem is equivalent to finding a point (1, m,d) that resides in the inte-
rior of the convex cone

fav(dp):l
V={(,tu)eR®: v e M, such that Jzpv(dp) =t ,
Jelp—tlv(dp) =u
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where E = [4,b]. Let B,(c) be the closed Euclidean ball of radius k > 0 centered at c. We will show that B,.(1) X B,.(m) x B,(d) for
a sufficiently small x > 0. To this end, choose any point (5, t;, 15) € B,.(1) X B,(m) X B,(d), and consider the measure

e i U U i U !
Ve = e —a) 0T (ZS T2t —a) 20— t5)> Ot —ty O

where s - 0, denotes a measure that places mass s at m. By construction, this measure satisfies f vs(dp) =1, [ pP Vs (dp) =ts, and
f |p — ts|vs(dp) = us for a sufficiently small k (because m € (a,b) and d € (0, w))

Therefore, (1,m,d) is an interior point of V, and strong duality holds (i.e., the optimal values of the primal and dual problems
coincide). Moreover, because there exists an interior point of the primal problem and because the common optimal value is
finite, we have that the dual optimal solution is also attained (Shapiro 2001, proposition 3.4). Noticing that the support [a,b] is
compact, whereas the social benefit rate function f,(p) and the moment functions p and |p — m| are continuous, we can invoke
Shapiro (2001, corollary 3.1) to establish that the primal optimal solution is attained.

In summary, we have strong duality and the attainment of both the primal and dual optimal solutions, which imply that com-
plementary slackness holds (Shapiro 2001, proposition 2.1). O

Proof of Lemma 4. We know that the revenue rate function is continuous for p € R,. Therefore, employing Lemma B.2 yields
the desired result. O

Proof of Proposition 3. The dual Problem (9) can be equivalently written as

sup  Eplalp —m| +Bp+v]
a, B, yeR

st alp—m|+Bp+y <fulp) Vp € [a,b],

where P € P is an arbitrary probability measure in the ambiguity set. Observe that the left-hand side of the constraint is a two-piece
piecewise affine function with a breakpoint at the mean . Therefore, we can interpret the dual problem as finding a feasible two-
piece piecewise affine function with the largest expected value. We now use this interpretation to derive the desired results.

First, we illustrate the case when f,(b) +f,,(b)(m — b) > f,(m). The constraint of the dual problem indicates that f,(p) majorizes
alp—m|+pp+7y. One can verify that the two-piece piecewise affine function with the largest expected value is the one that
touches f,,(p) at three points: p = a,m, and b; see Figure 1(a) for an illustrative example. By complementary slackness in Lemma 2,
the optimal distribution can only assign positive mass to these three points, which yields the following system of linear equations:

p1(a —m)+pa(m —m)+ps(b—m)=m
pila—m| +py|lm—m| +ps|lb—m|=d

p1+p2t+ps= 1.

Solving this system of linear equations leads to the first result in Proposition 3.

Next, we prove the two cases when f,,(b) +f,,(b)(m — b) < f,(m). If 0 <d < dy : w we claim that the extremal distribu-
tion that solves (8) is a three-point distribution. To see this, we know that complementary slackness holds from Lemma 2, which
means that the extremal distribution is supported on points where the dual constraint is binding. Because the two-piece piece-

wise affine function can touch f,,(p) on at most three points under constraint
alp—m|+Bp+y<fulp) Vpelab],

the extremal distribution is a one-point, two-point, or three-point distribution. We readily exclude the possibility that the extre-
mal distribution is a one-point distribution because the mean-absolute deviation of a one-point distribution is zero. Next, we
illustrate why the extremal distribution cannot be a two-point distribution. Suppose there exists a two-point distribution sup-
ported on {p,, p,} that solves the worst-case expectation problem. Then, by complementary slackness, the dual constraint f,,(p) =
a|p —m| + Bp +y will be binding at these two points. Without loss of generality, we assume p, € [a,m) and p, € (m,b]. Because
fu(p) is strictly concave for p € [a,m) and the dual constraint requires a|p — t| + p +y < f,(p), we thus have p, = a. Because p; is
defined as the p coordinate of the point such that the line segment between (1, f,(m)) and (p,,f.(p,)) is tangent with f,(p), we
must have p, > p,; otherwise, the dual constraint will be violated. Because p, — p; > p, —a, the corresponding mean-absolute
deviation will be greater than d. Therefore, the extremal distribution cannot be a two-point distribution (i.e., it is a three-point
distribution). Next, it can be shown that if f,(p) intersects a|p —m| + Bp + ) at three points, then these three points must be
p =a,m, and p;. Therefore, we have the following system of linear equations:

pi(a —m) +pa(m —m) + ps(p, —m) =m
pila—m|+pa|m—m| +ps|lp, —m|=d
p1tp2 +p3=1.

Solving this system of linear equations leads to the second result in Proposition 3.
We now establish that if dy < d, the extremal distribution is a two-point distribution. Similarly, by the fact that the extremal dis-
tribution is a discrete distribution supported on at most three points, we just need to show that there does not exist a one-point
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or three-point extremal distribution that solves (8). We can exclude the possibility of one-point distribution easily because its
mean-absolute deviation is zero. As we described previously, the extremal three-point distribution is supported on p =4, p,, and
b, and the largest mean-absolute deviation that can be achieved within this support is given by dj := W. Because d > dy,
the extremal distribution can only be a two-point distribution. One of the support points is given by p = a, whereas the other one

is determined by the value of 4, which yields the following linear equations:
pi(a—m)+pa(p, —m)=m

pila—m|+p2lp, —m|=d

prt+p2=1 (B.2)
Solving this system of equations, we obtain the optimal solution explicitly as
d _ da+2m(a — m)

pl:Z(mfa)'pl:a"p2:1_2(mfa)'p2_ d+2(a—m)
This completes the proof. O

Appendix C. Proofs of Section 4
Proof of Theorem 4. Problem (14) can be equivalently written as

ot Ao
s.t. /:lpfnﬁlv(dp)=d

/E.pv(dp) =m

Dualizing this optimization problem yields

sup Y+ 91[11 — 62du + 6377’!1 — Oym,,
OeR?, yeR

st (O1—0)lp—1it|+(0s—O)p+y <fulp)  Vpelab].

Applying algebraic reductions and invoking Lemma 3 lead to the desired reformulation. The derivation straightforwardly fol-
lows that of Theorem 1, and we omit for brevity. O

Proof of Theorem 5. The dual problem is given by
sup Y+ Qldl — szl, + 931’]’11 — Oym,,

OeR?, yeR

s.t. (01— 02)|p —1it] + (03 — Ba)p +y < 14(p) Vp € [a,b].

Because the revenue rate function r,(p) is concave for p > 0, the semi-infinite constraints are satisfied if and only if each con-
straint is satisfied at points p = a, p;, b, which completes the proof. O

Appendix D. Distributionally Robust Model with a Wasserstein Ambiguity Set

In this section, we study the DRO model with a Wasserstein ambiguity set (Esfahani and Kuhn 2018, Gao and Kleywegt 2023). We
develop solution schemes to find the optimal threshold strategies for a social optimizer and a revenue maximizer given by 7, and
iy, respectively, such that the worst-case expected benefit rates are maximized. Here, the worst case is taken over the Wasserstein
ambiguity set containing all probability distributions (discrete or continuous) sufficiently close to the discrete empirical distribu-
tion, where the closeness between two distributions is measured in terms of the Wasserstein metric (Esfahani et al. 2018).

Definition D.1 (Wasserstein Metric). For any r > 1, let M'(E) be the set of all probability distributions P supported on E satisfy-
ing Ep[||&ll'] = [=lI&lI'P(d€) < co. The r-Wasserstein distance between two distributions Py, P, € Pj(E) is defined as

W (B, Py) = inf{ ([Le- gzn*Q(dfl,dfz));},

where Q is a joint distribution of £, and &, with marginals P and PP,, respectively.
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The Wasserstein distance W' (IP1,IP,) can be viewed as the (rth root of the) minimum cost for moving the distribution PP; to IP,,
where the cost of moving a unit mass from &, to &, amounts to ||&; — &||". The joint distribution Q of £, and &, is, therefore, natu-
rally interpreted as a mass transportation plan (Esfahani et al. 2018). Similarly to the data-driven setting in Section 4, we assume
that we have observed a finite set of N independent realizations given by {p},cv), where p, = A,/ . Using the observations, we
define the empirical distribution Py := %Zie[l\/]éﬁ, as the discrete uniform distribution on the samples.

In this paper, we consider the Wasserstein ambiguity set defined as

Be(Py) = {P € Po(E) : W'(P,Bn) < €}, (D.1)

which is a neighborhood around the empirical distribution. The ambiguity set contains all distributions supported on Z that are
of type 1 Wasserstein distance less than or equal to € from Py. By adjusting the radius € of the ball, one can control the degree of
conservatism of the DRO model. If € = 0, the Wasserstein ball shrinks to a singleton set containing only the empirical distribution
Py. One can further show that this data-driven DRO model converges to the corresponding true stochastic program as the sam-
ple size N tends to infinity (Esfahani and Kuhn 2018).

We derive the optimal threshold strategies 7, and 71, for a social optimizer and a revenue maximizer, respectively. As stated in
Section 2, the optimal joining threshold 71, for an individual customer is independent of the arrival rate, and we have 71, = 1,
from (2).

D.1. Social Optimizer
The objective of a social optimizer is to obtain an optimal joining threshold 7i; that maximizes the worst-case expected benefit:
that is, 1, € arg maxyez, {Zs(n)}, where

Z(m:= int Elfip)] (D2)

i
PeB.(Pn

The worst-case expectation is computed over all distributions in the Wasserstein ambiguity set B(Py) with the support set
2 =a,b].

Theorem D.1. Forany n > 1 and P = B(Py), the worst-case expectation Z(n) coincides with the optimal objective value of the following
semidefinite program:

1
sup fae+NZ Si
st. aeRy,seRVy, 2 e RS, X, W e S"3 Vie[N]
Yo=-—si+ap,yi=si—a—ap;+Ru—Cyy=a—Ru
Vi, .y =0y, =—si—ap,— Ru+C(n+1),

Vi =—sita+ap, +Ru+C—Cn+1),y,,=—a Vi€ [N]
zh=—si—ap,zi =si+a+ap,+Ru—C,z =—a—Ryu
zh,...,2,=0,2 =—si+ap,— Ru+C(n+1),
Zhp=—si—a—ap,+Ru+C—-C(n+1),z, =« Vie[N]
X, =0 Vie[n+3]ie[N]
u+v=21-1
| n+3+q-1 r n+3—r ,
S aIpl= > A, Vie[n+3]U{0}ie[N]
g=0 r=q q l_q u+v=21
w =0 Vie[n+3]ie[N]
u+v=21-1
sl e\ (n+3—7 _
> z’,( )( pr =" wl, Vie[n+3]u{0}ie[N].
q=0 r=q q lfq u+v=21

Proof. The distributionally robust model with the ambiguity set (D.1) can be equivalently written as

L
nf > / fu(p)Pi(dp)
ie[N] =
s.t. P, ePy(E) Vie[N]
1 R
N> [lo=plpide) < e
ie[N]7E
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Its strong dual problem is given by Esfahani and Kuhn (2018, theorem 4.2):

—ae+%Zsi

sup
a€R,, seRN i€[N]
s.t. si—allp—pill £ fulp) Vie [N] Vp € [a,b].

We can deal with each constraint separately for the cases p < p, and p > p,, and consequently, we have

fae+1\l]Zs,v

sup
a€R,,seRY i€[N]
s.t. si+alp—p,) < fulp) Vie|[N] Vpela,p,]

Si 7“(,07@1‘) an(P)

Substituting the definition of f,,(p) in (3) and applying algebraic reductions yield the following polynomial inequalities for each
i€ [N]:

Vie[N] Vpel[p,b]

(=si+ap)p’+(si—a—ap,+Ru—C)p+(a—Ru)p® + (s; — ap, — Ru+ C(n +1))p"*!
+(=si+a+ap,+Ru+C—-C(n+ )" —ap"™>0 Vpe la,0,],
(=si—ap)p’ + (si+a+ap,+Ru—C)p+(—a—Ru)p* + (si +ap, — Ru+C(n +1))p"*"!

+(=si—a—ap,+Ru+C—Cn+1)p"*+ap™>0 Vpelp,bl. (D.3)

The inequalities are of the form gi (p) = 3.5 yip” > 0 for p € [a,p,] and gh(p) = S."a zip” > 0 for p € [p,, b], where ' and z' repre-
sent the coefficients of the respective polynomial inequalities. We next invoke the result of Lemma 3 for every i € [N] to express
the inequalities in (D.3) as semidefinite constraints. This leads to the desired semidefinite program, which completes the
proof. O

To determine an optimal joining threshold, we compute the worst-case expected benefit rate Zs(n) for every neZ,,
1 < n < n,, using the result of Theorem D.1, and then, we select the best threshold #1; € arg max,ez, {Zs(n)}.

D.2. Revenue Maximizer

The objective of a revenue maximizer is to find an optimal threshold 7i, that maximizes the worst-case expected revenue rate of a
firm (i.e., 1, € arg max,ez, {Z,(n)}, where the worst-case expectation is computed over all the distributions in the Wasserstein
ambiguity set B, (Py) defined by (D.1) with support set Z = [a.b]). The worst-case expected profit rate Z,(n) is given by

Zn)=_inf Eelr,(p)]. (D4)

PeB(Pn)

Theorem D.2. For any n > 1, the worst-case expectation Z,(n) coincides with the optimal objective value of the following linear program:

sup
aeR, ,seRY i€[N]

s.t. si+ala—p,) < ry(a) Vie[N]

si < 1a(p)) Vie [N]

si—alb—p,;) <ry(b) Vie[N].

Proof. The strong dual problem of inf,_; 5, Er[rx(p)] is given by

—ae+%Zsi

sup
acR,,seRN i€[N]
s.t. si—allp—p,ll <ri(p)  Vie[N] Vpela,b].

Because the revenue rate function r,(p) is concave for p >0, the semi-infinite constraints are satisfied if and only if each con-
straint is satisfied at three points p = a, ), b. Consequently, we have

Z,(n):=  sup —ae+% Z Si
acR,,seRN i€[N]
s.t. si+a(a—p,) < ry(a) Vi€ [N]
si+a(p;—p;) < ru(py) Vie[N]
si—alb—p;) < ru(b) Vie[N],

and thus, the claim follows. O
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To determine an optimal joining threshold 7i,, we compute the worst-case expected profit rate Z,(n) foreveryn € Z,,1 < n <
i, using the result of Theorem D.2, and we select 7i, € arg maxyez, {Z,(1)}.
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