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Abstract—Gaussian Mixture Models (GMM) are an effective
representation of resource uncertainty in power systems plan-
ning, as they can be tractably incorporated within stochastic
optimization models. However, the skewness, multimodality, and
bounded physical support of long-term wind power forecasts
can entail requiring a large number of mixture components to
achieve a good fit, leading to complex optimization problems. We
propose a probabilistic model for wind generation uncertainty to
address this challenge, termed Discrete-Gaussian Mixture Model
(DGMM), that combines continuous Gaussian components with
discrete masses. The model generalizes classical GMMs that
have been widely used to estimate wind power outputs. We
employ a modified Expectation-Maximization algorithm (called
FixedEM) to estimate the parameters of the DGMM. We provide
empirical results on the ACTIVSg2000 synthetic wind generation
dataset, where we demonstrate that the fitted DGMM is capable
of capturing the high frequencies of time windows when wind
generating units are either producing at maximum capacity or
not producing any power at all. Furthermore, we find that the
Bayesian Information Criterion of the DGMM is significantly
lower compared to that of existing GMMs using the same number
of Gaussian components. This improvement is particularly ad-
vantageous when the allowed number of Gaussian components is
limited, facilitating the efficient solution to optimization problems
for long-term planning.

I. INTRODUCTION

Wind and solar generation resources will be essential to the
decarbonization of the electrical power grid. Due to their vari-
ability and dependence on weather conditions, these resources
are subject to greater prediction uncertainty than conventional
generating units. In particular, the integration of wind gener-
ation into long-term expansion planning presents challenges
due to the variability and unpredictability of weather, and the
resulting unavailability of accurate month-ahead or year-ahead
forecasts.

Owing to this increase in variable energy resources, the
power system community has developed efficient optimiza-
tion algorithms that account for planning uncertainties in an
accurate and scalable fashion [1]. These algorithms trade
off the complexity of the represented distributions with the
tractability of the overall optimization model. In one extreme
of this spectrum, models typically assume small-magnitude
Gaussianity to offer computational efficiency albeit at the
expense of losing representation flexibility [2], [3].

This material is based upon work supported by the National Science
Foundation under Grant No. DMS-2229408.

In the long term, however, the distribution of wind power
generation can display multimodality and skewness, reflecting
the combined nonlinear effects of wind speed and turbine
physics. The need to capture these distributional characteristics
while also curbing the complexity of the optimization has led
to the analytical reformulation of stochastic planning problems
based on Gaussian Mixture Models (GMMs) [4]–[6]. GMMs
are universal approximators capable of representing complex
non-Gaussian distributions with a sufficiently large number
of Gaussian components, and thus provide a viable pathway
toward incorporating complex uncertainty sources in planning.

It is therefore important to develop efficient model fitting
methods that can build accurate GMM representations using
historical wind generation data. Recently, a new Expectation-
Maximization (EM) algorithm was proposed to fit GMMs
to wind data [7]. However, while the resulting GMMs offer
additional expressivity when compared with Gaussians, they
consist of a large number (between 20–100) of Gaussian
components. Such large component numbers not only increase
model complexity but also translate to computational ineffi-
ciencies in the solution of the optimization models in which
they are used.

Our paper addresses these issues with the following contri-
butions:

• We propose a novel multivariate Discrete-Gaussian Mix-
ture Model (DGMM), where some of the mixture com-
ponents are allowed to be discrete masses.

• We propose a modified Expectation-Maximization algo-
rithm (called FixedEM) to fit the DGMM to given wind
power data.

• We show empirically that the estimated DGMM is able
to better fit wind power data with a fewer number of
Gaussian components when compared with the classical
GMM, potentially leading the path to more efficient
stochastic planning algorithms.

In Section II, we introduce the DGMM and the FixedEM
algorithm to estimate its parameters. In Section III, we present
a series of experiments and empirical results with time series
data of wind power generation. We offer concluding remarks
in Section IV.
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II. PROPOSED MIXTURE DISTRIBUTION MODEL

A mixture model is a convex combination of two or more
probability distributions. It has the flexibility of approximat-
ing a wide variety of distribution shapes, thus applicable in
modeling complex data distributions, where a single standard
distribution may fail to capture key characteristics of the data.
Each probability distribution in a mixture model is called a
mixture component.

In this work, we propose a Discrete-Gaussian Mixture
Model (DGMM), where some of the mixture components
are continuous multivariate Gaussian distributions and all
remaining components are discrete masses. Specifically, we
propose distributions that have K Gaussian components and
J discrete masses. When the random vector is d-dimensional,
these distributions have the following density function:

f(x|w, µ,Σ) =
K∑

k=1

wkN (x|µk,Σk) +
K+J∑

j=K+1

wjδ(x− µj),

(1)
where N (·|µ,Σ) denotes the density function of a d-variate
normal random vector with mean µ ∈ Rd and covariance
matrix Σ ∈ Rd×d, δ : Rd #→ R ∪ {∞} denotes the Dirac
delta function, and w ∈ RK is the weight vector satisfying:

J+K∑

k=1

wk = 1, wk > 0, ∀k = 1, 2, . . . , J +K. (2)

In addition to the K continuous Gaussian components, the
proposed model (1) allows the random vector to realize any
of J discrete values (µK+1, µK+2, . . . , µK+J ) with strictly
positive probability. Sampling from the proposed model is
thus relatively straightforward. Also, note that the proposed
DGMM is a generalization of the classical GMM and reduces
to the latter when the number of discrete masses, J = 0.

From a statistical viewpoint, the discrete masses provide the
flexibility of capturing sharp peaks, such as those that occur
at the minimum and maximum production levels (0 and 1 per
unit, respectively), in the histogram of wind power outputs
(e.g., see Figs. 1, 2 in Section III). Perhaps surprisingly, we
find that this flexibility also comes with the benefit of having
to use a much smaller number K of continuous Gaussian
components to achieve a similar level of statistical fit, when
compared with the classical GMM.

This has two important consequences. On the one hand, a
fewer number of model parameters have to be estimated, thus
reducing overall model complexity. On the other hand, the
reduction in K allows for the efficient solution of optimization
problems for long-term planning, where statistical models of
wind generation are used to enforce chance constraints for
reliability purposes [8], [9]. Indeed, whereas each Gaussian
component entails the introduction of a nonlinear constraint
(see [4]–[6], [10] for details), each discrete mass only requires
the introduction of a single binary variable and a linear
constraint [11], [12]. Therefore, it is important to reduce
the number K of Gaussian components as much as possible
without sacrificing statistical performance.

A. Parameter Estimation using Expectation-Maximization
Accurately estimating the model parameters (w, µ,Σ) from

observed data is crucial. Maximum Likelihood Estimation
(MLE) is a well-known method used to estimate the parame-
ters of any probability distribution. It aims to obtain the best
possible parameters that maximize the likelihood function.
In practice, the Expectation-Maximization (EM) algorithm is
an iterative method to solve the MLE problem [13], [14].
The EM Algorithm alternates between an expectation (E-step)
and maximization (M-step). At each iteration, the E-step first
computes the expected value of the log-likelihood function
using the current estimated parameters. The M-step then
updates the parameter estimates by maximizing the function
computed in the E-step.

We propose a modified version of the EM algorithm to
fit a DGMM to a given dataset. The algorithm, which we
call FixedEM, attempts to find the locations of the J discrete
masses (µK+1, µK+2, . . . , µK+J ) by first fixing J covariance
matrices of a (K + J)-component GMM to ϵ2I , where I
denotes the d × d identity matrix and ϵ ∈ (0, 1) is a small
positive constant. The FixedEM algorithm is otherwise iden-
tical to the EM algorithm except that the J fixed covariances
are not updated during the M-step. The intuition is that a
normal distribution with a very small (but non-zero) covariance
approximates a discrete mass at the mean of the distribution.

The FixedEM procedure is shown in Algorithm 1. Here,
X = {x1, x2, . . . , xn} denotes the dataset consisting of n ob-
servations, Lmax denotes the maximum number of iterations,
and tol denotes the convergence tolerance. In the algorithm,
Z ∈ Rn×(K+J) is the matrix of latent data indicating the
membership of each observation to each of the components.
It can be shown [13], [14] that at every iteration, the estimated
parameters provide an increase in the value of the likelihood
function until a local maximum is attained. In practice, we
run the algorithm several times, each time starting from a
different initialization and choose those final parameter values
that attain the largest likelihood.

B. Optimal Model Selection
A key challenge when fitting any mixture model is to

determine the appropriate number of mixture components.
Introducing a large number of components can better capture
the shape of the data distribution, but this can also increase
model complexity and result in overfitting. On the other hand,
a very small number of components can fail to capture all
characteristics of the data. In this work, we use the well-known
Bayesian Information Criterion (BIC) [15], [16] to quantify
this tradeoff. The BIC score is computed as

BIC = P ln(n)− 2 ln(Q̂), (3)

where n is the number of observations used to estimated the
model, Q̂ is the likelihood computed using the parameters
estimated from the FixedEM algorithm, and P is the number
of estimated model parameters. Observe that increasing the
number of mixture components (and hence, the number of
parameters) to achieve a better likelihood is appropriately
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Algorithm 1 Fixed Expectation-Maximization for DGMM
1: procedure FIXEDEM(X , K, J , Lmax, ϵ, tol)
2: Initialize µ(0), w(0),Σ(0)

1 ,Σ(0)
2 , . . . ,Σ(0)

K randomly.
3: Σ(0)

j ← ϵ2I for j = K + 1,K + 2, . . . ,K + J .
4: for l = 1, 2, . . . , Lmax do
5: Z(l) ← EXPECTATION(X,w(l−1), µ(l−1),Σ(l−1))
6: w(l), µ(l),Σ(l) ← MAXIMIZATION(X,Z(l))
7: ∆ ← ∥(w(l), µ(l),Σ(l))−(w(l−1), µ(l−1),Σ(l−1))∥
8: if ∆ < tol then break end if
9: end for

10: return w(i), µ(i),Σ(i)

11: end procedure
12: function EXPECTATION(X,w, µ,Σ)
13: for all xi ∈ X do
14: for k = 1, 2, . . . ,K + J do
15: Zik ← wk · N (xi|µk,Σk)∑K+J

j=1 wj · N (xi|µj ,Σj)
16: end for
17: end for
18: return Z
19: end function
20: function MAXIMIZATION(X,Z)
21: for k = 1, 2, . . . ,K + J do
22: Nk ←

∑n
i=1 Zik

23: wk ← Nk∑n
j=1 Nj

24: µk ← 1

Nk

∑n
i=1 Zik · xi

25: if k ≤ K then
26: Σk ← 1

Nk

∑n
i=1 Zik · (xi − µk)(xi − µk)⊤

27: else
28: Σk ← ϵ2I
29: end if
30: end for
31: return w, µ,Σ
32: end function

penalized by the BIC score. Therefore, models with lower BIC
scores are preferred when deciding between several candidate
models. In particular, for the DGMM (1), it can be verified
that P = O(Kd2 + Jd). This means that whereas adding
one Gaussian component introduces O(d2) new parameters
(since each element of Σk counts as one additional parameter),
adding one discrete component only introduces O(d) new
parameters, resulting in a much simpler model.

III. RESULTS AND PERFORMANCE EVALUATIONS

A. Dataset

We use the ACTIVSg2000 dataset [17], a synthetic test
case that simulates a 2000-bus system in Texas. This case
uses historical weather measurements that are then mapped
to renewable generation via wind power curves and solar
PV generation models [18], and provides a realistic depiction
of wind power generation statistics. The dataset contains

time series data of bus-level power generation for 87 wind
generating units. The hourly wind power generation for each
of the 87 wind generating units is provided over a span of 366
days in 2016. We normalized the power generation at each bus
by its maximum observed value, and thus all our data points
are within the bounded interval [0, 1].

B. Experimental Setup

This section discusses the performance assessment and met-
rics of our proposed FixedEM algorithm. The hyperparameters
used in the experiments are:

• The number of Gaussian components, K ∈
{2, 4, 6, 8, 12, 16, 20}.

• The number of discrete components, J ∈ {0, 1, 2, 3, 4}.
In our implementation of Algorithm 1, we set ϵ = 0.01.
Recall that ϵ is used to approximate the J discrete masses
using Gaussian components with covariance ϵ2I .

Two sets of experiments are conducted:
• Experiment 1 (univariate analysis): We implemented Al-

gorithm 1 on the first 10 wind generating units from
the ACTIVSg2000 dataset. For each unit, 100 different
initializations are performed for each possible (K, J)
pair. For each K, when J = 0 (i.e., fitting a classical
GMM), we recorded the lowest BIC score of 100 runs
using FixedEM and denoted it as BIC∗(EM-GMM); we
also implemented the Density-Preserving Hierarchical
EM (DPHEM) algorithm from [7] (the bandwidth of
the initial Kernel Density Estimation model was set to
0.01), recorded its lowest BIC score from 100 runs
and denoted it as BIC∗(DPHEM-GMM). We define
BIC∗(GMM) to be the smaller of the two BIC scores.
When J ∈ {1, 2, 3, 4} (i.e., fitting a DGMM), we
recorded the lowest BIC score of 100 runs for each J ,
took the minimum over all four possible J values, and
denoted it as BIC∗(DGMM).

• Experiment 2 (multivariate analysis): This experiment
extends the analysis to a multivariate context, aiming to
model the spatial correlation in wind power generation
across four units. Using the correlation matrix of wind
power generation of all 87 generating units, we select
four correlated and four uncorrelated units. In each of
these two cases, we treat the wind power generation at
a specific hour of the year as a single 4-dimensional
data point. We then follow the same procedure as in
Experiment 1 to obtain the corresponding (EM-based)
BIC∗(GMM) and BIC∗(DGMM).

To decide whether GMM or DGMM is better, we compute the
relative improvement in BIC scores, ∆BIC, defined as follows:

∆BIC =
BIC∗(GMM)− BIC∗(DGMM)

|BIC∗(GMM)| × 100%, (4)

A positive value of ∆BIC indicates that the proposed DGMM
has a lower BIC score and would be preferred over the GMM,
while a negative value of ∆BIC suggests that the GMM is the
preferred model.
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Fig. 1: Histogram and Estimated Densities of Unit 1 Fig. 2: Histogram and Estimated Densities of Unit 3

Fig. 3: BIC Scores of Estimated Models of Unit 1 Fig. 4: BIC Scores of Estimated Models of Unit 3

C. Analysis of Results

For Experiment 1, the histogram of the wind power gener-
ation and densities of the EM-based GMM and DGMM that
have the lowest BIC scores for units 1 and 3 are shown in
Fig. 1 and Fig. 2, respectively. In addition to brevity, we choose
units 1 and 3 for two primary reasons. Indeed, not only are
they representative of the entire dataset (in the sense that the
other 85 generating units either have a strong correlation with
unit 1 or with unit 3), but also their histograms have different
shapes, where the frequencies at the boundaries of unit 1 are
more dominant than those of unit 3. We do not show the
DPHEM-based GMM density curve, as it is outperformed by
the EM-based GMM for both units. This is consistent with the
observation made in [7] that the EM-based GMM has better
performance for small component numbers (K ≤ 20).

Fig. 1 shows that with K = 16, J = 2, the estimated
DGMM of unit 1 can more accurately captures the nuances
of the original data distribution compaed to the GMM with
K = 20. Notably, the estimated density of the DGMM
successfully reproduces the peaks observed at 0.7 and 0.8,
which the classical GMM fails to delineate precisely. This
comparison highlights the DGMM’s efficiency in achieving a
better fit with a reduced total component count of K+J = 18,
in contrast to the 20 components used by the classical GMM.

Fig. 2 reveals similar estimated densities for the GMM and

DGMM of unit 3. Compared to unit 1, the frequencies at
the boundaries for unit 3 are not as pronounced as those
observed in the central range of the distribution. Nevertheless,
the heightened frequencies at 0 and 1 allows DGMM to
capitalize on its strength: the ability of capturing the peaks
at these boundary values and thus provide a more refined fit
with fewer Gaussian components, as also evidenced by the
BIC scores.

Fig. 3 contains the plots of BIC∗(EM-GMM),
BIC∗(DPHEM-GMM), and BIC∗(DGMM) for each K,
as well as the relative improvement, ∆BIC, for unit 1.
The BIC∗(DGMM) curve resides entirely below both the
BIC∗(EM-GMM) and the BIC∗(DPHEM-GMM) curves.
For a fixed number of Gaussian components (say K = 4),
incorporating additional components with fixed variances
leads to models with lower BIC scores. On the other hand,
to attain the same BIC score, the DGMM requires a leaner
Gaussian component structure, augmented with up to only
4 discrete masses, whereas a GMM requires more Gaussian
components. Fig. 4 exhibits the same four curves as Fig. 3
for unit 3. We observe a modest divergence in BIC scores
between the EM-based GMM and DGMM at K = 16.
However, the relative improvement of DGMM compared to
GMM is significant (by more than 100%) for smaller K (say
K ∈ {2, 4, 6}), which is also the case for unit 1.

Figs. 5 and 6 present the BIC scores for Experiment 2.
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Fig. 5: BIC Score of Estimated Models of 4 Correlated Units Fig. 6: BIC Score of Estimated Models of 4 Uncorrelated Units

In both scenarios, the only significant improvements are ob-
served at smaller K, since BIC∗(GMM) and BIC∗(DGMM)
curves tend to overlap as the number of Gaussian components
increases. One explanation could be the higher dimensionality
of the data points: the gain from reducing the number of free
parameters might be too small to significantly penalize the
likelihood and improve the BIC score in such cases.

IV. CONCLUSIONS

This paper proposed a novel Discrete-Gaussian Mixture
Model (DGMM) for wind power generation. The DGMM
generalizes the GMM since some of the mixture components
can be discrete masses. The optimal locations of these discrete
components can be found by the FixedEM algorithm. Our
experimental results reveal that the DGMM can effectively
capture the multimodal and skewed characteristics present in
wind power data. Compared to the classical GMM fitted using
either the EM or the recently proposed Density Preserving
Hierarchical EM algorithm, the DGMM uses fewer Gaussian
components to achieve a better or equal fit at the expense of
introducing only a few additional discrete components. This
leads to a reduction in model complexity without compromis-
ing the information represented in the data. This advantage
is particularly pronounced when computation power is limited
and only a small number of Gaussian components are allowed.
These results are also in harmony with our motivation. Indeed,
the effective use of a small number of Gaussian components
to model uncertainty offers a pathway to the computationally
efficient solution of the optimization problems for long-term
planning.
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