Extended Abstract

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Computing Nash Equilibria in Multidimensional Congestion
Games
Extended Abstract

Mohammad T. Irfan
Department of Computer Science
Bowdoin College
Brunswick, Maine, United States
mirfan@bowdoin.edu

ABSTRACT

We study pure-strategy Nash equilibrium (PSNE) computation in
k-dimensional congestion games (k-DCGs) where the weights or
demands of the players are k-dimensional vectors. We first show
that deciding the existence of a PSNE in a k-DCG is NP-complete
even for games when players have binary and unit demand vectors.
We then focus on computing PSNE for k-DCGs and their variants
with general, linear, and exponential cost functions. For general
cost functions (potentially non-monotonic), we provide the first
configuration-space framework to find a PSNE if one exists. For
linear and exponential cost functions, we provide potential function-
based algorithms to find a PSNE. These algorithms run in polyno-
mial time under certain assumptions. We also study structured
demands and cost functions, giving polynomial-time algorithms to
compute PSNE for several cases. For general cost functions, we give
a constructive proof of existence for an («, §)-PSNE (for certain o
and f3), where « and f are multiplicative and additive approximation
factors, respectively.
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MULTIDIMENSIONAL CONGESTION GAMES

In congestion games [17], there are a number of resources (e.g.,
edges in a road network). Each player has a set of strategies, where
each strategy is a subset of resources (e.g., source-destination paths
in a road network). A strategy profile consists of a strategy for
each player. The cost of a resource (e.g., edge) is a function of
the number of players using that resource. Under a given strategy
profile, the cost to a player is the sum of the costs of the resources
used by the player in their own strategy. A strategy profile is called a
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pure-strategy Nash equilibrium (PSNE) if no player can unilaterally
decrease their cost by choosing a different strategy.

Congestion games can be broadly divided into three main classes:
unweighted [1, 4, 15, 17], weighted [3, 5-9, 12-14, 16], and multi-
dimensional [10, 11]. Unweighted congestion games are the classi-
cal ones described in the previous paragraph. In a weighted con-
gestion game, each player has a weight or demand. Multidimen-
sional congestion games extend weighted congestion games by mak-
ing the weight a multidimensional vector. Very recently, Klimm
and Schiitz [11] have characterized the existence of PSNE in k-
dimensional congestion games (k-DCGs). Their characterization
leads to the following computational questions, which we address
here: How can we compute a PSNE (if it exists) in multidimensional
congestion games and their variants? How hard is this computation?

Formally, a k-dimensional congestion game (k-DCG) consists
ofaset N ={1,...,n} of n playersand asetR = {1,...,m} of m
resources. Each player i has two elements: (1) a strategy set S; € 2R\
{0} and (2) a k-dimensional demand vector d; = (d;,, ....d;;) € Rk,
Each resource r has a cost function ¢, : R¥ — R. We use p to
denote the maximum number of strategies of any player.

Given a strategy profile s (s1,..8n) € S = S1 X ... X Sy,
let xr(s) = 2 jeN:res; di be the aggregated k-dimensional demand
vector of the players who select resource r under s. Given a strategy
profile s, the cost function of player i is defined to be 7;(s) =
7i(8i,S—i) = Dres, cr(Xr(s)). A strategy profile s* is a pure-strategy
Nash equilibrium (PSNE) in a k-DCG if and only if for each player
iand any s] € S, m;(s*) < mi(s),s” ).

We are interested in computing pure-strategy Nash equilibria of
k-DCGs and their variants listed below.

e k-DCGs with binary demand vectors d; € {0, 1}k Vi.

o k-class congestion games (k-CCGs), where each demand
vector has one positive element, the rest being zeros.

e k-DCGs with player types, where players of the same type
are characterized by the same demand vector.

COMPUTATIONAL COMPLEXITY

We show that deciding the existence of a PSNE in special variants
of k-DCGs is NP-complete. The following results are interesting in
the context of known hardness results, such as NP-completeness of
deciding PSNE in weighted congestion games (i.e., k = 1) [3].

THEOREM 1. Deciding the existence of a PSNE in a k-DCG is NP-
complete even when the demand vector d; of each playeri € N isa
binary vector and k is sublinear in the number of players. That is,
d; € {0, 1}* foralli and k = O(logn).
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THEOREM 2. Deciding the existence of a PSNE in a k-DCG (or a k-
CCG) is NP-complete even when the demand vector d; of each player
i € N is a binary unit vector and k is linear of the number of players.
That is, d; € {x € {0, 1}";2’;21 xj =1} foralli and k = O(n).

GENERAL COST FUNCTIONS

For k-DCGs and their variants with general cost functions (poten-
tially non-monotonic), we present algorithms that are polynomial
in n (the number of players), p (the maximum number of strategies
for any player), and a maximum weight term when k (number of
dimensions) and m (number of resources) are bounded. This is use-
ful for congestion games in which there is a constant number of
dimensions and strategies with many players.

Our algorithmic framework explores the configuration space (i.e.,
the space of aggregated demand vectors) for computing a PSNE. It
works by exploring the possible aggregated demand vectors of all
players and verifying (non-trivially) whether an aggregated demand
vector can lead to a PSNE. For variants of k-DCGs, such as k-DCGs
with player types, k-DCGs with binary demands, and k-CCGs, we
exploit their structures to derive the following results.

In the following results, we define wmax = max Je[k] Wis where
wj = Yendijforeach j=1,.. k.

THEOREM 3. Foranyk-DCG, there is an algorithm to determine the
existence of a PSNE in O((wmax)k"’(nkpzm2 + nkmp(wmax)k’")),
which is polynomial in n, p, and wimax, when m and k are constants.

In the following result on k-DCGs with binary demand, we use
i =max;e(k] LieN di; in place of wmay to represent the maximum
number of players having any particular demand vector bit on. This
result improves the running time given by Theorem 3.

THEOREM 4. For k-DCGs with binary demand vectors, there is
an O (7K™ (nkp?m? + min{nkmpik™, nkm+1p1))-time algorithm to
compute a PSNE or decide that there exists none. The algorithm is
polynomial in n and p when m and k are constants.

We use a partitioning technique to derive the following result
for k-CCGs, improving the running time given by Theorem 3.

THEOREM 5. For k-CCGs, there is an O ((wmax)k”’(npzm2 +
nkpm(wmax)™))-time algorithm to compute a PSNE or decide that
there exists none. The algorithm is polynomial in n, p, and wmax when
m and k are constants.

We get the following corollary from Theorems 4 and 5.

COROLLARY 1. Fork-CCGs with binary demand vectors, there is an
O((R)K™ (np?m? + nkpm(i1)™))-time algorithm to compute a PSNE
or decide that there exists none. The algorithm is polynomial in n and
p when m and k are constants.

We have the following result for k-DCGs with player types.

THEOREM 6. Given a k-DCG with t types of players and at most i
players of any type, there is an O((71) ™™ (np?m? + ntpm(i))™) + tnk)
time algorithm to compute a PSNE or decide that there exists none.
The algorithm is polynomial in n and p for bounded m and t.

Computing Approximate PSNE
A strategy profile s is an («, f)-PSNE in a k-DCG for some a > 1
and B > 0 if and only if for each player i and any s; € S;, 7;(s) <
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armi(s],s—;) + B. The following result generalizes the result in [2]
by removing the monotonicity assumption while retaining the non-
negative cost assumption. Here, Apay is the maximum non-negative
marginal decrease of any player due to deviation.

THEOREM 7. Every k-DCG has an (e, f)-PSNE for & = n and
B = (n—1)mAmax. Furthermore, it can be computed using an iterative
algorithm that is guaranteed to converge.

STRUCTURED COSTS AND DEMANDS

The following results utilize structural information regarding the
cost functions (e.g., how the costs of resources compare with each
other), demand vectors (e.g., whether the players can be ordered by
their demand vectors), and strategies.

THEOREM 8. For a k-DCG with ordered demand vectors, nonde-
creasing cost functions, and singleton-resource strategies, a PSNE can
be computed in O(nlogn + nmk) time.

THEOREM 9. For a k-DCG with ordered demand vectors, nonde-
creasing cost functions, and a shared set of strategies of size p, a PSNE
can be computed in O(nlogn + npmk) time.

THEOREM 10. For a k-DCG with nondecreasing and structured
cost functions where there are constants aj > 1 such that cj—1(x) =
ajcj(x) for any resource j > 1 and aggregate demand vector x, and
singleton-resource strategies, a PSNE can be computed in O(nlogn +
nmk) time.

LINEAR AND EXPONENTIAL COST

For linear and exponential cost, for which existence of PSNE in k-
DCGs is guaranteed [11], we give potential function-based iterative
best-response algorithms by bounding weighted potential functions.
First, let the linear cost function of any resource r under a strategy
profile s be ¢, (x,(5)) = ar 5 e (k] 2%, () +br = arlz-%-(s)] +by,
where a,, b, > 0 for all r and the k-dimensional vector z > 0. We
have the following results on k-DCGs and their variants

THEOREM 11. The best-response algorithm runs in polynomial
max;[z-d;]?

time if max, ar, max, by, and ming [z, 47 polynomial in n.

THEOREM 12. When the demands are binary vectors, the algorithm
runs in polynomial time if the following cost function parameters are
polynomial in n: max, a,, max, by, and max; z;.

THEOREM 13. Fork-CCG, the algorithm runs in polynomial time if
max 25. max; d?,l(i)

and are polynomial in n, where

maxy dr, maxr br’ minj z;’ min; di,l(i)

1(i) € [k] denotes the index of the non-zero element in d;.

Finally, for exponential cost functions ¢, (x,(s)) = arexp(z -
xr(s)) + by, the following result characterizes the running time of
the iterative best-response algorithm explicitly.

THEOREM 14. The best-response algorithm runs in polynomial time
for k-DCGs with exponential cost functions if max, a, and max, b,
are polynomial inn and [z - dn] is O(logn).
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