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ABSTRACT: In-sensor and near-sensor computing architec-
tures enable multiply accumulate operations to be carried out
directly at the point of sensing. In-sensor architectures offer
dramatic power and speed improvements over traditional von
Neumann architectures by eliminating multiple analog-to-digital
conversions, data storage, and data movement operations.
Current in-sensor processing approaches rely on tunable
sensors or additional weighting elements to perform linear
functions such as multiply accumulate operations as the sensor
acquires data. This work implements in-sensor computing with
an oscillatory retinal neuron device that converts incident
optical signals into voltage oscillations. A computing scheme is introduced based on the frequency shift of coupled oscillators
that enables parallel, frequency multiplexed, nonlinear operations on the inputs. An experimentally implemented 3 × 3 focal
plane array of coupled neurons shows that functions approximating edge detection, thresholding, and segmentation occur in
parallel. An example of inference on handwritten digits from the MNIST database is also experimentally demonstrated with a 3
× 3 array of coupled neurons feeding into a single hidden layer neural network, approximating a liquid-state machine. Finally,
the equivalent energy consumption to carry out image processing operations, including peripherals such as the Fourier
transform circuits, is projected to be <20 fJ/OP, possibly reaching as low as 15 aJ/OP.
KEYWORDS: negative differential resistance, oscillator, oscillatory retinal neurons, parallel computing, ultralow power computing,
in-sensor computing

MAIN
In-sensor computing has emerged as a promising approach to
improve computational speed and reduce energy consump-
tion.1−15 By eliminating the initial data conversion, storage,
and transmission, in-sensor architectures offer dramatically
higher speed and lower power consumption when compared to
traditional von Neumann architectures. Local weighting
devices or tunable responsivity sensors enable in-sensor
architectures, where the input signal is multiplied by a weight
at the point of sensing, resulting in local multiply accumulate
(MAC) operations on the inputs which is at the heart of the
convolutional neural networks (CNN). Optoelectronic syn-
aptic sensors can realize different weights by tuning their
responsivity and therefore enable neuromorphic convolution
operations on an input image. Traditional silicon16 and III−V
materials,17 ZnO,18 more exotic 2D semiconductors such as

WS2,
19,20 WSe2,

13,21 MoS2,
22−24 MoSSe,25 MoS2−xOx,

22

MoTe2,
26 PdSe2,

27 ReSe2,
28 black phosphorus,29 PtSe2,

30

graphene,22,31 Te nanoflake,32 various organic semiconduc-
tors,33−35 and double perovskites such as Cs2AgBiBr6

34 have
been used as photoactive material in different implementations
of these optoelectronic sensors. Traditional metal−insulator
transition materials such as VO2,

36−38 electrochemical
migration based memristors such as Ag nanoparticles
embedded in TiO2,

39 lithium ions intercalated in Al2O3,
25
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ferroelectrics such as PZT40 and CIPS,32 floating gate
structures with Al2O3,

21,25,29 SiO2,
18,31 HfO2,

29 h-BN21,31 etc.
have been used to introduce nonvolatile responsivity to these
sensors. These design efforts have been geared toward
improving control on responsivity of the sensors, realizing
signed responsivities to enable both positive and negative
weights, and utilizing the photovoltaic regime of operation to
minimize the energy consumption of convolution and MAC
operations. In addition to optoelectronic vision4,5,7,9−11,13,41

sensors, a wide variety of modalities, including auditory,8,42−47

olfactory,44 and tactile48−50 sensors, benefit from the improved
performance. However, these approaches generally execute a
single MAC operation on the input data.12−14,51−53 Fur-
thermore, parallel operations require scaling the number of
weighting devices connected to each sensor which can be
costly from an area and power perspective.
In this work, we introduce an in-sensor computing approach

where a coupled photosensor array carries out parallel
computation on the input image. Each pixel in the array acts
as an oscillator, generating an optical power-dependent
frequency spectrum. When coupled, neighboring pixels also
affect each pixel’s frequency spectrum. The power in a
frequency band then becomes a nonlinear function of the
inputs. Separate frequency bands, therefore, encode separate
nonlinear functions of the inputs in parallel. Here, each pixel is
an oscillatory retinal neuron (ORN) that directly converts the
input optical signal into voltage oscillations. We show through
simulation and experiment that coupled ORN networks carry
out approximations of both basic and advanced image
processing functions, such as edge detection and image
segmentation directly in the sensor, encoded by choice of
frequency and bandwidth of the output filter. Figure 1 shows a
block diagram of the system depicting how frequency
multiplexed computing leads to parallel nonlinear convolution
operations. It is important to note that this approach is distinct
from the traditional oscillatory neural networks (ONN). There
are two major approaches to performing image processing
computations in traditional ONNs: (1) associative memory
approach and (2) degree of match based convolution
approach.54−58 In the associative memory approach, input
vector, such as vector of pixel intensities, is encoded in the
initial phase of the oscillators in a coupled network that settle

to a certain phase configuration. The coupling impedances of
the network essentially “remembers” certain phase config-
urations, enabling recognition of different patterns. A variant of
this associative memory approach is the Ising machine where
the oscillators are forced to settle either in-phase or antiphase
as directed by the coupling network. Computationally hard
optimization problems that have an Ising Hamiltonian
formulation, such as NP-complete max cut problem, can be
mapped on to the impedances of a coupled oscillator network
where the final phases of the oscillators encode the solution of
the problem by minimizing the Ising Hamiltonian. On the
other hand, the degree of match based convolution approach
can be used to perform convolution like operations using a
network of coupled oscillators. In this approach, the
elementwise difference of input vector and the kernel weight
vector is encoded as the frequency of individual oscillators. If
the input vector is similar (dissimilar) to the kernel weight
vector, all the oscillators oscillate with similar (dissimilar)
frequency, leading to a synchronized large amplitude
(unsynchronized small amplitude) oscillation. Amplitude of
this resultant oscillation therefore denotes the degree of match
between the input and kernel, analogous to a convolution
operation. CMOS ring oscillators, relaxation oscillators made
of insulator−metal−transition memristors, such as VO2
oscillators have been the heart of such ONNs enabling pattern
recognition, Ising machines,59−67 and convolution opera-
tions.57,58,62−64,68−71 Traditional ONNs are susceptible to
different nonidealities such as phase distortion and propagation
delays in high frequency circuits, and most importantly,
extreme sensitivity to frequency variations. Our frequency
multiplexed computing approach is distinct to conventional in-
sensor computing and ONNs, as outlined by the following key
differences: (1) ORNs incorporate oscillatory behavior into the
sensor, transforming them into optoelectronic neuronal
sensors; (2) while synaptic sensors require external program-
ming for sequential responsivity adjustments to achieve various
kernels, neuronal sensors encode responsivities in their
oscillating voltage, enabling diverse responsivity configurations
without external programming; (3) the ORN network does not
rely on phase synchronization of oscillators, allowing them to
operate at varying frequencies; (4) the use of frequency
domain readout enables parallel computations across different

Figure 1. Block diagram of a frequency multiplexed parallel computing ORN network.
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frequency bands. Notably, the ORNs do not require external
electrical power, and when considering peripheral circuits such
as buffers, selector circuits, and analog fast Fourier transform
circuits, the equivalent energy per operation can be smaller than
20 f J/OP, possibly reaching as low as 15 aJ/OP with a signal-to-
noise ratio (SNR) equivalent to that of a digital computation with
8 bit precision.

RESULTS
The ORNs are composed of two elements, (i) a photodetector
that exhibits voltage-controlled negative differential resistance
(NDR) under illumination and (ii) an inductive element that
can drive an electrical oscillation by taking advantage of the
instability of the NDR behavior. A semiconductor−graphene−
metal (SGM) photodetector, schematically shown in Figure 2a,
exhibits NDR in the detector’s power generation regime. The
device comprises a p-type silicon substrate, a Ti/Au (5 nm/

100 nm) metal grid, and a graphene layer. Linear scale I−V
measurements of a 1 mm × 1 mm device under dark and
uniform optical illumination are shown in Figure 2b. In the
dark, the device exhibits Schottky-diode behavior, while
exhibiting NDR under illumination. Figure 2c shows the log-
scale I−V curves, highlighting that the NDR is only observed
under illumination. Section S1 and Figures S1−S9 discuss the
device-level behaviors and the measurement setup in detail.
Connecting this device with an inductive element under
appropriate bias conditions generates optical intensity depend-
ent oscillations, as shown schematically in Figure 2d. An active
inductive element, the Hara inductor, comprising a single
MOSFET and a resistor, enables the scalability of the ORN.
The observed oscillations are analogous to classical Van der
Pol oscillators and the Fitzhugh−Nagumo model of
neurons.72−75 A prior work discusses the implementation and
design of Hara active inductors in more detail.76

Figure 2. ORN enabled by SGM photodetector. (a) Schematic of the SGM photodetector device. (b) I−V curves measured at dark
conditions and under uniform illumination (445 nm) in linear and (c) log scale. (d) Schematic of a single unit of ORN. (e) V−t curves
measured at different optical intensities and (f) corresponding frequency spectra. (g) spiking frequency and amplitude as a function of
optical intensity. (h) Experimental plot of minimum optical power required for oscillation with neuron area. (i) Calculation of dark current
limited and LC limited Pop,min for oscillation without external electrical power.
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Other graphene-based photodetectors have exhibited NDR
behavior, but all at a forward diode bias.77−83 Photodetectors
fabricated in other materials systems also show NDR behavior
and have been used for designing optoelectronic spiking
neuron circuits.84,85 However, this device generates an open-
circuit voltage and exhibits NDR at negative and zero applied
voltages. This critical distinction allows oscillations at Vapplied ≤
0 V, which enables operation without external electrical power.
Figure 2e shows experimental V−t curves for a photodetector
with an active area of 1 cm2. Figure 2f shows the corresponding
frequency spectra, illustrating the change as a function of the
optical intensity. Figure 2g shows the oscillation frequency and
amplitude as a function of incident optical intensity, where we
observe that a minimum optical intensity is required to trigger
oscillations in this ORN circuit. These measurements were all
performed at Vapplied = 0 V.
To explore the scaling behavior of ORNs, photodetectors

with areas between 600 μm2 and 1 cm2 have been fabricated
and tested. The minimum optical power required for
oscillation without external electrical power scales linearly with
the device area, as shown in Figure 2h. Two parameters limit
the oscillation dynamics of ORNs, the dark current and the
capacitance. First, the dark current does not exhibit NDR and
adds with the light current. Second, the photon flux should

generate sufficient light current so that the valley of the NDR is
greater than the dark current. There must also be sufficient
photocurrent to charge and discharge the capacitance at time
scales of the oscillation frequency. The addition of external
power can mitigate this limitation. For a moderately doped (5
× 1015 cm−3) p-Si substrate, the depletion capacitance at the
graphene-silicon junction is ∼0.1 fF/μm2. Figure 2i shows the
minimum optical intensity for oscillation assuming a device
capacitance of 0.1 fF/μm2 as a function of device dark current
density. We can see a crossover between two different regimes:
(1) inductance−capacitance (LC) limited regime at smaller
dark currents and (2) dark current limited regime at larger
dark currents. For our photodetectors, the Schottky nature of
the junction results in a larger dark current, limiting the
threshold optical intensity to ∼400 W/m2. At smaller dark
current densities, it is possible to decrease this threshold to
below 2 mW/m2.
Next, we present a simple demonstration of how these

coupled oscillators carry out computation. We use simulations
of ORN circuits connected to bandpass filters to elucidate the
behavior of coupled ORNs and how image processing occurs.
We considered an ORN comprising a photodetector with an
active area of 1 mm2 connected to an external inductor (L = 10
mH) with Vapplied = 0 V. We simulated the V−t curves of the

Figure 3. Frequency multiplexed computation with ORN. (a) Circuit schematic for two coupled ORNs. (b) ORN voltage colormap showing
nonlinear peak surfaces and their shift at different center frequencies for LC = 10 mH and BW = 200 Hz. (c) ORN voltage colormap showing
different peak surface shapes for different LC values. (d) Original image and the scatter plot showing all the (P1,P2) pairs for this image when
input to a 1 × 2 convolutional kernel. (e,f) Experimentally measured image transformations when the two coupled ORNs (LC = 10 mH)
receive the (P1,P2) pairs as inputs similar to a convolution operation and the corresponding scatter plots. The overlap between red and blue
scatter plots show how different subsets of inputs are thresholded by the network at different center frequencies (BW = 400 Hz). The
original image has been used with permission from the original photographer, Tyler A. Swartz.
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ORN using the experimental photodetector capacitance and
J−V values. The V−t output of the simulation is filtered with
varying center frequencies ( f) and bandwidths (BW)
representing different bandpass filters. Section S2 and Figure
S10 show through simulation and analysis that each bandpass
filtered output of a single ORN can be analytically
approximated with Lorentzians. Figure 3a shows the schematic
of two ORNs with inductive coupling, LC = 10 mH. Figure 3b
plots the bandpass filtered Vosc1 magnitude as a function of P1
and P2 (incident optical power on the ORNs) for varying
center frequencies f = 28.4, 28, and 27.6 kHz with BW = 200
Hz. The results show that two coupled oscillators define a
curved subspace of the input. Figure 3c shows the simulation
results for a fixed filter with f = 28.4 kHz and BW = 200 Hz
and varying coupling impedance. This results in subspaces of
varying shapes. While accurate solutions of the oscillator-
coupled nonlinear differential equations require a numerical
approach, we can analytically approximate the subspace by
reducing the two oscillator problem to a single oscillator
p r o b l e m b y i n t r o d u c i n g a n e w q u a n t i t y

P P P a P P kPP b( )12 1
2

2
2

1 2 1 2= + + + + + which nonlinearly
combines P1 and P2. The coupled oscillator result then
becomes V P f BW( , , )

P P Posc 12 ( ) ( )12 00
2 2=

+
, which can be fit

to approximate the result from Figure 3c. Here, P00 is a

function of the center frequency f and ΔP is a function of the
filter bandwidth, BW.
To obtain a visual representation of how an image is

processed in this scheme, we have fabricated a 1 × 2 focal
plane array and set up the two coupled oscillator circuit
(Figure 3a) with passive inductors. Treating this circuit as a 1
× 2 convolutional kernel of stride 1, we have first obtained all
the possible input pixel intensity pairs for a grayscale image of a
cat (Figure 3d, top panel) with 250 × 240 pixels. There are
60000 such pairs of pixels for this image (with zero padding).
Using a digital projector and lens based optical setup, we have
then projected two different optical powers on two photo-
detectors where a pixel intensity of 1 translated to an optical
power of 5.5 mW and all pixel intensity values are linearly
scaled with optical power. The bottom panel of Figure 3d
shows all (P1,P2) optical power pairs as a scatter plot where
each point corresponds to the pair of optical power inputs to
the circuit, i.e., the 1 × 2 kernel. An oscilloscope measures the
output V−t signal from a single node of the array, Vosc,1 in this
case. The output spectrum is then processed in software to
obtain the FFT and filtered outputs. Some of the
representative output V−t signals and their corresponding
frequency spectra are shown in Figure S11. The top panels in
Figure 3e,f show the filtered output images for f = 26.0 and
27.2 kHz at a BW = 400 Hz. Clearly, the original image has

Figure 4. Image processing with coupled ORN network. (a) Circuit schematic for the ORN kernel. (b) I−V curves of all 9 SGM detectors in
the network under same optical illumination. (c) Oscillation V−t and (d) FFT curves at the output node when all ORNs are under uniform
illumination. (e) Frequency band filtered images showing edge detection, (f) intensity filtering, (g) image sharpening, (h) object
segmentation. (i) Original color image and frequency domain images showing (j−l) image segmentation operation.
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been mapped to multiple processed images, indexed by the
filter’s center frequency. The bottom panels of Figure 3e,f
show how the subspaces, defined by the ORN coupling, filter
center frequency (f), and bandwidth (BW), overlap with the
(P1,P2) pairs of the original image. The coupled ORNs map
the subset of the pixel pairs that overlap with the defined
subspace as high values and all other pixel pairs as low values.
These results on a toy problem visually show how nonlinear
computations are performed using coupled ORN oscillators.
To demonstrate how coupled ORNs carry out more useful

and complex image processing functions, from edge detection
to image sharpening, we have then performed similar
experiments on the same image with a 3 × 3 ORN circuit
with a cascaded connection, as shown in Figure 4a. We use this
as a kernel that slides across an image in the same manner as a
convolution operation in a convolutional neural network
(CNN). A digital projector and external lens form the desired
3 × 3 segment of an image on the ORN focal plane array
similar to the 1 × 2 kernel case. Output voltage oscillation is
measured at the node Vout as shown in Figure 4a. Figure 4b
shows the I−V curves of all the SGM photodetectors in the
experimental array under the same optical intensity (3 mW/
mm2). Figure 4c shows a representative V−t curve obtained
from the 3 × 3 array when all the pixels are illuminated with

uniform intensity. Figure 4d shows the frequency spectrum of
the V−t curve of Figure 4c.
We then took the digital grayscale image of a cat (Figure 3d)

and projected it on the 3 × 3 ORN focal plane array, using the
array as a convolution kernel with a stride of one (pixel
intensity of 1 refers to 5.5 mW incident optical power). Figure
4e−h show the images obtained at 4 kHz (BW = 100 Hz), 2.8
kHz (BW = 200 Hz), 2.4 kHz (BW = 800 Hz), and 3.2 kHz
(BW = 1.6 kHz), respectively. These filtered images
demonstrate edge detection, intensity filtering, image sharpen-
ing and object segmentation operations. As we increase the
bandwidth from Figure 4e to Figure 4h, we observe a larger
image region thresholded to bright pixels. In this way, smaller
bandwidth filters enable lower-level feature extraction, such as
edges, while high bandwidth filters lead to higher-level feature
extraction, such as object segmentation. Bandwidth of these
filters is directly related to the acquisition time of the
oscillating output signal. A longer (shorter) acquisition time
allows lower (higher) bandwidth and bins the frequency
spectrum into more (fewer) bands available for computing. An
image recognition task may require both higher and lower
bandwidth filters while an image segmentation task may
require only higher bandwidth filters. Therefore, the choice of
bandwidth is specific to the application and is an important
design parameter. Figure S12 shows the processed images

Figure 5. LSM implementation of ORN network for MNIST classification. (a) Image classification pipeline of the LSM structure showing an
original input image, structure of the liquid layer, frequency sampled output images, and further processing at the readout layer by hidden
ReLU units. (b) Training and testing accuracy of the readout layer for training data sets corresponding to different frequency samples. (c)
Classification accuracy of the handwritten digits as a function of number of frequency samples for 7 × 7 pixels/sample and (d) for 21 × 21
pixels/sample. The image of handwritten digit “3” has been used under Creative Commons Attribution-Share Alike 3.0 license from MNIST
data set.
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when the image is projected at different optical power ranges.
When the incident optical power range is lower, similar image
processing can be obtained at higher center frequencies. This
result shows that the choice of optical power range is not very
critical if appropriate center frequencies are chosen. It is also
important to note that the circuit configuration used here to
couple the oscillators is not unique. Figure S13 shows image
processing results obtained using a 10 × 10 coupled oscillator
array kernel where the ORNs are connected to their nearest
neighbors with a coupling inductance of 5H. Engineering the
circuit configurations allows the implementation of a variety of
image processing functions. Section S5 and Figures S14−S16
discuss the function implemented by the 3 × 3 kernel in more
detail, specially how the edges are detected by the circuit.
Next, we have investigated whether the same 3 × 3 ORN

focal plane array can perform image segmentation from an
image with multiple objects. A color image of size 170 × 150
pixels (Figure 4i) that features a cat, a floor and a door was
selected. The image is split into three different grayscale
images according to the pixel intensities of the color channels
(R-channel, G-channel, and B-channel). These three channels
are then treated as independent images while being input to
the ORN kernel, i.e., no coupling between different color
channels were considered here. Therefore, each bandpass filter
used had three different output images, one for each color
channel. Figure 4j−l shows the images filtered at 3.5 kHz (B-
channel), 4.5 kHz (G-channel), and 4.5 kHz (R-channel),
respectively. The bandwidth used for each center frequency is
500 Hz. At 3.5 kHz (B-channel), the cat emerges as white and
rest of the image is thresholded to black, effectively segmenting
the cat. The images filtered at 4.5 kHz (G-channel) and 4.5
kHz (B-channel) segment the floor and the door, respectively.
It is important to note that we have only used a single
bandpass filter to segment an entire object in this case.
Improved segmentation quality is expected when a linear
combination of multiple frequencies is used. These results
clearly illustrate how the ORN kernel can perform parallel,
frequency multiplexed image processing and segmentation
tasks.
These results show us two essential properties of this

architecture: (1) the absence of any encoding or preprocessing
for input, and (2) the ability to perform parallel computation at
different frequencies. Since the projection of image and data

acquisition are both performed in analog domain, inevitably
noise is added to both the input and output of the system but
can still obtain excellent results.
Inference is carried out by using a 3 × 3 pixel coupled

oscillator network to act as a liquid layer to construct a liquid
state machine (LSM). Images from the MNIST database
cropped to 21 × 21 pixels were serially projected on the 3 × 3
array with a stride of 3, while output signals were acquired
from a single pixel. This data acquisition mode converts 21 ×
21 images into 7 × 7 × n data points where n is the number of
frequency samples considered. Each frequency sample
corresponds to a bandpass filtered output at a given center
frequency and a bandwidth of 1 kHz. Ten thousand images
from the MNIST database were projected on the array, and the
output data was collected and fed into a readout layer
consisting of a single hidden layer with 100 nodes followed by
a 10-node output layer. The hidden layer used a ReLU
activation function, and the output layer used a softmax
activation function. We use backpropagation to train only the
readout layer while keeping the liquid layer connections
untouched. Section S6 summarizes the implementation of the
readout layer. Figure 5a shows the LSM schematic. Figure 5b
plots the accuracy obtained at the 50th epoch if only a single
frequency from each coupled array is fed into the hidden layer.
As expected, the single-frequency results show that the

resulting accuracy varies by filter frequency. Feeding multiple
frequency samples per pixel to the hidden layer is expected to
augment the accuracy of the network. Figure 5c shows how
feeding multiple frequencies into the hidden network modifies
the testing accuracies obtained at the 200th epoch. We have
done this for both experimental and simulated ORN arrays.
The experiments were carried out on 10000 images, limited by
the speed of our data acquisition and projection setup. We
observed a peak accuracy of 92.51% with 7 frequencies
sampled per pixel. The data set was split into training and
testing subsets with a 6:1 ratio. To evaluate the potential of this
result if the full data set of 70000 images were used, a
simulated version of the same 3 × 3 ORN focal plane array was
also carried out. We see the resulting accuracy for the
experimental and simulation cases with 10000 images are very
similar. As the simulation uses the experimental device I−V
curves, discrepancies between the simulation and experiment
are attributed to the additional noise introduced by our image

Figure 6. Energy consumption in ORN networks. (a) Block diagram of a 3 × 3 ORN network connected to an analog k-point FFT processor
with k/2 frequency band outputs. (b) Performance of the ORN network as a function of useful convolution operations per FFT for different
FFT implementations with 65 nm planar MOSFETs at a switching speed of 1 GHz.
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projection and data collection setup. The experimental data
acquisition and simulation details are discussed in Section S7.
In order to compare these results with a software defined
neural network, we have constructed a CNN, named CNN-1
here, that has a convolutional layer (3 × 3 kernel with stride of
3, n channels) and ReLU activation that connects to the same
fully connected layer (single hidden layer with 100 nodes). We
vary the number of channels of the convolutional layer so that
the number of trainable hyperparameters in this network
remains the same as the ORN network. When trained with
10000 images, CNN-1 shows a significantly higher accuracy
(∼96%) compared to ORN for both measured and simulated
results. However, as we increase the number of training images
to 60000 (with 10000 testing images), the ORN network
shows an improved accuracy of 97.21%, just shy of the ∼98%
accuracy achieved by CNN-1 for same number of training
images. Critically, if the 3 × 3 array is used as a convolution
kernel with a stride of 1, a peak accuracy of 98.16% is achieved
for 11 frequency samples per pixel, as shown in Figure 5d.
When we compare these results with CNN-2 (∼98.45%),
employing a 3 × 3 convolutional kernel with a stride of 1, the
difference in accuracy is even smaller. These results show that
the parallel processing performed at different frequencies
improves the network and that the coupling between pixels in
the 3 × 3 array plays the similar role as a convolutional kernel
in a CNN, allowing similar classification accuracies for ORN
liquid based and fully software defined networks. In addition,
the LSM architecture does not require the training of liquid
layer interconnections, which significantly reduces the
complexity and computational cost of the training.
While an ORN array does not require any external electrical

power to drive the oscillations, the system requires peripheral
circuitry to read the voltages and perform bandpass filtering
operations. A charge domain on-chip FFT processor86 can
perform such operations with a low energy cost. Figure 6a
shows a block diagram of a 3 × 3 ORN network showing how
the oscillating output signal is filtered by an analog FFT
processor into different frequency bands enabling parallel
computation. As discussed in Section S8 and summarized in
Figure 6b, an ORN array can perform convolution equivalent
tasks with a performance as high as 67000 TOPS/W, which
translates to an energy cost of 15 aJ/OP with a precision
equivalent to 8-bit integer operations in digital systems.

However, this energy cost depends on the implementation
and speed of the FFT processor, and the number of frequency
bands that perform useful convolution-like operations. For an
example, a 32-points FFT processor can achieve a maximum
performance of 25000 TOPS/W at 1 GHz frequency when
power in all the 16 frequency bands is considered useful for the
neural network. However, if only 1 frequency band returns
useful convolution operation, the performance drops to ∼1550
TOPS/W, highlighting the importance of careful design
optimizations that would multiplex many different useful
convolution operations in different frequency bands to enable
extreme energy efficiencies in the system. These projections
clearly show that frequency multiplexed computing using
coupled ORN array has the potential to completely replace the
energy-expensive convolutional layers in CNN for deep
learning applications.
Table 1 shows the performance comparison between

different neural processing units (NPU) for deep learn-
ing.14,15,87−94 Different NPUs operate at different bit
resolutions and therefore an n-bit performance was scaled by
a factor of ( )n

8
2 to get a normalized 8-bit performance. Such a

scaling is reasonable95,96 since number of transistors in digital
logic typically scales as ∼n2. Table S1 provides a more detailed
list of NPUs and their performance as found in literature.
Unfortunately, it is not very common for the works focusing on
in-sensor computing to report their performance or energy
costs. Most often, there is not sufficient information provided
in these reports to calculate the energy costs. To avoid possible
errors, Table 1 and Table S1 do not list the performance of in-
sensor computing works unless directly reported. While NPUs
performing a specific task may achieve a higher performance
compared to a general-purpose GPU that performs different
tasks, usefulness of these tasks is specific to the aimed
applications. Therefore, such a comparison between NPUs
serves as a guide to understanding the potential of different
computing architectures, rather than a direct comparison of
raw computing abilities.

CONCLUSION
In conclusion, we have introduced in-sensor neuronal
computing as an alternative to in-sensor synaptic computing.
We demonstrated that coupled ORNs enable highly parallel,

Table 1. Comparison Between Different NPUs

NPU application type comment bits
reported
TOPS/W

normalized TOPS/W
(8 bits)

normalized fJ/OP (8
bits)

analog to information conversion14 analog in-sensor NN 8 43.5 43.5 23
VMM15 digital SRAM 4 351 87.75 11.4
MAC macro87 analog DRAM 4 217 54.25 18.4
VMM88 digital DNN learning processor 8 146.52 146.52 6.8
arithmetic logic89 digital superconducting logic devices 8 120 120 8.3
VMM90 analog Si-CMOS/CAAC-IGZO based

memory
6 210 118.13 8.5

VMM91 digital stochastic NN accelerator 8 75 75 13.3
MAC macro92 digital SRAM 8 63 63 15.9
MAC macro93 analog SONOS memory 8 100 100 10
MAC macro94 digital SRAM 1 20943 327.23 3.1
general purpose digital NVIDIA A100 8 4.992 4.992 200.3
general purpose digital Apple a16 Bionic 8 2.67 2.67 374.5
general purpose digital Qualcomm Snapdragon 865 8 4.5 4.5 222.2
nonlinear convolution (3 × 3 kernel)
(this work)

analog ORN 8 50−67000 50−67000 0.015−20
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frequency multiplexed computation on input images without
data conversion, storage, or transmission penalties. Exper-
imental implementations using 3 × 3 array of coupled ORNs
show parallel image processing on projected images. These
include edge detection, intensity filtering, and object
segmentation as examples of image processing tasks carried
out at the detector array. We have also demonstrated that
inference with these devices performs handwritten digit
classification from the MNIST database with similar accuracy
as software defined CNNs. While we have focused on image
classification and image processing applications, we expect this
computational approach to be general. Most importantly,
ORN-based computation is extremely energy efficient
considering the energy cost of the peripheral circuits, laying
the framework for a general and ultralow power approach to
oscillator-based computing.

METHODS
Semiconductor Substrate Preparation. Moderately

boron doped (NA = 5 × 1015 cm−3) silicon (100) wafer was
used as the semiconductor substrate. A 5 nm Ti/60 nm Au
mesh is photolithographically defined and deposited by
electron beam evaporation. A monolayer of CVD grown
graphene is transferred on top of the metal mesh via wet
transfer method.97 A 100 nm aluminum film sputtered at the
back side of the substrate acts as the contact to silicon.
Graphene Growth and Transfer. CVD graphene was

grown on a Cu foil by using low pressure CVD. Cu foil was
etched inside FeCl3 copper etchant for 30 s before the
graphene growth. Cu foil was annealed in a quartz tube furnace
at 1000 °C for 30 min with 50 standard cubic centimeters per
minute (sccm) hydrogen (H2) flow rate. Graphene was
synthesized under 7 sccm of methane (CH4) and 50 sccm of
hydrogen (H2) for 40 min. For transfer, poly(methyl
methacrylate) (PMMA A6495) was spin-coated on top of
Cu foil at 2000 rpm for 60 s and baked for 5 min under 170
°C. PMMA spin-coated Cu foil was etched using FeCl3 copper
etchant graphene to remove the Cu while the remaining
PMMA/graphene floats to the top. The stacked layer was
cleaned with deionized (D.I) water and transferred to 10%
hydrochloric acid solution to remove the remaining Cu
etchants. After cleaning with D.I water once more, PMMA/
graphene was transferred on top of the oxide/semiconductor
substrate. The substrate was dried in the air overnight followed
by 90 °C for 15 min, 150 °C for 30 min, and 90 °C for 15 min
to ensure the adhesion between the graphene and the
substrate. Finally, the substrate was immersed in acetone for
12 h to remove the PMMA.
Raman Spectroscopy for Graphene. CVD grown

monolayer graphene transferred on the substrate was analyzed
by Raman spectroscopy. Raman spectra were collected with
Renishaw spectrometer with a 532 nm laser focused in a 0.5-
μm spot through a Leica microscope with a 100× objective
lens.
Wavelength Dependent Measurements. A super-

continuum laser with grating monochromator was used to
illuminate the SGM photodetector with lights of different
wavelengths between 400 and 1100 nm. Applied voltage was
stepped while light and dark current measurements were
performed. The difference between these two current
measurements, i.e., the photocurrent was then used to measure
the responsivity of the device.

ORN Measurements. A 5 × 5 array of SGM photo-
detectors was fabricated and individual devices were wire-
bonded to a PCB. The devices were electrically connected to
the inductors (all 10 mH) on a breadboard to form the ORN
kernel. A digital projector was used to project the patterns on
the device array (a 1 × 2 or 3 × 3 array from the 5 × 5 array)
and an oscilloscope was used to record the oscillation
waveforms. The whole process was automated using MATLAB
environment.
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