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Abstract Measurements of oxygen and hydrogen stable isotope ratios (8'%0 and 8D) in meteoric waters
provide insight to overlapping effects of evaporation, precipitation, and mixing on basin scale hydrology. This
study of waters collected between 2016 and 2021 in the Turkana Basin, northern Kenya, uses 8'®0 and 8D to
understand water balance in Lake Turkana, a large, low-latitude, alkaline desert lake. The Omo River, a major
river system in the Ethiopian Highlands, is historically understood to provide approximately 90% of the water
input to Lake Turkana. Discharge of the Omo is prohibitively difficult to measure, but stable isotope ratios in the
lake may provide a meaningful method for monitoring the lake's response to changes in input. Precipitation in
the Turkana Basin is low (<200 mm/year) with negligible rainfall on the lake's surface, and all water loss from
the lake is evaporative. We compare new measurements with previous data from the region and records of lake
height and precipitation from the same time period. We show that a Bayesian approach to modeling evaporation
using atmospheric conditions and river 8'®0 and 8D yields results consistent with published water balance
models. Continued sampling of lake and meteoric waters in the Turkana Basin will be a useful way to monitor
the lake's response to regional and global climate change.

Plain Language Summary Lake Turkana is the largest desert lake in the world, in one of the hottest
and driest places on Earth. Studying and preserving the lake are important because people and ecosystems
depend on it, but information is lacking because it is remote and irregularly monitored. Most of the water in Lake
Turkana comes from the Omo River, which flows through the Ethiopian Highlands. Lake Turkana has no outlet;
therefore, evaporation is the only process that removes water from the lake. In this study, we analyzed samples
of lake water as well as rain, river, surface, and ground waters and developed a model that uses measurements of
oxygen and hydrogen stable isotopes in the water to help us understand how much evaporation occurs in Lake
Turkana. Future lake water monitoring efforts should consider stable isotope methods to record how the basin
hydrology responds to climate change.

1. Introduction

Lake Turkana is the largest desert lake in the world. It is the fourth largest of the African Great Lakes, located in
the eastern branch of the East African Rift System. Most of the lake lies in Kenya, and the dynamic Omo River
delta at the north end of the lake spans both sides of the border between Kenya and Ethiopia (Figure 1). Itis a
terminal lake with a surface area of 7,560 km? and a drainage area of 130,860 kmz, with most of its catchment in
the Omo Basin and canonically >90% of its input from the Omo River (Avery, 2012; Hopson, 1982; Nich-
olson, 2022; Obiero et al., 2022). The southern section of the lake is deepest, around 110 m, and the mean depth is
30 m with shallow shorelines that provide ideal habitats for fish reproduction (Carr, 2017; Hopson, 1982; Olaka
etal., 2010). Mean annual air temperatures in the Turkana Basin are among the hottest on the planet, around 30°C,
and lake surface temperatures are ~2°C lower (Morrissey et al., 2017; Passey et al., 2010; Yost et al., 2021).
While seasonal air temperatures do not vary greatly, rainfall is seasonal in the Turkana Basin and in the Ethiopian
Highlands (Johnson & Malala, 2009; Nicholson, 1996). Mean annual precipitation (MAP) in the basin is 200—
300 mm/year and falls mostly in the boreal spring and autumn, typical of the “short” and “long” rains prevalent in
eastern Africa (Levin et al., 2009; Nicholson, 1996; Olaka et al., 2010). Strong diurnal winds contribute to cir-
culation of water and vertical mixing in the water column, with temperature gradients that vary seasonally 1-3°C
(Hopson, 1982; Johnson & Malala, 2009; Kolding, 1992; Yuretich & Cerling, 1983). Because the lake is long but
shallow, lake surface temperature is consistent, with a gradient from north to south <4°C (Morrissey et al., 2017),
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and the blue-green algae that give the water its famous jade color are transported from the nutrient-rich Omo River
delta throughout the lake (Johnson & Malala, 2009).

In such hot, arid, and remote conditions, Lake Turkana provides resources for communities on the lakeshore and
surrounding areas. The water is too saline for people to drink, but livestock and fish depend on it. The estimated
population of the Turkana region is approximately 1 million people, whose livelihoods are based on pastoralism,
fishing, and, to a lesser extent, crop farming (Avery, 2014). Water resource management is complex, and a source
of both local and international conflict, as Ethiopia manages the Omo River and its catchment while Kenyans in
the Turkana Basin and Ethiopians in the Lower Omo Valley face downstream effects of dams and diversions
along the river. The Gilgel Gibe Dam project is part of Ethiopia's Climate Resilient Green Economy plan,
intended to provide electricity to tens of millions of people in Ethiopia, Kenya, Sudan, and Djibouti (Schap-
per, 2021). Human Rights Watch, an international non-governmental organization, estimates that hundreds of
thousands of indigenous people in the Lower Omo region have been displaced by development of sugar plan-
tations and flooding of their ancestral lands as the project reshapes the landscape (Horne, 2012). In addition to
modulating the volume of water flowing into the lake, damming changes the timing of flood pulses that deliver
water and sediment—an estimated 60%—65% of the water from the Omo River that enters Lake Turkana is
delivered during the river's flood stage (Yuretich & Cerling, 1983). Fish need these regular cycles of disturbance,
and there is a risk of fisheries habitat loss without dam and irrigation project management that considers
downstream ecological impacts (Gownaris et al., 2017). Monitoring water flux in the lake is therefore critical to
understanding how hydrologic changes in Lake Turkana's main tributary affect people's lives.

Three national parks surrounding Lake Turkana—Sibiloi National Park, Central Island National Park, and South
Island National Park—are designated as UNESCO World Heritage in Danger sites under threat of damage from
the Gilgel Gibe Dam project as well as other planned agricultural and transportation projects (UNESCO, 2018).
Hominin fossil sites surrounding the lake also draw international attention for the region and motivate paleo-
climate research in Turkana (Wood & Leakey, 2011). Archeological sites on paleoshorelines near modern Lake
Turkana contain records of the development of some of the earliest societies and cultures, including early burials,
monument building (Hildebrand et al., 2018), and warfare (Lahr et al., 2016). The basin has been a place of
change, adaptation, and development for people living around it for millions of years.

The water level of Lake Turkana has fluctuated 50-100 m during the Holocene, as the latest in a series of lakes
that have filled the basin (Bloszies et al., 2015; Feibel, 2011; Forman et al., 2014). The most recent high stand at
80 m above the current lake level occurred toward the end of the African Humid Period, about 6 ka (Garcin
et al., 2012; van der Lubbe et al., 2017). In the past 1,000 years, high stands have been limited to 20 m above
modern (Bloszies et al., 2015). Orbital forcing influences hydroclimate, with periods of low and high eccentricity
corresponding to changes in seasonal insolation (Lupien et al., 2020). Today, subtle changes in lake depth and
shoreline morphology affect the lake's ecosystems, specifically the fish populations that require shallow water
habitats (Gownaris et al., 2018). A decrease in lake level by 25 m or more would be catastrophic for fish, and a
decrease greater than 40 m would bifurcate the present-day lake and expose the lake bottom across the narrow
southern section (Carr, 2017).

Lake Turkana is unique among African lakes in that it is alkaline (pH = 9.3), saline (total dissolved
solids = 2500 ppm), shallow, and receives only negligible amounts of water from precipitation over the lake, so
studies of other basin-scale water balance in other rift basin lakes are often not applicable (Nicholson, 2022;
Yuretich & Cerling, 1983). Due to the difficulty in accessing the lake (i.e., one small commercial airport serves
the entire basin from Lodwar, Kenya), much of the current understanding of lake level dynamics is based on
remotely sensed data from the United States Department of Agriculture (USDA) and from surveys and
geochemical studies performed in the last 50 years. Satellite imagery is integrated from multi-year records and
different instruments, and the elevations recorded in remote data sets for Turkana are not referenced to geodetic
points, and thus problematic for mass balance analysis.

Stable isotope hydrology provides established methods for studying the water cycle at regional and global scales.
Rare, heavy isotopes of oxygen and hydrogen (‘*0 and *H, or D for deuterium) in water fractionate according to
predictable physical processes; during evaporation, molecules containing only lighter isotopes ('°0 and H) will
change phase preferentially, resulting in liquid water that is “enriched” in 'O and D relative to its source
(Criss, 1999; Dansgaard, 1964; Gat, 1995, 1996; Rozanski et al., 1992). Delta notation is an expression of the
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Figure 1. Sample location map for waters collected in the Turkana Basin from 2016 to 2021. The waters are shown as three
different symbols, simplifying the types of water collected for analysis. Lake water samples (green circles) were collected
from the lake shoreline. Lake Turkana appears as an aquamarine area in the center of the map with no topography. The north
end of the lake is characterized in this image by a transition from the blush-colored deltaic sediment plume to the rest of the
lake. Satellite imagery from MapTiler was enhanced for higher contrast. The map inset in the upper right places Turkana
within the national borders of Kenya and Ethiopia.

isotope ratios ('®0/'°0 and D/H in this case) compared to the same ratios in a reference material (Vienna Standard
Mean Ocean Water [VSMOW] for low latitude waters), given as %o (per mil):

5= (M— 1)>< 1000 )

Rstandard

Ratios of '#07'°0 and D/H in waters from lake catchments are sensitive to differences in water sources and the
extent of evaporation, so measuring 5'%0 and 8D in lake samples over time is a useful way to track the effects of
evaporation and change in mass balance. Knowing the isotope ratios of input waters thus enables an estimate of
evaporative losses because the relative enrichment of lake waters in '*0 and D is a function of what proportion of
water has evaporated; light isotopologues evaporate preferentially, increasing 8'%0 and D in the remaining
reservoir (Gat, 1995; Gibson et al., 2008). Deuterium excess (d-excess) is a measure of deviation from the
reference slope relating 8'®0 and 8D in global meteoric waters (Clark & Fritz, 1997; Dansgaard, 1964),
defined as:
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Deuterium excess = 6D — 85'%0 2)

Lake water isotope mass balance models use this relationship to evaluate the offset between evaporating lake
waters and meteoric source waters (Brooks et al., 2012; Gat, 1995; Gibson et al., 2016). The Global Meteoric
Water Line (GMWL) represents the linear relationship, with a slope of 8 (Equation 2) between 8'%0 and 8D under
the full range of Earth surface conditions. Notably, elevated & values in the Ethiopian Highlands were observed
when the GMWL was first established and applied (Craig, 1961). Recent isotope hydrology studies across the
region quantify trends and interpret stable isotope data from precipitation in Ethiopia (Bedaso et al., 2020; Levin
etal., 2009), aquifers and the Turkwel River system (Tanui et al., 2023), and the lake at Ferguson's Gulf, a shallow
body of water on the western shore (Beck et al., 2020), but water isotope data from Lake Turkana specifically
remain sparse. This study uses 5'%0 and 8D of natural waters from the Turkana Basin, including precipitation,
river waters, and the lake, to characterize water isotope variability in the remote, semi-arid region in and around
Lake Turkana, and thereby provide a basis for lake water stable isotopes as an indicator of overall basin hy-
drological balance.

In addition to its importance in modern Kenya, the Turkana Basin hosts a sedimentary record that extends back to
at least the Oligocene epoch (Morley et al., 1999) with authigenic carbonate minerals formed in the critical zone
(Gathogo & Brown, 2006; Rasbury et al., 2021), lacustrine sediments (Cerling et al., 1988; Feibel, 2011; Garcin
et al., 2012), pedogenic carbonates (Cerling, Wynn, et al., 2011; Levin et al., 2011; Passey et al., 2010;
Wynn, 2000), and fossil teeth (Cerling et al., 2003; Cerling, Levin, et al., 2011; Green et al., 2022; Harris
et al., 2008; Levin et al., 2006). A detailed understanding of stable isotopes in the modern lake also provides
context for the interpretations of paleoenvironments derived from stable isotopes of sedimentary rocks (Cerling
et al., 1988; Passey et al., 2010).

2. Materials and Methods
2.1. Sample Collection and Stable Isotope Measurements

Waters analyzed in this study were collected between September 2016 and July 2021 by the authors and col-
laborators working at the Turkana Basin Institute (TBI) Turkwel and Ileret field stations (Figure 1). Kale (‘“kah-
LAY”) Beach, our most frequently visited Lake Turkana water sampling site, is a section of eastern lake shoreline
approximately 35 km south of the Omo River delta. All lake samples from Kale Beach and other sites were taken
near shore, in areas where lake depth ranged from 1 to 2 m and within or just lakeward of the shore wave zone.
River water samples from the Turkwel River were collected close to the river's center line, where flow was
moderate, and water was at least 0.5 m deep. The Omo River was sampled from the shore near the town of
Omerate under low-flow, sediment-rich water conditions. Precipitation was collected opportunistically, as rainfall
sufficient to yield a ~2 mL sample was infrequent (Leakey et al., 2023). Available containers for rainwater,
mainly plastic, conical, graduated rain gauges, were monitored and emptied into vials immediately after rainfall
ceased in order to minimize surface evaporation from the collectors. Two of the precipitation samples were stored
overnight in vials that were loosely sealed (MSTI006, MSTIO08; Table S1); when analyzed, these samples were
shown to have abnormally low 8D values, and thus have been excluded from the discussion due to inconsistent
preparation and evident isotope fractionation following collection. Some precipitation samples were collected
from roof gutters at TBI-Ileret and TBI-Turkwel, or from an access point where rainwater flows from the roof into
the building cisterns. This style of collection implies that building roofs were saturated with rainwater, which is
only possible during a heavy rain event.

With exception of the aforementioned precipitation samples, water samples were collected using 5 ml plastic
syringes and filtered through 0.45 pm PTFE filters into 2 mL glass vials with phenolic cone displacement caps for
transport and storage. Vials were sealed in individual Whirl-pak bags to prevent evaporation or water loss during
transport, then sealed with parafilm upon return to the laboratory. Some samples, noted in Table S1, were not
filtered in the field but contained no visible algal growth or sediment (suspended or settled). These were filtered in
the laboratory before isotopic analysis.

Stable isotope ratios of oxygen and hydrogen in the filtered waters were measured in three facilities. Samples
collected in 2016 were measured by high temperature conversion elemental analyzer isotope ration mass spec-
trometry (TC/EA-IRMS) at the Boston University Stable Isotope Laboratory in early 2017, calibrated and
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corrected using IAEA OH-14, 15, 16. Samples collected from 2017 to 2020 were measured on a Picarro 2130i
cavity ring down laser spectroscopy (CRDS) analyzer coupled to a vaporization module and Picarro autosampler
at the University at Buffalo Organic and Stable Isotope Laboratory, run with three in-house standards. Data was
corrected using Picarro post run corrections and in-house standards according to van Geldern and Barth (2012).
Samples collected in 2021 were measured at the University of Michigan Climate Change Research Group on a
similar Picarro 21301 CRDS and corrected using Picarro ChemCorrect for VSMOW-SLAP scale calibration with
USGS reference waters USGS 45, 46, 49, and 50 and four in-house liquid standards (Aron et al., 2021). Precision
for measurements in all laboratories was better than 0.1%o for 8'%0 and 0.3%. for 8D.

2.2. Lake Evaporation Model

As a terminal lake, all water loss from Lake Turkana is evaporative. Using a 4000-year record of oxygen isotope
measurements combined with modern observed evaporation rates and environmental conditions, Ricketts and
Johnson (1996) established an isotope mass balance model for Lake Turkana. Their model showed that lake water
isotopes have fluctuated as a result of 10-20 m lake level changes, water source, and changes in the rates of inflow
and outflow. Because the lake does not appear to be sensitive to small fluctuations on the order of 2 m, we assume
the lake is at hydrogen and oxygen isotope steady state in our related modeling effort. Our new lake water
measurements do not capture variability with latitude or depth, but we are able to model boundary layer con-
ditions using a set of informative prior assumptions described in detail in Supporting Information S1. We build on
previous isotope mass balance studies by using a Bayesian approach along with present day lake conditions.

A local evaporation line (LEL) predicts isotope ratios in an evaporating body of water as a function of isotopic and
environmental inputs. We apply a simple mass balance model for large lakes (Gibson et al., 2016), adapted for the
basic environmental conditions of Lake Turkana. Our Bayesian approach produces an LEL from predicted lake
water isotope ratios for 8'®0 and 8D as follows:

8; + mx5*
o =——(% 3
L 1+ mx (%) ®)
where x is the ratio of evaporation over inflow (x = 1 in terminal lakes), §; is the isotope ratio of input (river)
waters, m is the enrichment slope at a specified temperature and humidity:

_rh—107%-(eg + e*/at) @)
T l—rh4+1073 g

and 6* is the limit of isotopic enrichment, the end-member composition as a body of water desiccates:

. rh-6, + eg + €t /a*
5 =
rh—1073 - (egx + et/at) (%o) )

rh is relative humidity expressed as a fraction between 0 and 1, e is the diffusion controlled fractionation at rh as
defined by Horita et al. (2008), and e*/a™ is the equilibrium isotopic separation over liquid-vapor fractionation
factor at a given air temperature (Horita & Wesolowski, 1994):

¢ = (a* —1)-1000 (6)

Temperature and relative humidity are primary controls for evaporation in any system, and in addition to the input
isotopic composition, the mixing of water vapors from the lake and atmosphere influences isotopic evolution from
source water to fully evaporated. §, represents the boundary layer vapor into which the lake evaporates, esti-
mated as:

(Sp - k€+

oA=L 107 ket

(%0) 7N
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where £ is the fraction (from O to 1) of isotopic equilibrium between the lake water and atmosphere such that
seasonal lakes are close to 0.5, and non-seasonal lakes close to 1; and the boundary layer vapor (5,) is assumed to
be in isotopic equilibrium with mean annual precipitation (Jp). For large lakes such as Lake Turkana, the value of
é, also evolves as lake water evaporates. Increasing moisture buildup affects ri, m, 6*, and lake evaporation (),
and thus the enrichment slope (Gibson et al., 2016; Jasechko, 2019). To account for this, we iterate solutions to the
following equations over a fraction of lake water evaporate (f) in the atmosphere:

8y =1 =f): 04 +f - 65(%0) ®)
where the value of §'; also evolves with changing i and &4 as follows:

(6 —eN)/(at = (rh-58,) — &)

1 _ }"h + (10_3 i E'k) (%0) (9)

5, =

Additional equations for mixed vapor values and increasing rh with f are provided in Supporting Information S1.
We estimate priors for environmental conditions and input isotope ratios from all available data (see Text S1 in
Supporting Information S1) and implement the series of equations above using the Bayesian inference Using
Gibbs Sampling (BUGS) language (Lunn et al., 2012). Details for the Markov-Chain Monte Carlo (MCMC)
simulation, including chain convergences and bivariate densities, are also provided in Supporting Information S1.

We tested the sensitivity of the model to bias in our sample locations (i.e., our data is concentrated in the northern
portion of lake) by adding 1%o to our measured 8'%0 and adjusting 8D along the LEL accordingly. This cor-
responds to the trend observed in a latitudinal study of lake water ostracods isotopes (Ricketts & Johnson, 1996;
Thirumalai et al., 2023). The estimate for f, the fractional contribution of lake water evaporation to rh (Equa-
tion 8), is sensitive to this change: as expected, f increases when lake water isotopes shift toward higher values.
Additional sensitivity tests and results are described in Supporting Information S1; these reveal that the model is
sensitive to the prior d values of inflow, precipitation, and lake water, and not sensitive to the prior distributions of
temperature, rh, or evaporative seasonality, k (Table S2 in Supporting Information S1). All code authored for this
study is available on GitHub (Yang et al., 2024).

3. Data

Samples collected by the authors and collaborators 2016-2021 (n = 133) include meteoric and groundwaters
(Table S1). Summary statistics for meteoric waters are shown below in Table 1. Figure 2 shows distributions of
different water types compared to the GMWL.

Stable isotope measurements from Lake Turkana are shown chronologically in Figure 3 with lake height data
from Global Reservoirs and Lakes Monitor (G-REALM) satellite altimetry and local precipitation measured by
TBI researchers and residents at both the Ileret and Turkwel field stations (Leakey et al., 2023). There is a notable
gap in sample collection between January 2020 and June 2021 due to work restrictions in response to the global
COVID-19 pandemic. During this same period, for reasons that are not yet well understood, the height of Lake
Turkana increased by approximately 2 m, causing major disruptions to lake shoreline communities. This increase
in the lake level corresponds to a change in volume of approximately 20 km® (9.8% of lake volume) according to
the lake height/volume relationship defined by Avery (2010). Such a trend was unexpected given both the drought
conditions and increasing water consumption for agriculture in Ethiopia along the Omo River; future sampling as
the lake level remains high (Figure 3a) and eventually recedes will be useful for understanding correlation be-
tween lake level and water isotopes.

4. Results
4.1. Precipitation and River Water Isotopes

The sources of water vapor and precipitation differ between the catchment of the Omo River in the Ethiopian
Highlands and the scant rainfall over and around Lake Turkana. Precipitation in Ethiopia is notably enriched in
'80 with low d-excess values, consistent with a recycled water source from the Congo Basin (Levin et al., 2009),
whereas water vapor in Turkana originates in the Indian Ocean and is transported inland by the Turkana Jet, a low-
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Table 1

Representative Values and Statistics for Meteoric Waters Collected From the Turkana Basin

Water source n Mean §'%0 5'%0 SD Min. 5'%0 Max. 8'%0 Mean 8D oD SD Min. 8D Max. 8D Mean d-excess
Lake 49 52 0.6 2.6 6.6 36.8 33 23.1 42.6 —4.6
Kale Beach 33 5.1 0.6 2.6 6.6 35.8 33 23.1 40.7 —4.7
Koobi Fora 5 5.5 0.3 5.2 5.9 38.8 0.9 37.3 39.7 =5.1
Eliye Springs 3 52 0.2 5.0 5.5 389 2.1 36.5 40.3 —2.6
Nariokotome 2 52 0.6 4.8 5.6 38.0 3.0 359 40.1 -3.6
Sericho 2 6.1 0.3 59 6.4 422 0.5 41.9 42.6 —6.9
11 Eeriet Delta 1 5.5 39.8 —4.0
Il Kimere Delta 1 5.6 40.0 =5.0
Topernawi 1 4.7 322 —55
Tulu Bor Delta 1 5.2 37.3 —4.5
Delta 6 —0.3 1.1 —0.6 2.2 52 43 32 14.0 6.3
Kerio River Delta 1 2.2 22 2.2 14.0 14.0 14.0 —3.7
Turkwel River Delta 5 —0.6 0.0 —0.6 —0.6 35 0.2 32 3.6 8.2
River 13 -0.9 1.3 -3.4 1.4 0.1 10.3 —26.2 10.3 7.5
Turkwel River 10 —0.7 1.1 =22 1.4 1.8 6.4 -8.0 10.3 7.7
Omorate 1 —-0.4 8.9 11.8
Topernawi 1 —34 —26.2 0.9
Precipitation 28 0.9 23 -3.0 5.9 9.9 15.1 —26.3 36.4 3.1
TBI-Ileret 26 0.8 23 -3.0 5.9 9.2 15.3 —26.3 36.4 3.1
TBI-Turkwel 2 22 1.7 0.9 3.4 19.7 5.3 16.0 235 2.5

Note. All § values are reported in the %o notation relative to VSMOW.

level jet stream. The jet creates strong winds across approximately 700 km of low elevation desert terrain from the
Indian Ocean to South Sudan, northwest of Lake Turkana, known as the Turkana Channel (Munday et al., 2022;
Nicholson, 2016). When the jet is at its strongest during the boreal summer, rainfall is limited. The long and short
rains occur in the transition seasons when the jet is weaker and more vapor rains out in the Turkana Channel
(Munday et al., 2022; Vizy & Cook, 2019). In Ethiopia and Kenya, these seasonal patterns depend on the stability
of broader regional, continental, and marine climatological cycles. Precipitation records from years prior to the
range of this study (Leakey et al., 2023) and local observations (Derbyshire et al., 2021; Junqueira et al., 2021)
indicate the regional climate is trending toward decreased annual rainfall, less pronounced seasonal rains, and
longer droughts.

Mean isotope ratios for precipitation are 8'*0 = 0.9%o and 8D = 9.9%., comparable to those published by Levin
et al. (2009) for northern Kenya (mean 8'*0 = —0.6%. and 8D = 10.1 %o). While isotope ratios of precipitation
have a broad range (8.9%o for 8'%0 and 62.6%o for 8D), most fall below the GMWL, which may indicate sub-
cloud evaporation under arid conditions with high winds (e.g., we have occasionally observed virga, an end-
member case of precipitation evaporation, while conducting field campaigns in Turkana). For those precipita-
tion samples that have rainfall amounts recorded on the day of collection (n = 16; these are not directly associated
measurements), the highest 5'%0 and 8D values are associated with precipitation rates below 25 mm/day
(Figure 4). Eight samples represent rain events <10 mm, and all but three are <30 mm.

Omo River isotope values published by Levin et al. (2009) include two samples from September 1979, one from
1999, and two from 2004, one of which does not include a 8D value. All samples were taken from the river near
Shungura, approximately 30 km north of the lake. The ranges of reported values for Omo River §'%0 and 8D are
—2.9-0.5%0 and 4.0-17.3%o, respectively, but because the collection dates in 1979, 1999 and 2004 are unknown
we do not know to what degree that range reflects a combination of inter- or intra-annual variability. This study
includes one sample (V02) obtained from the river approximately 20 km north of the lake at Omorate in 2016. Our
Omo River sample (6'0 = —0.4%o, 8D = 8.9) was collected between the long and short rains, during the boreal
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Figure 2. Water isotope measurements from this study shown with Global Meteoric Water Line and sample data from Levin et al. (2009) from northern Kenya and the
Omo River (gray data points). Note that the x- and y-axes differ for each sub-plot.

midsummer, thus it is likely our single measurement neither reflects the lowest seasonal & values expected during
the rainy seasons nor the highest seasonal values expected during the boreal winter dry season. We were unable to
sample the Omo River extensively for this study due to geopolitical conditions at the border and in Ethiopia.

The majority of river water measured in this study was sampled from the Turkwel River at the TBI-Turkwel
research center, approximately 30 km east (lakeward) from Lodwar, Kenya. Mean 8'0 and 8D for the Turk-
wel are —0.7%o0 and 1.8%o respectively (Table 1). The temporal resolution of this data is too low to resolve
interannual or seasonal trends, which might be expected because of the reduced incidence of heavy rain events
after early 2019 in the local precipitation data sets (Figure 3b; Leakey et al., 2023). The Turkwel River is the
second-largest input into Lake Turkana, and reliable access at multiple points (e.g., Lodwar, Kenya and the TBI-
Turkwel facility) enables an ongoing sampling campaign that will extend beyond the temporal range of this data
set. New analysis of stable isotope measurements from the Turkwel River at Lodwar demonstrates the importance
of the Turkwel in recharging the shallow alluvial aquifer, especially during the wet season (Tanui et al., 2023).
Because the river integrates precipitation isotopes, river water measurements can also be a proxy for precipitation
isotope values over time in the Turkwel River watershed, where precipitation collection is challenging.

4.2. Groundwater Isotopes

Groundwaters were collected opportunistically during geologic field work from natural water holes, hand-dug
wells, drilled wells, and tap water at the TBI research centers (Figure 1). Average &'0 and 8D for all ground-
waters (n = 20) are 0.4%o0 and —4.6%o, respectively. One groundwater sample had anomalously high values—
19.0%0 8'80 and 19.7%o 8D, respectively. This sample was collected from a saline well, unlike every other
sample. Most samples plot along the GMWL, overlapping with rainwater and river samples (Figure 2), yet the
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Figure 3. (a) Lake water elevation (in meters above sea level or masl) from G-REALM satellite remote sensing product for Lake Turkana (USDA/NASA G-REALM,
2023). (b) Precipitation recorded at TBI research centers (Leakey et al., 2023). (c) Precipitation 8'%0. (d) Lake Turkana 8180. (e) d-excess from precipitation and lake
water measurements. There is a notable data gap in lake water data from 2020 to mid-2021 because of COVID-19 pandemic travel restrictions.

broad range in ground and tap water isotopes — 8'%0 ranges —5.7-19.0%o and 8D ranges —33.1-19.7% —
reflects variety in groundwater sources. Tap water at TBI-Ileret is pumped from a borehole approximately 140 m
deep and reaches the surface at elevated temperatures. The average values for Ileret tap water (n = 3) are
8'%0 = 3.1%0 and 8D = —11.0%o, an offset from the GMWL that indicates water-silicate interactions at high
temperatures (Criss, 1999; Jasechko, 2019). This is also consistent with internal water quality assessments of this
well that found concentrations of F, CI, and Na 20-800 times higher than natural spring waters in the western part
of the Turkana Basin (e.g., Eliye Springs). The sample from a saline well at Lothagam (MSTI014) is an example
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of the extent of rock-water oxygen isotope exchange observable in Turkana, with 8'0 offset over 17%o from the
GMWL. In contrast, ground and tap waters from the Turkwel River watershed fall along the GMWL (Figure 2)
and closely match meteoric waters because the shallow reservoirs are not likely influenced by geothermal fluids.
Three of the surface and ground water values are lower than the lowest measured precipitation or river water
values, implying either a source for those fluids that is less evolved than the typical Indian Ocean water vapor that
contributes most of the region's meteoric waters (Levin et al., 2009) or an ancient meteoric water source that
reflects climate conditions different from present day, for example, during the African Humid Period when the
lake shoreline was 70 m higher (van der Lubbe et al., 2017) under a more mesic hydrologic regime covering the
rift basin in most of eastern Africa (Tierney et al., 2011). A recent study of groundwaters in the Lodwar Alluvial
Aquifer System identifies three distinct isotopic signals—shallow, intermediate, and deep—with no apparent
connections to the lake (Tanui et al., 2023). Tap waters from TBI-Turkwel ranged from 8'%0 = —1.3 to —2.3%o,
consistent with their shallow aquifer values (6'0 range = —2.92-0.25%), while two samples retrieved from
hand-dug wells (8'%0 = —3.4 and —5.7%¢) may represent the “Scoop Holes™ category in their study (5'%0
range = —3.95 to —1.75%0) or have a more negative source that falls outside of their study area (ibid.).

4.3. Lake Turkana Isotopes and Model Results

Of the 49 samples from Lake Turkana, 33 were collected at Kale Beach along the northwest shoreline (Figure 1).
Mean values at Kale Beach are §'30 = 5.1%0 and 8D = 35.8%o, and 8'%0 = 5.4%0 and 8D = 38.3%e for all other
sites combined. All sites are in the northern half of the lake except for Eliye Springs Resort (n = 3). The lowest
values measured were 5'%0 = 2.6%o0 and 8D = 23.1%o, from a sample collected at Kale Beach the day after a
heavy rain (34 mm measured at TBI-Ileret). The highest values were also obtained from Kale Beach and Sericho,
another northern site (8'®0 = 6.6%¢ and 8D = 40.7%o, 8'*0 = 6.4%, and 8D = 42.6%o respectively). We derived
an LEL for Lake Turkana using the isotope mass balance model for steady-state, terminal lakes described above
(Section 2.2), and our results show that this model produces well constrained estimates of environmental pa-
rameters that are consistent with our lake water data. The slope of the LEL (5.39) is steeper than Gibson
et al. (2016) predict for low-latitude, arid lakes, and closer to their temperate, large lake slope because of the
inclusion of lake water evaporation-derived atmospheric moisture (Equations 8 and 9). Our result is consistent
with findings from a review of global lake water isotope measurements that estimated slopes of 5.4 for lakes in
arid environments (Vystavna et al., 2021).
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Figure 5. Lake water data with modeled distribution of inflow along the LEL (slope = 5.39). Dashed gray lines are confidence intervals for the model LEL. The cloud of
blue data points shows model posteriors for river input § values; posteriors for evaporated lake water are obscured behind the data points. All posterior distributions,
including environmental parameters and isotope values for simulated vapor, are detailed in Supporting Information S1.

5. Discussion and Conclusions
5.1. Implications of Model Results

The Bayesian model explores all possible combinations in the multivariate parameter space, so the posterior
distributions of some parameters may differ from their priors when the model is evaluated against the data. These
deviations indicate how well constrained the parameters are, as well as any biases in the prior parameter esti-
mations. Figure 6 shows comparisons between prior and posterior distributions in selected parameters; most
posterior distributions conform to priors, with small differences observed for relative humidity, 5'%0;, 618Op, and
8D,,. The difference between our prior estimate of 0.6 for upwind ri (Hopson, 1982) and posterior (0.8) most
likely indicates higher r# for air above the lake surface (Figure 6b), and the further increase in downwind 7/ shows
the effect of moisture accumulation in the air over the lake (Figure 6c). The posterior &'20; values are lower than
our priors, and centered above the GMWL, whereas the measured river waters are along or below the GMWL
(Figure 5). This shift may be explained by the overall lack of constraints on §; (see Text S1 in Supporting In-
formation S1 for more discussion of this prior) and could be ameliorated by future stable isotope measurements
from the Omo River. We also observe lower & values in the posterior estimates for J,, (Figure 6f), which may
indicate that the assumption of equilibrium between atmospheric vapor and amount-weighted MAP may not hold
true in the Turkana hydrological system.

In recent decades, annual fluctuations in lake level as observed in satellite imagery amount to about 1-1.5 m of
evaporative loss, or 7.6-11.3 km*/yr (Obiero et al., 2022), ~40% of the volume of annual inflow (19 km>/yr).
By demonstrating the efficacy of the model in predicting f, thus constraining the lake evaporation process using
isotope mass balance, we provide a new approach for interpreting water isotopes in Lake Turkana. More work
is required to validate the model results using direct measurements of r2 above and adjacent to the lake, lake
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Figure 6. Comparisons between prior and posterior distributions in selected model parameters. LST (a) refers to lake surface temperature, r# is the relative humidity of
the atmosphere overlying the lake water surface, k is a parameter describing the degree of isotope equilibrium between precipitation and water vapor isotope ratios
(commonly assumed to be 1 in non-seasonal settings), and inflow 5'®0 includes the mass balanced isotope value of all riverine inputs.

water isotope measurements at more latitudes, water vapor isotope measurements, and precipitation isotope
measurements from over and immediately around the lake. Improving constraints on inflow water isotope
values is especially important, and more measurements of the Omo River in particular would help refine the
priors. Despite some uncertainties in model parameters and inconsistency between prior and posterior distri-
butions, our results are encouraging in that the steady-state evaporation model is fairly consistent with our
measured isotope values.

5.2. Model Applications and Future Studies

The LEL for Lake Turkana is a useful tool for interpreting lake water stable isotope ratios in the hot, arid, tropical
environment of the basin. This data set represents the beginning of an ongoing campaign to regularly measure
stable isotopes in and around the lake, and changes in the water balance may be detectable if measurements of lake
water move along the LEL. Because of the difficulty of installing gauges and other instruments, the addition of
this mass balance method is a valuable contribution to monitoring efforts. Including triple oxygen isotope analysis
of archived and future samples would also inform our model assumptions, allowing for more in-depth
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interpretations of moisture source and evaporative effects (Bershaw et al., 2020; Beverly et al., 2021; Passey &
Ji, 2019).

Lake Turkana is not a source of drinking water for people, but it is linked to water resource questions through the
rivers and dams in its basin. The data collection efforts initiated in the course of this study will produce time series
isotope data for the Turkwel River, management of which is expected to adapt to a growing urban population, and
for groundwater taps and wells. Droughts have occurred periodically for at least the last several million years,
occasionally restricting availability of surface water including the Turkwel (Cohen et al., 2022). Present-day
pastoralists dig both deep and shallow wells, access to which may be managed through longstanding cultural
traditions (M’Mbogori et al., 2022). Shallow ground sources are more likely to be recharged during floods, but
deep reservoirs that may sustain communities in times of drought contain ancient water that is not replenished on
annual, decadal, or century timescales (Thomas et al., 2019). Unsustainable wastewater management practices
and hydraulic fracturing also threaten the quality of groundwater accessible to local communities (Mbugua
et al., 2022). Because deep and shallow groundwaters are isotopically distinct, regular isotope measurements of
drinking water can provide insight into how groundwater consumption and management are affecting resource
availability. Further, longitudinal monitoring efforts may be able to elucidate temporal or end-member mixing
changes not captured by water chemistry or utilization rates alone.

The Bayesian approach to stable isotope mass balance of lakes should be tested in other systems. This method
may provide the same utility in other lake systems and demonstrate similarities and differences between large
lakes around the world. The focus on evaporation is especially relevant in arid zones, and the model can be
expanded to evaluate mass balance in lakes with outflow (Gibson et al., 2016; Vystavna et al., 2021).

5.3. Consequences for Geologic Records and Paleohydrology

A comprehensive modern isotope hydrology data set and lake water isotope mass balance model will enable more
detailed interpretations of paleohydrology from geological proxy data sets, including stable isotope measure-
ments from lacustrine carbonates, soil carbonates, and fossil teeth.

Ostracods, microscopic crustaceans that live at the bottom of the lake and form calcium carbonate shells,
provide some of the paleohydrology records for Lake Turkana (Beck et al., 2020; Feibel & Brown, 1992).
Isotopic analysis of modern ostracods show a latitudinal trend of increasing '®0 enrichment with distance from
the Omo River delta (Thirumalai et al., 2023), which was not observable in this study because of the
infrequent and localized distribution of water sample collections. It would be difficult to establish a similar
trend from our data set because the majority of our lake water samples represent the northern end of the lake
(Figure 1). Consistent circulation, deposition, and upwelling patterns distribute water from its sources
throughout the lake (Ziinescu et al., 2023), so we expect spatial variability in 'O to also remain consistent
from year to year.

In the ecosystems surrounding the lake, small nodules of soil carbonate integrate climate signals over thousands to
hundreds of thousands of years (Machette, 1985; Passey et al., 2010). Soil carbonates incorporate oxygen from
meteoric water via soil water, and the mineralized oxygen is enriched in 'O by evaporation in the soil column,
then by fractionation during carbonate precipitation (Cerling & Quade, 1993). Paleosol water '%0 can be
calculated using carbonate 5'%0 and estimates of formation temperature from clumped isotopes (Passey
et al., 2010; Quade et al., 2013). In the Plio-Pleistocene Shungura and Nachukui Formations, mean estimated soil
water is 8'%0 = 1.07 + 0.6%o (1o sd; Passey et al., 2010), slightly higher than present mean precipitation
(Table 1). Modern soil water is prohibitively difficult to sample in Turkana given the infrequency of rain events
sufficient to saturate the soil column, however soil water 8'®0 can be calculated as a function of precipitation and
surface water isotopes, depth, and rates of evaporation (Fischer-Femal & Bowen, 2021). Effects of evaporation
vary from surface waters to soil water, but estimates of both are useful in evaluating aridity of a landscape
(Beverly et al., 2021; Cerling & Quade, 1993). By comparing modern precipitation and surface waters with
paleosol carbonates, which show a trend of aridification over the past 2 Ma (Levin et al., 2011; Passey
et al., 2010), we can develop a water source history in Turkana and refine regional climate reconstructions.
Developments in triple oxygen isotope analysis and modeling will further enhance the carbonate paleoclimate
proxy, and availability of modern models and data for validation will be critical for improving proxy calibration
(Jones et al., 2005; Kelson et al., 2017).
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Much of the groundbreaking work in paleoecology in Turkana has focused on records from fossil teeth, estab-
lishing methods for estimating meteoric 8'%0 through time by making comparisons between 8'®0 in teeth of
different animals (e.g., hippopotamids that live in the water vs. bovids that are not obligate drinkers) (Cerling
et al., 2003). Together, the tooth enamel isotopes of multiple taxa provide an aridity index that enables a robust
climate reconstruction (Levin et al., 2006). Increasingly sensitive analytical methods have enhanced the reso-
lution of tooth enamel &'®0 to fine temporal scales that show seasonal changes in primate diets, indicating
variability of water isotope composition across the landscape and over time (Green et al., 2022). Extending these
records to modern times shows the shifts in regional climate conditions through the Neogene, and analyzing the
effects of evaporation is particularly important for interpreting isotope measurements from the teeth of animals
who may consume these evaporated waters.

New water isotope records for Lake Turkana and its watershed provide comparisons for paleo proxies that
surround the fossils of our earliest ancestors. Variability of the lake and its fauna are part of the story of hominin
evolution (Trauth et al., 2010), and in recent history, the timing of flood recession and harvest has been consistent
enough for farmers and herders to structure their annual production cycles accordingly (Derbyshire et al., 2021).
Now, geopolitics of resource management coupled with social and ecological change have altered these patterns.
The lake has been vital to hominin communities for millions of years, and today more people than ever depend on
it. As basin hydrology responds to rapid changes, analyzing stable isotopes from meteoric waters by modeling
evaporative processes will provide a necessary dimension for understanding the effects of climate change on Lake
Turkana. This record and the model approach establish a modern baseline for understanding this unique, water-
limited environment.

Data Availability Statement

Previously published water isotope data are available as Supporting Information S1 with Levin et al. (2009). Lake
Turkana height data courtesy of the USDA/NASA G-REALM program at (https://ipad.fas.usda.gov/cro-
pexplorer/global_reservoir/). Precipitation records from TBI field stations is available via the Stony Brook
University Academic Commons (Leakey et al., 2023). Version 0.1.3 of our “Bayesian approach for modeling
Lake Turkana water isotopes” code is available on GitHub under a GNU General Public License v3.0, see Yang
et al. (2024).
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