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ABSTRACT

Understanding interparticle interactions has been one of the most important topics of research in the field of micro/nanoscale materials.
Many significant characteristics of such materials directly stem from the way their building blocks interact with each other. In this work, we
investigate the efficacy of a specific category of Machine Learning (ML) methods known as interaction networks in predicting interparticle
interactions within colloidal systems. We introduce and study Local Neighborhood Graph Neural Networks (LN-GNNs), defined according
to the local environment of colloidal particles derived from particle trajectory data. The LN-GNN framework is trained for unique categories
of particle neighborhood environments in order to predict interparticle interactions. We compare the performance of the LN-GNN to a
baseline interaction network with a simpler architecture and to an Instance-Based ML algorithm, which is computationally more expensive.
We find that the prediction performance of LN-GNN measured as an average normalized mean absolute error outperforms the baseline
interaction network by a factor of 2–10 for different local neighborhood configurations. Furthermore, LN-GNN’s performance turns out to
be very comparable to the instance-based ML framework while being an order of magnitude less expensive in terms of the required compu-
tation time. The results of this work can provide the foundations for establishing accurate models of colloidal particle interactions that are
derived from real particle trajectory data.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0175062

I. INTRODUCTION

Interacting particles are present everywhere around us, from
biological systems1–8 to synthetic materials of different sizes and
scales.9–16 Therefore, elucidating the governing laws of particle inter-
actions is a critical aspect of many scientific fields. Such interactions
can be affected by a plethora of factors in complex ways depending
on their specific composition and the overall environment surround-
ing them. For example, one of the important topics in the area of
soft matter is understanding interparticle interactions between
micro/nanoscale colloidal particles, which provide the building
blocks for a variety of metamaterials with many applications in elec-
tronic, optical, and energy harvesting systems.17–22 The interactions
between colloidal particles are crucial in directing their self-assembly
process, as well as in determining structural features and the overall
properties of colloidal metameterials for various applications. Most

of the past studies on this topic have used empirical interaction
potentials or simplified coarse-grained models of colloidal
interactions.23–27 Such simplified interaction models are known to
become less accurate as the relevant systems get more complex.
Additionally, the use of more precise methods, such as first-
principles calculations, becomes computationally impractical for par-
ticles with sizes in the range of a few hundred nanometers.

More recently, a number of studies have targeted the predic-
tion of particle interactions based on particle trajectory data, i.e.,
measured spatial coordinates and velocities of the particles.28–33

Such methods typically aim to infer particle interaction profiles, or
particle forces, from particle trajectories, which are, in principle,
dictated by the physics of particle interactions. Data-driven and
machine learning (ML)-based approaches have been shown to
provide a versatile platform for this purpose. Recent studies in this
area have introduced ML-based Interaction Networks (INs) that
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have demonstrated successful prediction of particle interactions for
a variety of objects and systems, such as rigid body motion,
deformable solids, and fluids.34–46

Motivated by this recent pioneering work, we investigate the
problem of predicting interparticle interactions within micro/nano-
scale colloidal particle systems. We note that for colloidal particles,
interparticle interactions are typically determined through surface
functionalizing groups facilitating interactions that act over a rela-
tively short range compared to particle sizes. Several examples of
this interaction mechanism can be found within systems of
DNA-coated18,47 and ligand-covered nanoparticles,10 which have
been shown to create a wide variety of metamaterial structures. The
nature of the interaction between these building blocks involves
specific regions of the surface of each particle interacting with
nearby surfaces of neighboring particles so that the surface func-
tionalizing groups can facilitate contact between neighboring parti-
cles.10,16,48,49 This means particle interactions can be predicted
through studying the local neighborhood of each particle. To this
end, we define a machine learning framework that adopts a graph
representation of colloidal particle systems and uses topological
and compositional information about the local neighborhood of
each particle, obtained from particle trajectory data, to train a
graph neural network that can predict colloidal particle interac-
tions. This framework, termed Local Neighborhood Graph Neural
Network or LN-GNN in short, trains a ML algorithm to predict col-
loidal interaction forces by categorizing the local neighborhood of
colloidal particles through defining physically relevant node and
edge features to create a graph representation of the system.
LN-GNN provides a concise framework that only utilizes informa-
tion about the position of colloidal particles and provides a predic-
tion of the net force acting on the particles. As a result, this
method eliminates the need for pairwise calculations that are com-
putationally demanding, and scales according to the cost of build-
ing a neighbor-list, i.e., � O(N) for a system with N particles.
Additionally, this framework is free of simplifying assumptions
about particle interactions as it considers particle trajectories
directly influenced by the physics of the systems. We note that such
particle trajectories can be measured experimentally, as the use of
real-time video microscopy has been a common practice in study-
ing the assembly of micro/nanoscale colloids.50 Analogous tools for
probing self-assembly dynamics of micro/nanoscale objects have
also been developed by recent advancements of the liquid-cell TEM
technique,51–55 which can provide an opportunity to experimentally
determine the trajectories of colloidal particles. Therefore,
LN-GNN can provide the advantage of capturing interparticle
interactions based on experimental data acquired from tracking of
colloidal particle motion.

II. METHODOLOGY AND FRAMEWORK

We begin by first describing the overall scheme of the study.
Considering a number of colloidal particles interacting with each
other, our goal is to define and utilize a machine learning-based
model, generally known as an Interaction Network (IN), to predict
the colloidal particle interactions according to the surrounding
environment of the particles. Ultimately, the output of the model
will be the net force acting on a colloidal particle while the input is

composed of information about the local neighborhood of the par-
ticle. In other words, the trained ML model will predict the forces
acting on a particle solely based on its surrounding environment.
In order to provide the required training data for the ML frame-
work, we use particle tracking information, i.e., the x, y, and z coor-
dinates of each particle over time, which will be used to obtain
particle accelerations and the desired data about particle interac-
tions. Without loss of generality, we will consider particle tracking
data obtained from Molecular Dynamics (MD) simulations;
however, we note that particle tracking data obtained from experi-
mental measurements, as mentioned above, can also be used within
the same framework proposed in this study.

We now introduce the basics of the LN-GNN framework.
Since particle interactions within systems of interest, i.e., micro/
nanoscale colloidal particles with specific surface functionalization,
are dominated by the interactions with neighboring particles,
LN-GNN will derive predictions of interparticle interactions by
relying on each particle’s spatial configuration relative to its neigh-
bors. Figure 1 shows a schematic demonstration of this framework,
which involves inferring information about particle neighborhood
and forces acting on each particle based on particle trajectories.
Considering time-series information obtained from tracking parti-
cle coordinates, a dataset can be established that includes features
about each particle and the list of its neighboring particles. These
features can then provide input information to a machine learning
algorithm that will be trained to predict forces acting on each parti-
cle. We note that in order to represent the interactions within a
system of colloidal particles, a suitable framework can consist of a
coarse-grained interaction model that delivers the net force acting
on each specific particle, as sketched by the Fnet vector for a sample
particle colored in pink in Fig. 1. The choice of the net force on
each particle, i.e., the cumulative force acting on the particle due to
its interaction with all its neighbors, as the desired output of the
ML-based framework will enable the prediction of the overall ther-
modynamic/kinetic behavior of such particles. Training LN-GNN
requires a set of input data obtained through tracing particle posi-
tions over time. In order to generate an appropriate dataset for
training this ML framework, we generated particle trajectories
through molecular dynamics (MD) simulations of different mix-
tures of colloidal particles. The systems included in the dataset are
one-, two-, and three-particle type systems with similar coarse-
grained particle sizes. We additionally included a two-particle type
system with two different particle sizes in the dataset. The MD sim-
ulations were conducted over 50 000 timesteps, providing tens of
thousands of unique particle configurations for examination within
this study. Detailed information about the dataset generation is
provided in the supplementary material.

Considering a group of colloidal particles interacting with
each other, particle trajectories can be monitored as a function
of time, i.e., over a number of time steps. For each particle, such
as the central pink particle shown in the second panel of Fig. 2,
we detect its local neighborhood by finding all the particles
within a cutoff distance of 1:3 times the equilibrium average
diameter of the two particle types. Each particle (I) can then be
considered as a central node in a graph, connected to each of its
neighboring particles (j) with an undirected edge, as shown in
Fig. 2.
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In this representation, each neighbor particle j will be assigned
a feature vector vj, composed of the average size of particles I and j,
along with the relative position of j with respect to the central node
I, i.e., vj ¼ hdIj, xj � xI , yj � yI , zj � zIi with dIj representing the
average diameter of the two particles. Each edge of the local neigh-
borhood graph represents the connection between the central node
(I) and one of its neighbors (j), which will be described through an
edge feature vector uIj. The edge feature vector is used to describe
the type of the interaction between particle I and its neighbor j.
Without loss of generality, here we assume uIj represents the type
of the two particles I and j. This is specifically a good assumption
for colloidal particle interactions. For example, in a binary mixture
of colloidal particles of types A and B with two different types of
surface functionalization,48 there could be three interaction types

present in the system: A� A, B� B, and A� B. We will mark the
different interaction types with a uniquely assigned numerical
embedding value normalized between 0 and 1. As an example, in
the case of a binary system of colloidal particles, uIj ¼ h0:0i,
uIj ¼ h0:5i, and uIj ¼ h1:0i will represent A–A (green–green edges
in Fig. 2), A–B (green–blue edges in Fig. 2), and B–B (blue–blue
edges in Fig. 2), respectively. Once the node and edge feature
vectors are set, we will combine all the data into a 2D feature
matrix, where each row is made up of the concatenation of the cor-
responding node vector and the corresponding edge feature, i.e.,
vj � uIj for j [ 1, 2, . . . , NIf g, with NI representing the number of
the neighbors of particle I. This feature matrix is then fed through
a convolutional layer, which utilizes a 1� n feature kernel, with
n feature representing the total number of the concatenated node and

FIG. 1. Schematic of the framework for learning interparticle interactions of colloidal particles: prediction of net force on each particle based on its neighboring particles
can lead to understanding assembly and properties of colloidal systems. Color coding reflects the variety of particle types and different features that can be studied within
this framework.

FIG. 2. Proposed framework of Local Neighborhood Graph Neural Networks (LN-GNNs) to learn interparticle interactions within colloidal particle systems. This sketch
depicts the extraction of interaction feature matrices from particle coordinates and the model architecture that predicts the corresponding net force on each particle. The
blue and green colors represent the two existing particle types in a sample binary system. The central particle, colored in pink for distinction, can represent any desired
particle in the system.
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edge features, i.e., the size of the vj � uIj vector. The result of the
convolutional layer is then flattened and passed to a fully con-
nected, multilayer perceptron (MLP) to generate the output layer
representing the net force on the central particle, i.e.,
FI ¼ hFI

x , F
I
y , F

I
zi. The LN-GNN framework may be utilized for pre-

dicting structure and properties of a variety of colloidal systems.
For dilute solutions of colloidal particles, typically a lower number
of neighboring particles are expected, and for crystalline phases, a
larger number of neighbors are expected. Since LN-GNN is trained
for each category (each value of NI ) based on exclusive training
data, the framework can be effectively used for all different scenar-
ios. Additionally, the same framework can be generalized to be
used for other types of systems composed of discrete particles. It is
noteworthy that for systems where the effective interaction range is
larger than typical particle sizes, the input parameters of the
LN-GNN algorithm need to be adjusted to include the features of
additional neighboring particles beyond the nearest neighbors.

III. RESULTS AND DISCUSSION

After defining the LN-GNN method, we now discuss the
training and evaluation process. First, the data generated earlier are
sorted and separated based on the number of neighboring particles,
i.e., the number of graph nodes in each case (NI). We will then
train and validate a LN-GNN for each NI value using the corre-
sponding dataset for the specific NI value. It is important to note
that any one central particle can have up to 12 nearby particle

neighbors due to the coordination number shared by all particles
across all systems, i.e., for the systems we consider in this study
1 � NI � 12. As a result, 12 separate, yet architecturally similar
LN-GNNs are created to handle the unique dimensionalities that
local neighborhoods can take on, as shown in Fig. 3(a). For every
system of interest, 12 sets of approximately 10 000 data points were
collected, and each set was used for training and validation of the
ML algorithm with the corresponding number of neighbors.
During model training, 90% of data collected—roughly 9000 data
points per model—were used for training of the model. The
remaining 10%—roughly 1000 data points—were used for model
validation.

After the ML algorithm is trained and validated, we used a sep-
arately generated dataset to evaluate the prediction accuracy of the
LN-GNNs (see details in the supplementary material). Figure 3(b)
demonstrates the prediction analysis scheme of the LN-GNN: for
each single prediction attempt, a sample particle P is considered and
its local neighborhood graph is established consisting of its NP

neighbors. Following this step, the corresponding trained algorithm
with the same number of neighbors, i.e., LN� GNNNP , is utilized to
produce the prediction for the net forces acting on particle P. For
evaluation of all the training, validation, and prediction steps, we use
an average value of the mean absolute error defined as
MAE(F̂, F) ¼ 1

ndata
1
np

P
s[D

Pnp
I¼1 l1(F̂

s
I , F

s
I), where s represents a data

point belonging to the dataset D of size ndata, and l1(F̂sI , F
s
I) repre-

sents the sum of absolute differences between the x, y, and z

FIG. 3. Training/validation (a) vs prediction (b) schemes of interparticle interactions with the LN-GNN framework. The blue/green and pink/yellow colors represent the two
existing particle types in sample binary systems.
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components of the true force F̂sI and the predicted force FsI on parti-
cle I. Further details on the specific choices of parameters and
various layer sizes of the LN-GNN as implemented in Tensorflow56

are provided in the supplementary material.
Following the framework explained above, we first train the

different categories of LN� GNNNI using the training and valida-
tion datasets. The average training and validation errors for all NI

values and all the four system types discussed above, i.e., single-
type, binary, ternary, and binary-with different particle sizes, were
observed to be below 0:08, or below 8% of the maximum force, as
detailed in the supplementary material. We then used the indepen-
dent prediction dataset to evaluate the prediction accuracy of the
LN-GNN. The normalized-MAE values in Fig. 4(a) show the pre-
diction accuracy for different LN� GNNNI categories with
NI ¼ 1, 2, . . . , 12. We observe that the prediction error is smaller
for smaller NI values, which is consistent with the fact that the
dimensionality of a low neighbor network number is smaller than
that of the higher neighbor network numbers. In essence, the
spatial distribution of the neighboring particles and the resulting
interactions are less complex when there are fewer neighbors of the
central particle, thus resulting in a lower prediction error. The
trends also show that in the case of a binary system of particles
with different sizes, the prediction error is larger for smaller
number of neighbors, e.g., NI ¼ 5 or 6, compared to other cases
with same-size particles. This is due to the fact that variations in
particle sizes complicate the morphology and the geometry of the
local neighborhood of the central particle, which, in turn, results in
a slightly larger prediction error. Furthermore, for a larger number
of particle neighbors, such as NI ¼ 11 or 12, the prediction error
turns out to be smaller for systems with two or three types of parti-
cles. This suggests that distinguishing between particle types pro-
vides a level of variety to the training dataset that results in a more
accurate prediction by LN-GNN compared to the more uniform
dataset of the single-type system. The overall average MAE values,
shown in Fig. 4(b), show a value of around 0:02 for binary and
ternary systems, while the single-type system MAE is around 0:03.
The overall average MAE of the system with different particle sizes
was largest at around 0:035, which relates to the additional com-
plexity of the local neighborhood in the presence of particles with
different sizes. In order to evaluate the performance of LN-GNN,
which learns particle interactions based on categorizing their local
neighborhood, we compare the accuracy of LN-GNN with a
general baseline interaction network model. This baseline model,
which we term Basic-IN, defines a framework that considers all cat-
egories of particles as part of the training dataset without distin-
guishing the local neighborhood directly. Figure 5(a) shows the
baseline IN framework as compared to the LN-GNN method. In
contrast to LN-GNN that analyzes a unique feature matrix based
on the number of neighbors of the central particle, the baseline IN
architecture passes the feature vector of each one of the neighbors
of the central particle through a MLP and then performs a pooling
operation on all of the resulting vectors, thus handling the interac-
tions of particles with different numbers of the neighbors through
the same ML structure. The baseline model was trained using the
same overall dataset utilized to train LN-GNN. A separate dataset
of 500 data points for each NI value was generated and consistently

used by LN-GNN and the baseline model to compare the predic-
tion accuracy of the two schemes. Figure 5(b) shows the compari-
son between the accuracy of the LN-GNN and the Basic-IN models
for sample cases studied in this work, including five different
neighbor categories (NI ¼ 4, 5, 6, 7, or 8) and two system types,
i.e., single-type and binary system of particles. The prediction MAE
values show that the accuracy of the LN-GNN outperforms the
accuracy of the baseline model across all number of neighbors,
which confirm that the baseline model, by nature trained to predict
particle interactions without directly distinguishing between parti-
cles’ local neighborhood, will not perform as well as LN-GNN.
This result suggests that categorizing the input data and adjusting
the architecture of the ML framework based on particle local envi-
ronment, although more cumbersome for coding and potentially

FIG. 4. Prediction error of the LN-GNN framework evaluated as a function of
specific numbers of neighbors, NI , in (a) and averaged over all specific cases in
(b). Results were obtained on the test dataset, which was separate from train-
ing/validation dataset, for four different system types: single-type, binary, binary
with different sizes, and three-type (ternary) system of particles.
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requiring more computational resources, helps achieve more accu-
rate predictions of particle-level interactions, especially in the case
of micro/nanoscale building blocks whose behavior is dominated
by short-range interactions. It is worth mentioning that the range
of interparticle interactions can be of significance to the LN-GNN
framework if particle sizes are much smaller than typical colloidal
length scales. In such cases, one might need to look beyond the
nearest neighbor particles in order to capture all the important
factors needed for the successful training of the ML algorithm.

Additionally, we compare the performance of LN-GNN with
an Instance-Based ML framework,57 which employs a simple algo-
rithm to make predictions of interparticle interactions investigated
in this work, as shown in Fig. 6. The Instance-Based model follows
a simple, but computationally expensive, algorithm by comparing
the feature matrix corresponding to a particle of interest to the
feature matrices of all the training configurations and identifying a
“best match” average value for the prediction of net force acting on
the particle. Specifically, we define a Euclidean distance between

the feature matrix of the prediction data point and each one of the

training data points via ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

(aij � asij)
2

q
, where ds represents a

“distance” between the features of the point of interest and each
training data point (s). asij and aij represent the individual compo-
nents of the feature matrix for the training data point and predic-
tion configuration, respectively. The output force values are
determined as a distance-weighted average for k-nearest neigh-
bors57 of the point of interest from the training data, i.e., k points
from the training data with the smallest ds values. The details of
this framework are sketched in Fig. 6(a). We selected k ¼ 6 nearest
neighbors for our calculations presented here. The average MAE
values of the predicted forces, shown in Fig. 6(b), are fairly similar
between LN-GNN and the Instance-Based models. On the other
hand, the computation time scales proportional to the number of
particles, � O(N), for the LN-GNN method while it scales as �
O(N2) for the Instance-Based method. Therefore, utilizing
LN-GNN is generally preferable to simple Instance-Based

FIG. 5. (a) The architecture of the baseline model (Basic-IN). (b) Prediction error (normalized-MAE) comparison between the baseline model and LN-GNN for a given set
of data for particles with a specific number of neighbors, NI ¼ 4, 5, 6, 7, or 8.
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algorithms unless the number of particles in a system of interest is
very small, e.g., finite-sized assemblies of colloidal particles. The
combined results in Figs. 4–6 demonstrate that, while the accuracy
of the ML framework is generally lower for cases with a larger
number of neighbors, both LN-GNN and Instance-based methods
provide considerably better predictions compared to the baseline
IN framework. We note that such interaction network predictions
are most accurate for colloidal particles that exist in dilute solu-
tions, e.g., at early stages of colloidal self-assembly processes.
However, the computational cost of using interaction network
models is much smaller compared to using fully atomistic models
that attempt to predict particle interactions in any scenario.

IV. CONCLUSIONS

In conclusion, we investigate a machine learning framework
that predicts micro/nanoscale particle interactions based on data
obtained from particle trajectories. This framework, named
LN-GNN, considers the local neighborhood environment of a par-
ticle to define a representative graph with a central node depicting
the particle of interest. This graph representation is utilized to
predict the net forces on micro/nanoscale particles after LN-GNN
is trained on appropriate datasets. The LN-GNN framework can
practically be utilized in a wide range of problems related to the
study of self-assembly and phase behavior of colloidal particles.
This process involves three steps: (i) For training purposes, particle
trajectory data, either from experiments or simulation data, can be
fed to the LN-GNN algorithm according to the number of neigh-
bors of each particle. (ii) Once the training is performed, the
trained models can be saved and used for the prediction of forces
on colloidal particles in other systems. (iii) The predicted net forces
on each particle can then be utilized to calculate structural evolu-
tion and various properties of colloidal assemblies, as commonly
performed with MD and BD simulations. One of the main impacts
of using such a framework is that the use of the trained LN-GNN
framework for the prediction of particle interactions will be com-
putationally much cheaper compared to calculating the sum of
pairwise interactions of particles or using fully atomistic models to
predict particle interactions.

Understanding small-scale particle interactions is one of the
fundamental topics in the design and discovery of advanced mate-
rials. Given the recent advancements in TEM technology and other
relevant methods that can provide accurate experimental data of
particle trajectories, LN-GNN and other ML-based schemes can
pave the way for obtaining accurate, physics-informed, models of
complex micro/nanoscale interparticle interactions in order to
guide the design and development of a variety of new functional
metamaterials.

SUPPLEMENTARY MATERIAL

See the supplementary material for the description of data
generation and processing, details of machine learning architecture
and parameters utilized within LN-GNN and baseline IN, and spe-
cifics of training and validation data for the LN-GNN framework.
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