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Higgs model) in 1 + 1 dimensions with rectangular arrays of Rydberg atoms. We show that
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hadronization in collider physics event generators.
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1. Introduction

In these Proceedings we discuss the possibility of hybrid quantum/classical computing for event
generators such as PYTHIA [1, 2]. Our long-term goal is to replace the current hadronization part
which turns quarks and gluons into hadrons and is currently implemented with the phenomenological
Lund model, by an ab-initio lattice calculation performed by a quantum computing device. More
technical details and references can be found in [3].

Recently there has been a lot of interest for quantum simulation for gauge theories [4–9] and
in particular for the real-time dynamics. In the following, we consider the possibility where the
hadronization part of event generators could be described by a simplified lattice model: the compact
Abelian Higgs Model (Scalar QED) in 1 + 1 dimensions. We explain that is (literally!) possible to
attempt model building for a quantum simulator with arrays of Rydberg atoms [10–12]: publicly
available interfaces [13] allow users to engage in quantum simulations in a rather straightforward
way. The matching between the target model and the simulator is non-trivial. However, we show
that for some region of the parameters of the simulator, it is possible to construct an effective theory
for the simulator which has only one (important) term differing from the target model. More details
about this question can be found in a recent preprint [28]. We also briefly discuss practical examples
of current work with QuEra.

2. The compact Abelian Higgs Model (CAHM)

The lattice compact Abelian Higgs model is a non-perturbative regularized formulation of
scalar quantum electrodynamics (scalar electrons-positrons + photons with compact fields). The
partition function reads:
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Brout-Englert-Higgs mode is decoupled (heavy). Using methods of Tensor Lattice Field Theory
(TLFT) reviewed in [27], one obtains an Hamiltonian and Hilbert space in 1 + 1 dimension in the
continuous-time limit:

� =
*

2

#B’
8=1

�
!I

8

�2 + .

2

’
8

(!I

8+1 � !I

8
)2 � -

#B’
8=1

*G

8

with *G ⌘ 1
2 (*+ + *�) and !I |<i = < |<i and *±|<i = |< ± 1i. < is a discrete electric

field quantum number (�1 < < < +1). In practice, we need to apply truncations: For a spin-
<<0G truncation we have *±| ± <<0Gi = 0. We focus on the spin-1 truncation (< = ±1, 0 and
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Figure 1: Electric field ⇢ 9 versus position 9 for the evolution of a particle-antiparticle pair for the Abelian
Higgs model in 1+ 1 dimensions for ./- = 1 and*/- = 0.1 and 50 time steps with �C such that -�C = 0.1.

*G = !G/
p

2). The *-term represents the electric field energy, the . -term, the matter charges
(determined by Gauss’s law) and the --term: currents inducing temporal changes in the electric
field. Using this Hamiltonian, we have evolved an intial state with a bit of electric field in the
middle. By Gauss’s law, this is equivalent to a pair of bosonic particle-antiparticle separated by one
lattice spacing. An example is shown in Fig. 1. and various stages can be reinterpreted in terms of
patterns such as string breaking, discussed in Refs. [1, 2].

3. The simulator

In [17], we adapted the optical lattice construction [28] using arrays of 87'1 atoms [10–13]
separated by controllable (but not too small) distances, coupled to the excited Rydberg state |Ai with
a detuning �. The ground state is denoted |6i and the two possible states |6i and |Ai can be seen as
a qubit. We have the occupations =|6i = 0, =|Ai = |Ai. The Hamiltonian reads
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for a distance A8 9 between the atoms labelled as 8 and 9 . Note that when A = '1, the Rydberg radius,
+ = ⌦. This repulsive interaction prevents two atoms close enough to each other to be both in
the |Ai state. This is the so-called blockade mechanism which can be used to produce an effective
spin-1 local Hilbert space. In order to shortcut the discussion of the staggered interpretation of the
electric field, we have plotted its square ⇢2

9
= (=D?

9
� =3>F=

9
)2 (see [17] for a discussion) in Fig. 2

which also exhibit interesting behavior with a similar interpretation as for Fig. 1.
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Figure 2: Time evolution for ⇢2
9
= (=D?

9
� =3>F=

9
)2 for a 5-rung ladder (ten 87'1 atoms). At initial time, all

the atoms are in the ground state except for the top atom in the middle rung. ⌦ = 2c ⇥ 2 ⇤ 106 MHz, � = 2⌦,
0G = '1 0H = 0.5'1.

4. The effective Hamiltonian and phase diagram

As reported in a recent preprint [28], we constructed a translation-invariant effective Hamil-
tonian by integrating over the simulator high-energy states produced by the blockade mechanism.
Remarkably, for all the simulators considered (ladders, prisms, and others), the effective Hamilto-
nians have the three types of terms present for the CAHM (Electric field, matter charge and currents
energies) but, in addition, terms quartic in the electric field. For positive detuning, the new terms
create degenerate vacua resulting in a very interesting phase diagram.

The phase diagram of the ladder simulator with rung size twice the lattice spacing has been
investigated experimentally. Evidence for an incommensurate phase between crystalline commen-
surate phases will be reported in an upcoming preprint. It is relatively straightforward for theoretical
users to perform analog simulations with Rydberg arrays using publicly available interfaces [13].
We hope that this exploration will improve our understanding of inhomogeneous phases and the
Lifshitz regime of lattice quantum chromodynamics [29, 30], as well as the examination of “chiral
spiral” condensation [31]. One should also compare the manipulation of the three states associated
with a rung in our approach with qutrit simulations [32] and decide if the quartic term could be
found in the context of Symanzik improvement [33, 34]

5. Conclusions

We have considered ladder-shaped Rydberg arrays with two atom per rung as simulators for the
compact Abelian Higgs model. Ultimately the matching between simulator and target model should
be understood in the continuum limit (universal behavior). Effective Hamiltonians for the simulator
were found with same three types of terms as the target model plus an extra quartic term. The
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two-leg ladder has a very rich phase diagram. Explorations of the phase diagram with AWS/QuEra
are ongoing as well as the possibility of an hybrid interface with PYTHIA are pursued.
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