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The propagation of electromagnetic waves is modeled by time-dependent Maxwell’s equations
coupled with constitutive laws that describe the responses of the media. In this work, we consider
a nonlinear model that describes the electromagnetic wave in an optical medium with the
linear Lorentz effect and the cubic nonlinear instantaneous Kerr and delayed Raman effects.
Mathematically this model obeys an energy conservative/dissipative law. Though there have
been active efforts in designing numerical methods (e.g. of finite difference / finite element
/discontinuous Galerkin type) to simulate this model, the methods proposed here are distinctive
in that they are free of any nonlinear algebraic solvers. Moreover, in the absence of the Raman
effect, our methods also enjoy a provable discrete energy law, and optimal a priori error estimates
are further established when the exact solutions are sufficiently smooth. The key ingredients of
the new methods include some novel treatment in time discretizations and nodal discontinuous
Galerkin spatial discretization for the specific nonlinearities, and they also render a local nature
of the methods and hence their suitability for parallel implementation with great efficiency.
Numerical experiments are performed to illustrate the accuracy, stability, computational efficiency
and parallel scalability of the proposed methods. We further apply the methods to simulate some
physically relevant problems in one, two, and three dimensions.

1. Introduction

Nonlinear optics is a branch of physics that studies the propagation of light in optical media whose nonlinear responses, though
always exist in nature, become important. It is particularly relevant when the light intensity is high. Some examples of nonlinear
optical effects include frequency mixing, high order harmonic generation and self-focusing, and they have been harnessed in many
applications, such as in the optical device design and biomedical imaging etc [7,1,25]. There has been continuing need for accurate
and robust computational tools for simulating and predicting the electromagnetic field behaviors in various optical media, especially
based on the full-vector Maxwell’s equations.

In this work, we consider the propagation of the electromagnetic waves modeled by the time-dependent Maxwell’s equations in a
nonlinear optical medium where the material responses include the linear Lorentz effect and the cubic nonlinear instantaneous Kerr
and delayed Raman effects. The medium responses are described phenomenologically through some auxiliary differential equations
(ADEs) (and indeed ordinary differential equations (ODEs)). More specifically, we consider
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tod, H + VXE =0, (1a)
0,D —VxH =0, (1b)
0P +79,P+wyP=wE, (19
0,0 +7,0,0 +0*0 = 2| E|%, (1d)

with suitable initial and boundary conditions on a spatial domain Q C R4 (d =1,2,3) over a time interval [0,T], coupled with the
constitutive relation

D=¢)(exE+P+a(l—0)|EI’E +afQE). 2)

Here H, E are the magnetic and electric fields. VX is the standard curl operator." D is the electric flux density which is related
to the electric field through the constitutive relation (2), including the instantaneous linear response ¢j¢e, E, the delayed linear
Lorentz dispersion ¢, P whose evolution is described by the second order ODE (1c), the cubic nonlinear instantaneous Kerr response
€pa(1—0)| E|?E, and the nonlinear delayed Raman molecular vibrational response ¢,afQ E. The Raman effect is modeled by a second
order nonlinear ODE in (1d). u, and ¢, are the permeability and permittivity in the free space, and ¢, is the relative permittivity
of the optical medium in the infinite frequency limit. In the ADEs (1¢)-(1d), wy, w, and w, are the resonance frequency, plasma
frequency and vibration frequency of the medium, respectively, and y and y, are the non-negative damping constants. The non-
negative parameter a measures the strength of the nonlinearity in the model, and 6 measures the relative strength of the Kerr and
Raman nonlinearities. The system is termed as the Lorentz-Kerr-Raman model, and for the special case with 8 =0, it is termed as
the Lorentz-Kerr model. For the convenience of reference, just as in [23], we say the model (1)-(2) is in a mixed-order form, given
its PDE part (1a)-(1b) in a first order form while the ADE part (1c)-(1d) in a second order form. When the boundary conditions are
periodic, one can easily verify that the model obeys an energy conservative (when y =y, = 0) / dissipative (when y? + yf #0) law,
namely

—8(t)———/|0 P2dQ - /(a 0)2dQ <0, 3
where
e = [ (Rimp+ L= pp+ 2 el % pp
+W|E|4 e"“e(a 07+ QIEI2 €°”OQ2)d9 “

Moreover, when 6 € [0, %], we have £(f) > 0 and it defines an energy of the entire system. The aim of this work is to design efficient
and accurate numerical methods, respecting the energy law (3) whenever possible, for the system (1)-(2).

To put the present work into perspective, we begin with a brief review of some relevant work that aims at preserving the energy
law (3) at the numerical level. In [5], a class of (modal) discontinuous Galerkin (DG) methods was developed for the first order form
of the system (1)-(2), after additional unknowns J = 0,P and ¢ = 9,0 were introduced, in 1D with d = 1. With novel techniques
proposed to handle the nonlinearities based on the differentiated form of the relation Y = E3 with an auxiliary unknown Y, discrete
energy laws were derived and proved for the proposed schemes. This work was further extended in [22] to multiple dimensions with
the vector-valued electric field in the nonlinearity, and moreover, the computational efficiency was greatly improved by using the
nodal version of the DG discretizations [16] instead of the modal ones to treat nonlinearities. In [23], a family of nodal DG methods
was designed for the model in the mixed-order form (1)-(2). To establish a provable energy law, an additional auxiliary field W = QF
is introduced associated with the nonlinear Raman effect, with the differentiated form of W = QE discretized. The history of using
finite difference time domain (FDTD) methods to simulate (1)-(2) is rather long, with the work in [13,18,15,14,12] as some examples.
In [6], FDTD methods with provable energy laws were proposed in 1D. Though not explored, these methods can be generalized to
2D and 3D based on the strategies in [22] to deal with the nonlinearity. In the finite element framework, for the model with the
nonlinearity of only Kerr-type (i.e. # = 0) without the linear Lorentz effect, methods with the provable energy stability/boundedness
were developed in [17] when the nonlinearity is essentially 1D (i.e. the electric field is scalar), while methods were proposed in [2]
for the 3D model with the energy stability/boundedness numerically investigated.

All numerical methods mentioned above involve solving local or global nonlinear algebraic equations or systems over each time
step, as one would naturally expect for simulating the underlying nonlinear model. We refer to such methods as nonlinear methods,
while terming those that are free of any nonlinear algebraic solvers/iterations as linear methods. To the best of our knowledge, there
is no work available in literatures to design linear methods for the Maxwell’s equations with both the nonlinear Kerr and Raman
effects, with the (discrete analog of) energy law possibly satisfied. For the Kerr model, a linear method was proposed in [26] by

1 When d = 2, the curl operator is defined as VXE = —0,E,+0,E,, VXH =(d,H_, —0d,H,)" for the transverse magnetic (TM) mode (E, H) = (E,, E,, H,), and it

is VXE = (0, E_, —0, EZ)T, VXH =-0,H, + 0, H, for the transverse electric (TE) mode (E, H) = (E_, H,, H,). When d =1, for example with E=E_and H=H,,
the curl operator is given as VXE = —d,E,, VXH =0, H,.
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directly using the cubic root formula to solve for the quantity |EZJrl |2. For the Lorentz-Kerr-Raman model, by using the electric
field value at the previous time step to linearize the constitutive relation, a first-order FDTD linear scheme was proposed in [27].
A comparison for the linear schemes in [26,27] and an iterative scheme was performed in [24] to simulate the Kerr model, and
the cost effectiveness of non-iterative schemes was demonstrated in 1D and was projected for high dimensions. For the Lorentz-Kerr
model, FDTD linear methods with the second order accuracy were proposed in [11] by utilizing two copies of solutions on dual grids
staggered in time, and also recently in [21] without the redundancy in solution approximations on dual grids based on a different
second order discretization for (2) when 6 = 0. None of these linear methods mentioned above however obey the (discrete analogue
of) energy law (3) rigorously.

The main contribution of this work is to design a class of linear methods for the Maxwell’s equations in a nonlinear optical medium
modeled by (1)-(2) in any space dimensions, and no nonlinear algebraic equation/system needs to be solved as time progresses. The
design of the methods is based on the model in its mixed-order form just as (1)-(2). For the constitutive relation (2) and the associated
ADEs (1¢)-(1d) (and some derived equations, i.e. for Y and W, as one will see), the time integrators are second order accurate and
two-step, with the latter involving three time levels and hence providing the opportunity for one to properly linearize the nonlinear
terms. To possibly achieve a provable discrete energy law, an auxiliary field Y is introduced as Y = | E|?E for the Kerr nonlinearity
as in [5,22] and this relation is then differentiated and discretized with second order accuracy, and moreover, suitable discretization
is formulated for the linear Lorentz term. Similarly, for the Raman nonlinearity, we introduce an auxiliary field W = QF as in
[23], again with the differentiated form of this relation properly discretized, along with a specific linearization of | E|? in (1d). For
the PDE part (1a)-(1b), the second order staggered leap-frog temporal discretization is applied together with the nodal DG space
discretizations (of any accuracy) and suitably chosen numerical fluxes. This leads to an explicit treatment for the PDE operator. In
other words, temporal implicitness of the proposed methods only comes from the ADE part, and this, combined with the nodal DG
strategy, makes the implicitness extremely local and indeed associated with each interpolation point (that arises from the nodal DG
framework), also see the discussions in Section 2. As a consequence, the proposed methods have high parallel efficiency similarly to
standard explicit DG methods for hyperbolic problems [3]. The efficiency is further enhanced with the proposed methods being linear.
For the Lorentz-Kerr model with 6 = 0, the existence and uniqueness of the discrete solution over each time step is also established,
and additionally, a discrete analogue of the energy law (3) is proved. Such theoretical results are not available when the methods
are applied to the general Lorentz-Kerr-Raman model. Motivated by the findings for the case of § =0, a discrete quasi-energy is
introduced for the general model and numerically monitored over time (see Fig. 5 in Section 4.1.2, Fig. 7 in Section 4.2.1). This will
provide evidence that the proposed methods are stable when they are applied to the general Lorentz-Kerr-Raman model. Furthermore,
for the Lorentz-Kerr model, a priori error estimates are established when the exact solutions are sufficiently smooth. The results are
optimal with respect to the temporal local truncation errors and the approximation properties of the discrete space, under a relatively
standard time step condition when the model is linear (with a = 0), yet under a more restrictive time step condition along with some
constraint on the approximation order of the discrete space for the general model.

The rest of the paper is organized as follows. In Section 2, a family of fully discrete linear methods is formulated for the system
(1)-(2). In Section 3, we establish the unique solvability and a discrete energy law of the methods when they are applied to the Lorentz-
Kerr model, and discuss these aspects when the methods are applied to the general case. For the Lorentz-Kerr model, error analysis
is also performed in this section. The performance of the proposed methods is demonstrated numerically in Section 4, followed by
the concluding remarks in Section 5.

2. Proposed numerical methods

In this section, we will formulate a class of linear methods for the nonlinear optical model (1)-(2). The methods will be second
order accurate in time and can be arbitrary order accurate in space, with great computational efficiency ensured by the local nature
of the methods due to their explicitness for the PDE part, nodal DG discretizations in space for nonlinearities, and also by the linear
nature of the methods as a result of the temporal discretizations suitably designed for both linear and nonlinear terms of the model. A
discrete analogue of the energy law will be demonstrated numerically for the full Lorentz-Kerr-Raman model, and will be established
rigorously for the Lorentz-Kerr model in next section. In our presentation, d is the number of the components of the electric field
E. We always have d; < d, with the inequality possible, e.g. in the transverse magnetic (TM) mode in 2D when d =2 and d = 1.

Mesh and discrete space. Our presentation will be for three dimensions with d =3, and it can be easily adapted to the cases of
d =1,2. Boundary conditions for E and H are assumed to be periodic. Let the spatial domain be Q = [x,, x;]1 X [y,, ¥,]1 X [z,, 2], with
a Cartesian mesh

Th={K: K=1I,x1I,x1I,

iz 1 Six< N, 1<iy< N, 1<iz< N, },
where [;, = [(,’ig_

K=1IyXx1;,xI;

1,¢.., 1]isasubinterval in the partition of [{,,{,]: {, =¢1 < {3 <<, 1 =, with { = x, , z. For each element
3 i+ 303 Nets

12> We denote its center as (xX, yX, zK), and its length in the {-direction as A¢¥ = Gt = Cpo1> C=x.y.2. We write
2 2

h= max A¢K, and use 7, to denote the collection of inter-element faces of 7;,. We further assume the mesh is quasi-uniform,
KeT,.l=x,y.z

namely, there exists a constant § such that 7 <§A¢ Kt=xy,zVKe T, as the mesh is refined.
Associated with 7}, we introduce a finite dimensional function space

thz{UELZ(Q) . UlKer(K)’ VKGT/!} (5)
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Here, QX(K) is the set of tensor-type polynomials of degree up to k in each variable on K. Without confusion, we will use the same
notation th to represent its vector version. Note that the functions in th can be discontinuous at inter-element interfaces. For each
given F = K*nK- in F,,, we designate a unit normal nj such that ny - (1,1,1)7 > 0, with n. as the outward normal along the
boundary of K*. We then define the jump of a function u € th across F as [u] =u™ —u~, where u* are the traces of u along F
from the element K*. The standard notation (-, -) will be used as the L? inner product for L2(Q2), and || - || is the associated L%-norm.

Interpolation operator. For the computational efficiency especially when handling the nonlinearity, nodal DG discretizations will
be adopted in space, and this will rely on an interpolation operator I,. We will describe this operator following the presentation in

[22] that is for two dimensions. Let {fm }];=0 be the k+1 Gauss-Legendre quadrature points on the interval [—1, 1] with the positive

weights {u?m}l;zo, satisfying ZZ;O 0,, = 2. The corresponding numerical quadrature is exact for polynomials of degree up to 2k + 1
(i.e. for functions in P2**1([—1,1])). Let {£n(§)}ﬁ:0 be the Lagrange basis of P¥([—1,1)), satisfying L,(&,,) = 8,,,- Here &, is the

Kronecker delta. In each element K = [, X I;,, X I;,, we define

—xK —_yK _
X=X, Y=y, z-z,

AxK/Z) m(AyK/Z) "(AZK/Z)’

K

or L (x.y.2)=L( (6)

then { ¢1’fn n(x, Y, z)}f‘,mﬂ=0 forms an orthogonal basis for Vh"| K= OF(K) with respect to the L? inner product on K. We now can

introduce a local interpolation operator I}If : C(K) ~ 0%(K),

k
IENxy. D= Y Ff 98 298 r0, xroeK, @

1,m,n=0
with xf = xX +&AxK /2, yK =K 4 & AyK /2, 2K = 2K + £ ,AzK /2, and C(K) denotes the space of continuous functions on K.
It is easy to see that (ZXf)(xK,yX,zK) = f(x[,yK,zK), VI, m,n =0, k. A global interpolation operator 7, is then defined as
1, Wy(Q) — th, with Ih‘K = Z,If, where Wj,(Q) = {f € L*(Q), f|x € C(K), VK € T},}. Here again we also use I, to represent its
vector version.

1
Numerical methods. Let 0 = < ¢! < ... <tM =T be a uniform partition of [0,T] with t" =nz, =T/ N,. In addition, "I =
%(t" + 1"*1). We are now ready to present our proposed numerical methods for (1)-(2). Given ”2’ u;'l_l S Vh", u=D, E, P, Q and

H';IH/Z e th, find uZ“ e th’ u=D, E, P, Q and HZ+3/2 e th’ satisfying
PDEs:
Dn+1 — D"

h h nt+1/2

(7,¢)+35(Hh+ 2 $)=0, VpeVk, (8a)

n+3/2 _ yyn+l/2

H, H, E (pntl 3\ _ k

Ho - ®)+BE(E.¢)=0, VeV (8b)

Constitutive relation (including ADEs):

Dy =y (e Ept 4+ P 4 a1l = )Y + a0 W), 80)
2
Y-yt =1h( E;| (E}' —E;h)+2(E,-(E}Y' — E}h) EZ), (8d)
Wi —wl = Ih((Q;“ —QI"YE! + QU(E - E';,—l)), (8e)
1 -1 1 —1 1 -1 1 —1
Pt _2P! 4 P! +yP;+ e RreR B -
72 2t 0 2 p 2 ’
Q;ll+l _ZQZ +Q;ll_l Qz+1 _Q;ll—l QZ+1 +Q;ll—l E;l[—%—l +E;l;_l
= +y s el — =w§1h(E;; L ) )
Here, the bilinear forms B/ (H ZH/ %, $) and Bf (E;"“,d)) are defined as
BIH P gy == (B2, 9%¢) = 3 (npxH 101 (%)
FeFy F
BEES . @)= (EpH.Vxp) + Y, (npx E;7LI4D) 9b)
FeF,
n+1/2

where H n and EZH are numerical fluxes,
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n+1/2

n+1/2,—
Hh

T - p TP B =1 - pEITT 4 pEIT (10)

=pH

with a constant parameter f. Particularly, they will give the commonly used alternating fluxes when f =0 and g = 1, to be used in
this work and referred to as

. . +1/2 +1/24 il 1—

Alternating I : H;'[ 2 H;'[ 12+ EZH = EZ+ , (11a)
. . n+1/2 _ pentl/2—  atl L pntl+

Alternating II : Hh = Hh , E;’l = Eh . (11b)

For any given y € VX, it is easy to check that BZI (y,-) is a linear bounded functional on Vh". Based on Riesz representation,
there exists a unique function ¢ € th such that B;’ (y,P)=(p,P),Vop € th' This defines a (linear bounded) discrete curl operator
VX :y = —@ from th to th, and therefore

Bl (. )=~V xw. ), VeV 12)
The equation (9a) can be further written into its strong form
Dn+1 _ Dn
v, xH] (13)
T

Discussions. Below are a few remarks we would like to make for the proposed methods.

1.) The most distinctive property of the proposed methods, unlike any of the methods we previously developed in [5,22,23] for (1)-(2)
or its first order form, is that the methods here are linear and free of any nonlinear algebraic solvers/iterations. This can also be seen
from the flow chart of the overall methods in Algorithm 1.

2.) Similar as in our previous work, the nonlinear Kerr term | E|>E and the nonlinear Raman term QE in the constitutive relation
are discretized based on the differentiated forms of two additional auxiliary relations, Y = |E|*E and W = QE, namely,

0,Y = |E|*0,E+2(E-0,E)E, 0,W =Ed,Q+ Q0,E. (14)

The two auxiliary unknowns Y and W need not be solved in actual implementation as discussed in [23], also see Algorithm 1.

3.) The proposed methods are based on a second order staggered leap-frog method in time for the PDE part (1a)-(1b), linear two-step
temporal discretizations of second order accuracy for the ADEs (1c)-(1d) and for the two additional auxiliary equations we introduced
in (14), along with suitable temporal treatments of linear and nonlinear terms, and nodal DG discretizations of any formal order of
accuracy in space.

4.) To implement the proposed methods, one still needs to solve linear algebraic systems. With the explicit-in-time staggered leap-frog
method applied to the PDE part as in (8a)-(8b), the linear systems to be solved, though being variable-coefficient after the linearization
or frozen-coefficient like treatment of the nonlinear terms (e.g. see (8d), (8e), (8g)), are related to the ADEs (also ODEs) and therefore
spatially local. This will become more clear if one notes that, with the nodal treatment in space, a nonlinear relation such as (8e) is
equivalent to

W =W DGy 20 = (@ = OFDE, + QN (ER! — E; D)) y8 . 2)),

n

Vi,m,n=0,--,k, VK € T}, hence the linear system on each element K is further decoupled. Indeed, one linear system of the size
dp X di needs to be solved at each interpolation point (le s y’Wf, zf) to update the unknown electric field E, (of d; components)
at this point over one time step. Therefore the proposed methods are very efficient, especially within the parallel implementation
environment, as to be demonstrated in Section 4.1.2. In contrast, for the methods in [23], one nonlinear system of the size dp X dg
needs to be solved at each interpolation point.

5.) There is some subtle difference between the discretizations here and in our previous work even for linear terms. Using the zeroth-

. . . T ! . .
order terms P and E in (1c) as an example, in [23], a central discretization -A——*"—" ;= P, E, was employed, with which, a
discrete energy relation can be identified in the presence of both Kerr and Raman nonlinearities. Here in this work, in order to prove
an energy law for the Lorentz-Kerr model (see Theorem 2) without any nonlinear algebraic iterations in the entire algorithm, it is

necessary to make some modification as in (8f) to discretize the P and E terms.
6.) Upwind-type numerical fluxes as in [5] are not used here for the PDE part (8a)-(8b), as they will lead to an implicit discretization
when coupled with the staggered leap-frog temporal discreization hence reduce the efficiency of the fully discrete schemes.

Note that the proposed schemes (8)-(9) are multi-step methods. In addition to the initialization at # = O through interpolation, the
one-step methods in [5,22] are applied to obtain H ;Z/ % and u}l, u=E, P and Q for the initialization. The flow chart to implement

the proposed linear methods in 3D is summarized in Algorithm 1. One can see that in the main part of the algorithm, our methods
indeed update E, P, Q as time progresses, with D,Y, W being auxiliary variables.

3. Solvability, discrete energy law, and error estimates

In this section, we will examine the solvability of the proposed methods, introduce the discrete energy, and establish the associated
energy law if available. A priori error estimates will also be established for the proposed methods when they are applied to the linear
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Algorithm 1: The flow chart to implement the proposed methods.

Initialization: Starting with ”2 =Tu)(,t=0),u=H, E, P,o,P, Q,0,0, D,

12_ 110
(i) compute H /> explicitly via ,40( uls /2"" ,¢) +BE (ES,¢) =0, VeV
(ii) compute ML, u=E, P, Q using (the 3D version of) the one-step nonlinear methods in [22] of the same spatial accuracy;
3/2
h

(iii) compute H;’" explicitly via (8b).

Time marching: Forn=1,.., N, -1,

(S.1) compute D,’;” - DZ’I explicitly based on two time steps of (8a);

(S.2) in a fully decoupled fashion, at each interpolation point (x,",y”'f, z2K), VI,m,n=0, ,k, VK €T,
« update E’,;*' by solving a d X dj; system of linear equations derived from (8¢)-(8g);

- update P;’KH and QZ“ based on the analytical formulations derived from (8f)-(8g).

n+3/2

(8.3) update H

explicitly using (8b).

model with 8 = a =0 and to the Lorentz-Kerr model (0 = 0), when the exact solutions are sufficiently smooth. From here on, vectors
by default are column vectors.

3.1. Solvability

K

Over each time step, a linear system of dp X dg (dg < d) needs to be solved at each interpolation point (x,

0,-:-,k,VYK € T},. Its unique solvability will be established next for the Lorentz-Kerr model with § = 0.

K 2K, vi,mn =

Theorem 1 (Existence and uniqueness). With 6 = 0, the numerical solution of the proposed methods (8)-(9) is uniquely solvable.

271/2’ HZH/Z,
unique solvability of the solution will boil down to the unique solvability of EZ“ at each interpolation point (le R yy’; s z,’f ),
Vi,m,n=0,-,k,VYK €T,

Following Algorithm 1, we first compute DZH - DZ’I based on two time steps of (8a), or its strong form (13), obtaining

Proof. Assume H EZ_I,EZ,PZ_I,PZ are available. With the local property of the methods, one can see that the

DI+ - i =0V, x (HT 1T, (15)

Based on (8c) with 8 =0, (8d), (8f), we further have
Dy = Dt = (e (EfH = EpD+ (P = P+ aY ) - YY), (162)

2
vt -y =1, (| B 1 2B EDT) B - E5D), (16b)

E),

2 2/ pn+l n—1 n n—1 2 2 pn—1 2 2 gn—1
— w,T (Eh _Eh ) N 4(Ph _Ph )—Zwo‘r Ph +2wp1' Eh 160
h ho 2.2 2.2 ’ c
2+y1+a)01 2+yr+w0r

Here [ is the identify matrix of d X d.
We now consider all the equations above at a given interpolation point, and write E}' at this point as e” € RYE, m=n+1,n-1.
The equations are now linear in e"*! — e"~!. In fact, e"*! — e"~! satisfies

A — "1y = 7, 17
with the coefficient matrix as
w*r?
A= eo(eoo + p7>l] +ega <|e"|2 0 +2@"(e”)T) ,

2+ yr+w(2)12
and the source term S”" as
n n—1 2.2 pn—1 2.2 pn—1

)2 4P, - P, )—2(001 P +2a)pr E;
h

n—1/2

+H, )¢

S"=1V, x(H , (18)

2+yTt+ a%rz
with the term on the right evaluated at the interpolation point. Note that A is symmetric positive definite, and this ensures the unique
solvability of e"*! — e"~!, hence of e"+!. []

Remark 1. For the general case with 6 # 0, unique solvability of the numerical solution of the proposed methods can be similarly
established if one can prove that the respective matrix A at each interpolation point, namely,
P )

4 n)2 ng T ngz ng T n
A=€0<€m+—)ﬂ+eoa(1—0)<|e| 1+ 2e"(e") )+€0a0<—e @ +¢ n)
2477+ w2 2 47,7 + 02
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isinvertible. Here e", ¢" are E}, O} at this interpolation point, respectively. This would require some nontrivial a priori bound estimate
of the numerical solution Q”, and such estimate is unavailable at this point.

3.2. Discrete energy and energy law

Next we will state and prove that the proposed methods (8)-(9) for the Lorentz-Kerr model (with 6 = 0) satisfy a discrete analogue
of the energy law (3). To prepare, we will start with an identity
Byl (¢.y)+ By (w,4)=0, Vo, yeV,, 19)

under the assumption of periodic boundary conditions, and it can be verified by using V-(¢ X y) =y - (VX¢p) — ¢ - (VXy), and an
equality for the adopted numerical fluxes in (10),

(Ipxyl.ng), +{nex@.[¢] ), - (npxd.[w] ), =0. V. weV,

The following lemma presents an inequality that will be used repeatedly in our analysis, and it can be obtained based on some
standard inverse inequalities associated with polynomial spaces (see [9], or Lemma A.4 in [22]) and Cauchy-Schwartz inequality.

Lemma 1. The following holds

|8 )| < S Il 191 < 5 (S 1wl + 01912 ), v, b v, w9 >0 20)
Here C, is a constant lndependent of the meshsize h and the time step 7, yet depending on the polynomial degree k and the parameter &
related to the non-uniformness of the mesh.

Theorem 2 (Discrete energy law). With 6 = 0 and periodic boundary conditions, the numerical solution of the proposed methods (8)-(9) with
numerical fluxes (10) satisfies the energy law

_Pn 1
n+1/2 n-1/2 _ _€¥7T
et ogrlit= /( *40 <0, 1)
where the discrete energy 8;:21142 att= t"+5 is defined as
n+3/2 n+1/2 n+1/2 n—1/2
/2 _ H, ™"+ H, H,"'"+H, Ho | gn+1/2|? 22)
hnLK — Ho 2 : 2 - 7 | h ‘
Q
2 2 2
1 2 1
) ET) *|E o |Pi P €0@; Pn+| *|Ph
2 2 Zw% T wa, 2
GOQIh <|En+l) En +2(En+1 En) > )dQ
Furthermore, £ hi 14 > 0 under the following CFL condition for the time step size t,
2-+/3
v L < _\/_ 23)
h C,
where v, = \/%;W is the velocity of light in the optical medium.
Proof. Step 1: to establish the energy law (21)-(22). Applying two time steps to (8a) and (8b) respectively, we have
Dn+1 _Dn—] n+l/2+Hn 1/2
(o) + B (———.¢) =0, Vo eV}, (242)
2t 2
Hn+3/2 Hn+l/2 Hn—l/2 _Hn—3/2 EM 4 Er-l
”0( h 4 h h ,¢)+Bf(u,¢>:0, Ve VE. (24b)
2 T T 2
EmHl g g2 g2
Taking ¢ = —2 > in (24a) and ¢ = % in (24b), summing up the results and using the relation (19), we obtain
Dn+1 _anl En+l +En71
( h - h i h )__/()Hn+l/2| ‘Hn 1/2| )dQ 25)

Q
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H;+3/2 + Hn+1/2 H;—I/Z + Hn 3/2 Hn+1/2 + Hn 1/2
2 B 2 ’ 2
On the other hand, by equation (8c), we have
+1 -1
Dn+1 pr-1 EZ + EZ _ €
ke T T Ty )T
1 -1
Ei*' + E}
2
For the Lorentz term, from (8f), we get

Ef + E) 1 P;“—P;;z_ Pl —P' o
e T A e |

)=o.

2 €0€c0
2
1 -1
E'*' + Ej )
— )

+ Hy

Bl + £ |2) (26)

2
EZ“) +

n
Eh

n+1 n—1 n+1 n—1
+€0<Ph _Ph s >+€00(Yh —Yh )

n+l _ pn—1 —

(Ph Pt — - - @7)
L)

(Dé Pn+1 2 P 2 wé P 2 P,,_l 27‘[ 2dQ

R (R Iy L=
For the nonlinear Kerr term, using (8d) and the property of the 1nterpolat10n operator 1,, given by Lemma 1 in [22], we have,
En+l +En—l
+1 -1 h h
(ryr -yt =) @8)
En+1 +En—l

:/Ih( E - Eph 42 (B (B - EY) Ep s Jag

Q
=%/Zh (‘E;“r
Q

Combining (25)-(28), we reach the discrete energy law (21), with 8211142

E”z—
h

£

e[ e2(m B -2 (8 B a
given in (22).

Step 2: non-negativeness of £"1/2 and the associated time step condition. Though the discrete energy law (21) holds for the

h,LK

numerical solution, the quantity & hL Iéz may not be non-negative unless some condition is further imposed on the time step size 7 as
one would expect. Next we will derive such condition on 7. Applying two time steps to (8b), taking ¢ = H, w32 H, /2 and using
(20) with 9 = :, as well as the triangle inequality, we have
0€c0
_ 2
Ho (Hn+3/2+Hn+l/2 HZ+1/2+HZ 1/2) HHVI+3/2 ;1[+]/2||

n
+Eh

R R Ll )
2#0(1__)||Hn+3/2 n+1/2|| e A() ) 29)

Here we write v, = 1/4/€y€ Hy and A = %
Slmllarly, with B2 — B2 = g 4 B ol we take ¢ = HIP? 4+ 3HT? in (8b) and apply (20) with

En

En+1H +|

9=

eoem , and get

R R A e e Ll |
+%\/e;‘71»»Hz“ﬂw:“ﬂuz“%& |

n+1/2

4pg HH

This further leads to

e o] LA R el L o
_ 0 -
provided that
1-4>0. 32)

Combining (29)-(31), we come to



M. Lyuand F. Li Journal of Computational Physics 515 (2024) 113280

o (Hn+3/2+Hn+l/2 n+l/2+Hn 1/2) ||Hn+1/zH T e, <HEZH H2+|EZ z>
>4 (2 i ﬂ) HH"+3/2+Hn+1/2||
+eoem(1—i—%>|E;’l“H repen(1-2) || B ’>0,

with the last inequality ensured by the following conditions on A along with (32),

A/4
DI L LN} 1—A—Lzo 33)
1-2 -2
These conditions can be simplified as A <2 — \/5, hence v 7/h<(2— \/5) /C,.
In addition, by using a positivity preserving property of 7, (see Lemma 2 in [22]), namely

/IhfdQZO, VfeW,(Q) and f >0, B4
Q
2 2
we know that the term in (22) associated with the nonlinear Kerr effect is always non-negative, i.e. /Q 1, < EZ+1| E}

+2 (E;’l’rl . EZ)2> dQ > 0. Finally, one concludes the discrete energy S;’J'Ll,ﬁz is non-negative under the time step condition (23). []

Remark 2. For the nonlinear energy stable methods proposed in [5] (1D) and [22] (multi-D) based on the first order form of the
model as well as for the nonlinear energy stable methods in [23] based on the mixed order form of model, when the numerical fluxes
are alternating (11) or the generalized version (10), and when the nonlinearity parameter 6 € [0, é] (including the Lorentz-Kerr case
with 6 =0), an energy law as in (3) can be rigorously established with respect to a carefully defined discrete energy, which is non-

negative under a milder CFL condition, v, Z < CL (This was shown in [5] in 1D, and can be shown for the methods in [22,23] by

using (20) and setting the medium-dependent constant d as the wave impedance & =/ /(ep€,, ). The analysis in [22,23] adopted
a medium-independent 9 and thus led to a less balanced time step condition.) Following our numerical analysis, the methods here
require a smaller CFL condition, with a reduced coefficient 2 — \/5, for a more ambitious goal of simultaneously achieving a provable
energy law and rendering linear methods free of any nonlinear algebraic iterations. On the other hand, the numerical evidence in
Section 4.1.1 shows that the actual time steps allowed by our proposed methods and those by the nonlinear methods in [5,22] are
likely comparable.

Remark 3. For the general Lorentz-Kerr-Raman model (i.e. 8 # 0), we are unable to identify a discrete energy for the proposed
methods, with respect to which a provable energy law can be established. Motivated by the theoretical result for the special Lorentz-

1
Kerr case with its discrete energy SZJZ%Z in (22), we define a discrete quasi-energy Z;lléi at 1 =1""2 for the full model,
n+3/2 n+1/2 n+1/2 n—1/2
ent2 H,™"+H, H, "+H, /‘0|H"+‘/2|2 (35)
nLkr= [ Mo ) : ) 5
Q
2 2 2
+1 +1
e E! ) +|E €_0)PZ+1_PZ|2+SOQ, P! | +|P?
2 2
2 2 2w T 202 2
1 n
epa(l —0) 121 o2 il emi2)  €0ad QT — 02
1, (|E| |E2| +2 (£ Ep) +—4w3(77 )
n+1 n n+1)2 n\2
€yal (Qh +0; ] n) €yal (Qh ) + (Qh) )
—1,|——E" - E —_ Y )dQ.
Ty 2 noEh) g 2
Apparently 8211141 is a second order discretization of £(¢) in (4). With a direct calculation, we have
+1)2 n\2 n+1 n
a(1—9) o1 Lo T a0 (@) +(Q0)  ap Q3 04 L
<‘E | Bl +2(Br B +7 5 + T E E;
+1 n+1 n
3a(1-80)  put o2 a0 (O Y +(0))? o +o; "
>—— (B Ep) + 5 +o———E - E
a(3—-46 2 0 2 2
= C (g )+ L (o + BB 4 (0)+ By E))) 20,
therefore Ezzlﬁz >0aslongas 0 € [0, 3 just as required in the continuous case, and under the same time step condition (23). Again,

we here use the positivity preserving property of I, in (34). Though no energy law is proved with respect to this discrete quasi-

9
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energy SZ“Z&, it is still meaningful to numerically monitor the time evolution of this non-negative quality, to get some supporting
evidence that the linear methods are stable for the full Lorentz-Kerr-Raman model as time progresses. One such study can be found
in Section 4.1.2, see Fig. 5.

3.3. Error estimates

This section is devoted to the a priori error estimates for the proposed methods applied to the Lorentz-Kerr model (with 6 = 0)
up to a given time T > 0, when the exact solutions are sufficiently smooth. Particularly, in Section 3.3.1, a master error relation will
be derived first. Based on this foundational relation, we proceed to establish the error estimates for the linear model (with a =0 in
the absence of the Kerr effect) in Section 3.3.2 under a similar type of time step condition (23) for the discrete energy law, before
we present the error estimates for the general Lorentz-Kerr model in Section 3.3.3 under a more stringent time step condition, along
with some constraint on the polynomial degree k. Throughout, it is assumed h,7 < 1.

Let us begin with some shorthand notation

n+1 n n—1 n+1 n—1
- - — +1 -1
6"u—u 2u" +u 5"u—u u u_n_un +ut
2 2 > 24 T 2 s —72 B
T T

s+1/2 s—1/2 s+1 s

u —u W tu 1
6f,u=—, wtl2==" " s=nn+ 3

T

h— Ry pv" forv=H,E,P. Each R,

is a projection operator onto th. Specifically, we take Rp , = H(;I’O’O as the standard L? projection. With the alternating I numerical
fluxes, we take R , = HZ’+’+, R, =1I,""", while with the alternating Il numerical fluxes, we take Ry , =II,"", R, = l'I;lr’+’+.
These are the 3D version of the Radau projections as in Appendix A.1 of [22] (also see [10,20]). The main approximation properties

of the discrete th through these projection operators and the interpolation operator I, are summarized next.

With 0" = v(-,1"), we further define e = v" — U;’l =n, — &), with ) =v" — R, ;0" and & =

Lemma 2 (Approximation properties of V}{‘). Let I1,, be any of the operators 1, H?I’O‘O, H;f’i’i. There exists some constant C;, > 0 and
C,, >0, such that
lw—T,w| < C,C, A", |lw—-T,w|,, <C,C,h**", (36a)
||Hi’i’iw||°o <Gy, (36b)
1185, (w0 = )l + 118", (w — I w)| + 1167 (w — I, w)| < C,C,,h*1, (360)

for functions w from certain Sobolev spaces and with a constant C,, depending on some Sobolev norm of w.? Here n is any relevant integer
between 1 and N, =T /z.

Particularly, the results in (36a)-(36b) become standard in numerical analysis for DG methods, and they can be established
following classical arguments as in [9], while the result in (36¢) follows the Taylor’s theorem and the commuting property 9,11, =
IT},0,. Unless specified otherwise, throughout this section, C; represents some positive constant that only depends on 7. Some examples
include C,, C,,, C, etc. Moreover, C denotes a generic positive constant. This constant is independent of n, i, 7, and may depend on
the polynomial degree k, the time 7', some model parameters, and/or some norms of the exact solutions and their derivatives. Both
C and C:; can take different values at different occurrences. The next lemma is a direct result of the Taylor’s theorem.

Lemma 3 (Local truncation errors). Related to the temporal discretizations of the proposed methods, we define the local truncation errors as
below,

T;)“/Z :=5;'+1/2D —0,D"+1/2, (37a)
Tl =6 H - o, ", (37b)
Tl 1=6", P+y8) P+ P" ~ o E", (37¢)
T =(|E"1+ 2E”E"T)5;’TE) - 8; (|E|*E). (37d)

The following bounds hold for the exact solutions D, H, P, E, with some constant C > 0 and for any relevant n between 1 and N, =T /z,

n+1/2

Iz

1T AT I TS| < C22. (38)

2 As an example, ||w — HZ‘O’OWH S C R wl| oy Yw € HH(Q).

10
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3.3.1. The master error relation
First, we establish the master error relation, the foundation of the error analysis. The proof is given Appendix A, following some
similar derivation as in Step 1 of Theorem 2.

Theorem 3 (Error analysis: the master error relation). With 0 = 0 and periodic boundary conditions, the following error relation holds for
the numerical solution of the proposed methods (8)-(9) with numerical fluxes (10),

~n+1/2  —~n-1/2 —
g ke (&) =St 39

where

—~n+1/2 " — H, 1/2 €0€
& :=ﬂ0/¢;1 EdQ = g I+ A P + I P
Q

+ ;70‘2)”5;'“/26},”2 + ZO—:?(WPH 12+ €5 112), o
St 1= S gpll + K (&) + M (E) + £(B) - Q" (31,6 ). (D)
with ’
K'(¢) :=BJ (. $) — (T} ). .
M () :=%(5:+1nn +8 . ) + Bf(E, ) — #O(ﬁ, b, )
L) i=ey(ex b5 1 + 65 1p, D), NU@) = (81 (V — |ELE)). ). o
Q) 1=eq, Ty + 75 1p + Rty — g~ Ty, ). (42d)

3.3.2. Error estimates for the linear model with a =0

In this subsection, we will focus on the error analysis for the linear model with a = 0 in the absence of the Kerr effect. Optimal
error estimates will be established under a similar type of time step condition (23) for the provable discrete energy law. Some details
in the proof will be further used to analyze the general Lorentz-Kerr model with a > 0 in the next subsection.

Lemma 4. There holds

St CH* 2 414+ CH + A+ 18 1+ 18D, (43)

Proof. Based on (the 3D analogue of) the super-convergence results in [10,20] for Q*-type DG approximations with any alternating
numerical flux pair in (11) on Cartesian meshes, one gets

B (. 9l <CHHMIGHL 1B (. d)l < CHH Il VeV (44)
Using the approximation property in Lemma 2, the bounds of local truncation errors in Lemma 3, Cauchy-Schwartz inequality, we

have

€Y _ =
Sp<-— 165 pll> + CCR "+ )AIER I+ 1EE T+ 115 1| + 1185, Ep1D- (45)
4

One can reach the estimate (43) after applying a simple inequality: —ax? + fx < f%/(4a) with any a > 0. []

~n+1/2
For error estimates, Ehn / needs to be non-negative in an approximately stronger sense, as specified and established in the next
proposition. The proof is given in Appendix B, by following some similar but refined analysis as in Step 2 of Theorem 2.

Proposition 1. For any pre-set constant p,,, € (0,1 — 1/2/3), there holds

—~n+1/2 —~n+1/2
g <Y +C,, TR 4 oh), (46)

under a time step condition

T 2_\/5

47
Perr C* ( )

Here

11
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_ 2(1 _perr) -V (1- perr)2 +2

r, = €(0,1), (48)
Perr 2_\/5
——~n+1/2 Ho 7
Gy =pe,r(7°||§7,+‘||2 °°°<||¢"+‘||2+||5"E||2)) <||¢"+‘||2+||§;1||2>. (49)

Theorem 4 (Error estimates for the linear model: a = 0). Let p,,,. € (0,1 — 1/2/3) be any pre-chosen constant and assume t < 1/2. With
0 = a =0 and periodic boundary conditions, the numerical solutions of the proposed methods (8)-(9) with numerical fluxes (10) have the
following error estimates under the time step condition (47).

—~n+1/2

* With &, 4 defined in (49), we have for n : 1 <n< N,

3/2

—n+1/2

Ep | <G, CR**?+1% 438, (50)

~3/2
- If, in addition, |8, | <C,, C(h**?+t%), thenforn:1<n<N,

1/2 n
el g 1115 el < C,, COMH 4 2), 51

Proof. With a simple application of Cauchy-Schwartz inequality, one has

1/2 ——~n—1/2
si<c, C ey & P

Now we sum up the master error relation (39) with a =0, using vn <T and the inequality above, and obtain
+1/2 302 =
o (4 —
& =&+t Y Sy

n
~3/2 —~ 1/2 —~m-1/2
<C, Ch**? 11418, g D (e / + & / ). (52)
m=2

This leads to, under the assumption 7 < 1/2,

n—
G Pz, cOP w128, 128, +4T§ &

n—
~3/2 —~m+1/2
<C,, Ch**? 414438, +4r Z G (53)
1/2
hence the first estimate in (50) following a discrete Gronwall inequality. Furthermore, if |8h | <C,,.C (h*+2 4+ 7%), then &, #n+ /

Cop.. C(h2k+2 + %), for n> 1. We also obtain ||§"+1/ 2 < C,, Ch**'+ 72) by using the bound in (B 6). Finally, using the triangle
1nequa11ty lle, Il < NN + llm, |l and the approximation propertles in Lemma 2, we can conclude the second estimate in (51). []

~1/2
Remark 4. The summation in (51) is from m =2, as &, / is undefined. With some careful estimate for the initial steps, one can

~3/2
further verify the assumption on the size of &, / . This will not be discussed due to the technical involvement.

Remark 5. The error estimates in Theorem 4 are optimal with respect to the temporal local truncation errors and the approximation
properties of the discrete space th in space. Note the factor p,,, in (48) satisfies lim, _or,, =1 indicating that the error estimates
hold under nearly the same (but slightly smaller) time step condition (23) as for the discrete energy law in Theorem 2.

3.3.3. Error estimates for the Lorentz-Kerr model with a > 0
We now turn to the error analysis of the proposed methods for the Lorentz-Kerr model with a > 0. The key is to estimate the

contribution of N "(g) in the master error relation (39).
To prepare, we introduce an auxiliary field A”,

Al=E"— . =Rp ,E" (54)

associated with the electric field. This enables us to write E} = A} + &7.. Based on the approximation property of the projection
operator R, ;, 0,A} = R ,(d,E") and Taylor’s theorem, one can get the following for the sufficiently regular exact solution E.

12
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Lemma 5. There exists a constant C, such that for any relevant index n between 0 and N/, there hold

ALl <C. 116272 Ayl <C, 1187 Aplleo <C. 1182 Ell <C. (55)

We also recall some properties of the interpolation operators I, (see Lemma 1 and Lemma A.3 in [22]), which will be frequently
used in the analysis.

Lemma 6 (Properties of 1;, [22]). For any f,g € W;,(Q), there hold

/ 1,(f8)dQ = / L(NTy()dQ, / L,(pdQ= / L,(fy)dQ. Yy eVE. (56)

Q Q Q Q

As a special case, we have [, 1,(py)dQ = [, pwdQ, Yy, € V/\. Moreover

| / 1,79 < Cllf Mgl V7.5 € Wy(@. 7

Using the discretization for the Kerr term in (8d) (or in (16b)), the term N"(¢) in (42c) can be rewritten as

N”(¢)—60(Zh((|E PU+2E] EiN)8) E, — (|E"P1+2E"E")3!_E), ¢)+€0(Zh(f ) ),

where T 'Ilf is one local truncation error in (37). By a careful study of the first term in the decomposition above for N'"(¢), the master

error equation (39) will be reformulated as in the next corollary. The proof is given in Appendix C, with (C.4) being a key identity.

Corollary 1 (Error analysis: an updated master error equation). With a > 0, the master error equation in (39) can be reformulated as

SZH/Z—SZ_]/z:fSS—ariS‘." (58)
i=1
where SZH/ 2 gathers the contribution of both linear and nonlinear effects
5;:“/2 - g;n+l/2 N a:g;:n+l/2. 59)
The terms S/, i =1,-+,5, and E;nﬂ/z are
sri= eo(zh(qg" PI+2n T 4240 - ELI+2A0ELT 4220 ANTIS! A,), g) (60a)
spi= eo(zh((myzu —2E" 4+ 2T = 2E" T — 20 E")8" E), g) (60b)
Sy 1= — e Ty (AL 1+ 245431085 ng ), g) (600)
Sy =€ (Tu(TY), & ) (60d)

spi==2 /zh("‘”(mu Wy + 185 |2)d9+2/1h(é"”“2<AhAI>62)dﬂ
Q

Q

+2/1h(é” 1Tgn- V"’(A,,A;).fg-‘)dﬂufl (8572 1P + 1257 ) )@

Q Q
v [ n(a o Paepey Jaars [ 1, s A aar. (60e)
Q Q
e =2 e I+ [ 1 (143 P+ g )ae+2 [ 1, (4 R Ja
Q Q
+2/1h (Al - g +¢g~:7;1)2)d9+/z,,((Af,-¢g><2|¢g+‘|2+6|:g|2))d9 : 1)
Q Q

13
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To deal with nonlinearity, we will make an assumption for the L* error of the electric field during the initial steps of the proposed
methods.

L*®-Assumption: For n=0, 1,2, there holds ||§g |l < Ct for small enough 7. Here C is some fixed constant, independent of A, 7.

Theorem 5 (Error estimates for the Lorentz-Kerr model: a > 0). Let p,,. € (0,1 — 1/2/3) be any pre-chosen constant. Assume the L*-

Assumption holds and |€3/ 2| < Cme(hz"“ + 7*). With 0 = 0 and periodic boundary conditions, the numerical solutions of the proposed
methods (8)-(9) with numencal fluxes (10) and k > d — 1 have the following error estimates forn : 1 <n < N,,

5”*‘/ P<c, C 4t 62)
hence
172
LI 1 1 1 el < €, C(RFH 4+ 22, 63)
under the time step condition
v=C,p '™ (64)

and with sufficiently small h, e.g. h < h for some hy > 0. Here y = 1/2 when d = 1, and when d = 2,3, y is any pre-chosen sufficiently
small real number in (0, %], and C, sk € Lo 0pm] for a pre-set pair of positive numbers ¢,,, 0.

Proof. First of all, we make a priori assumption that

lEgllo <Cz,  0<n<N, (65)

This assumption will be proved later via mathematical induction.

Step 1: to bound 8"+1/2

n+1/2

from below. Based on the positivity preserving property in (34) of the interpolation operator Z,, we know

all the terms in 6'
in Lemma 5, we have

are non-negative except the last one. For this last term, under the assumption (65) and with the bound on AZ

/ 7, (A5 - EQIEHP + 618517 )dQ > ~CCr(lgH 1P + 13 1), (66)
Q

therefore, in combination with the result in Proposition 1 (hence under the time step condition (47)), and for the sufficiently small
7 (i.e. 7 < 79, with 7y = p,,.€p€, /(8aCC)),

1/2 1/2 1/2
s gl + DN IERDIP - aCCr(lgy IR + g 1) > €13,
where
n+1/2 _ Ho ol 2, 0 o +1)12 2
& =penr (S22 + = 1P + 12517 )
€00, () n
+ —||Ih<|¢"+‘ lEgDI> + (II-'E"“ 12+ IER 1) (67)

Step 2: to estimate S,/ = 1,---5. We start with S}. Using Cauchy-Schwartz inequality, the bounds related to A, in Lemma 5, and
the properties of 7, in Lemma 6, we get

|(Ih((|a§;|2 +2enen st Ay, E0)| < ClELN(IZLAE EL D + 1T ERNE DI, (68)

‘(1,,((,4;; I+ ARERT 4 2 ATTYS Ay, ET)

< Clgp (g 1+ 1 )- (69)

For S7, i =2,3,4, using the approximation property in Lemma 2 and bounds for local truncation errors in Lemma 3, one has

4

| Y st < e+ (e + 18- (70)
i=2

For S", we note that

s 1/2(|A | Y= &M 1/2 n— 1/2(A éE) P 1/2 n—1/2

Ay - (An+ AT, 5] ¢p)-

n—1/2

A Er+ A (5]

With the a prior assumption in (65), ||6;, ¢Ello < C. This, in combination with the bounds in Lemma 5, implies the uniform
boundedness of both terms above with respect to n, 7 and the spatial variable. Similarly, one can argue the uniform boundedness of
o 1/Z(AhAT), - I/Z(Ahi;g), 5:_1/2(Ah§£). With these, one can reach

14
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IS2 < CUIERI” + N 1. (71)
We can combine (43) and (68)-(71), and obtain

5 S
1/2 —1/2
Sp-ay SI<Si+al Y SI<C, C*ayrc(et e,

i=1 i=1

Now we sum up the updated master error relation (58), using zn < T and the inequality above, and obtain

n
n+1/2 n+1/2 2k+2 4 3/2 m+1/2 m—1/2
&y SETLC, Ch Prh+e, +Tc§ (eh’# +E, ) (72)

m=2

3/2

For 7 < 7 (e.g. with 7; = 1/(2C)) and with |£,/°| < C, C(h**2 4+ 7%), we will have

gt <c, ch™ ) +drC D em1/2

n
h# = h#
m=1

1
(73)

hence the first estimate in (62) following a discrete Gronwall inequality. We also obtain ||§;;1/ 2|| <C pWC (h**1 + £2) by using the
bound in (B.6). Moreover, using triangle inequality ||e, || < |, ]| + |7, || and the approximation properties in Lemma 2, we can conclude
the second estimate in (63).

Finally, we want to use mathematical induction to prove the a prior assumption (65). This is based on a milder assumption,
L*-Assumption, related to the initial steps. With this milder assumption, suppose |||l < Ct for all m < n, with n as any given
positive integer n € [2, N,), then from our error analysis, we know ”‘EFI | <C,,.C(z2 + h**1). Using the standard inverse inequality

associated with the discrete space th (see Lemma A.4 in [22]), and a rather stringent time step condition in (64), and a restriction
on the polynomial degree, namely, k > d — 1, we have

€5 1 < Ch™ 21 EM ) < €

j ja o CC™ (2 + W) < €, CCrloy + 0, )Th . (74)

One can set 2; = min(1, (/C/(Ce,,CCk(oM + g;' )), independent of n, h, 7, such that for any h < h|, wehave C,,.CC; (o, +o;l)hy <cC,
hence

€ e < Cr. 75)

Particularly, y = 1/2 is taken in one dimension (with d = 1) so the time step condition (64) is compatible with that in Proposition 1
(i.e. (47)), while when d = 2,3, one needs to impose y € (0,1/2] to ensure k + 1 —d/2>d +1—d/2>d /2 + 2y, hence hk*1-4/2 <
hd/22r < o,!zh?, as in (74). One also notes that with the time step condition (64), r being sufficiently small is equivalent to h being
sufficiently small. Hence the requirements above, namely 7 < min(zy, 7;) and & < h,, can be altogether rewritten into 4 < h, for some
hy>0. O

Remark 6. As in the linear case in Section 3.3.2, assumptions are made without a proof about the errors in the solution during the

first few steps, e.g. via L*-Assumption and |8}3l/ 2| < C!,WC(hz"+2 +74).

Remark 7. Like in the linear case with a = 0, error estimates are optimal for the general Lorentz-Kerr model. For the general model,
a rather stringent time step condition (64) is required, along with the constraint on the polynomial degree k, both in their relations
to the dimension d. They are needed in order to bound some divided differences of the numerical electric field (e.g. related to
6:_1/ 2-55 = 5:_1/ ’E "R E,h(aﬁ‘l/ 2E)) present in S7. It is speculated that these restrictive conditions are more a limitation of our
analysis, not of the proposed methods themselves, as partially evidenced by numerical experiments. There has been active research on
eliminating/relaxing such time step conditions, e.g. in [19] by considering an auxiliary semi-discrete in time methods in the analysis.
However it is unclear how to apply such framework, as it seems nontrivial to establish the regularity in high order Sobolev norms of
the semi-discrete in time solutions for the nonlinear optical model considered here.

4. Numerical examples

In this section, we will present a set of numerical examples to demonstrate the performance of the proposed methods in terms of
their accuracy, efficiency, and energy conservation / stability. Particularly, in combining with the numerical study in [23], our linear
methods are shown to be computationally competitive when being compared with the nonlinear ones in [5,22,23]. A scalability study
is further performed to illustrate the parallel efficiency. All simulations are performed on uniform meshes (with the mesh size A¢ in
&-direction, & = x, y, z), and in double precision unless specified otherwise, and they are based on the nondimensionlized form of the
model, though some examples and their results are presented with the physical units for better illustration.
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4.1. Accuracy, energy conservation / stability and efficiency

In this section, we investigate the accuracy, energy conservation / stability, computational efficiency and parallel scalability of our
proposed linear schemes. The error tolerance® in the Newton’s iteration (used either in the nonlinear initialization of linear methods,
or in nonlinear schemes for comparison) is denoted as Err,,, and will be specified, while the local d X d linear system (e.g. from
the proposed linear methods or during the Newton iterations) is solved based on the analytical expression of the solution. Unless
otherwise stated, the maximum number of nonlinear iterations is set as max;, = 20.

4.1.1. 1D kink shape solution
We first consider a 1D kink shape solution in Q = [0, 6], satisfying the following governing equations

o,H=0.E, 0,D=0.H,
0yP=-wyP+w E, D=cy,E+aE’+P,

in the absence of the Raman nonlinear effect as well as the damping in the linear dispersive Lorentz effect, i.e. with § =y = 0. The
solution is 6-periodic in space, with the electric field E(x,?) = ®(x — vt) determined by

e _ do _ 6av*O®? + (eooa% + a)i - w(z)/vz)(a + aa)g®3
dé TodéE 1 — ey 0% —3av?0@2 ’

where €, =2.25, €, =5.25, fi; = €, — €, @y = 93.627179982222216, w, = w, \/E, a=¢€y/3, v= 0.6545/\/5, E(0) =0, ®0) =
0.24919666777865812. One can follow the procedure in [5] to get the initial conditions for other quantities.

The simulation is performed up to the final time T = 9/v. To match the (k + 1)-th order spatial accuracy, we pre-set dt = CAx*+1/2
with C=0.2/v for k=1, C =1 for k=2, and C =2 for k =3, and the actual time step size is taken as 7 = % to ensure a
uniform mesh in time. Here [x] represents the greatest integer less than or equal to x. This test is carried out sequentially using
Fortran on a computer with Intel Core i7-10850H CPU 2.70 GHz and 64 GB Memory.

Accuracy, comparison and efficiency. In Table 1 (left panel), we present the numerical errors and convergence rates of the electric
field E,, at the final time T of the proposed linear methods with Alternating I flux. One can observe the optimal (k + 1)-th order
convergence rates for k = 1,2,3 especially in the L? norm. As a comparison, we also provide the results by the nonlinear schemes
proposed in [5] (implemented in the nodal DG setting, instead of the original modal DG setting, for better efficiency) with the error
tolerance Err,, = 1073 (see right panel). The CPU times (measured in seconds) are reported in the columns “fepu”- One will see that
the linear methods are more cost efficient than the nonlinear ones, when the same time step size is taken in both methods. Results
with Alternating II flux lead to similar observation, and they are omitted.

One natural question will arise: is the comparison above fair for cost efficiency, given that the allowable time step sizes to ensure
provable discrete energy laws are not the same for the linear methods here and for the nonlinear ones, as discussed in Remark 2.
Particularly, our analysis indicates smaller time step sizes are required for the linear methods. Though it is theoretically challenging
to know whether our analysis gives sharp bounds for allowable time step sizes, numerical experiments can provide some insights.
For this, we take k =2 and N, =800 and use Alternating I flux, and report in Fig. 1 the L? (solid line) and L*® (dashed line) errors
in E, at the final time T (left figure) as well as the CPU times (right figure) of the linear method and nonlinear method [5] for a
set of different values of the actual time step size . When both methods work well (i.e. are stable) with the same 7 taken, they lead
to visually indistinguishable errors, with linear methods showing better cost efficiency, just as observed from Table 1. As  grows,
particularly when 7 > 1.857567759 x 103, neither method produces reliable solutions: the L? error in the solution by the nonlinear
method suddenly jumps to 2.07857 x 102 from 5.48822 x 10~7 and the number of nonlinear Newton iteration grows, while the linear
method will blow up shortly afterward. One can also refer to Fig. 2 for some computed E;, at T with three sampled values of z. This
study seems to suggest that both nonlinear and linear methods allow comparable time step sizes for stability, and our analysis for
the allowable time step size is not sharp, at least not for the proposed linear methods. It is therefore reasonable to compare the cost
efficiency of both methods by taking the same time step size as in Table 1.

Surely the actual running time of nonlinear methods depends closely on the stopping criteria. In the column “iter” of Table 1,
the average number of Newton’s iterations per time step is recorded for the nonlinear methods. With Err,, = 1075, averagely 1-2
Newton’s iterations are needed. To have a more comprehensive assessment and comparison between the linear and nonlinear methods,
we carry out two additional tests for nonlinear methods with Alternating I flux. The first one is to keep Err,,, = 10~ while allowing
only one Newton’s iteration (see the left panel of Table 2). This test is natural, as the readers will wonder whether “nonlinear methods
with single Newton’s iteration” shall perform similarly as the proposed linear methods. The second test is to take Err,, = 10™* (see
the right panel of Table 2). In both scenarios, one will observe some level of accuracy deterioration while the computational cost
is still higher than the respective one of the linear schemes especially on finer meshes. This again shows that the setting for the
comparison in Table 1 is reasonable.

If we take into account the optimal accuracy of the methods, our observations up to now show that the linear methods here are
computationally more efficient. Indeed, in combination with our previous study in [23] (see its Tables 1-2), one can conclude that

3 For each dj; X d; nonlinear system F(u) =0 associated with an interpolation point, the classical Newton’s iteration method is applied with || F(*)||, < Err,,.
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Table 1

1D kink shape solution: numerical errors and convergence rates of E,, of the proposed methods (“linear methods”)
and the methods in [5] (“nonlinear methods”) with Err,,; = 107 and Alternating I flux, CPU times, averaged
iteration numbers in nonlinear iteration.

N linear methods nonlinear methods

x

? L® Tepu r? L= fepu iter

k=
100 1.4E-04 - 5.7E-04 - 0.00 1.3E-04 - 5.5E-04 - 0.01 1.9
200 3.8E-05 1.9 1.5E-04 1.9 0.01 4.2E-05 1.6 1.9E-04 1.5 0.02 1.9
400 1.3E-05 1.5 53E-05 1.5 0.11 1.2E-05 1.8 4.4E-05 2.1 015 1.7
800 3.6E-06 19 1.6E05 1.7 015 3.3E-06 19 15E-05 1.6 0.31 1.4
1600  9.1E-07 2.0 3.8E-06 21 0.59 7.4E-07 22 4.0E-06 19 118 1.3
k=2
100 3.5E-05 - 1.8E-04 - 0.01 3.5E-05 - 1.7E-04 - 0.02 1.5

200 4.4E-06 3.0 2.2E-05 3.0 0.05 4.4E-06 3.0 2.2E-05 3.0 0.08 1.4
400 5.5E-07 3.0 2.8E-06 3.0 0.61 5.5E-07 3.0 2.7E-06 3.0 0.86 1.3
800 6.9E-08 3.0 3.5E-07 3.0 1.46 6.9E-08 3.0 3.5E-07 2.9 2.59 1.3

k=3

100 8.3E-06 - 3.5E-05 - 0.02 8.4E-06 - 3.5E-05 - 0.04 1.4
200 5.2E-07 4.0 2.1E-06 4.1 0.13 5.2E-07 4.0 2.2E-06 4.0 0.28 1.3
400 3.3E-08 4.0 1.5E-07 3.8 2.38 3.3E-08 4.0 1.5E-07 3.9 3.86 1.2

6
3 x10 3 . :
25 ¢ 1
2 L 4
2 L 4
1r ] 15 1 ]
1 L 4
0 L 4
0.5 1
-1 : : 0 : :
0.5 1 1.5 2 0.5 1 1.5 2
At %103 At x10 7

Fig. 1. 1D kink shape solution, with k =2, N, =800 and Alternating I flux. Left: L? (solid line) and L* (dashed line) errors in E,, versus the time step size z, right:
the CPU times. Red: nonlinear methods [5], blue: linear method.

the proposed linear methods here are relatively more cost efficient than the nonlinear ones in [5] (based on the first order form of
the model) and in [23] (based on the mixed order form of the model), with each achieving the designed accuracy orders.

Energy conservation. For this example (6 =0,y = 0), the exact solution satisfies an energy conservation relation as in (3). As a final

test in this subsection, in Fig. 3, we present the time histories of the energy deviation from the initial energy, namely, 8211142 - é‘z/f %
n+1/2

as n increases, on the mesh with N, =400, when k = 1,2, 3 with alternating fluxes. The results show that the discrete energy & hLK
is conserved up to machine accuracy, validating our theoretical findings in Theorem 2.

When k =3, the energy deviation shows linear growth in time. (This trend is also observed over a longer time interval [0, 200].)
Similar linear growth was reported for nonlinear methods (e.g. Figure 6.2(c) in [5]). It seems this linear growth is an artifact associated
with the finite precision computation, and this is partially supported by the histories of the energy deviation computed in higher
precisions, see Fig. 3. Recall that by default the numerical results in this work are obtained from simulations in double precision.

4.1.2. 3D manufactured solution
In this section, we will conduct several tests in 3D.

Accuracy and efficiency. The accuracy of the proposed methods will be demonstrated through a manufactured solution in the

domain Q = [0, 2—”] X [0, 2z % [0, %], where k = (kx,ky, kz)T is a nonzero wave vector. We take
z

L] lkyl
Dx g{x
D(x,t)=| Dy, [cos(k - x + |k|r), H(x,t)=| I, |cos(k - x + |kl|?), (76)
DZ :}{Z

with
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Fig. 2. 1D kink shape solution, the computed E, at T with k =2, N, =800 and Alternating I flux. Top: linear method, bottom: nonlinear methods; Left: 7 =
1.844610301 x 10~%, middle: 7 = 1.851066355 x 1073, right: 7 = 1.857567759 x 1073,

Table 2
1D kink shape solution: numerical errors and convergence rates of E, of the “nonlinear methods” in [5] with
Alternating I flux, and CPU times. Left panel: one iteration allowed with max,, = 1, Err,, = 1075, right panel:

Err,,; =1074
N max,;, =1, Err,, =107 Err,, =107*
x

L? L® fopu L? L® Lopu iter
k=1
100 1.3E-04 - 5.8E-04 - 0.00 1.3E-04 - 5.5E-04 - 0.01 1.6
200 4.2E-05 1.6 2.0E-04 1.5 0.01 4.2E-05 1.6 1.9E-04 1.5 0.02 1.4
400 1.2E-05 1.8 4.8E-05 21 0.10 1.2E-05 1.8 4.4E-05 2.1 0.13 1.3
800 3.5E-06 1.8 1.8E-05 1.4 0.18 3.3E-06 1.9 1.5E-05 1.6 0.28 1.2
1600 8.6E-07 2.0 4.8E-06 1.9 0.73 7.5E-07 2.1 3.9E-06 1.9 1.11 1.1
k=2
100 3.6E-05 - 1.7E-04 - 0.01 3.5E-05 - 1.7E-04 - 0.01 1.3

200 4.6E-06 3.0 2.3E-05 2.9 0.05 4.4E-06 3.0 2.2E-05 3.0 0.08 1.2
400 7.4E-07 2.6 3.3E-06 2.8 0.54 5.7E-07 2.9 2.7E-06 3.0 0.70 1.1
800 1.8E-07 2.0 7.2E-07 2.2 1.71 1.8E-07 1.7 7.2E-07 1.9 2.44 1.0

k=3

100 8.6E-06 - 3.5E-05 - 0.02 8.4E-06 - 3.5E-05 - 0.04 1.3
200 7.0E-07 3.6 2.9E-06 3.6 0.17 5.4E-07 4.0 2.1E-06 4.1 0.26 1.1
400 1.2E-07 2.5 4.6E-07 2.7 2.49 1.2E-07 2.2 4.6E-07 2.2 3.34 1.0

DD, D) = (1 KAk kz)T (.3, 3,)T = |k|< k= I)T 77)
x Py Pz) =eol L, kxky ’kx 5 xo Iy JIlz) T =€ kxky’ ’ky s
and a constant e(. These fields satisfy the PDE part of the system (1a)-(1b). We further take
E(x,t)=P(x,t)=D(x,1), Q(x,t)=3,cos(k-x+ |k|t), (78)

and add source terms to the part of the system related to the constitutive law, namely, (1c)-(1d) and (2), so the fields specified above
will satisfy the system (modified with additional sources) with periodic boundary conditions in space. In our simulation, we fix ¢; = 1
and k= (1,1,1)7, with the model parameters €., =2.0, oy = w, = 1.0,y =0.05,2a=0.2,0=0.3, w,=1.0, y, =0.05. The final time is

T=-

L and the time step 7 is set as

T . k+l 3
=— 1 withar=Ch'z,C=01,h= .
TTrjan+r ™ 1/Ax+1/Ay+ 1/Az
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-16 -15 -14
4><‘10 2 x10 *x10

n+1/2
hLK
for k =3, with 20 effective digits (left) and 32 effective digits (right). Mesh: N, =400. Blue: Alternating I, red: Alternating II.

_er

Fig. 3. 1D kink shape solution: energy deviation &, WLK

Top: in double precision, k =1 (left), k =2 (middle), k =3 (right). Bottom: in higher precision and

This experiment is carried out using MPI Fortran on the cluster LSSC-IV of the State Key Laboratory on Scientific and Engineering
Computing, Chinese Academy of Sciences, with 1000 processors.

In Table 3, we present the numerical errors, convergence rates for the first component E,;, and the CPU times by the proposed
linear methods and by the nonlinear methods in [22] with the error tolerance Err,,; = 107%, both using Alternating I flux. Optimal
(k + 1)-th order convergence rates are achieved for k = 1,2,3. The errors of the two families of methods are comparable yet the CPU
times elapsed by the linear methods are less than those of the nonlinear ones. Note that on average 4-5 Newton’s iterations are needed
per time step. Similar observation has been made when Alternating II flux is applied, with the results omitted.

Just as in 1D case, we perform two additional sets of tests for the nonlinear methods to have a better assessment of the compu-
tational efficiency. The first test is to take Err,, = 107>, and the second test is to keep Err,, = 10~® while limiting the maximum
Newton’s iterations to be max; =4 for each nonlinear update. In either case, CPU times are still higher than those of the linear
methods, while some level of deterioration is observed in accuracy order or in actual errors. The results are not included to save
space. Again, in combination with our previous study in [23] (see its Tables 3-4) for 2D examples, it seems one can conclude that the
proposed linear methods here are computationally competitive in comparison to the nonlinear ones in [22] (based on the first order
form of the model) and in [23] (based on the mixed order form of the model), with each achieving the designed accuracy orders.

Energy conservation / stability. We start with verifying the energy conservation property of the proposed methods for the Lorentz-
Kerr model as suggested in Theorem 2. To this end, we set § =y = 0 and switch off the artificial source terms in the simulations. The
fields in (76)-(78) are used as the initial conditions (and they are no longer the exact solutions). The evolution of the energy deviation
from the initial energy, namely, 8211142 - 8}31/ L2 > up to time 7'=100/| k| are shown in Fig. 4 for the two numerical fluxes on the mesh
of N, = N, = N_=20. One can observe that the discrete energy preserves quite well over long time simulation.

We next show the energy stability of the proposed linear methods for the full Lorentz-Kerr-Raman model with both the nonlinear
Kerr and Raman effects. In order to focus on the time evolution of the energy related to the discretization yet not due to the physical
damping, we turn off the damping and take y =y, = 0. With # = 0.3, the model satisfies an energy conservation law (3)-(4), though
a discrete analogue of such law is not rigorously available for our linear methods. Nevertheless, we measure the energy numerically

using the discrete quasi-energy eI i (35), and present the time history of its relative deviation (€"+1/ 2 g ) g2

hLKR nLKR ™~ hLKR hLKR
in Fig. 5. As one can see, the discrete quasi-energy EZTL][Z{ fluctuates around the initial energy 82/ L2 «r(® 3000) within a relative
deviation at the magnitude of 107>, and well stays bounded over time. This provides a numerical evidence that the proposed methods
for the full Lorentz-Kerr-Raman model are stable in time. It is yet to find out whether a discrete energy law can be established for the

proposed methods respect to either the discrete quasi-energy 8221121 or some better defined discrete energy.

Parallel scalability. We conclude this section with a parallel scalability study of the linear methods. Since the methods are explicit
in the PDE part and extremely local, one would expect them to have similar parallel efficiency as the standard explicit DG methods
applied to hyperbolic problems [4]. As in the standard MPI implementation, we divide the computational domain into N, subdomains,
with N, being the number of the processors, then advance in time the methods in each subdomain on one processor, and at the same
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Table 3
3D manufactured solution: numerical errors and convergence rates of E,, of the proposed methods (“linear
methods”) and the methods in [22] (“nonlinear methods”) with Err,, = 10~° and Alternating I flux, CPU times,
averaged numbers of nonlinear iterations. N, =N, =N, = N.

Journal of Computational Physics 515 (2024) 113280

linear methods

nonlinear methods

N
? L= fepu ? L® fepu iter
k=1
20 6.9E-03 - 3.7E-02 - 0.43 6.8E-03 - 3.7E-02 - 0.20 4.8
40 1.8E-03 1.9 9.2E-03 2.0 0.02 1.7E-03 2.0 9.2E-03 2.0 0.03 4.7
80 5.2E-04 1.8 25E-03 19 0.30 5.1E-04 1.7 25E-03 19 0.99 4.6
160 1.3E-04 20 80E-04 16 531 1.3E-04 2.0 8.1E-04 1.6 873 4.6
320 3.2E-05 2.0 1.9E-04 21 531 3.2E-05 2.0 1.9E-04 21 100 4.6
640 8.3E-06 1.9 4.6E-05 2.0 816 8.3E-06 1.9 4.6E-05 2.0 1554 4.6
k=2
20 1.9E-04 - 8.9E-04 - 0.48 1.8E-04 - 8.4E-04 - 0.27 4.7
40 2.5E-05 2.9 1.1E-04 3.0 0.45 2.3E-05 3.0 1.0E-04 3.1 0.46 4.6
80 3.1E-06 3.0 1.6E-05 28 6.99 29E-06 3.0 1.3E-05 29 9.85 4.6
160  4.2E-07 29 26E06 26 111 4.0E-07 29 21E-06 26 160 4.6
320 5.0E-08 3.1 3.3E-07 3.0 2360 4.7E-08 3.1 2.7E-07 3.0 3434 4.6
k=3
20 3.2E-05 - 7.6E-05 - 0.37 1.5E-05 - 3.8E-05 - 0.45 4.6
40 2.0E-06 4.0 4.8E-06 4.0 3.31 9.5E-07 4.0 2.5E-06 3.9 5.17 4.6
80 1.3E-07 3.9 29E-07 4.0 89.1 5.9E-08 4.0 1.7E-07 39 107 4.6
160 7.9E-09 40 20E-08 39 2627 3.8E-09 40 1.3E-08 37 3184 4.6
_10 -10 -9

PP 10 i i i i i 4= 10 i i i i i 15 10 i

2

0
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Fig. 4. 3D example: energy deviation 6'}:'11,42 - 6'2/ Lz  for the Lorentz-Kerr model. Left: k =1, middle: k =2, right: k =3. Mesh: N, = N, = N =20. Blue: Alternating

1, red: Alternating II.
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Fig. 5. 3D example: relative quasi-energy deviation (8;’1],& - SZ/LZ . R) 82/ L2 xr for the full Lorentz-Kerr-Raman model. Left: k = 1, middle: k =2, right: k = 3. Mesh:

N,= N, = N_=20. Blue: Alternating I, red: Alternating II.

time, exchange information between the neighboring processors in a surrounding ghost layer [3]. We here take Alternating I flux and
k =2 as an example to examine both the strong and weak scalability of the methods.
In the strong scalability study, we fix the problem size by taking N, = N, = N, = 80. In Table 4, we report the speed-up and

parallel efficiency Eg,,, as the number of processors N, increases from N, =1 to N, = 1024. Here, the “speed-up” is the CPU

. speed—u
time of one processor over that of N, processors, and E,q, = pN—pP

. One can see that the “speed-up” scales with the number of
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Table 4
Strong scalability: k = 2, Alternating I flux,
N.,=N,=N,=80.

N, Tepu speed-up Egirone
1-81 4239.73 - -
2 2126.85  1.99 99.67%
4 1068.37 3.97 99.21%
8 538.28 7.88 98.46%
16 270.60 15.67 97.92%
32 136.50 31.06 97.06%
64 68.26 62.11 97.05%
128 34.92 121.41 94.85%
256 18.02 235.34 91.93%
512 9.56 443.51 86.62%
1024  9.52 445.51 43.51%
Table 5
Weak scalability: k =2, Alternating I flux.
N, N XN,xN, Tepu E,cax
1 20 %20 %20 50.54 -
2 40 x 20 x 20 51.41 98.31%
4 40 x40 x 20 51.47  98.19%
8 40 x40 x 40 51.52  98.11%
16 80 x40 x 40 52.08  97.05%
32 80 x 80 x 40 52.45 96.37%
64 80 x 80 x 80 53.32 94.79%

128 160 x 80 x 80 55.20  91.56%
256 160 x 160 x 80 55.92 90.41%
512 160 x 160 x 160 59.26  85.29%
1024 320x160x 160  60.29  83.84%

processors, achieving over 91% efficiency on up to 256 processors. The efficiency reduction for N, =512 and 1024 is due to the
communication between neighboring processors.

To examine the weak scalability, we increase the problem size and the number of processors simultaneously while keeping the
task over each processor almost identical. A weak parallel efficiency E,., is defined as the CPU time with one single processor over
that by N, processors. In Table 5, we provide the CPU times for running the simulations over 200 time steps on different meshes
using different numbers of processors. As we can see, over 90% (resp. 80%) efficiency is achieved on up to 256 processors (resp. 1024
processors), exhibiting good scalability for large scale simulations.

4.2. Physically relevant simulations

In this section, we apply the proposed linear methods to some physically relevant wave propagation problems in 1D, 2D and 3D.
In our simulations, numerical fluxes are chosen according to the kind of incident waves injected to the computational domain. More
specifically, if an incident wave is given in terms of the electric field E(x,t) (resp. the magnetic field H (x,?)) on (part of) the inflow
boundary with respect to the prescribed direction (1,1,1)T, e.g. at x = x,,, or at y = y,, the Alternating I (resp. II) flux will be used.
On the remaining boundaries of the domain, we adopt the strategy of approximate absorbing boundary conditions as in [5,22], and
apply some modified numerical fluxes, see e.g. Section 6.2 in [5]. As observed previously in [22], these artificial numerical boundary
treatments can be further improved especially over long time simulation in order to effectively suppress nonphysical reflection at
boundaries. For the two numerical examples in Sections 4.2.2-4.2.3, computational domains larger than the domains of interest will be
taken in the actual simulation to reduce the artifacts of numerical boundary treatments. All initial conditions are set to be zero. The DG
space th with k =2 and k =1 are used in the 2D and 3D examples, respectively. In the simulations, we use 500 and 1000 processors
for the 2D and 3D simulations, respectively. When applying the nonlinear schemes in the initialization (see Algorithm 1), the error
tolerance and the maximum number of nonlinear iterations by the Newton’s method are taken as Err,, = 10~% and max;, = 20,
respectively.

4.2.1. 1D soliton-like wave propagation
In this example, we simulate a soliton-like wave propagation in 1D [12,5], with the governing equations

0,H-0,E=0, 0,D—0,H=0,
D=e E+P+a(l —0)E* +abQE,

2 2
0y P+y0,P+wyP=wE,
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Fig. 6. 1D soliton-like wave propagation. Left column: fundamental soliton with M = 1. Right column: second-order soliton with M = 2. From top to bottom: k = 1,2, 3.

0,0+7,0,0 + 0’0 =0’ E?,

and the model parameters

€ =225, €,=525 P =c,—e€y y=1168%x1075, y,=29.2/32,
a=007, 0=03, Qy=1257, w;=584, ©,=128, w,=wy\/p.

On the left boundary x = 0, an incident wave as follows will enter

E(x=0,1)= f(t)cos(Qt), [ ()= Msech(t —20), (79)

where M physically characterizes the order of solitons. The computational domain is taken as Q = [0,45]. At x =0, the boundary
condition is weakly imposed through the use of Alternating I numerical flux; at x =45, an approximate absorbing boundary condition
as in [5] is applied numerically. The final time is T = 80. For k = 1,2, 3, the spatial and temporal meshsizes are taken as Ax = 45/6400,
7=0.1Ax.

In Figs. 6, we present the snapshots of the electric fields corresponding to the fundamental (M = 1) and second-order (M = 2)
solitons at t =40 and ¢ = 80 for k = 1,2, 3. The results are in good agreement with those obtained by the nonlinear schemes in [5,23].
Fig. 7 provides the time history of the discrete quasi-energy M2 of the system. Due to the damping effect of the medium, one can

nLKR
observe this quasi-energy decays after the wave fully enters the domain, showing the robustness of the proposed schemes. During the
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Fig. 7. 1D soliton-like wave propagation: time history of the discrete quasi-energy é’:il,ﬁ. Left: M =1, right: M =2.
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Fig. 8. 1D soliton-like wave propagation: semi-log plot of the spectrum, log,, E(w), where E(w) is the discrete Fourier transform of E; at x = 0.2 over the time period
[0,27 X 50/Q]. Left: M =1, right: M =2.

simulation, we record the electric field E; at x =0.2 for 50 time periods, namely, over [0, 27 X 50/€], and apply the discrete Fourier
transform to convert the data from the time domain to frequency domain. As is shown in Fig. 8, apart from the linear response, higher
order (particularly, the third and fifth orders) harmonic waves are generated in the process as one would expect for such system.

4.2.2. 2D spatial-soliton propagation
In this example, we simulate a 2D spatial-soliton propagation in optical glasses with the three-pole Sellmeier linear dispersion,
nonlinear Kerr and Raman scattering [14]. The (dimensional) governing equations are

Ho0, H , + axEy - ayEx =0, (80a)
0,D,—0,H,=0, 0,D,+0.H, =0, (80b)
3
D :eo(emE+b2P5 +a(l —9)|E|2E+a0QE), (80c)
s=1
0uPy+7,0,P +wy P =a) E, s=123, (80d)
0,0+7,0,0 + 0’0 = 0’| E|*, (80e)

where wgy; = 2.7537 x 1016 rad/s, wg, = 1.6205 x 1016 rad/s, wy; = 1.9034 x 10'* rad/s, f, = 0.69617, f, = 0.40794, fi; = 0.89748;
w5 = \/Bwogs 75 =0, s =1,2.3, €, = 1.0, b=1.0, a =189 x 1072 m?/V%, 0 =03, 7, = 12.2fs, 7, =32.0fs, y, =2/7), 0, =

\/(112 + 122) / (112122). Note that, the system (80) is formulated in the TE mode, where the two components of the electric field E =

(E\.E y)T are nonlinearly coupled via the constitutive relation (80c) (and (80e)).
The computational domain is Q = [0,60 pm] X [-4 um,4 um]. On the boundary x = 0, we introduce the following signal,

H,(x=0,y,1) = Hysin(w,t)sech(y/w), (81)

where @, = 4.35 x 10" rad/s is the carrier frequency. w, H,, are the width and the magnitude of the incident wave, respectively,
which will be specified in each case study. Since the signal (81) is injected via the magnetic field at x = 0, we use Alternating II flux
in this example, with the approximate numerical boundary treatments as in [22] on the top, right, bottom boundary of Q. The mesh
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Fig. 9. 2D spatial-soliton propagation: snapshot of |H_,| at T = 300 fs for the fundamental soliton propagation, with w = 667.0 nm, H, =4.77 X 10’ A/m, and k =2.
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Fig. 10. 2D spatial-soliton propagation: snapshot of | H,,| at T = 300 fs for the second-order soliton propagation, with w = 667.0 nm, H, =2 x 4.77 x 10’ A/m, and
k=2.

in space is uniform, with 2 = Ax = Ay = 20 nm. The final time is T = 300 fs, with the time step as 7 = 0.06,/¢e., #o/. The CPU time
for each simulation is about 1500 seconds.

In Fig. 9, we present the snapshot of the magnetic field | H,,| in the domain of our interest [0,38 um] X [-3 pm,3 pm] at the final
time T for the fundamental spatial soliton, whose parameters are taken as w = 667 nm and H;, = 4.77x 107 A/m. Due to the focusing
effects of the Kerr nonlinearity [8], the shape and magnitude of the fundamental spatial soliton merely change as it propagates in
the optical glass. If we double the strength of incident wave (81), namely, H, =2 x 4.77 x 107 A/m, a second-order soliton will be
launched. Unlike the fundamental soliton, the width and the magnitude of the second-order soliton vary from location to location as
shown in Fig. 10, exhibiting periodic focusing and defocusing effects. From the physical point of view, it is the interference between
the two fundamental solitons that directly leads to this interesting optical phenomenon [8].

In Fig. 11, we further show the spectrum plots of SR (@) for these two cases. Here, Eyp(w) is obtained after the discrete Fourier
transform is applied to the average of E,,(x,-,1) along the y-direction at x = 50 nm over 200 periods, namely, over [0, 27z /w, X 200].
As expected, the third order harmonic waves are detected in the solution. Similar as in [23], second-order harmonic waves of weaker
strength are also observed from such spectrum analysis.

4.2.3. 2D airhole scattering

In this example, we consider the propagation of a second-order soliton in an imperfect glass [14] with a computational domain
Q=1[0,32 um] X [—12 pm, 12 um]. This imperfection is caused by an airhole centered at (5 um, 0), modeled as material discontinuity
specially with a = b =0 in (80c) in the relevant subdomain of a size to be specified. The final time is T = 160 fs. We take w = 667.0 nm
and Hy=2x4.77 x 107 A/m. All other physical parameters are the same as those used in Section 4.2.2. For this example, since the
glasses are not uniform and the wave propagation is not paraxial, the full-vector Maxwell’s equations are important for simulating
the light-dielectric interaction. It takes about 1500 seconds for each simulation.

In Fig. 12, we plot the magnetic field |H,,| at t =T when the size of the airhole is 250 nm x 250 nm (top) and 350 nm X 350 nm
(bottom), respectively, over the domain of our interest [0,29 um] X [—5 pm, 5 um]. After the interaction with the airhole, significant
scattering of the electromagnetic field is observed, followed by a weaker-powered soliton reformed. With the smaller airhole (top),
the newly reformed soliton becomes narrower and exhibits periodic focusing and defocusing similar to the second order soliton shown
Fig. 10. With the larger airhole (bottom), the newly formed soliton has weaker intensity and propagates similarly as the fundamental
soliton in Fig. 9. These results are in good agreement with those in [14] by FDTD methods and in [22] by the DG type nonlinear
methods.
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Fig. 11. 2D spatial-soliton propagation: semi-log plot of the spectrum of the average of E,, in the y direction at x = 50 nm and with k = 2. Left: fundamental soliton,
with w=667.0 nm, H,=4.77 X 107 A/m, right: second-order soliton, with w = 667.0 nm, H, =2 x4.77 x 10" A/m.
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Fig. 12. 2D airhole scattering: snapshot of |H.,| at T = 160 fs, with w = 667.0 nm, H, =2 X 4.77 x 10’ A/m, and k = 2. Airhole size: 250 nm X 250 nm (top),
350nm X 350 nm (bottom).

4.2.4. 3D spatial-soliton propagation: effect of nonlinearity
In this final example, we turn to the simulation of a 3D spatial-soliton propagation. The governing equations are (1)-(2), with the

parameters chosen as follows,
wy=3.0x10"%rad /s, w,, = V0.8w, y =0,
€ =10,a=1x1.89x1072m*/V?, 6 =023,

Yo = 2, w, = \/(112 +1'22)/(112122), 7 =10.0fs, 7 =30.0fs.
T

2
Here a new parameter A4 is introduced as a multiplicative factor of the nonlinear strength parameter a. By tuning A, one can examine
the effect of the nonlinearity strength to the propagation of the soliton in an optical medium.
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Fig. 13. 3D spatial-soliton propagation: sliced snapshot of | E, | from the plane z =0 at T = 100 fs, with k = 1. Top: 4 =0, middle: A = 1, bottom: A =2.

The computational domain is Q = [—4 um,4 pm] X [0,20 um] X [—4 pm,4 pm]. The meshsize is Ax = Az =40 nm, Ay =25 nm.
The time step is set as 7 = 0.154/ege po/(1/Ax + 1/Ay+ 1/Az). At y =0, a z-polarized incident wave enters, propagating in the
positive y direction,

(e

with Hy=4.77x 107 A/m, w = 667.0 nm, o, = 4.35 x 10" rad/s.

We run the simulations up to the final time 7 = 100 fs when 4 =0, 1,2 and each single run takes about 10000 seconds. In Fig. 13,
we show the slices of the electric field | E,| from the plane z =0 at time # = T for the three cases. One can observe that in the medium
without the nonlinear effect (1 = 0), the introduced wave spreads out as it propagates. As the nonlinear effect increases moderately
with 4 =1, the wave propagates with little variation in width and amplitude. Due to the focusing effect of the nonlinearity, the wave
signal will become narrower as the nonlinearity further grows (with A =2).

H_(x,y=0,2z1)= Hjsin(w,t)sech s (82)

5. Conclusion

In this paper, we develop a class of accurate and efficient numerical methods for simulating the propagation of electromagnetic
waves in the optical Lorentz-Kerr-Raman medium, modeled by Maxwell’s equations coupled with a constitutive relation describing
some instantaneous and delayed linear and cubic nonlinear medium responses. The main contribution of this work to the algorithmic
development lies in the design of computationally efficient linear methods, featured as being free of any nonlinear algebraic solvers,
for the underlying nonlinear model. The proposed methods also respect the energy law for the special case of Lorentz-Kerr model. All
these are achieved through careful formulations of temporal and spatial discretizations. The computational efficiency of the methods
in the parallel implementation environment can be credited to the local nature of the methods as well as their explicitness for the PDE
part. With the computational efficiency demonstrated by the proposed methods, this work further adds to our continuing efforts in
developing accurate and robust numerical methods with provable properties for simulating nonlinear optics based on the full-vector
Maxwell’s equations.

Though optimal a priori error estimates are established for the proposed methods applied to the Lorentz-Kerr model, more in-
tricate analysis techniques are needed to lift some stringent conditions (e.g. on the time step size, the approximation order of the
discrete space). In the case of complex geometries, more general meshes such as those with d-simplex elements (i.e. triangles in 2D,
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tetrahedrons in 3D) can be preferred. The methodology and the analysis in this work can be extended to more general meshes to
design linear methods, as long as numerical quadrature rules of certain exactness with positive weights are available. In practice, the
efficiency of the methods also relies on robust numerical boundary treatments with sufficient control of non-physical artifacts, and
this deserves a systematic investigation especially for nonlinear and dispersive media.
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Appendix A. Proof of Theorem 3

Proof. With the numerical fluxes in (11) being consistent, the exact solution satisfies —(V x H n+1/ 2 )= BhH (H n+1/ 2 ¢) and (V X
E™' ¢)=BE(E"™!, ¢), V$ € V), and

(5?+1/2D,¢) " BhH(Hn+l/2’¢) - (T’ll)+1/2’¢)’ Vo e V}f, (A.1a)
Ho(6" H @) + B (E™ )= po(T' . ), VeV, (A.1b)

hence
6! D.¢)+BIH" ¢)=(T". ). VpeV\, (A.2a)
%(5;’“H +8"'H, )+ Bf (ﬁ, ®)=u(Th. b,  Vpev). (A.2b)

Subtracting (A.2a) from (24a), and subtracting (A.2b) from (24b), we get two error equations
(68D, —D).¢)+ B &) =K"P). VpeVf (A.32)

U _ pu—
SO ey + 57 ey )+ B p = M), VpEV (A.3b)
where K"(-) and M"(-) are given in (42a)-(42b).
From the constitutive relation in (2) and its discrete counterpart (8c), we reach the third error equation, again with V¢ € Vh",
(82.(Dy — D). §) = €yl + 81 Ep. ) — L' () + aN"(h), (A.4)

with £7(-) and N'"(-) given in (42c).
For the Lorentz term, we subtract (37c) from (8f), and obtain the fourth error equation

(8" p + 185 Ep + 0lp — ol D) =w2eg ' Qp),  VBEVS, (A.5)
with Q"(-) given in (42d). .

Now by taking special test functions in error equations above, specifically, with ¢ = g in (A.3a) and (A.4), ¢ = E in (A.3b),
d= 21'525 p in (A.5), following a similar derivation as in Step 1 of Theorem 2, we reach the master error relation in (39). []
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Appendix B. Proof of Proposition 1

Proof. By subtracting (A.1b) from (8b), we get
o6 . ) + BEEH )= M1 (¢). VeV (B.1)
with

M) i= ug(6" . ) + BEGE, ) — (T3, ). (B.2)

Using the approximation properties of th in Lemma 2, the bound on T ;;' !'in Lemma 3, and a super-convergence result similar
to (44) [10,20], we have

|.K/l\”+l(¢)‘ <CH* 1 D)gll,  veeVy. (B.3)

Following a similar derivation for (29) and based on (B.1), with A = C, v 7/h, we get the following with any p € (0, 1),

n+1

SIS VOIEED

/§n+l 6" dQ>/40( )||§n+1”2 — €€

2
>/40(1—P——)||§"+1||2—€0€ ( gnll”) = C,Cr?(h? 2 4 ). (B.4)

'+

Following a similar derivation for (30)-(31) and based on (B.1), we further obtain

1/2 n
ApollE P < 4pg(1 + DIEETIR + g 2

et

+4”0A'”'f"+1/2”2 Mn+] (€n+l +§”+1/2)

2

<A1+ p+ DIE IR +eoe s 57|
+4po(p + DIEm 1P + C,Cr2 (22 4 o, ®.5)
and therefore
n+1/2 1 WLP‘")L 12, €06 1
[ < ot
CcC
’ 2,32k+2 | 4
+———1(h + 1), (B.6)
dup(1—p—4)
under the condition
A<l=p. (B.7)
Combining (B.4) and (B.6), we reach
n 2
Ho / gt g sz——n: R 28 — e P+ Igg 1) (B.8)
Q
H 1+p+4
2 5 (20 =)= 4= TP
A/4 c,C
4 0% (1-4- 4 gl ) I A R LS S
4 l—p—}, 8(1—p—4)
Now we require 4 to satisfy (B.7) and
1+p+4 Al4
20—-p)—A———>p, 1—A———— >p, B.9
(1-p) T—,—i2" =12’ (B.9)

In order for such positive A to exist, we further restrict p € (0,1 — 4/2/3) (this can be seen by examining (B.9) with A =0). Now we
take p = p,,, with a pre-set p,,,. € (0,1 —4/2/3), then (B.7) and (B.9) will be simplified as

AS2(1= ) =\ (P = 1 +2,

hence the time step condition (47). The estimate in (46) then follows along with (49). [
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Appendix C. Proof of Corollary 1

Proof. With a direct calculation and EZ = AZ + 6%, we proceed as follows,
<|E"|2U+2E"E”T)5" E, - (|E"|2u+2E"E"T)5" E
h hh 2t h 27
=(1En21+280En T +2A0 £+ 2A0E0 T 4280 AL )60 A,
+ (JALPT+2AL - E0l+ |80 P+ 2A0 AL +2ANELT 4220 ANT 4280 21 T) 60 £y
+ (|ALIP1+ 247 ALT) 5% A, — (IE"|*1+2E"E"T)8) E
n ngn T n n negnT n AnT)\cn
=(1ELP 0+ 28080 T +2A) - ERI+2A0E0 T +2£7 ALT )50 A,
+ (I PV =2E" - il + 20t T = 2E"y.T — 24 E"T) 6! E
= (1A PV + 245 ALT) 3 ng + (1120 + 26365 7) 85
+ (ALPL+2A0ART 4 2A% - EL1 4+ 2A0E0T 288 ANT) 60 £ )
Here for the last equality, A” = E" — ., is used. With this,
h E
— 4
NEy =Y st + 500 450 €1
i=1
where S[",i =1,2,3,4 are defined in (60) and
P = e (Tu (U Pr+ 265801085 £, B ), (€.22)
SO 2 (T, (AL I+ 24T AT 4247 - 1424060 T 1280 AP T30 £1), & (C.2b)
5 T C0\"h h hh h °E h°E E“h ’%2¢5E)> 5E |+ .
Using the property of 7, in Lemma 6, one has

s _ fo

$ = o (IZRAEE IIEE DI + 20T - EpIP = ITR(ERIIEE DI = 20 T5(E - €5 DI) (€3)

To deal with 5;,,(2)’ we first derive an identity for any b”, b"*! € R™, together with any C" either being a scalar or in R”*", with
meN,

bn+1Tcnbn+l _ bn—chnbn—l
=bn+1Tcnbn+l + bnTCnbn _ bnTCn—lbn _ bn—lTCn—lbn—l

n—1/2
T

— T oy — (5 ey (C.4)

The key principle is that the last two terms in (C.4) no longer involve terms with the index n+ 1.
By taking C = |A,|?> and b = || in (C.4), we have

(10145 Po3, 200, B )
1 n n n 1 n— n n—
:E/Zh<|Ah|2(|‘fE+]|2+|§E|2))dg_E/Zh<|Ah PP + I )de
Q Q
1

-3 / 1, (87 20 AL g + 185 ) )de ©5)

Q

By taking C = A, A; and b= & in (C.4), we have
(I;,(AZAZT(S;T.fE), g)
1 n_ gn n o en 1 . Y . .
:E/Zh((Ah’5E+1)2+(Ah'§E)2>dQ—E/Ih((Ah I'EE)2+(A}, ]'§E1)2)dﬂ
@ Q
Y, eTsr A, ADEL ) — L/, 152, AT Vd o
4 1

Q Q
By taking C = A, - £ and b = || in (C.4), we have

(zatay - 285,00,
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- / (A - emagy P +1gyP) @ - - / 1, (A e g+ 18 ) )ae
Q Q
1 Pl 1/2 2 2
"3 1,(80 A eI P+ 1 ) )d ©7)

By taking C = Ahfg and b =g in (C.4), we have

(TuApes T+ an 105 ). 2 )

1 n n n n—1T snen n—
2T/Zh(§ +1T Af §+l éEl AthT§E1>dQ
= [ m(ay e -+ - gplen P )ae

Q

—zi/zh(m;;—‘fg)(é g hig P )ae

_%/ (é:nTén—l/z(Ahgg)g%)dQ—%/Ih(gn lT n— I/Z(Ah.f}::)éz-_l)dg €8
Q Q

Organizing the terms above, we have

5;(1) + 5;,<2> _ 1(5’":172 —Em12) 4 Ss, (C.9)
T
with £1+1/2 given in (61) and SS” in (60), hence we reach the reformulated master error relation (58). [
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