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Abstract. We derive feedback control laws for isolation, contact regulation,

and vaccination for infectious diseases, using a strict Lyapunov function. We

use an SIQR epidemic model describing transmission, isolation via quarantine,
and vaccination for diseases to which immunity is long-lasting. Assuming that

mass vaccination is not available to completely eliminate the disease in a time

horizon of interest, we provide feedback control laws that drive the disease to
an endemic equilibrium. We prove the input-to-state stability (or ISS) robust-

ness property on the entire state space, when the immigration perturbation

is viewed as the uncertainty. We use an ISS Lyapunov function to derive the
feedback control laws. A key ingredient in our analysis is that all compartment

variables are present not only in the Lyapunov function, but also in a negative
definite upper bound on its time derivative. We illustrate the efficacy of our

method through simulations, and we discuss the usefulness of parameters in the

controls. Since the control laws are feedback, their values are updated based
on data acquired in real time. We also discuss the degradation caused by the

delayed data acquisition occurring in practical implementations, and we derive

bounds on the delays under which the ISS property is ensured when delays are
present.

1. Introduction. We establish a basic framework for global feedback control con-
struction for epidemics exhibiting long-lasting immunity. We use the SIQR model
consisting of four compartments, namely, susceptible individuals, infected individu-
als, quarantined individuals, and recovered individuals [8, 14]. Our work is amenable
to cases where insufficient availability of vaccines counteracting strong infectabil-
ity implies that the disease cannot be eliminated. Popular approaches to tackling
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disease control problems entail Jacobian linearization. However, linearization is
only valid in a sufficiently small region. To prove global results, a common tech-
nique is to instead use Lyapunov functions in conjunction with LaSalle’s invari-
ance principle, but this technique is not amenable to proving robustness properties
[9, 10, 11]. As for stability analysis without uncertainty, this difficulty has some-
times been bypassed by removing variables and introducing state space restrictions
[8, 17, 18, 19, 37, 38, 40], which leads to analyses that assume a constant population
or that use Lyapunov functions in a restricted domain of a certain phase. While
previous approaches have been accepted in the mathematical biology community,
they have hampered the development of global robust feedback control synthesis,
which call for strict Lyapunov functions (as defined, e.g., in [23]).

Recently, a significant advance was presented to prove input-to-state stability (or
ISS) for the SIQR model on the entire state space [12]. This entailed constructing
a kind of strict Lyapunov function, called an ISS Lyapunov function. The con-
struction in [12] used a nontrivial analog of the strictification technique from [23].
Unlike Lyapunov functions that are popular in epidemiology, all of the compart-
ment variables appeared in not only the proposed Lyapunov function, but also in
a negative definite upper bound on its time derivative in the Lyapunov function
decay estimate. In the epidemic case, the Lyapunov function was used to propose
a control law for mass vaccination. However, [12] treated the rate β of transmis-
sion and contact [15], and the rate ν at which infected individuals are isolated via
quarantine, as two constants. Hence, only the vaccination rate ρ was used as a
feedback control in [12]. On the other hand, endemic equilibria can naturally arise
only when vaccine supply and logistics are insufficient. Therefore, here we treat
all three of these rates β, ν, and ρ as feedback controls. Then, using a nontrivial
variant of the global strict Lyapunov function analysis from [12], we design these
feedbacks to globally asymptotically stabilize a class of endemic equilibria when no
immigration perturbations are present, and to ensure ISS with respect to suitably
bounded perturbations.

There are several ways to reduce the spread of infection [14]. In this paper, we
consider isolation via quarantine and contact reduction, using the newly discovered
ISS Lyapunov function to design global feedback controls that ensure robustness to
a perturbation in the number of immigrants. In practice, implementation of coun-
termeasures to infectious diseases is subject to time delay since feedback control
updates input quantities based on the latest information; see e.g., [28, 29] for back-
ground on delay systems. Hence, we also demonstrate that the proposed feedback
control laws are robust to delays in updating the control input quantities.

We use the following definitions and notation. We use |f |J to denote the usual
sup norm of a function f over a subset J of its domain, |f |∞ is the sup norm over
its entire domain, and | · | is the usual Euclidean norm. Let K denote the set of
all strictly increasing continuous functions α : [0,∞) → [0,∞) such that α(0) = 0;
if, in addition, α is unbounded, then we say that α is of class K∞. We say that a
continuous function Φ : [0,∞) × [0,∞) → [0,∞) is of class KL provided for each
fixed s > 0, the function Φ(·, s) belongs to class K, and for each fixed r ≥ 0, the
function Φ(r, ·) is non-increasing and Φ(r, s) → 0 as s → ∞. A system of the form
ẋ(t) = F (x(t), ε(t)) with a state space (i.e., the set of all feasible states) X ⊆ Rn
satisfying F (0, 0) = 0 is called input-to-state stable (which is also abbreviated as
ISS) [16] on X with respect to a disturbance set E provided: There are Φ ∈ KL and
Γ ∈ K∞ such that for each initial state x(0) ∈ X and each locally bounded piecewise
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continuous function ε that is valued in E , the corresponding solution x : [0,∞) → X
of the dynamics is uniquely determined and satisfies |x(t)| ≤ Φ(|x(0)|, t)+Γ(|ε|[0,t])
for all t ≥ 0.

2. SIQR model with vaccination and time-varying rates. This paper con-
siders

Ṡ(t) = B + ϵ(t)− ρ(t)S(t)− µS(t)− β(t)I(t)S(t), (1a)

İ(t) = β(t)S(t)I(t)− (γ + ν(t) + µ)I(t), (1b)

Q̇(t) = ν(t)I(t)− (τ + µ)Q(t), (1c)

Ṙ(t) = γI(t) + τQ(t)− µR(t) + ρ(t)S(t), (1d)

whose positive real valued state variables S, I, Q, and R are numbers of susceptible,
infected, quarantined, and recovered individuals, respectively [8, 14, 26]. The known
constant B > 0 is the immigration rate including newborn. The unknown piecewise
continuous locally bounded function ϵ represents the immigration perturbation. We
assume that ϵ is valued in the perturbation set

P = (−B,∞). (2)

The non-negative-valued function β(t) combines the rate of disease transmission
and contact [15]. The positive parameters µ and γ are the non-associated mortality
rate and the rate of recovering from the disease, respectively. Equation (1d) together
with (1a) imply that the SIQR model (1) assumes the acquired immunity to be long-
lasting. The non-negative-valued functions ρ(t) and ν(t) are the vaccination rate
and the rate at which infected individuals are isolated via quarantine, respectively.
The positive parameter τ is the reciprocal of the average time spent in isolation.
The parameter ρ(t) not only describes the amount of vaccine administration in the
society, but also the reciprocal of the average time to acquire immunity. Due to the
non-negativity of the parameters, the non-negative orthant [0,∞)4 is a forwardly
invariant set for (1). In other words, each state component of (1) stays nonnegative
for all t ≥ 0 if the initial state for (1) is in [0,∞)4.

The goal of our control design is to derive a class of control functions that achieve
ISS of an error system associated with (1) for the disturbance set P, where the error
system will be specified in the next section. The states of the error system are the
differences between the states of (1) and their desired equilibrium values, after a
change of variables, so this will imply convergence of the states to their desired
values with an overshoot term depending on the immigration perturbation in a
sense that is made precise in our ISS definition from Section 1. To specify the
desired equilibrium values, our error system, and the class of controls, we will use
the control inputs uV (t), uI(t), and uC(t) in

ρ(t) = ρ̂+ uV (t), (3a)

ν(t) = ν̂ + uI(t), and (3b)

β(t) = β̂ + uC(t), (3c)

for positive constants ρ̂, ν̂, and β̂ representing nominal rates, where uV , uI , and uC
will be specified in our theorem in such a way that they will satisfy

uV (t) ∈ [−ρ̂,∞), uI(t) ∈ [−ν̂,∞), and uC(t) ∈ [−β̂, 0] (4)
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for all t ≥ 0. The nominal rate β̂ describes the natural transmission rate of the
disease without any contact regulation. Let

λ = γ + ν̂ + µ, χ = ρ̂+ µ, and R̂0 =
β̂B

(ρ̂+ µ)(γ + ν̂ + µ)
. (5)

The constant R̂0 is called the basic reproduction number. When ϵ = 0 and
uV = uI = uC = 0, we can easily check that the dynamics (1) admits the equilibrium

(S⋆, I⋆, Q⋆, R⋆) =(
λ

β̂
,
B

λ
− χ

β̂
,

ν̂

τ + µ

(
B

λ
− χ

β̂

)
,

1

µ

[(
γ +

τ ν̂

τ + µ

)(
B

λ
− χ

β̂

)
+
ρ̂λ

β̂

])
(6)

if and only if B/λ ≥ χ/β̂, i.e., if and only if

R̂0 ≥ 1. (7)

The point (6) is called the endemic equilibrium [14]. This paper uses the notation
X⋆ = (S⋆, I⋆, Q⋆, R⋆). Notice that the system (1) also admits the equilibrium point(

λ

β̂
, 0, 0,

ρ̂λ

µβ̂

)
, (8)

which is called the disease-free equilibrium in the literature. The zeros in the second
and the third components indicate that the disease is eliminated at the disease-free
equilibrium. The two equilibria coincide with each other if R̂0 = 1. In this paper,
we consider a fixed choice of the equilibrium (6), and we assume that

R̂0 > 1 (9)

so that the nominal vaccination rate ρ̂ is not large enough with respect to the natu-

ral disease transmission rate β̂ to eliminate the disease. However, we do not assume
any proportionality conditions (related, e.g., to the number S(t) of susceptible in-

dividuals at each time t) on ρ̂. Note that for ϵ = 0, ρ = ρ̂, ν = ν̂, and β = β̂,

under the assumption R̂0 > 1, the disease-free equilibrium cannot be contained in
the domain of attraction of the endemic equilibrium. Therefore, the domain of the
initial state (S(0), I(0), Q(0), R(0)) is set to

D = (0,∞)4 (10)

for (1). Irrespective of the control inputs uV , uI , and uC , the set D is forwardly
invariant for (1). ISS will be established for the state space X = D. We summarize
the notation in Table I below.

3. Control laws and guarantees. The work [12] provided a vaccination con-
troller assuming vaccination was the only available control, and the vaccination
control in [12] was chosen to provide the required decay condition for the novel ISS
Lyapunov function construction from [12]. By contrast, here we address the more
complex problem that we described in the introduction above based on a novel use
of a balancing parameter in the Lyapunov function construction from [12] (which we
describe in further detail in Remark 3.1 below after we introduce the required nota-
tion) and three controls (instead of only one) for vaccination, isolation, and trans-
mission and contact, which will also be chosen to provide the required Lyapunov
function decay conditions along solutions of the feedback controlled dynamics.
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Symbols Meanings

S(t) number of susceptible individuals in (1)

I(t) number of infected individuals in (1)

Q(t) number of individuals isolated after infection in (1)

R(t) number of recovered individuals in (1)

B immigration rate in (1)

ϵ(t) immigration perturbation in (1)

P perturbation set (−B,∞) from (2)

β(t) transmission and contact rate in (1)

µ nonassociative mortality in (1)

γ recovery rate in (1)

ρ(t) vaccination rate in (1)

ν(t) rate of isolation in (1)

τ reciprocal of average isolation time in (1)

ρ̂ nominal vaccination rate in (3)

uV (t) vaccination rate control from (11)

ν̂ nominal isolation rate in (3)

uI(t) isolation rate control from (11)

β̂ nominal transmission and contact in (3)

uC(t) transmission and contact control from (11)

β tuning constant in uC(t) from (11c)

X∗ equilibrium (S∗, I∗, Q∗, R∗) from (6)

λ and χ λ = γ + ν̂ + µ and χ = ρ̂+ µ used in equilibrium (6)

D set of feasible states (0,∞)4 for system (1)

Hi, i = 1, 2, 3 functions (13) used in controls (11)

c♢ and c constants c♢ ∈ (0, 2c♢) and c > 0 from (13)

c♢ bound (12) related to tuning constant c♢

(S̃, ξ̃, Q̃, R̃) error states (S − S⋆, ln(I)− ln(I⋆), Q−Q⋆, R−R∗) of (15)

ψ⋆ constant λI⋆ in (15)

D̃ feasible states (−S⋆,∞)× R× (−Q⋆,∞)× (−R⋆,∞) of (15)

P̃ perturbation set [−ψ⋆/4, ψ⋆/4] ∩ (−B,∞) from Theorem 3.1

Table 1. Parameters, Functions, and Sets from Sections 2-3

In addition to its mathematical novelty, the new results of this section are sig-
nificant from the practical point of view, owing to the usefulness of manipulating
not only vaccination rates, but also isolation and transmission and contact when
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reducing infections. We use the following feedback control laws for the three control
inputs:

uV (t) = fV (S(t), I(t))

= max {−ρ̂, ωVH1(S(t), I(t))} , (11a)

uI(t) = fI(S(t), I(t), Q(t))

= max {−ν̂, ωI(H2(S(t), I(t))− I(t)H3(Q(t)))} , (11b)

uC(t) = fC(S(t), I(t))

= max
{
β−β̂, min {0, ωCS(t)(I(t)H1(S(t), I(t))−H2(S(t), I(t)))}

}
. (11c)

The constant β ∈ [0, β̂] and the nonnegative constants ωV , ωI , and ωC are
parameters with which one can tune the three control inputs (as we illustrate in
Section 4 below), where in terms of the components (6) of our equilibrium point,
we use the constant

c♢ =
(τ + µ)cλ

ν̂2
, (12)

and the functions

H1(S, I) = (1 + c)S̃ + c

(
ρ̂+ µ

β̂
ln

I

I⋆
+ Ĩ

)
, (13a)

H2(S, I) = c

(
S̃ +

ρ̂+ µ

β̂
ln

I

I⋆
+ Ĩ

)(
ρ̂+ µ

β̂
+ I

)
+

(c+ 1)(γ + ν̂ + µ)

β̂
Ĩ, (13b)

and H3(Q) = c♢Q̃,where (13c)

S̃ = S − S⋆, Ĩ = I − I⋆, and Q̃ = Q−Q⋆, (13d)

and where the constants c♢ ∈ (0, 2c♢) and c > 0 can also be used to tune the
controls. The motivation for the controls (11) in combination with (13) is that they
provide a negative definite decay condition on our Lyapunov function when the
immigration perturbation ϵ(t) is the zero function, and an ISS Lyapunov function
decay condition for nonzero perturbations, which signifies that they force conver-
gence toward the desired equilibrium with an overshoot depending on the magnitude
of the immigration perturbation in the sense of the ISS definition in Section 1; see
Corollary 3.1. See Section 6 for more motivation for our controls, and our illustra-
tions below, where the controls are shown to provide desirable population profiles
using realistic parameter values from disease transmission data, which also moti-
vates our controls (11). Then H1(S⋆, I⋆) = 0, H2(S⋆, I⋆) = 0, and H3(Q⋆) = 0 hold.
Also, in terms of the definitions

ξ̃ = ln
I

I⋆
and ψ⋆ = λI⋆, (14)

and the variables ξ⋆ = ln(I⋆) and ξ = ln(I), we have ξ̃ = ξ − ξ⋆, and the equations
(13d) and (14) transform the model (1) into the dynamics

˙̃S(t) = ϵ(t)−
(
χ+β̂eξ̃(t)+ξ⋆

)
S̃(t)+ψ⋆

(
1−eξ̃(t)

)
−uV (t)S(t)−uC(t)eξ(t)S(t), (15a)

˙̃
ξ(t) = β̂S̃(t)− uI(t) + uC(t)S(t), (15b)

˙̃Q(t) = ν̂eξ⋆(eξ̃(t) − 1)− (τ + µ)Q̃(t) + uI(t)e
ξ(t), (15c)

˙̃R(t) = γeξ⋆(eξ̃(t) − 1) + τQ̃(t)− µR̃(t) + ρ̂S̃(t) + uV (t)S(t) (15d)
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which are defined on the state space

D̃ = (−S⋆,∞)× R× (−Q⋆,∞)× (−R⋆,∞), (16)

and where the formula (15) follows from our choices (5)-(6), i.e., the argument that
produced [12, Equation (9)] in the uI = uC = 0 case, except with the additional
control terms in the ν and β formulas. We also use the set

P̃ = [−ψ⋆/4, ψ⋆/4] ∩ (−B,∞), (17)

which will serve a disturbance set containing all admissible values of the immigration
perturbation ϵ in our first theorem.

Our goal in this section is to specify conditions on the controls uC , uI , and uV
such that (15) is ISS on its state space D̃ with respect to the disturbance set P̃ as
defined in (17), using the ISS definition from Section 1 (but see Theorem 3.2 for an
extension that allows the perturbation set (2)). Although our proof of the theorem
will show that we can achieve the preceding ISS objectives with uV , uI , and uC all
chosen to be the zero function, our proof and illustrations below will demonstrate
how nonzero choices of uV , uI , and uC can lead to different solutions of the dynamics
having faster convergence of the states towards their desired equilibrium values.
This motivates our analysis of more general nonzero choices of uV , uI , and uC that
can improve the convergence performance as compared to the results that would be
obtained had we instead chosen these functions to be the zero function.

Using the function

U(S̃, ξ̃, Q̃) = 1
2 S̃

2 + c
2

[
S̃ + χ

β̂
ξ̃ + I⋆

(
eξ̃ − 1

)]2
+ (c+1)ψ⋆

β̂

(
eξ̃ − 1− ξ̃

)
+ c♢

2 Q̃
2

(18)

of the difference variables from (13d) and (14), we get

∂U

∂S̃
= H1(S̃+S⋆, I⋆e

ξ̃),
∂U

∂ξ̃
= H2(S̃+S⋆, I⋆e

ξ̃), and
∂U

∂Q̃
= H3(Q̃+Q⋆), (19)

where we used the fact that λ = ψ⋆/I⋆. The preceding choice of U is inspired by,
but different from, the Lyapunov function for a smaller SIQ error dynamics from
[12], which in turn was obtained from a Matrosov type argument that transforms
a Lyapunov function for a smaller SI error dynamics by adding an additional non-
negative valued term. Although it has no specific physical interpretation, it is an
essential ingredient for our mathematical analysis that builds our ISS Lyapunov
function V below. See also Remark 3.1 below for more comparisons with [12]. In
terms of (18) and the preceding difference variables, we define the functions

V (S̃, ξ̃, Q̃, R̃) = U(S̃, ξ̃, Q̃) +W (S̃, ξ̃, Q̃, R̃), where (20a)

W (S̃, ξ̃, Q̃, R̃) =
g

2

[
S̃ + I⋆

(
eξ̃ − 1

)
+ Q̃+ R̃

]2
and R̃ = R−R⋆, (20b)

for another tuning parameter g > 0. The following theorem establishes a property
of the time derivative of the function V along all solutions of the controlled SIQR
model (1), which we use later to prove our ISS result:

Theorem 3.1. Let c > 0, g > 0, c♢ ∈ (0, 2c♢), β ∈ [0, β̂], and the nonnegative
values ωV , ωI , and ωC be given constants. Then, the time derivative of the function
V in (20) satisfies

V̇ (t) ≤− α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))) + σ(|ϵ(t)|) (21)
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along all trajectories of (1) in closed loop with the feedback controls that are given
by (3), (11), and (13) for all t ≥ 0 and all piecewise continuous functions

ϵ : [0,∞) → P̃, (22)

where

α(r) = min

{
1

2
, 1−

√
c♢
2c♢

}[√
k4 +min

{
1

k3
, 4
√
k4µ

}
r −

√
k4

]
, (23a)

σ(r) =

[
ln(2)cχ

β̂
+ cI⋆

]
r +

[
(1 + c)2

2χ
+

g

2µ

]
r2, (23b)

k1 = max

{
1 + 2c

χ
,

2

cψ⋆I⋆

[
2cI2⋆ +

(c+ 1)ψ⋆

2β̂

]}
, (23c)

k2 = k1 +

(
4cχ2

β̂
+ (c+ 1)ψ⋆

)
4

cψ⋆

(
2χ+ β̂I⋆

) , (23d)

k3 =

(
2cχ2

β̂
+

(c+ 1)ψ⋆
2

)
16β̂

c2ψ2
⋆χ

2
, and (23e)

k4 =
k22
4k23

. (23f)

Also, for each value of t ≥ 0 and for the preceding parameters, V̇ is nonincreasing
in each of the parameters ωV , ωI , and ωC . □

Proof. We indicate the changes that are needed in the proof of [12, Theorem 3.1] to
prove this theorem. The function V in (20) has the same structure as the function
Vc that was used in [12, Section 4.3]. Therefore, its time derivative satisfies

V̇ (t) ≤− 1

2
Wc(ξ̃(t), S̃(t))− µW (S̃(t), ξ̃(t), Q̃(t), R̃(t))

+ c♢

(
ν̂eξ⋆(eξ̃ − 1)Q̃− (τ + µ)Q̃2

)
+ Z(S̃(t), ξ̃(t), Q̃(t)) + σ(|ϵ(t)|) (24)

along all trajectories of (15) in closed loop with the controls (3) for all t ≥ 0 and
for all piecewise continuous functions ϵ satisfying (22), where Wc is the function

Wc(a1, a2) =
(
χ+ β̂ea1+ξ⋆

)
a22 + cψ⋆

[
χ

β̂
a1 + eξ⋆ (ea1 − 1)

]
(ea1 − 1)

in the proof of [12, Theorem 3.1], and where the added function Z is defined by

Z(S̃, ξ̃, Q̃) =∂U
∂S̃

(−fV (S, I)S − fC(S, I)IS)

+ ∂U
∂ξ̃

(−fI(S, I,Q) + fC(S, I)S) +
∂U
∂Q̃
fI(S, I,Q)I

=− SH1(S, I)fV (S, I)

+ (SH2(S, I)− ISH1(S, I)) fC(S, I)

+ (IH3(Q)−H2(S, I))fI(S, I,Q).

In fact, the inequality (24) follows from (19) and the first inequality in [12,
Equation (71)] except with the expression

H(Q̃, ξ̃) = c♢
τ+µ
2 Q̃2 + c♢

ν2e2ξ⋆

2(τ+µ) [e
ξ̃ − 1]2
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that appears in [12, Equation (71)] replaced by the formula

Ḟ3 = −(τ + µ)Q̃2 + νeξ⋆
(
eξ̃ − 1

)
Q̃

for the time derivative of F3(Q̃) = 1
2 Q̃

2 from [12, Equation (69)].

Young’s inequality rs ≤ nr2/2 + s2/(2n) with r = Q̃, s = ν̂eξ⋆(eξ̃ − 1), and
n = b(τ+µ) gives

c♢

(
ν̂eξ⋆(eξ̃ − 1)Q̃− (τ+µ)Q̃2

)
≤ −(2−b) c♢(τ+µ)

2 Q̃2 + c♢ν̂
2e2ξ⋆

2b(τ+µ)

(
eξ̃−1

)2

(25)

for any constant b > 0. Choose the constants

b =

√
2c♢
c♢

and δ = 2− b. Then δ = 2(1−
√
c♢/(2c♢) > 0 holds, and our definition of c̄♢ from

(12) and our choice ψ⋆ = λI⋆ from (14) give

c♢ν̂
2e2ξ⋆

2b(τ + µ)
=
ℓcψ⋆e

ξ⋆

2
, (26)

where ℓ =
√
c♢/2c♢. Hence, with the choice δ = 2− b, we conclude from (25) that

c♢

(
ν̂eξ⋆(eξ̃ − 1)Q̃− (τ + µ)Q̃2

)
≤ −δ c♢(τ + µ)

2
Q̃2 +

ℓcψ⋆e
ξ⋆

2

(
eξ̃ − 1

)2

. (27)

Since ξ̃(eξ̃ − 1) ≥ 0, we get Wc(ξ̃(t), S̃(t)) ≥ cψ⋆e
ξ⋆(eξ̃(t) − 1)2, so from (24) we

obtain

V̇ (t) ≤− 1−ℓ
2 Wc(ξ̃(t), S̃(t))− µW (S̃(t), ξ̃(t), Q̃(t), R̃(t))

− δc♢(τ+µ)
2 Q̃2(t) + Z(S̃(t), ξ̃(t), Q̃(t)) + σ(|ϵ(t)|)

≤−min{2(1− ℓ), 1, δ}
[
1
4Wc(ξ̃(t), S̃(t)) + µW (S̃(t), ξ̃(t), Q̃(t), R̃(t))

+ c♢(τ+µ)
2 Q̃2(t)

]
+ Z(S̃(t), ξ̃(t), Q̃(t)) + σ(|ϵ(t)|)

≤− α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))) + Z(S̃(t), ξ̃(t), Q̃(t)) + σ(|ϵ(t)|), (28)

where the last inequality follows from δ = 2(1 − ℓ) and the same reasoning that
gave [12, Equation (72)]. Next note that our formulas (11) for fV , fI , and fC give

− SH1(S, I)fV (S, I) ≤ 0, (29a)

(IH3(Q)−H2(S, I))fI(S, I,Q) ≤ 0, (29b)

(SH2(S, I)− ISH1(S, I))fC(S, I) ≤ 0. (29c)

Therefore, (21) follows form (28). Finally, the nonincreasing property from the
statement of the theorem also follows from (29).

Theorem 3.1 holds for any value of the tuning constant g > 0 that we used in V .
The magnitude and the convergence speed of V estimated by (21) depend on g as g
appears in σ. However, the control laws defined by (11) and (13) are independent
of g. By contrast, the parameters c and c♢ used in V appear in the control laws.
For the transformed system (15), the facts that α ∈ K∞, combined with the proper
and positive definiteness of V and the inequality (21) in Theorem 3.1, guarantee

that V is an ISS Lyapunov function on D̃ for the perturbation set P̃ [35]. Using
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ISS theory [34, 35] that ensures that the existence of an ISS Lyapunov function is
sufficient for ISS, the next corollary on the error variable

(S̃, ξ̃, Q̃, R̃) = (S − S⋆, ln I − ln I⋆, Q−Q⋆, R−R⋆) (30)

is a direct consequence of Theorem 3.1, using V as the ISS Lyapunov function:

Corollary 3.1. For any constants c > 0, c♢ ∈ (0, 2c♢), and β ∈ [0, β̂], and for any
nonnegative real values ωV , ωI , and ωC , the dynamics for the error variable (30)
for the SIQR model (1) with the controller consisting of (3), (11) and (13) are ISS
on the entire state space D for the perturbation ϵ satisfying (22).

Corollary 3.1 restricts the perturbation ϵ to (22), i.e., the disturbance set P̃ in
(17). However, transforming the result of Theorem 3.1 back into the original error
variable

(S̃, Ĩ, Q̃, R̃) = (S − S⋆, I − I⋆, Q−Q⋆, R−R⋆), (31)

we can also prove the following, which relaxes the constraint on the perturbation
values, and (by the definition of ISS that we provided in Section 1) provides a local
ISS result that applies for initial states that are contained in the set Da (where the
set Da is bounded but arbitrarily large, and the disturbance set P is unrestricted):

Theorem 3.2. Let Da be any compact subset of D that contains X⋆. For any

constants c > 0, c♢ ∈ (0, 2c♢), and β ∈ [0, β̂], and any nonnegative values ωV ,
ωI , and ωC , the dynamics for the error variable (31) for the SIQR model (1) with
the controller consisting of (3), (11) and (13) are ISS on Da for the perturbation ϵ
valued in P = (−B,∞). □

Proof. Define x̃(t) = (S̃(t), ξ̃(t), Q̃(t), R̃(t)), and let D̃ be defined as (16). We also

use the variables X̃(t) = (S̃(t), Ĩ(t), Q̃(t), R̃(t)), X(t) = X̃(t) + X⋆, and the set

D̃A = {X̃ ∈ (−∞,∞)4 : X̃ +X⋆ ∈ Da}. As Corollary 3.1 states the ISS property,
inequality (21) ensures the existence of Φ ∈ KL and Γ ∈ K∞ such that

V (x̃(t) ≤ Φ(V (x̃(0)), t) + Γ(|ϵ|[0,t]) (32)

for all t ≥ 0, x̃(0) ∈ D̃, and ϵ’s that are valued in P̃ [35]. Define

θ(s) = max
X̃∈{X̃∈D̃A : |X̃|≤s}

V
(
(X̃1, ln(X̃2 + I⋆)− ln I⋆, X̃3, X̃4)

)
,

θ(s) = min
X̃∈{X̃∈D̃A : |X̃|≥s}

V
(
(X̃1, ln(X̃2 + I⋆)− ln I⋆, X̃3, X̃4)

)
for s ∈ [0,∞). By the construction of V in (20), we have θ ∈ K∞. Note that for

large s for which {X̃ ∈ D̃A : |X̃| ≥ s} is empty, the function θ(s) is extended freely

to form a class K∞ function. There also exists θ̂ ∈ K∞ such that θ(s) ≤ θ̂(s) for all

s ∈ [0,∞). Hence, for Φ(s, t) = θ−1(2Φ(θ̂(s), t)) and Γ(s) = θ−1(2Γ(s)), which are
of class KL and K∞, respectively, from (32) we obtain

|X̃(t)| ≤ Φ(|X̃(0)|, t) + Γ(|ϵ|[0,t]) (33)

for all t ≥ 0, X̃(0) ∈ D̃A, and ϵ’s that are valued in P̃ by the subadditivity property
θ−1(a+ b) ≤ θ−1(2a) + θ−1(2b) for all a ≥ 0 and b ≥ 0. Since the SIQR model (1)
satisfies

d

dt
(S(t) + I(t) +Q(t) +R(t)) = B + ϵ(t)− µ(S(t) + I(t) +Q(t) +R(t)),
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we have

S(t) + I(t) +Q(t) +R(t) ≤e−µt(S(0) + I(0) +Q(0) +R(0))

+ sup
τ∈[0,t]

B + ϵ(τ)

µ

and so also

|X(t)| ≤ 4e−µt|X(0)|+ sup
τ∈[0,t]

B+ϵ(τ)
µ

by the subadditivity of the square root, for all X(0) ∈ [0,∞)4 and all choices of the

function ϵ that are valued in P. Hence, since |X̃(t)| ≤ |X(t)| + |X⋆| for all t ≥ 0

and |X(0)| ≤ |X̃(0)|+ |X⋆|, we get

|X̃(t)| ≤ 4e−µt|X̃(0)|+ 5|X⋆|+ sup
τ∈[0,t]

B+ϵ(τ)
µ (34)

for all t ≥ 0 and all choices of the function ϵ that are valued P. Pick any Φ ∈ KL
and Γ ∈ K∞ satisfying

Φ(s, t) ≥ max
{
Φ(s, t), 4se−µt

}
for all t ≥ 0 and s ≥ 0,

Γ(s) ≥ Γ(s) for all s ≥ 0, and

Γ(s) ≥ s+B

µ
+ 5|x⋆| for all s ∈ [min{B,ψ⋆/4},∞).

By separately considering the cases where ϵ satisfies |ϵ|∞ ∈ [0,min{B,ψ⋆/4})
and where the preceding inclusion is violated, we can combine (33) with (34) to
obtain

|X̃(t)| ≤ Φ(|X̃(0)|, t) + Γ(|ϵ|∞) (36)

for all t ≥ 0, X̃(0) ∈ D̃A, and ϵ’s that are valued in P. Since the solution X̃(t) at
each time t does not depend on ϵ(ℓ) values with ℓ > t, we can replace |ϵ|∞ by |ϵ|[0,t]
in (36) to get the desired ISS estimate.

Theorem 3.2 by itself cannot meet the goal of this paper, since in particular, it
does not give us any way of constructing controllers. Instead, Theorem 3.2 gives
us a useful guarantee for a given controller. The controller consisting of (3), (11)
and (13) is derived from the ISS Lyapunov function developed in Theorem 3.1. The
Lyapunov function judiciously determines the control action on the entire state
space to achieve the guarantee stated in Theorem 3.2.

Remark 3.1. The construction of the Lyapunov function V as in (20) employs
the basic idea proposed in [12]. In [12], the value c♢ = c♢/2 was used. This paper
relaxes the choice to c♢ ∈ (0, 2c♢). This relaxation made it possible to introduce
control inputs to isolation and contact regulation. Having the flexible parameter to
pursue an effective balance between the three control inputs can be useful for better
disease control. The parameter c in V can also be used for this purpose.

Remark 3.2. If the transformed SIQR model (15) is written as ˙̃x = F (x̃) +

GV (x̃)uV + GI(x̃)uI + GC(x̃)uC with x̃ = (S̃, ξ̃, Q̃, R̃), then, in terms of the V
given by (20), the control laws (11b) and (11c) are

−ωI ∂V∂x̃GI , and − ωC
∂V
∂x̃GC , (37)



12 HIROSHI ITO, MICHAEL MALISOFF AND FRÉDÉRIC MAZENC

respectively, with maximization and minimization meeting the input constraints.
For the control law (11a), this paper employs the weighting 1/S as

−ωV
1

S

∂V

∂x̃
GV , (38)

since 1/S is canceled out by GV . The weighting avoids the vaccination rate in [12]
that becomes very small too quickly.

Remark 3.3. The function V in this paper captures the behavior of all the vari-
ables S, I, Q, and R as in (20). By the strict Lyapunov function decay condition
(21), the function also characterizes the attractiveness of the endemic equilibrium
without using LaSalle’s invariance principle. The construction and the use of such
a comprehensive Lyapunov function V allows us to derive control laws from its
gradient (37). By contrast, in [8], the Lyapunov-like function

V (S̃, Ĩ) = S⋆

∫ S̃+S⋆

S⋆

β̂r − (γ + ν̂ + µ)

r
dr +

∫ Ĩ+I⋆

I⋆

β̂S⋆r + µS⋆ −B

r
dr (39)

is used for stability analysis assuming constant immigration and no manipulation,
i.e., ϵ(t) = 0 and ρ(t) = uV (t) = uI(t) = uC(t) = 0 for all t ≥ 0. Our model
(1) agrees with the SIQR model in [8, Section 5], except with the disease related
death in [8] combined in R as a standard practice. The function V in (39) does not
contain the variables Q and R. As noted in the proof of [8, Theorem 5], its time
derivative

V̇ (t) = − β̂BS̃2(t)

S̃(t) + S⋆
(40)

involves only S̃. Hence, the Lyapunov-like function does not characterize the be-
havior of Q and R. Moreover, concluding the analysis of S and I needs LaSalle’s
invariance principle. Even if the immigration perturbation ϵ(t) ̸= 0 and the manip-
ulation inputs ρ(t) ̸= 0 and uI(t) ̸= 0 are added to the SIQR model (to obtain the
dynamics (1) except with uC = 0), using

V (S̃, Ĩ) = S⋆

∫ S̃+S⋆

S⋆

β̂r − (γ + ν̂ + µ)

r
dr +

∫ Ĩ+I⋆

I⋆

β̂S⋆r + (ρ̂+ µ)S⋆ −B

r
dr (41)

only yields

V̇ (t) =
S⋆
S(t)

(
β̂S(t)− β̂S⋆

)(
B + ϵ(t)− (ρ̂+ µ+ uV (t))S(t)− β̂I(t)S(t)

)
+

(
β̂S⋆I(t) + (ρ̂+ µ)S⋆ −B

)(
β̂S(t)− β̂S⋆ − uI(t)

)
=− β̂BS̃(t)2 − β̂S⋆S̃(t)(ϵ(t)− uV (t)S(t))

S̃(t) + S⋆

− (β̂S⋆I(t) + (ρ̂+ µ)S⋆ −B)uI(t). (42)

Here, β̂S⋆ = γ + ν̂ + µ is used. Hence, letting uV and uI be of the gradient
form (37) with (41) does not produce the required strict Lyapunov function decay
condition. The same is true if we allow uC ̸= 0. Hence, the gradient of (41) does
not lend itself to deriving control laws.

Remark 3.4. It is easy to verify that Theorem 3.1 (hence, Corollary 3.1 and
Theorem 3.2) remain true even if (11a) and (11b) are replaced by

uV (t) = fV (S(t), I(t))
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= max {−ρ̂, min {ρ− ρ̂, ωVH1(S(t), I(t))}} , (43a)

uI(t) = fI(S(t), I(t), Q(t))

= max {−ν̂, min {ν − ν̂, ωI(H2(S(t), I(t))− I(t)H3(Q(t)))}} (43b)

where the saturation levels ρ > ρ̂ and ν > ν̂ can be chosen arbitrarily. This applies
throughout this paper. These saturated inputs reasonably represent limitations of
resources, but the saturation is not necessary from the mathematical point of view.

4. Simulation and discussion. In this section and Section 6, we illustrate the
effectiveness of the proposed control design through numerical simulations. We use

β̂ = 0.126/N, γ = 0.03, and τ = 0.03, (44)

for which the SIQR model (1) is used to analyze the COVID-19 outbreak in Japan
in [26]. The unit of population is in millions, and the time t is in days. The number
N denotes the total population. The demographic parameters

N = 126, µ = 0.0000307, and B = 3110× 10−6 (45)

are borrowed from [13, 36] since the inflow and the outflow are not of interest in
[26]. We chose the immigration perturbation

ϵ(t) = −311× 10−6 cos(πt/150) (46)

to describe the 20% perturbation of immigrants and newborns. Unless otherwise
stated, for the control laws (11) in (3), we use

ρ̂ = 0.00005. ωV = 0.000015, c = 0.02, (47a)

ν̂ = 0.005, ωI = 0.00006, c♢ = 1.8c♢, (47b)

β = β̂/4, and ωC = 0.0000001. (47c)

The basic reproduction number R̂0 becomes 1.1001.

4.1. Efficacy of the proposed control laws. Figure 1a shows the four popu-
lations of (1) without vaccination, isolation, and contact regulation, i.e, (1) with

the preceding parameter values but with ρ = 0, ν = 0, and β = β̂, while Figure
1b shows the populations controlled by (11) in (3). By the control, the infected
population I decreases fast. The peaks of I and Q are also reduced significantly.
The remaining susceptible population S in Fig. 1b is much larger than that in Fig.
1a. Note that R in Fig. 1b includes the population of vaccinated individuals who
are immune. In Fig. 1b, the isolated population I is too small to be seen clearly
since the no-isolation ν = 0 implies the convergence of I to zero.

4.2. Vaccination of susceptible individuals. The simulation is performed with
the constant vaccination ωV = 0 in Fig. 2. Compared to the case of ωV ̸= 0 in
Fig. 1b, the population increase of recovered individuals is delayed. However, the
amount of I(t) + Q(t) of Fig. 3b is still substantially smaller than that of Fig.
1a. Nevertheless, the benefit of updating the vaccine rate is clearly seen in the
significant reduction of the sum of I(t) +Q(t) by comparing Fig. 3a with Fig. 3b.

The accumulated total
∫ t
0
ρ(ℓ)S(ℓ)dℓ of vaccinated individuals is also shown in Figs.

3a and 3b. It is observed that the control input uV slows the vaccination rapidly
right before the infection peak. In other words, ν and β influence (1) after the surge
of I.
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(a) System (1) with ρ = 0, ν = 0, and

β = β̂.
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(b) System (1) with control (11) in
(3).

Figure 1. Comparison of uncontrolled and controlled populations
of (1).
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Figure 2. Populations of (1) with constant vaccination ωV = 0.
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(a) ωV = 0.000015.
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(b) ωV = 0.

Figure 3. Infected plus isolated population and accumulated total
of vaccinated individuals.

4.3. Isolation of infected individuals. Unlike vaccination, the effect of isolation
of infected individuals has an immediate effect to reduce the disease spread [14].
Isolation is limited by the number of hospital beds and facilities including human
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resources. Under the assumption of availability of isolation facilities including quar-
antine at home for humans, updating the isolation rate can be easier and quicker
than updating vaccination speed.

The Lyapunov function V defined in (20) has the Q-term

VQ =
c♢
2
Q̃2. (48)

The proposed control laws in (11) navigate the system trajectory to decrease

the V values. Hence, the proposed control decreases Q̃ to zero. The weighting
coefficient c♢ is free in the interval (0, 2c♢). The larger c♢ is, the more the control

law in (11b) puts weight on the reduction of Q̃ than the other variables S̃, Ĩ, and

R̃. Among the three control inputs (11), only (11b) involves Q̃ and c♢.
The positive value c♢ given by (12) is a decreasing function of ν̂. If the resources

for isolation are limited, the function c♢ gives a guideline telling how small the
nominal isolation rate ν̂ should be. This mechanism is illustrated by the difference
between the simulations in Figs. 1b and 4.

0 50 100 150 200 250
0

50

100

150

Figure 4. Populations of (1) with isolation coefficient c♢ =
0.18c♢.

4.4. Manipulation of contact rate. The parameter β describes not only the dis-
ease transmission rate, but also the contact rate. For human diseases, a government
can help control the contact rate by issuing a lock-down or a similar regulation and
advisory. With a positive constant ωC in the controls, the proposed control law
(11c) updates β in (3) so that the system trajectory leads to smaller V values.
Importantly, for human diseases, no government wants to spread the disease faster
than a natural infection speed even temporarily. Therefore, the control input β is

one-sided, i.e., β(t) = β̂(t)+uC(t), where uC(t) is non-positive in (11c). The target
equilibrium S⋆ of the susceptible population S corresponding to the target number
I⋆ of the infected population is normally chosen to be much smaller than the initial
population S. In fact, if the society can eliminate the disease completely, the equi-
librium S⋆ is generated only by the inflow, and it is almost zero, compared with the
initial S, which must be the total population of the society. Rapidly increasing β
can be effective for large S [39]. Since it is a prohibited strategy for humans, the
contact rate in (11c) is nonzero only when β can be decreased. As seen in Figs.
5 and 6, the total number of infected individuals is reduced about 27 % at 250
[days] by regulating society or environment, i.e., lowering uC at appropriate timing.
Here, the total number of infected individuals plotted on Fig. 5 is the integral of
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β(t)S(t)I(t) from t = 0. The contact regulation curbs the infection as seen in Fig.
1b compared to Fig. 7.
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(a) Constant contact ωC = 0.
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(b) Manipulated contact ωC = 10−7.

Figure 5. Total of infected individuals of (1).
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(a) Constant contact ωC = 0.
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(b) Manipulated contact ωC = 10−7.

Figure 6. Control input of (1) for contact rate.
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Figure 7. Populations of (1) with constant contact ωC = 0.
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4.5. Delays in the feedback control inputs. Plots in Fig. 8 are computed
for 2 days delays in the control inputs uV , uI , and uC , meaning t is replaced by
t − 2 in the controls for t ≥ 2. The delays result in only a small change from
the no delay case (Fig. 1b). As we saw in the proof of Theorem 3.2, system
(1) is population behavior that inherits a conservation mechanism irrespective of
control laws, meaning, the infection remains bounded for a bounded immigration
perturbation. However, the delay can hamper convergence of the trajectories to
an arbitrarily small neighborhood of the target equilibrium even for a sufficiently
small immigration perturbation. Therefore, the remainder of this paper shows the
existence of a non-zero upper bound on the input delays for which ISS is guaranteed
with respect to inflow perturbation.
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Figure 8. Populations of (1) controlled by (11) in (3) with 2 day
delay.

5. Delay robustness. We next consider the effect of delays in the control inputs,
which we represent by

ρ(t) = ρ̂+ uV (t− LV ), (49a)

ν(t) = ν̂ + uI(t− LI), (49b)

β(t) = β̂ + uC(t− LC) (49c)

for nonnegative constant delay lengths LV , LI , and LC , where the control law
functions uV , uI , and uC are given by (11). Define L = max{LV , LI , LC} and

x̃ = (S̃, ξ̃, Q̃, R̃). Let x̃0(τ) = x̃(τ) for τ ∈ [−L, 0] be an arbitrary continuous

function that is valued in the state space D̃ = (−S⋆,∞)×R×(−Q⋆,∞)×(−R⋆,∞)
that we defined in (16). Using the definition from [29], we say that the SIQR model
with (49) is ISS on a set Da containing X⋆ for a perturbation set Pa provided there
exist Φ ∈ KL and Γ ∈ K∞ satisfying |x̃(t)| ≤ Φ(|x̃0|[−L,0], t) + Γ(|ϵ|[0,t]) for all
t ≥ 0, for all initial functions x̃0 valued in Da and for all locally bounded piecewise
continuous functions ϵ that are valued in Pa. Using the notation we introduced
above, we can then prove the following (but see Remark 5.1 below for comments on
applications that allow longer delays for which our condition (50) is not satisfied):

Theorem 5.1. Let Da be any compact subset of D = (0,∞)4 that contains X⋆ =

(S⋆, I⋆, Q⋆, R⋆). Then for any constants c > 0, c♢ ∈ (0, 2c♢), β ∈ [0, β̂], and L > 0,
we can construct positive numbers A and ϵ such that if nonnegative constants ωV ,
ωI , ωC , LV , LI , and LC satisfy max{LV , LI , LC} ≤ L and

(1 + max{ωV , ωI , ωC})(ωV + ωI + ωC)max{LV , LI , LC} < A, (50)
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then the dynamics for the error variable (30) for the SIQR model (1) with the
controller consisting of (11), (13), and (49) are ISS on Da for the perturbation set
(−min{B, ϵ}, ϵ), where the positive number ϵ is a non-increasing function of ωV ,
ωI , ωC , LV , LI , and LC .

Proof. First, recall that the SIQR model (1) satisfies Ṡ+ İ+ Q̇+ Ṙ = B+ ϵ−µ(S+
I+Q+R) independently of the control inputs and the initial functions. Therefore,
for each choice of the set Da, we obtain a bounded set Z ⊂ D that contains the
solutions X(t) = (S(t), I(t), Q(t), R(t)) of (1) for all t ≥ 0, all perturbations that

are valued in P̃, and all initial functions X(τ) for τ ∈ [−L, 0] that are valued in Da.
The set Z is independent of X(τ) for τ ∈ [−L, 0). Define

D̃a =
{
(S̃, ξ̃, Q̃, R̃) ∈ D̃ : (S̃ + S⋆, I⋆e

ξ̃, Q̃+Q⋆, R̃+R⋆) ∈ Da
}
,

Z̃ =
{
(S̃, ξ̃, Q̃, R̃) ∈ D̃ : (S̃ + S⋆, I⋆e

ξ̃, Q̃+Q⋆, R̃+R⋆) ∈ Z
}
.

The set Z̃ can be unbounded, while D̃a is bounded. The possible unboundedness
of Z̃ follows because ξ̃(t) = ln I(t) − ln I⋆ converges to −∞ as I(t) → 0+, and
because I(t) is not guaranteed to have a positive lower bound. We use the variable

x̃(t) = (S̃(t), ξ̃(t), Q̃(t), R̃(t)). For x̃(t) valued in Z̃, define

GV (t) = −S(t)H1(S(t), I(t))(uV (t− LV )− uV (t)),

GI(t) = (I(t)H3(Q(t))−H2(S(t), I(t)))(uI(t− LI)− uI(t)),

GC(t) = (S(t)H2(S(t), I(t))− I(t)S(t)H1(S(t), I(t)))(uC(t− LC)− uC(t))

with (11) and (13). These functions are the zero functions when the corresponding
delays LV , LI , and LC are zero. From (13) one can verify the existence of non-
negative constants ka,i, kb,i, and kc,i such that

|H1(S, I)| ≤ ka,1|S̃|+ kb,1|ξ̃|+ kc,1|Q̃|, (51a)

|H2(S, I)| ≤ ka,2|S̃|+ kb,2|ξ̃|+ kc,2|Q̃|, (51b)

|H3(Q)| ≤ ka,3|S̃|+ kb,3|ξ̃|+ kc,3|Q̃| (51c)

for all x̃ ∈ Z̃. The existence of the constants in (51) follows from the boundedness

of the partial derivatives of H1, H2, and H3 on Z̃, which in turn follows from

d

dξ̃
Ĩ = I⋆e

ξ̃

and its boundedness on the set {ξ̃ : x̃ ∈ Z̃}. Let the feedback laws of the control
inputs uV , uI , and uC in (11) be denoted by FV (x̃) = fV (S, I), FI(x̃) = fI(S, I,Q),
and FC(x̃) = fC(S, I), respectively. Then the functions have non-negative (Lips-
chitz) constants kd,V , kd,I , and kd,C such that

|FV (x̃)−FV (ỹ)| ≤ ωV kd,V |x̃− ỹ|, (52a)

|FI(x̃)−FI(ỹ)| ≤ ωIkd,I |x̃− ỹ|, (52b)

|FC(x̃)−FC(ỹ)| ≤ ωCkd,C |x̃− ỹ| (52c)

for all x̃ and ỹ in Z̃. Again kd,V , kd,I , and kd,C are chosen uniformly in the

possibly unbounded set Z̃. To verify the existence of kd,V , kd,I , and kd,C , in ad-
dition to the bounded partial derivatives of H1, H2, and IH3 with respect to x̃ on
Z̃, we can use the following for obtaining kd,C . We can find a constant Ia > 0
such that S(IH1(S, I) − H2(S, I)) > 0 (and so also fC(S, I) = 0) for all (S, I)
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occurring as the first two components of tuples in Z and for which I < Ia. This
follows because I ln I → 0 as I → 0+. This provides a global Lipschitz constant for
min {0, ωCS(IH1(S, I)−H2(S, I))} on Z hence also the required constant kd,C .

Using (51), (52), and the fact that x̃(t) remains in the set Z̃ for all t ≥ 0, we can
find positive constants qI1 and qI2 such that

|GI(t)| ≤ qI1ωI (|H3(Q(t))|+ |H2(S(t), I(t))|)
×
{∫ t

t−LI
| ˙̃S(ℓ)|dℓ+

∫ t
t−LI

| ˙̃ξ(ℓ)|dℓ+
∫ t
t−LI

| ˙̃Q(ℓ)|dℓ
}

≤ qI2ωI(|S̃(t)|+ |ξ̃(t)|+ |Q̃(t)|)
×
{∫ t

t−LI
| ˙̃S(ℓ)|dℓ+

∫ t
t−LI

| ˙̃ξ(ℓ)|dℓ+
∫ t
t−LI

| ˙̃Q(ℓ)|dℓ
}
.

(53)

Here and in the sequel, all equalities and inequalities are along all solutions of the
SIQR model (1) with the controller consisting of (11), (13), and (49) with the initial

function x̃0 valued in Da and the perturbations ϵ valued in P̃. Using the equation

(15) and the global Lipschitzness of eξ̃ on Z̃, uniformly in Z̃, we can construct
constants q3 > 0, q4 > 0 and q5 > 0 such that

| ˙̃S(t)| ≤ q3(1 + ω)
(
|S̃(t)|+ |ξ̃(t)|+ |S̃(t− LV )|+ |ξ̃(t− LV )|

+ |S̃(t− LC)|+ |ξ̃(t− LC)|
)
+ |ϵ(t)|,

| ˙̃ξ(t)| ≤ q4(1 + ω)
(
|S̃(t)|+ |̃̃S(t− LI)|+ |ξ̃(t− LI)|+ |Q̃(t− LI)|)

+ |̃̃S(t− LC)|+ |ξ̃(t− LC)|
)
, and

| ˙̃Q(t)| ≤ q5(1 + ω)
(
|ξ̃(t)|+ |Q̃(t)|+ |S̃(t− LI)|+ |ξ̃(t− LI)|+ |Q̃(t− LI)|

)
,

where ω = max{ωV , ωI , ωC}. Hence, by extending the domains of the initial func-
tions x̃ to [−2L, 0] by stipulating that they are constant on [−2L,−L] (which does
not affect the solutions of the dynamics, because the solutions only depend on values
of the initial functions on [−L, 0]), we can obtain∫ t

t−LI
| ˙̃S(ℓ)|dℓ ≤ 6q3(1 + ω)

∫ t
t−2L

|(S̃(ℓ), ξ̃(ℓ))|dℓ+ L|ϵ|[t−LI ,t],∫ t
t−LI

| ˙̃ξ(ℓ)|dℓ ≤ 6q4(1 + ω)
∫ t
t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|dℓ, and∫ t
t−LI

| ˙̃Q(ℓ)|dℓ ≤ 5q5(1 + ω)
∫ t
t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|dℓ.

Hence,

|GI(t)| ≤3qI2ωI |(S̃(t), ξ̃(t), Q̃(t))|

× (1 + ω)(6q3 + 6q4 + 5q5)

∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|dℓ

+ 3qI2ωI |(S̃(t), ξ̃(t), Q̃(t))|L|ϵ|[t−LI ,t]

≤18ωI(1 + ω)qI2(q3 + q4 + q5)
{√

q7|(S̃(t), ξ̃(t), Q̃(t))|
}

×
{

1
√
q7

∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|dℓ
}

+

{√
2ζ

3
|(S̃(t), ξ̃(t), Q̃(t))|

}{√
3

2ζ
3LωIqI2|ϵ|[t−LI ,t]

}
(54)
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for any positive constants q7 and ζ. Applying Young’s inequality to the pairs of
terms in braces in (54) and then Jensen’s inequality, we obtain

|GI(t)| ≤ 9ωI(1 + ω)qI2(q3 + q4 + q5)
{
q7|(S̃(t), ξ̃(t), Q̃(t))|2

+
1

q7

(∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|dℓ
)2}

+
ζ

3
|(S̃(t), ξ̃(t), Q̃(t))|2 + 27

4ζ
L2ω2

Iq
2
I2|ϵ|2[t−LI ,t]

≤ 9ωI(1 + ω)qI2(q3 + q4 + q5)
{
q7|(S̃(t), ξ̃(t), Q̃(t))|2

+
2L

q7

∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|2dℓ
}

+
ζ

3
|(S̃(t), ξ̃(t), Q̃(t))|2 + 27

4ζ
L2ω2

Iq
2
I2|ϵ|2[t−LI ,t]

. (55)

In the same way, we obtain

|GV (t)| ≤ 9ωV (1 + ω)qV 2(q3 + q4 + q5)
{
q7|(S̃(t), ξ̃(t), Q̃(t))|2

+ 2L
q7

∫ t
t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|2dℓ
}

+ ζ
3 |(S̃(t), ξ̃(t), Q̃(t))|2 + 27

4ζL
2ω2

V q
2
V 2|ϵ|2[t−LI ,t]

, and (56)

|GC(t)| ≤ 9ωC(1 + ω)qC2(q3 + q4 + q5)
{
q7|(S̃(t), ξ̃(t), Q̃(t))|2

+ 2L
q7

∫ t
t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|2dℓ
}

+ ζ
3 |(S̃(t), ξ̃(t), Q̃(t))|2 + 27

4ζL
2ω2

Cq
2
C2|ϵ|2[t−LI ,t]

. (57)

Also, for an arbitrary constant g > 0, the function V in (20) satisfies

V̇ (t) ≤− α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))) + GV (t) + GI(t) + GC(t) + σ(|ϵ(t)|) (58)

along the trajectories of (1) with (11), (13), and (49) for all t ≥ 0 and all piecewise
continuous functions (22). Let

q = 9(ωV qV 2 + ωIqI2 + ωCqC2)(1 + ω)(q3 + q4 + q5).

Define

V♯(S̃t, ξ̃t, Q̃t, R̃t) =V (S̃(t), ξ̃(t), Q̃(t), R̃(t))

+
2Lq(1 + p)

q7

∫ t

t−2L

∫ t

ℓ

|(S̃(r), ξ̃(r), Q̃(r))|2drdℓ (59)

for p > 0. Then the derivative of this functional V♯ with respect to t is

V̇♯(S̃t, ξ̃t, Q̃t, R̃t) =V̇ (S̃(t), ξ̃(t), Q̃(t), R̃(t))− 2Lq(1 + p)

q7

∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|2dℓ

+
4L2q(1 + p)

q7
|(S̃(t), ξ̃(t), Q̃(t))|2.

Thus, along the trajectories of (1), we have

V̇♯ ≤− α(V (S̃(t), ξ̃(t), Q̃(t), R̃(t))) + qq7|(S̃(t), ξ̃(t), Q̃(t))|2

− 2Lqp

q7

∫ t

t−2L

|(S̃(ℓ), ξ̃(ℓ), Q̃(ℓ))|2dℓ+ 4L2q(1 + p)

q7
|(S̃(t), ξ̃(t), Q̃(t))|2
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+ ζ|(S̃(t), ξ̃(t), Q̃(t))|2

+ σ(|ϵ(t)|) + 27

4ζ
L2(ω2

V q
2
V 2 + ω2

Iq
2
I2 + ω2

Cq
2
C2)|ϵ|2[t−LI ,t]

. (60)

Assume that N > 0 satisfies

LN ≥ 2Lq(1 + p)

q7

∫ t

t−2L

∫ t

ℓ

M2drdℓ (61)

with M = maxx̃∈D̃a
|x̃|. Let

z = LN + max
x̃∈D̃a

V (x̃). (62)

Due to (23a), there exists m0 > 0 such that α(r)/r ≥ m0 holds for all r ∈
[0, z]. There also exists m1 > 0 such that V (S̃, ξ̃, Q̃, R̃) ≥ m1|(S̃, ξ̃, Q̃)|2 for all

(S̃, ξ̃, Q̃, R̃) ∈ D̃a. Indeed, the existence follows by finding a positive definite qua-

dratic lower bound for eξ̃ − 1− ξ̃ in ξ̃ (which exists because D̃a is bounded), which
we use to find a quadratic lower bound for U with positive coefficients. Hence, if

V (x̃(t)) ≤ z, (63)

then we obtain

V̇♯ ≤− b1V (S̃t, ξ̃t, Q̃t, R̃t)

− b2
2Lq(1 + p)

q7

∫ t

t−2L

∫ t

ℓ

|(S̃(r), ξ̃(r), Q̃(r))|2drdℓ

+ σ(|ϵ(t)|) + 27

4ζ
L2(ω2

V q
2
V 2 + ω2

Iq
2
I2 + ω2

Cq
2
C2)|ϵ|2[t−LI ,t]

≤− b3V♯(S̃t, ξ̃t, Q̃t, R̃t)

+ σ(|ϵ(t)|) + 27

4ζ
L2ω2(q2V 2 + q2I2 + q2C2)|ϵ|2[t−LI ,t]

, (64)

where

b1 = m0 −
ζ

m1
− q

m1

(
q7 +

4L2(1 + p)

q7

)
, b2 =

p

2L(1 + p)
,

and b3 = min{b1, b2}.
Let ϵ̂ > 0 be such that

zb3 = σ(ϵ̂) +
27

4ζ
L2ω2(q2V 2 + q2I2 + q2C2)ϵ̂

2.

Such a ϵ̂ > 0 exists if b1 > 0. Suppose that

b1 > 0 (65)

holds. Define ϵ = min{ψ⋆/4, ϵ̂}. Then the definitions (59) and (62) with the as-
sumption (61) yield V♯ ≤ z at t = 0, and by virtue of (64), V♯ ≤ z continues to hold

for all t > 0 as long as ϵ belongs to (−min{B, ϵ}, ϵ), and x̃0 is valued in D̃a. Since
(59) implies V ≤ V♯, the assumption (63) is met for all t ≥ 0. Furthermore, for

the perturbation set (−min{B, ϵ}, ϵ) and for all initial functions x̃0 valued in D̃a,
V♯ is an ISS Lyapunov-Krasovskii functional for the controlled SIQR model con-
trolled with (49) [29]. We now specialize the preceding analysis to the case where
q7 = m0m1/(2q). Then there exists ζ > 0 such that (65) holds if and only if

m2
0m

2
1 > 16L2q2(1 + p). (66)



22 HIROSHI ITO, MICHAEL MALISOFF AND FRÉDÉRIC MAZENC

The inequality (61) holds if and only if

LN ≥ 4Lq2(1 + p)

m0m1
2L2M2. (67)

Therefore, since L ≤ L, (66) and (67) provide a constant A > 0 that is required
for (50) to hold.

For each choice of Da, condition (50) is always met if max{ωV , ωI , ωC} = 0 or
max{LV , LI , LC} = 0. Thus, Theorem 5.1 recovers Corollary 3.1 as a special case.
Importantly, the delay robustness established by Theorem 5.1 is not local since
Da can bey arbitrarily large in the state space D. The larger the domain Da of
interest is, the smaller A can become. Nevertheless, there always exists A > 0 that
is independent of ωV , ωI , ωC , LV , LI , and LC . We can also remove the restriction
[−ϵ, ϵ] on the perturbation ϵ, as follows:

Theorem 5.2. Let Da be any compact subset of D containing X⋆. Then for any

constants c > 0, c♢ ∈ (0, 2c♢), and β ∈ [0, β̂], we can construct a positive constant
A such that if nonnegative constants ωV , ωI , ωC , LV , LI , and LC satisfy (50), then
the dynamics for the error variable (31) for the SIQR model (1) with the controller
consisting of (11), (13), and (49) are ISS on Da for the perturbation set P.

Proof. Theorem 5.1 ensures the existence of A > 0 in (50) implying the ISS prop-

erty for all initial functions x̃0 that are valued in D̃a and the perturbation set
(−min{B, ϵ}, ϵ). On the other hand, since Ṡ+ İ+ Q̇+ Ṙ = B+ϵ−µ(S+I+Q+R)
is satisfied by (1) independently of the control inputs, we have (34) for all X(0) =
(S(0), I(0), Q(0), R(0)) ∈ [0,∞)4 and all ϵ’s that are valued in P. Therefore, noting
that |x̃0(0)| ≤ |x̃0|[−L,0], we can apply the argument used in the proof of Theorem
3.2 to the SIQR model (1) with the delayed inputs for Da and ϵ ∈ P.

Remark 5.1. We found that our controls continue to achieve our ISS objectives
even when the condition (50) is not satisfied. For instance, using the same data that
we used in our delay simulations from Section 4.5, we found the same qualitative
convergence properties when the delays were 7 days instead of 2 days; see Fig.
9, which should be compared with Fig. 8. This indicates a desirable robustness
property of our work with respect to violations of our condition (50), and it indicates
that our controls (11) are useful even if the delays are larger than those that are
allowed by the preceding two theorems.

0 50 100 150 200 250
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50

100

150

Figure 9. Populations of (1) controlled by (11) in (3) with 7 day
delay.
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6. Practical interpretations and remarks. Control of an infectious disease is
the management of disease spread in a way a society can sustain, as discussed in
[14, Chapter 8]. Roles and choices of models for investigating control strategies are
also clarified there. For vaccination, this paper uses a standard model from [14,
Chapter 8]. The vaccination in (1) is the rate ρ with respect to the population
S of susceptible individuals since vaccination removes susceptible individuals and
moves them to the group R of individuals who gained immunity. The rate can
be considered to be proportional to the amount of medical resources prepared for
vaccination taking into account the efficacy of vaccines. The resources by themselves
define neither the nominal nor the maximum numbers of vaccinated individuals
or vaccine shots per day since the numbers must depend on the population of
individuals who are neither vaccinated nor infected, i.e., vaccination resources need
to encounter susceptible individuals. The number of vaccine shots must decrease to
zero as S tends to zero. Mass vaccination ordered by a government is unnecessary,
i.e., uV = 0 if susceptible and infected populations are at their desired equilibrium,
i.e., S̃ = Ĩ = 0. When S and I are larger than the equilibrium, the vaccination needs
to be increased, and the decision puts more weight on S̃ than Ĩ. This weighting
is consistent of the idea of herd immunity [5]. The control law given by (3a) and
(11a) represents such a policy.

To let a population become immune, vaccination is far slower than disease trans-
mission due to the essential difference in their growth rates. In disease transmission,
transmitters are doubling, while in vaccination, only professionals administer vac-
cines. For a human disease, no society would encourage individuals to contract the
disease. If eliminating a disease from a region eventually is the only objective, in-
creasing vaccination as much as possible is best [14]. The basic production number
shows that a disease is eliminated if the vaccination rate is larger than a threshold
[5]. However, even when vaccination is well above the threshold, it always takes time
to eliminate an infectious disease [14]. The elimination is a steady-state property.
Intensive vaccination does not mean the removal of infection peaks unless vaccines
are administrated well in advance. The effects of isolation and contact reduction are
quicker and alter the transient response, although they cannot be used for infection
reduction at a steady state. This motivates the idea of managing disease spread
without solely relying on vaccination [14, Chapter 8]. This paper employs ISS since
it is not a steady-state property. Utilizing ISS, this paper proposes a method to
design the simultaneous use of three controls to reduce the infection peaks in a
coordinated way to reduce the burden of the medical resources for the vaccination
and the treatment of patients in the presence of immigration uncertainty. To il-
lustrate this point, the simulations in Section 4 use a small gain parameter ωV for
vaccination. The parameters ωV , ωI , and ωC in (11) are tuning parameters that
can be selected taking into account the cost of the three strategies. Figure 10 plots
a simulation result where ωV is increased by 3 times, while the other parameters are
the same as those for Fig. 1b. The infection peak is pressed down further, although
the number of vaccinated people per day increases significantly as shown in Fig. 11.

Since the proposed controller consisting of the three inputs (11) is constructed
from a Lyapunov function, the controller enjoys an optimality property, which is
known as inverse optimality offered by a control Lyapunov function [6, 32]. The
optimal action occurs whenever the control inputs do not hit their range limits. The
inverse optimality gives a cost function a posteriori. The ISS property achieved by
the proposed controller provides such optimality. We do not have to select a cost
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function a priori, which is not at all an obvious task. Alternative control approaches
for COVID-19 models include optimal control, using predetermined cost functions.
For instance, the work [3] uses model predictive control to minimize the costs of
mitigation strategies while ensuring that the capacity of a regional healthcare sys-
tem network is not exceeded, [4] establishes the existence of optimal controls under
transmission and treatment uncertainty, [20] derives optimal controls using social
distancing as a control policy, the data-driven optimal control approach in [21]
uses learning methods to estimate model parameters to forecast the evolution of an
outbreak over short time periods and to provide scheduled controls, [22] uses an age-
structured population compartmental finite-dimensional optimal control model to
optimize vaccination policy to minimize deaths, the work [24] finds optimal strate-
gies as combinations of implementing multiple non-pharmaceutical interventions,
[25] derives optimal social distancing strategies using on-off social isolation strate-
gies, [27] uses optimal control to optimize timings for two-dose vaccine roll outs, [30]
uses optimal control methods to study trade-offs between lives saved versus reduced
time under control, and [33] uses optimal control to minimize the epidemic final size
while keeping the infected peak prevalence controlled at each time. The preceding
works are notable, because policy makers generally have certain control objectives
in mind that are not necessarily expressed in a mathematically rigorous way. How-
ever, our analysis is a departure from, and adds complementary value relative to,
the preceding optimal control works. This is because our novel global strict Lya-
punov function enables us to arrive at feedback controls quantifying the effects of
input delays and immigration uncertainty, using ISS and a new family of feedback
controls for three controlled quantities (namely, isolation, contact regulation, and
vaccination), while also enabling us to compare the effects of different feedback con-
trol parameters using actual data from the COVID-19 pandemic. These important
features are outside the scope of the preceding optimal control approaches that do
not use feedback control. Furthermore, the proposed feedback control laws in the
closed form (11) are free from the cost of real-time updates relying on numerical
computations and storage of data.

The proposed controller (11) generates control inputs that decrease the deviation
from the desired equilibrium all the time. The control law (11b) of isolation involves
the population Q of isolated individuals since a large isolation rate directly implies
an increase of isolated individuals that cannot exceed its resources. By contrast,
the vaccination (11a) and the contact regulation (11c) do not directly increase the
number of isolated individuals. Therefore, the control laws of the vaccination (11a)
and the contact regulation (11c) use only the populations of the susceptible and
infected individuals, which are directly relevant to the disease transmission. In this
way, the proposed controller (11) mitigates the burden on societies by reducing
contact and isolating mild cases which do not spend medical resources.

Duration of immunity varies with types of diseases [14]. This paper deals with
the management of diseases with long-lasting immunity. Variant strains of a disease
are sometimes treated better as a different disease. Sending recovered individuals
back to the susceptible group in a disease model is insufficient in situations where
the transmission rate, the efficacy of vaccination, the duration of immune protection
and other rates alter. This paper uses data from the COVID-19 pandemic for the
simulations since the usefulness of the SIQR model with long-lasting immunity is
demonstrated in [26]. Nevertheless, extending the proposed mathematical idea to
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cover waning immunity is an important direction for future research. For mathe-
matical simplicity, this paper allows control inputs to be updated all the time. The
delay robustness is established in this paper for practical control implementation
which does not update the control at the ideal timing. Figure 12 plots a simula-
tion result in which the values of the control inputs (11) are updated only at every
two weeks. The result is similar to the one with the continuously updated control
inputs shown in Figs. 1b and 6b using the same controller parameters. It indicates
practical usefulness of the proposed controller. Providing theoretical guidelines and
guarantees for (approximately) piecewise constant implementation of the control
inputs is also a practically important topic of future study.
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Figure 10. Populations of (1) controlled by (11) in (3) with ωV =
0.000045.
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Figure 11. Semi-log plot with number of vaccinated individuals
per day for two different ωV ’s.

7. Conclusion. By adding isolation and contact regulation to insufficient mass
vaccination, this paper demonstrated the usefulness of an ISS Lyapunov function for
feedback design for global disease control. The proposed feedback laws of the three
control inputs can reduce the peak infection levels and expedite the convergence
to the equilibrium. To remove the inconvenience of Lyapunov functions that have
been used in the literature, this paper focused on a new Lyapunov function and its
time-derivative that contain all the population variables on the entire state space.
Such construction of the Lyapunov function allows its gradient to yield the three
control laws directly in a uniform manner. The Lyapunov function constructed in
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0 50 100 150 200 250
0

50

100

150

(a) Populations of (1).
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(b) Manipulated contact.

Figure 12. Effects of using piecewise constant control which up-
dates values of uV , uI , and uC in (11) used in the controls (3) every
14 days and keeps the control values constant between updates.

this paper has free parameters. The coefficient weighting the isolated population
is useful for achieving a better balance between the three control inputs to reduce
the burden on the resources of isolation facilities and medical treatments. Since
the constructed Lyapunov function is also an ISS Lyapunov function, the control
guarantees robustness for immigration perturbation. Furthermore, this paper has
demonstrated robustness of the closed-loop to delays in control inputs. In future
work, we will study control laws providing guarantees for longer time delays by delay
compensation based on exact predictors, chain predictors [1, 2], or other dynamic
extensions [31]. Investigating the possibility of incorporating new free parameters
into the ISS Lyapunov function would also be important to pursue control laws that
can reduce the infection levels and the burden on resources further.
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[7] A. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson,
C. Bowman, M. Alexander, S. Ardal, J. Wu and B. Sahai, Modelling strategies for controlling

SARS outbreaks, Proceedings of the Royal Society of London Series B , 271 (2004), 2223-2232.
[8] H. Hethcote, M. Zhien and L. Shengbing, Effects of quarantine in six endemic models for

infectious diseases, Mathematical Biosciences , 180 (2002), 141-160.
[9] H. Ito, Input-to-state stability and Lyapunov functions with explicit domains for SIR model

of infectious diseases, Discrete Contin. Dyn. Syst. Ser. B , 26 (2021), 5171-5196.
[10] H. Ito, A construction of strict Lyapunov functions for a bilinear balancing model, IFAC-

PapersOnLine, 54 (2021), 161-166.

http://www.ams.org/mathscinet-getitem?mr=MR4252831&return=pdf
http://dx.doi.org/10.1016/j.sysconle.2021.104933
http://dx.doi.org/10.1016/j.sysconle.2021.104933
http://www.ams.org/mathscinet-getitem?mr=MR3712889&return=pdf
http://dx.doi.org/10.1016/j.automatica.2017.08.013
http://dx.doi.org/10.1016/j.automatica.2017.08.013
http://www.ams.org/mathscinet-getitem?mr=MR4188915&return=pdf
http://dx.doi.org/10.1016/j.arcontrol.2020.09.005
http://dx.doi.org/10.1016/j.arcontrol.2020.09.005
http://www.ams.org/mathscinet-getitem?mr=MR4365005&return=pdf
http://dx.doi.org/10.1016/j.mbs.2021.108758
http://dx.doi.org/10.1016/j.mbs.2021.108758
http://dx.doi.org/10.1093/oxfordjournals.epirev.a036121
http://www.ams.org/mathscinet-getitem?mr=MR1396307&return=pdf
http://dx.doi.org/10.1007/978-0-8176-4759-9
http://dx.doi.org/10.1007/978-0-8176-4759-9
http://dx.doi.org/10.1098/rspb.2004.2800
http://dx.doi.org/10.1098/rspb.2004.2800
http://www.ams.org/mathscinet-getitem?mr=MR1935292&return=pdf
http://dx.doi.org/10.1016/S0025-5564(02)00111-6
http://dx.doi.org/10.1016/S0025-5564(02)00111-6
http://www.ams.org/mathscinet-getitem?mr=MR4259668&return=pdf
http://dx.doi.org/10.3934/dcdsb.2020338
http://dx.doi.org/10.3934/dcdsb.2020338
http://dx.doi.org/10.1016/j.ifacol.2021.10.346


LYAPUNOV-BASED FEEDBACK CONTROL LAWS FOR SIQR 27

[11] H. Ito, Vaccination with input-to-state stability for SIR model of epidemics, Proceedings of
the 60th IEEE Conference on Decision and Control , (2021), 2812-2817.

[12] H. Ito, M. Malisoff, and F. Mazenc, Strict Lyapunov functions and feedback controls for SIR

models with quarantine and vaccination, Discrete and Continuous Dynamical Systems-B , 27
(2022), 6969-6988.

[13] Japanse Ministry of Health, Labour and Welfare, https://www.mhlw.go.jp/english/, (2021).
[14] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton

University Press, Princeton, 2008.

[15] W. Kermack and A. McKendrick, A contribution to the mathematical theory of epidemics,
Proceedings of the Royal Academy of London Series A, 115 (1927), 700-721.

[16] H. Khalil, Nonlinear Systems, Third Edition, Prentice-Hall, Englewood Cliffs, 2002.

[17] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic
models, Mathematical Medicine and Biology, 21 (2004), 75-83.

[18] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological

models with non-linear transmission, Bulletin of Mathematical Biology , 30 (2006), 615-626.
[19] A. Korobeinikov and G. Wake, Lyapunov functions and global stability for SIR, SIRS, and

SIS epidemiological models, Applied Mathematics Letters , 15 (2002), 955-960.

[20] R. Kovacevic, N. Stilianakis, and V. Veliov, A distributed optimal control model applied to
COVID-19 pandemic, SIAM Journal on Control and Optimization , 60 (2022), 221-245.

[21] H. Liu and X. Tian, Data-driven optimal control of a SEIR model for COVID-19, Communi-
cations on Pure and Applied Analysis, (2022), to appear.

[22] Q. Luo, R. Weightman, S. McQuade, M. Diaz, E. Trelat, W. Barbour, D. Work, S. Sama-

ranayake and B. Piccoli, Optimization of vaccination for COVID-19 in the midst of a pan-
demic, Networks and Heterogeneous Media , 17 (2022), 443-466.

[23] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions , Springer-Verlag,

London, Ltd., London, 2009.
[24] S. T. McQuade, R. Weightman, N. Merrill, A. Yadav, E. Trelat, S. Allred and B. Piccoli,

Control of COVID-19 outbreak using an extended SEIR model, Mathematical Models and

Methods in Applied Sciences , 31 (2021), 2399-2424.
[25] M. M. Morato, S. B. Bastos, D. O. Cajueiro and J. E. Normey-Rico, An optimal predictive

control strategy for COVID-19 (SARS-CoV-2) social distancing policies in Brazil, Annual

Reviews in Control , 50 (2020), 417-431.
[26] T. Odagaki, Analysis of the outbreak of COVID-19 in Japan by SIQR model, Infectious

Disease Modelling , 5 (2020), 691-698.
[27] R. Parino, L. Zino, G. Calafiore and A. Rizzo, A model predictive control approach to opti-

mally devise a two-dose vaccination rollout: A case study on COVID-19 in Italy, International

Journal of Robust and Nonlinear Control, (2021), to appear.
[28] P. Pepe, A nonlinear version of Halanay’s inequality for the uniform convergence to the origin,

Math. Control Relat. Fields , 12 (2022), 789-811.
[29] P. Pepe and Z.-P. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay

systems, Systems Control Lett., 55 (2006), 1006-1014.

[30] T. Perkins and G. España, Optimal control of the COVID-19 pandemic with non-

pharmaceutical interventions, Bull. Math. Biol., 82 (2020), Paper No. 118, 24 pp.
[31] A. Selivanov and E. Fridman, Predictor-based networked control under uncertain transmission

delays, Automatica J. IFAC , 70 (2016), 101-108.
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