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PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS

ADAM KANIGOWSKI, MARIUSZ LEMANCZYK, AND MAKSYM RADZIWILL

ABSTRACT. We establish a prime number theorem for all uniquely ergodic, analytic skew
products on the 2-torus T2. More precisely, for every irrational o and every 1-periodic
real analytic g : R — R of zero mean, let T, , : T?> — T? be defined by (z,y) — (z +
a,y + g(z)). We prove that if T, 4 is uniquely ergodic then, for every (z,y) € T?, the
sequence {T% (v,y)} is equidistributed on T2 as p traverses prime numbers. This is the
first example of a class of natural, non-algebraic and smooth dynamical systems for which
a prime number theorem holds. We also show that such a prime number theorem does not
necessarily hold if ¢ is only continuous on T2.

INTRODUCTION

Let X be a compact metric space and T : X — X a continuous map so that (X, 7T) is a
topological dynamical system. Given a T-invariant Borel measure v, following the work of
Bourgain [4] and Wierdl [55], we know that for v-almost all z € X, the sequence

() 5 3 rTra)og

p<N
converges, with p traversing prime numbers. However, we are in general lacking a description
of the limit. More importantly, the problem of understanding when convergence in (1) holds
for all x € X remains open.

Whenever (1) converges to a limit for all z € X for any given continuous f : X — R
we will say that a prime number theorem holds for (X, T). There is at present no clear
understanding for which dynamical systems a prime number theorem should hold. On the
other hand, we have a very precise conjecture, due to Sarnak, for the seemingly related
notion of Mobius disjointness. Sarnak’s conjecture asserts that for any dynamical system
of topological entropy zero,

3 ATt 0
n<N
for all x € X as N — oo. Sarnak’s conjecture is verified for a vast array of dynamical
systems (see [16]). Meanwhile prime number theorems are established only for a few special
dynamical systems:

e cyclic rotations on Z/dZ (i.e. the Prime Number Theorem in arithmetic progres-
sions),

rotations on T (i.e. Vinogradov’s [53] theorem),

nilsystems (i.e. the Green-Tao [23] theorem),

Rudin-Shapiro sequences (Mauduit-Rivat [40]),

enumeration systems (Bourgain [5, 6], Green [22]),

certain finite rank symbolic systems (Bourgain [7], Ferenczi-Maduit [17]),
automata (Miillner [44]).
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One of the reasons for this discrepancy is that we have more tools to address Sarnak’s
conjecture. The number-theoretic tools (e.g. [8], [10], [30], [38], [52]) that are used in the
context of Sarnak’s conjecture rely on the fact that most integers are composite and thus
factor. In particular, these tools completely ignore the behavior on the subsequence of
prime numbers and are therefore inapplicable in the context of establishing a prime number
theorem.

All dynamical systems for which a prime number theorem is currently known are either
algebraic or symbolic. This is, as we will explain later, an important technical advantage.
In this paper we are interested in establishing a prime number theorem for a natural class of
zero entropy smooth dynamical systems that are neither algebraic nor symbolic. Specifically,

we consider analytic skew products (also known as Anzai skew products'), that is, maps
Ty : T? — T? defined by

Tog(z,y) = (v 4+ o,y + g(2))

with « irrational and g : R — R a 1-periodic real-analytic function. The behavior of
these systems can be quite complex: Furstenberg [21] famously showed that T, , (with g
analytic) can be minimal without being uniquely ergodic (i.e. the orbits {7} (x,y)} can be
dense without being equidistributed). Yet, analytic skew products are some of the simplest
(non-algebraic) generalizations of irrational rotations and they can be viewed as random
rotations: at the nth step T, , rotates the second coordinate of (z,y) by g({z + na}) and
the sequence {x + na} can be viewed as a source of “deterministic randomness”. We refer
the reader to [35] for further information on Anzai skew products and information on their
importance in ergodic theory. Mobius disjointness of skew products Ty, , received particular
attention: For analytic g, under a modest additional condition, Mébius disjointness for 7, 4
was established by Liu-Sarnak [36], subsequent results lowered this assumption to ¢ analytic
[54], then C*° [26], then C**¢ [29] and the current best result requires g to be only C'**
[12].
We are now ready to state our main result.

Theorem 0.1. Let o € R\Q and let g : R — R be a 1-periodic real-analytic function of
zero mean. If T, , is uniquely? ergodic then for every continuous f : T?> — C and every
(r,y) € T?, as N — oo,

&) ¥ AT Geu)logp — [ (5. )dsan,

p<N

where as usual the letter p stands for prime numbers. In fact, the convergence is uniform
in (z,y) € T?.

Since Theorem 0.1 holds for all uniquely ergodic analytic skew-products, we believe that
the rate of convergence in (2) can be arbitrarily slow. We expect that the condition “Tj 4
uniquely ergodic” is also necessary in Theorem 0.1. Such a converse is implicit in our proof
for certain special o’s (for example those o that can be expanded into a continued fraction
[0;¢1, g2, .. .] with all the ¢;’s having a bounded number of prime factors).

lin honour of Anzai [2] who introduced them in the 1950’s.
%In the class of Anzai skew products strict ergodicity is equivalent to unique ergodicity. Moreover, unique
ergodicity implies total unique ergodicity, that is, all-non zero powers remain uniquely ergodic.
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We recall that the system Tj, , is uniquely ergodic if and only if there is no measurable
solution £ : T — C with || =1 to the equation

o2mikg(a) _ {(x)
) S ta)

for every k € N. This implies that if 7, , is uniquely ergodic then « is non-diophantine®.
Finally, whenever a measurable solution £ to the equation (3) with k£ = 1 exists, we say
that g is a multiplicative coboundary for the rotation by . We refer the reader to Katok
[31] for a sufficient condition® in terms of the Fourier coefficients of g that ensures that g is
not a multiplicative coboundary for «.

We have the following immediate corollary of Theorem 0.1.

Corollary 0.2. Let « € R\Q and g : R — R be a 1-periodic real-analytic function of zero
mean. If for no k € N, kg is a multiplicative coboundary for the rotation by « then for any
continuous f: T — C andx € T, as N — o0,

% 2 f( > ole+ ma)) logp — /Tf(u)du.

p<N m<p

That is, the sequence {g(z) + glx +a) + ...+ g(x + (p, — D)}, n > 1, is equidistributed
(and where p,, denotes the n-th prime number).

Let us now turn to a discussion of some of the more technical aspects of Theorem 0.1.
Prime number theorems have been so far established only for dynamical systems (X, T')
that are either algebraic (e.g. translations on nilmanifolds) or symbolic. A fundamental
reason for this is that most of the earlier approaches immediately use Vinogradov’s method
to reduce the problem to that of understanding sums of the form

(Type I) Z f(T%z) and

n<N

(Type IT) > f(T""x) f (T )
n<N
for all x € X and continuous f. For fixed d; and d5 results on type II sums can be obtained
by studying joinings of 7% and 7. Unfortunately, in order to obtain information on
primes (unlike for the M6bius disjointness) the variables d, d;, ds need to be allowed to
grow at least like a small power of N. For algebraic dynamical systems (e.g. nilsystems)
one has a chance of obtaining such information using joinings. However, for non-algebraic
dynamical systems these methods break down.

For a successful application of Vinogradov’s method one needs to reach a certain nu-
merical threshold in the evaluation of type I and type II sums, for instance d < N/?—¢
and d;,dy < NY37¢ for any given ¢ > 0 (see e.g. [13]). For T, ,, in the most optimistic
scenario, we can only obtain information for type I and type II sums with d, dy, d, that do
not exceed N¢ for every fixed £ > 0. This is always insufficient for a successful application
of Vinogradov’s method.

3that is, for any given A > 0 there are only finitely many ¢ such that ||ga > ¢=4.

1t g(x) = 3,0z ame?™™* is analytic and there is a subsequence {gy, } of denominators for « such that
llgn,cll/ ag,, — 0 then g is not multiplicatively cohomologous to any constant. As Katok’s condition is

stable for multiples of g, it implies the unique ergodicity of T4 4.
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Instead, we develop a new approach tailored for systems of slow and controlled orbit
growth. The main new idea on the dynamical side is to use the slow orbit growth of the
system to approximate it by a periodic system (with a period being a small power of V) plus
a polynomial phase and then approximate averages along primes by usual ergodic averages.
While the coefficients of the polynomial phase do depend on the point (z,y) € T?, they are
well controlled uniformly over all points (x,y) € T2

On the number theoretic side, controlling the average behavior of these orbits boils down
roughly to being able to control expressions of the form

(4) Z Z sup ’ Z e(p,f)logp — % Z e(aﬁ))

2<gy<N P PEy,y+H] (a,9)=1
Pq€[z,2+H'] a€lz,z+H']

2mix

with e(x) := e*™* and [0,¢ — 1] 3 p, :=p mod ¢, or expressions of the form

(5) Y| Y -2

y<N o=l pely,y+H]
pg=v mod r
with 1 <7 < ¢'=¢. To get a sense of the problem let us focus on (5). A non-trivial estimate
for (5) with ¢ = 1 and r = 1 is equivalent to establishing a prime number theorem in
[y, + H] for almost all y < N. Following Huxley [27], this is known for H > N'/6*¢ and N
sufficiently large with respect to € > 0, for any fixed € > 0. For a general ¢ > 1, if we take
r = |¢'~¢| and if p, was replaced by p then a non-trivial bound for (5) would correspond to
a hybrid version of Huxley’s theorem in short arithmetic progressions and short intervals.
The latter is completely out of reach, and we are helped to a large extent by the fact that
we have to understand the distribution of p,, rather than p, in arithmetic progressions. Our
argument will share some commonalities with Huxley’s result and in particular, we will be
limited by the condition H/q > N'/6*¢ which is the correct analogue of Huxley’s result in
short arithmetic progression and short intervals.
The second important input is an extension of a recent result of Matoméki-Shao [39], on
polynomial phases in short intervals, namely

(6) > (X a-ny)

N<p<N+H  j<k

with a; € R. Their result allows one to take H > N 2/3+¢ For our argument to succeed, it
will be crucial to either pass the threshold H/q > N'/%*< in (5) or the threshold H > N?%/3+¢
in (6). Passing either threshold requires one to address the contribution of so-called type
III sums. We believe that it is an interesting feature of this problem that such a natural
number theoretic obstruction appears in it. We end up passing this threshold by slightly
improving the result of Matomaki-Shao using ideas of Heath-Brown which allows one to
barely handle the contribution of these type III sums.

Clearly, in all of our results, it would be interesting to further relax the assumption on the
smoothness of g. However, it turns out that Theorem 0.1 cannot hold for merely continuous

g.

Theorem 0.3. For every a € R\ Q there exists a continuous g : T — T such that the map
T =T, satisfies the following:
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i. T is uniquely ergodic,

ii. T satisfies Sarnak’s conjecture,

iii. T does not satisfy polynomial Sarnak’s con]ecture more precisely, for a continuous
f(z,y) = f(y), the sequence {%>nen F(T7(0,0))pu(n)} has a non-zero accumula-
tion point, B

iv. there exists a continuous f(x,y) = f(y) such that the sequence

© 32 A0, 0) g

p<N
does not converge.

We recall that the only known (totally) strictly ergodic systems for which a prime number
theorem fails were constructed by Pavlov [46]. His examples are given by some symbolic
constructions (subshifts) whose entropy has not been determined. Note also that iii. gives
a negative answer to polynomial Sarnak’s conjecture (that is, a part of Problem 7.1 in [1]
and Conjecture 2.3 in [14]). Simultenaously and independently of us, a negative answer to
polynomial Sarnak’s conjecture has been obtained in [50] in the class of Toeplitz sub-shifts.

It is an open question to determine whether Theorem 0.1 holds for g which are C*(T).
Our current proof exploits the fact that if a trigonometric polynomial is large at a point
then it is large at a set of large measure, provided that the degree remains under control.
When g is analytic, we can approximate ¢ sufficiently well by trigonometric polynomials
(of bounded degree), so as to conclude that g inherits the same property. However, such
an approximation is no longer possible if g is only required to be C*°.

Before we turn to a description of our proof, we would like to make a few comments on
possible extensions of this work:

(1) If 7,, , (with o € Q and g analytic) is minimal but not uniquely ergodic, we are able
to show that the set {T? (z,y) : p is prime} is dense in T* for each (z,y) € T? (the
proof will be published elsewhere). This result resembles a result on the distribution
of prime orbits of the horocycle flow from [49]. It would be interesting to determine
whether the averages

N Zf ) log p

p<N

converge for every (z,y) without any assumption on Ty, 4.

(2) A variant of our proof establishes the results of Liu-Sarnak [36] and Wang [54] with-
out using either the DDKBSZ (Daboussi-Delange-Katai-Bourgain-Sarnak-Ziegler
[8, 10, 11, 30]) criterion or the Matoméki-Radziwill theorem [38].

(3) For certain special o’s and under the assumption of the Generalized Riemann Hy-
pothesis it is possible to relax the requirement on the smoothness of g to g € C*(T?)
for some k > 2. It is unclear to us if the smoothness can be relaxed conditionally on
the Generalized Riemann Hypothesis for all «, and it remains an interesting open
question to determine even conjecturally the optimal smoothness exponent.

(4) Tt should be possible to extend our work to handle a larger class of rigid systems
for which a direct application of Vinogradov’s method (of type I and II sums) is
ineffectual.
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1. OUTLINE OF THE PROOF

Let ¢1 < g2 < ... be the sequence of denominators of a, i.e. “best rational approxima-
tions” of a so that for all k& > 2,
1 Uy, 1
< ’Oé - < )
2qk+1Gk Wl Qr+1qk

for some integer valued sequence {¢;}ren. We begin by noticing that since g is real-analytic,
it admits a Fourier expansion

o) = Y a(m)e(ma)
meZL
with |a(m)| < e™™ for some 7 > 0. For simplicity, we assume that 7 = 1. Moreover,
instead of Working with g, we can work with

Zgn In(x) = Z a(m)e(mx).

neZ gn<|m|<log gnt1
Qn|m
Indeed, we show that the maps T, ,(z,y) and T, (=, y) are topologically conjugate, there-
fore, there exists a continuous invertible map H : T? — T? such that

T2 y(x,y) = H (T3 5(H(x,y)))

for all p > 1. So Theorem 0.1 for T, , follows from Theorem 0.1 for 7, ;. We assume
therefore without loss of generality that g = g. This assumption will be in place throughout
the whole paper. Since the functions ey .(z,y) := €2™*+) are dense in the set of continuous
functions on T?, it suffices to obtain Theorem 0.1 for f(z,y) = ey.(x,y). We can assume
that ¢ # 0 since otherwise the result follows from Vinogradov’s theorem. We will also write
e(z) =€ and T =T,,.

Given a sufficiently large N > 1, let n € N be the unique integer such that N € [g,,, ¢ny1)-

Roughly, we Will relate the behavior of

(7) Zebc ))logp with L Z epe(T™(x,y))

:n<N #lar) (m,qr)=1
m<qg
for some ¢, with k£ < n, depending on N and g, and such that ¢ — o0 as N — oc.

When ¢, is prime, the condition (m, ¢x) = 1 is redundant and the sum on the right-hand
side converges to 0 since T is uniquely ergodic. However, for ¢, highly composite, the sum
over m could be quite lacunary, and it is not obvious that the unique ergodicity of T is
sufficient to ensure that the sum is o(1). Instead, we show that if g is replaced by z,qy for
some small z;, (i.e. 2z < log2 qx), then the sum over m can be indeed made to converge to
zero. Therefore, in the actual proof we will be relating the sum over primes to a similar
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sum but with modulus z;qx instead of g;. For simplicity, we will at first ignore this issue in
the outline below and assume that « is chosen so that all the ¢, are prime. At the end of
the outline, we indicate the changes that are necessary to treat all a.. It is enough to show
that for every n > 0 and N sufficiently large (in terms of 1/7),

(8) > ero(T(x,y)) logp < 02N

p<N

for every (z,y) € T? and every b, c € Z with ¢ # 0.
We establish two important types of approximation which we will repeatedly use:

e Given n > 1, let n* < n be the largest integer such that g, > e%*-1/16 Then, for
m < dn mln(Qn-ﬁ-l/Qn*a 6[]77,/8)’

(9) ebe(T™(,)) & epe(T™ ™40 (2, y)).

In particular, if e?/® > qn+1 then the above holds for all m < ¢,41.
e Given any & > 0, for m < ¢ +1 and n sufficiently large with respect to ¢, we have

(10) ere(T™ (2, y)) =~ epc(T™ mod an (g 4 + P, (z,m))
= epc(T™ mod an (1 4))e(cP, (2, m)),

where P,(xz,m) is a polynomial of degree < |1/0]| and where the second equality
follows simply from the definition of 7. The polynomial P,(z,m) is given by

P,(x,m) = Z a;(x)m’

1<y<1/6

with |a; ()] < e79/'% and |a;(2)] < ¢; ¢, 7" for all .

Note that it is sensible to use these in an iterative fashion. For instance, in some scenarios,
we will apply the first approximation twice, and in others, we will first apply the first
approximation, followed by the second.

An important parameter for understanding when to use (9) or (10) is given by n* : the
largest integer n* < n such that g, > e -1/ We will typically localize e, .(T™(z,y))
into a short interval m € [N, N + H| for various scales of H. In particular, using that

ene(T™(,)) = ev (T (T (2, y))),

it is enough to understand the behavior of 7™~ at the price of loosing control on T (x, ).
If H =~ q, with k > n* then we can appeal to (9) to show that instead of studying 7™~
it’s enough to understand Tm_N mod k-1 thyg reducing the complexity of the problem.
On the other hand, if H ~ ¢, 7 with k < n* then we have no choice but to use (10). The
upshot then is that e, (7™ " (x,y)) with m varying in each such interval is approximately a
polynomial phase of degree ~ 1/n together with a low complexity term (with small period).

We are now ready to discuss the proof of (8) The proof splits into three main cases, de-

pending on whether N € [exp(q,l/z) Ini1)s N € [gn 6/5+n° exp(q,l/2)] or N € [qn,c_zg/5+77 ]. The

cut-off exp(q}/ 2) is rather arbitrary, while qn/ 7 s significant. The case N € [gn, qu/ s’ ]

is further separated into the cases where ¢« > N2/37/5 and ¢, < N?/3-7/5,
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1.1. The case N € [exp(q}mp)aqnﬂ). This is the “easy case” and we deal with it by de-

composing the interval [0, N] into sub-intervals of length H = min(N, qflfl) (there is no
specific importance to the exponent 3/4 and anything larger than 2/3 and smaller than 1
would have worked). As a result, it suffices to show that

> e (T(x,y))logp < n'*H
N'<p<N'+H

for any N’ < N. We write TP(z,y) = TP~V (2', ') with (2/,5') = TV (2, y). Splitting p— N’
into arithmetic progressions (mod ¢,) and using (10), we can approximate 77~V (', y') by
T*(z',y') and P(a’,p— N') of degree < 5 in p— N’. In particular, this reduces the problem
to showing that

(11) Y eeTy)) > eleP(p—N)) < n'H.
0<a<gn N'<p<N'+H
p=a+N’' (mod gn)

To understand the short sums over p € [m, m + H], we can now either appeal to a recent
result of Matoméki-Shao [39] or a slight strenghtening of there-off that we will need later
(Theorem 9.1). Using that the coefficients of P(z',p — N’) are small, we can show that the
left-hand side of (11) is equal to

(i Z eb,c(Ta(x/v y/))> ' Z e(cp(k)) + O(nH>

n 0<a<qgn N/'<k<N'+H

and the result now follows from trivially bounding the sum over k£ and using the unique
ergodicity of T' to conclude that the sum over a is o(1) as N — co.

1.2. The case N € [q2/5+"2,exp(q}/2)]. In this case, since m < N < e?/1% we can use (9)
to reduce the problem to showing that

(12) > ene(T(x,y)) logp < '/ N,

p<N

where ¢ := ¢, and p, := p mod ¢ € [0,¢q — 1]. Notice that p, is a simpler object than p
but not by a huge amount since ¢ can be as large as N°/ 6=cn” for some ¢ > 0, and trivially
pg =p for ¢ > N.

We will now apply either (9) or (10) to further approximate e, (77 (z,y)) by simpler
expressions. We split into two sub-cases depending on the relative sizes of ¢, and g,
where n* is defined as the largest integer n* < n such that g, > e% -1/ Instead of
working with n*, we could alternatively iterate the approximation (9) several times until
reaching a desirable denominator ¢,. The use of ¢, allows to expedite this iteration.

1.2.1. The case g+ > q}L‘”Q. We decompose p, into short intervals of length H' = qu/ % and
split p, into residue classes to modulus r := g,-_1. By the definition of n*, the modulus
r is tiny compared to ¢, < ¢, and thus compared to N. Therefore, splitting into residue
classes (mod r) does not increase the complexity of the problem. Thus, to establish (12),
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we will study the expression

1 —z (2
LSS S e ey) ogp+ OU).
q 2<q a<r p<N
pqe€lz,z+H']
pg=a (mod r)

In the above formula, 0 < p, —y < @ <q

we can approximate the above by

DT ww) S elep,B)log

z<q a<r p<N
Pq€lz,2+H']
pg=a (mod )

248 for n sufficiently small. Therefore, by (10),

with |3.] < e %*-1 and e~ %*-1 < n* provided that N is taken sufficiently large with 7 since
n* — oo with n — oco. Notice that we can exclude a = 0 from the summation at the price
of an error < N/r which is acceptable (recall that we assume for simplicity that all ¢; are
prime).

We now bound the above as

1 N
sup e(cpgB)logp — ————

Z e(cvﬁ)‘

z<q [B]<n* p<N ( ) ( ) (v,g)=1
0<a<r pqe€lz,2+H'] vE[z,2+H']
pg=a (mod r) v=a (mod r)

P e S T y) Y s,

e(g)e(r) 5=, el
vE[z,2+H')

The second sum is < n'/2N for all N sufficiently large with respect to 1, by unique ergodicity
applied to the sum over a. The first sum is also < n'/2N but this requires a non-trivial
arithmetic input. To avoid repetition with a later more involved sub-case we skip the
discussion of this number theoretic input. Note that it is important for the argument to
work to have the upper bound || < n?, since the number theoretic bound cannot hold if
for instance = 1/2.

1.2.2. The case ¢+ < }L‘”z. In this case, clearly n* # n, therefore, we have ¢, < e-1/16

which means that the approximation (9) is applicable and we can approximate ey, .(7%(x, y))
by epo(TPe ®d7) (1 y)), where r := ¢, ;. In particular, splitting the p, in the sum (12)
into progressions mod r, it suffices to show that

Zeb,C(T“(aﬁ,y))< Z logp) < n'2N.

a<r p<N
pg=a mod r

We now bound this as

>I> 1ogp—g\+gzeb,6(mx,y)).

asr p<N a<r
pg=a (mod r)

Unique ergodicity shows that the second sum is < n'/2N for all sufficiently large NN, and
therefore, it remains to show that the first sum is negligible. Let us now describe the number
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theoretic tools that go into this. In other words, it will suffice to show that, for any given
e >0,

(13) Z) > 1ogp—g=0(N)

a<sr p<N
pg=a (mod r)
uniformly in 7 < ¢'~¢ and ¢ < N°/6-¢,

To illustrate the core difficulties let us assume that r ~ N°%-2 which is the hardest
case. If p, were replaced by p then this would be a g-analogue of Huxley’s theorem on
prime numbers in almost all short intervals. The latter is completely out of reach since it
would require a zero free region for L(s, x) better than what is currently known. However,
we are helped by the fact that we have to prove this result for p, instead of p. Indeed,
opening (13) into Dirichlet characters, the problem reduces to bounding

S Y S (X o)

x#x0 (mod g) <N v=a v(<nzod T)
It is important that we do not use the triangle inequality on the sum over x at this stage.
We separate this expression into two types of characters: the few bad characters x for which
there is no cancellation in the sum over p and the good characters y in which we have a
non-trivial amount of cancellations in the sum over p. We bound the contribution of the
bad characters by

L #{x bad} - N - w0 Y )|
( ) XFX0 op v<q
v=a (mod r)

Applying the Cauchy-Schwarz inequality, orthogonality of additive characters and the com-
pletion method gives

S| Y x| < i dg)losg

a<r v<g
v=a (mod r)

and so we end up with a final bound
\/g -logq - #{x bad} - N

which is acceptable as long as r < ¢'~ because ¢ = N°/~¢ and there are few bad characters
(fewer than < (log N)4 for some large A).
It remains to deal with the contribution of the good characters, that is,

Z‘— ( (p)logp)-< > X(U))‘-

x#xa p<N v<q
good v=a mod r

We find phases 6, € R for which the above expression can be re-written as

Zewa- Z(Zx 1ogp)< > X(v))-

a<r X#XO p<N v<g
good v=a mod r
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In particular, we can re-write this as

— > ( > x(p) 1ogp> : (Z X(a)c(a))

#l4) x#xo0 PN v<q
good

with c(a) = €% modr where a mod r € [0,7 — 1]. Whenever we will use such a trick, we
will say that we “used duality”. We then apply the Cauchy-Schwarz inequality (and the
large sieve on the sum over v) and the problem reduces to showing that

1 2 N?
2@ > ’Zx(p) Ing‘ <4 fog M)A

X#xo  p<N

x good
for some sufficiently large A > 0. This is however now an analogue of Huxley’s result with
the assumption that L(s, y) has a good zero free region (because we restrict only to “good”
characters y which is equivalent to assuming that the corresponding L-function L(s, x) has
an enhanced zero-free region). At this stage, we use the same ideas that go into the proof
of Huxley’s estimate, in particular, his bounds for the frequency of large values of Dirichlet
polynomials. We note that there are no known techniques to us that would allow us to
handle asymptotically the case r > N%%+¢ with ¢ > 0 fixed and therefore, this is really
the best range that we can obtain given the current techniques (short of assuming some
unproven hypothesis such as, for example, the generalized Lindel6f hypothesis).

1.3. The case N € [qn,qg/ 5+"2]. This is the most delicate case which is further split ac-
cording to whether ¢,» > N?/3=/5 or ¢,. < N?/3=7/5 There is an interesting numerological
interaction between these two sub-cases: we find that in order to be able to handle both,
one either needs to lower the exponent % + ¢ in the result of Matomaki-Shao or lower the
exponent é + € in our variants of Huxley’s theorem. In both cases, the bottleneck are
type-IIT sums which emerge as one crosses this threshold in either problem. We manage to
circumvent the problem of fully dealing with these type-1I1 sums since it is sufficient for us
to cross the threshold 2 (or §) by an 1 > 0 which tends to zero as N tends to infinity (at
the price of error term that only save O(n)). In particular, we appeal to ideas of Heath-
Brown [25] and bound the contribution of type-IIl sums using a sieve estimate which is
sufficient since 7 eventually tends to zero with N (albeit very slowly). We chose to cross
this threshold in the Matomaki-Shao theorem since this is more likely to be useful in the
number theoretic literature.

1.4. The case N € [q,, q2/5+"2] and q,- > N?/377/5, We cover [0, N] with disjoint intervals
of length H = qi:". Thus it’s enough to show that

> eI (x,y)) logp < n'/*H
pE[N,N'+H]

for all N < N. The hardest case occurs when N’ =< N, and we assume this for simplicity.
Proceeding as in the first case, we decompose N € [exp(q,l/ 2),qn+1) into residue classes
(mod r) with 7 := ¢,-_; and use the approximation (10) applied to 77", As a result, it
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suffices to bound

(14) IS adm @™ @) Y dePel)
a<r pE[N',N'+H]
p=a+N’' (mod r)

with P,«(p) a polynomial of degree < 1/n+ 1 and with small coefficients (as described in
(10)). At this point, the only difference with the previous case 1.1 is that the length of the
interval, H, is only guaranteed to be > N2/3~" gince H = ¢.." > NO=7-/3=1/5) - N2/3-n,
If H were > N?/3+" we could appeal to results of Matomiki-Shao to conclude immediately.
In fact, from the number-theoretic point of view there is a significant difference between
intervals of length N?/3t7 and N?/3=7. The latter requires one to handle the contribution
of so-called “type-II1” sums, a special case of which is

> e(Py(abe)), H = N2/31.
N<abe<N+H
N1/3<a,b,c<2N1/3
Ideally, one would hope to show that these sums are <4 H(log N)=4 for any A > 0. This
is possible for example for polynomials of degree 1 (see [56]), but for general polynomials of
degree < n~! we do not know how to obtain such a saving. Instead, we appeal to an idea
of Heath-Brown [25] and use Linnik’s identity to bound the contribution of the type-III
sums using an upper bound sieve. While this gives rise to a much weaker error term of size
O(n log% - H/p(r)), it allows the degree of the polynomial to be of size 1/n as long as N is
sufficiently large with respect to 1/n. This strengthening of the result of Méatomaki-Shao
then allows us to handle (14) just as in the case 1.1 and we conclude.

1.5. The case N € [qn,qg/H"z] and ¢,- < N?37/5, Let n/ < n be the largest integer
such that gy < N¥6-27" Set ¢ := ¢,y and H = ¢NY/6t7". Then, since g,- < N2/3-7/5 and
g1 > N6-27" e have

N° /6—2n?

< An’'+1
~X Qn’ N2/3_n/5 ~ Qn’

dn>

qN1/6+772

and, moreover, we have g,- < N3 < N36-2"" < ¢, and therefore n* < n’ so that
N3/6-20" Qo1 < €%/ and in particular g N/ 6+1* < qe?/'6. Therefore, on intervals of
length H we can use the approximation (9) and write

(15) Y eI y)logpr Y e (TP Na(a! ) logp

pE[N’,N'+H) pE[N’,N'+H)

with (2/,/) = TV (z,y).

1.5.1. The case g+ < qiT"Q. In this case, n* < n/ so that and we set r := ¢,»_;. Applying
the approximation (9) to the right-hand side of (15), we can further reduce p, — N; modulo
r. As a result, it’s enough to understand on average the behavior of

Z ep (T2, y")) Z log p.

a<r pE[N',N'+H]
pg=a+Ny (mod r)



PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS 13

In particular, on each interval [N’, N' + H|, we have

H

(16) Z logp ~ -
pe[N',N'+H]
pg=a (mod r)

and we conclude by the unique ergodicity of T' that for all sufficiently large IV,

> ene(T(x,y)logp < n'/?H.
PE[N',N"+H]
Therefore, it is enough to show that the majority of intervals of length H have the property
(16). This in turn follows (by Chebyschev’s inequality) once we can show that for any given

e>0and H <N,
ZZ‘ S logp—g‘zo(HN)

<N a<r pElx,z+H)|
pg=a (mod r)
uniformly in 1 < 7 < ¢~ and H/q > N'/6*¢ as N — oco. The proof of this estimate is a
slightly more general variant of the estimate according to which

S| X tmr— = o)

a<r p<N
pg=a (mod r)

uniformly r < ¢'~¢ and ¢ < N%/6~¢ as N — co. Since we discussed the proof of this earlier,

we omit the dlscussmn of the proof of the variant as it is similar.

1.5.2. The case qp~ > qi7"2. In this case, we rewrite right hand side of (15) by splitting

p, into short intervals of length H' := ¢'/3. Note that ¢*/® < q,lf_" since ¢ < N and
Gue > N?/3 for n sufficiently small. As a result, on each such sum we can apply the
approximation (10) getting that with 7 := ¢,+_1 < (log N)3,

ST a1 Y adTy) Y elelpg— N)By a)

pE[N',N'+H] a<r pE[N',N'+H]
pq€lz,2+H’' pq€lz,z+H'
pg=a+N; (mod r)
for some 3 := By, depending on N’,z and a and such that |3] < n* for all sufficiently
large N. Once we can show that the sum over p is for most z,a and N’ independent of a,
we can conclude using unique ergodicity on the sum over a. Thus, it suffices to show that
for the majority of N’, z and v, we have

_ e(aBnr 12
Z e(pqﬂN’,z,v) - (p(q) Z ( ﬁN ,z,v) + 0(77 H)

pE[N’,N'+H] (a,q)=1
pq€lz,z+H'| a=v (mod r)
pg=v+N; (mod r) a€lz,z+H']

In order to establish this it suffices to show that

S | T -t T oo )

q

y<z z2<q 0<v<r PE[y,y+H] SO( ) (a,q)=1
pq€lz,z+H' a=v (mod r)
pg=v (mod r) a€lz,z+H'




14 ADAM KANIGOWSKI, MARIUSZ LEMANCZYK, AND MAKSYM RADZIWILL

as N — oo. Let us now describe some of the ideas that go into this. We express the
condition p € [y,y + H] using a contour integral and capture the behavior of the p, using
Dirichlet characters. In this way, the problem reduces to obtaining bounds for

Sl 2 G Lt (3 )]

R
y<z z<q B$<T x#xo (mod q) (a,9)=1
a=v (mod r)

a€lz,z+H']

We notice that expressing the condition @ = v (mod r) in terms of additive characters and
using the triangle inequality, we can remove the condition @ = v (mod r) and simply take
the supremum over (8 instead of a supremum over § and 0 < v < r. Furthermore, the
now depends only on y and z and thus we can re-write the above as

ZZ‘ Z (\/_ |t|<N/H PG +z’t,x)y“dt> . ( Z X(a)e(aﬁy,z))‘

y<z 2<q X?éXO (mod q) (a,q)=1
a€lz,2+H'

for some 3, . depending on y and z. Finally, using duality, we can express the above as

ST 2 T g P00 ) (2 a0t

y<x z<q x#xo (mod q) (a,q)=1
a€lz,z+H']

for some 6, . € R and where

x(p)logp
+ u X Z 1/2+2t ’
p<N
We can now proceed in the same way as before separating the tuples (¢, x) into those which
are bad, that is, P( + it, x) exhibits no cancellations and those which are good, that is,

P(3 +it, x) is non-trivially small. There are few bad tuples (¢, x) and in order to control
their contribution one needs a non-trivial bound for

j{:‘ a)e(aby,:)|-

z<q  (a,9)=1
a€lz,z+H']
In order to achieve this, one can use Weyl differencing to eliminate e(af3, ) at the cost of
now having to estimate a character sum of y(a)x(a + h) on average over a € [z,z + H'|.
However, this can be accomplished by using the Weyl bound for character sums involving
x(a)x(a + h)x(a')x(a’ + h). It remains to show that the contribution of the “good” (, x)
is acceptable. Here, we use duality to re-write the sum as

7 2 (G fye P i0r ) (Staeten)

x#xo (modq (t,x) good a<q

with

cla,y) = Z e¥vee(af,..).

1<z<q
z€la—H',a)
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We now apply the Cauchy-Schwarz inequality in (y,x). Then,

Z\Zx o)

y<m a<q

is evaluated using the large sieve and the trivial bound |c(a,y)| < H’. On the other hand,

we evaluate
2
. it
z z\ /M/H -~

X7X0 (t,x) good

by using using orthogonality in y. This reduces the problem to showing that

N
P(L 4t ) Pdt —
Z /1;|<N/H [P(5 +it, x)[dt <a (log N)A

X7#X0 * (t,x) good

for some large A > 0, and this can be seen as equivalent to obtaining a hybrid version of
Huxley’s theorem (in short arithmetic progression and large moduli). Once again the fact
that we restrict to (¢, ) which are good is crucial since it allows us to act as if we had an
enlarged zero-free region for L(s, x).

1.6. Extending to the case of general a. Our strategy is to relate sums over primes
to sums over reduced residues modulo g, as in (7). When the modulus ¢ of the reduced
residues has few prime factors the sum over reduced residues is easy to estimate using the
unique ergodicity of 7. However, this fails if ¢, is “very” composite. In fact, we don’t know
how to deal with the sums on the right-hand side of (7). Instead, for a given ¢, we show
that there exists a prime number p; € [log2 0, 2 1og? qx)” such that

1 .
(17) lim  min sup ‘ Z epe(T"(z,y))| = 0.

k—+00 2. €{qk:Prar} (2,y)eT2 QP(Zk) i<

Given k, let zj be the integer in {qx, prqr} that minimizes the sum in (17). We modify our
earlier argument so as to relate at every turn the sum over primes in (7) to the sum over
reduced residues (mod z) instead of reduced residues (mod gi). This is possible because
the approximations (9) and (10) remain valid if we replace the modulus ¢ by wgy (for all
w < log® ¢, simultaneously).

In fact, we establish a stronger version of (17) showing that the convergence to zero holds
uniformly over all divisors of z:

d
(18) lim min  max sup —— ‘ Z epe(T"(z,y))| = 0.

k—+00 zp€{qk,Prar} d|zx (z,y)€T?2 d z<z;c

(i,d)=
The proof and the choice of z; splits into several cases based on the relations between

Gk—1,qr and g«

5To be more precise, any prime number pi € [log® qi, 2log? gx] with (pr,qe—1) = 1 will work. There
always exists at least one such prime number.
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1.7. The case k* = k. In this case, we take z; = ¢x. We split the interval [0, gx] into
intervals I of length q,iﬂ_e. Then, by (10), for every n € I with n = a (mod g;_1), we have
er.e(T™(2,y)) = eve(T(x1,y1))e(cBr(n — 21)) with zp, yr, |51] < e” /1% and 2; depending

on the interval I. As a result, for every d|qx, we have

(19) > e T (@, y) ~e(—cz) Y ene T (x1,ur)) > e(cBrm).

mel a<qi_1 mel
m=a (mod qx_1)

Since |I| > q,i/5, 18] < e ®1/16 (g 1, q,) = 1 (because consecutive convergents are co-

prime) and g1 < 1og'® i, we can show using some simple sieves that

N 1 p(d) 1]
Sup e(mp) — ) e(mﬁ)’ < : ,
|B|<e~k—1/16 - o(qr—1) — d €Qk—1/1000
(m,d)=1 (m.dgy,—1)=1
m=a (mod gj_1)

It is crucial for the validity of this estimate that the supremum over 5 is restricted to small
B. As a result of this estimate, we can re-write the sum on the left-hand side of (19) as

1 1 p(d)

) empr) 3 e (T wr,yr) + O (— - B 1),

o(qr-1) — el Bl)aquleb’( (z1,41) <Qk—1 d | ‘>
(m,dgr—1)=1

The claim now follows from the unique ergodicity of T', because this shows that the sum
over a exhibits cancellations.

1.8. The case k* < k. Let a(m) denote the mth Fourier coefficients of g. Further, let
w(k) = loglog k. Let py be a prime number in [log? g, 2log? gi] co-prime to gx_;. We now
define z; as follows:

Z1. zp == qr it g1 < m;

2. zp = prqi if Qg1 = m

I : qdk dk—1
Z3 Rk = Pkqk 1f dk—1 2 w(k) loglog qr’ Qi+ 2 1610g2 a

dk—1 .
161og? ¢’
and max|,¢|

and g+ <
1

a(m)| < TogT ar

Qi+ — 1,108 qpx]
Qi —1|m

qk dk—1
F)loglog g > Ik Z and

Z4. Rk = (g if dk—1 > w( 16 log2 qr
1
(20) max la(m)| > ——.
Im|€lag* — 1,108 qi+] log™ g
Qrx—1|m

The treatment of cases Z1, Z2 and Z3 is analogous, whereas Z4 uses different methods.
1.9. Cases Z1, Z2 and Z3. As usual, let d|z;. We split the sum

S el T (2,y))

1< 2
(3,d)=1

into residue classes mod g,_;. In all the cases Z1, Z2 and Z3 it follows that if ¢ < z,
¢ = a mod q_1, then e, .(T"(z,y)) ~ ep.(T%(z,y)). This implication is not immediate,
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particularly in the case Z3, but for simplicity we skip the details. We get that the above
sum is approximated by

(21) > adr@p)( Y 1)

as<qg—1 (Zj)zk
id)=1

i=a mod qr_1
Moreover, by the definition of the zj, for every d|z, it follows that in all the cases

o(d)zy,

22
( ) Qk—1d

— 400

Indeed, in the case Z1 this follows from g1 < qi/(w(k)loglog gx) and in the cases Z2 and
73, we use that py > log” ¢ and g > gr_1 to ensure that (22) holds. We then show, using
sieve-methods and by establishing a g-analogue of a result of Friedlander [20, Section 6.10],
that if (22) holds, then

Z ’ Z 1_ o(d)zr| 0(80(03%)‘

_d
a<qr—1 12 T2
(3,d)=1
i=a mod qr_1

Therefore, (21) is equal to

@(d)zk ] @(d)zk
SO Y ) +o(FG)

asqk—1

and the claim follows from unique ergodicity applied to the sum over a.

1.10. The Case Z4. It follows from (20) that we have e~%* -1 > ™™ > |a(m)| = log™* ¢
for m divisible by g+_; and belonging to [gx+_1,log gx+]. In particular,

gre—1 < [loglog qi”.

We will show that for H = q,if_a > qi/ 27 (the inequality follows from the assumptions of

this case), we have
>, ’ > ebvc(TZ(Ly))‘ - 0(@).

u<qy L€[u,utH]
(6,d)=1

This will then imply that (18) holds (by splitting into disjoint intervals of length H and
summing over them). If £ € [u,u+ H], { = a+u mod g+_1, then for (z,,y,) = T%(z,y),

ebe(T(2,)) R e4,o(T (T, yu) Je(c(l — u)Bu)),

where 3, = gp—1(2 + ua) and gix(2) = D mefgp logarya) @(m)e(maz). Thus,
qr|m

Y T (@y)

Leu,u+H]
(¢,d)=1
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is approximately

e @aw)) Y el -wbl).

asqpx 1 le[u,u+H]
(£,d)=1
{=a mod qp*x_q

If B, > q;.°, then since H > ¢, using some simple sieve estimates, we can show that

p(d)H
> ellt-ws) =0(55).

Leu,u+H] -1

(£,d)=1
{=a mod qp*_1
Summing over a < g +_1 gives then
p(d)H
c TZ =
> el y) =0(270),

Leu,utH]
(£, d)=1

which is enough since gy«_1 — oo as k — oo. Therefore, the problem reduces to showing
that

{u<ar @ [Bul < g7} = olaw),
which, by the definition of j,, is equivalent to

(23) {u<a : [grea(z +ua)] < ¢} = olgn),
uniformly over x € T. In order to show (23), we will use our assumption that
1

sup ‘gk*—l(x)‘ 2 4 )

z€T log™ gy,
which follows from (20). Since gj-_1 is a trigonometric polynomial of degree o(log qy), it
follows from a theorem of Nazarov [45, Theorem 1.1] that as k — oo,

Le(E) = o(1), where Ei={z €T : |gi--1(a)] < .}
Because of the rapid decay of the Fourier coefficients of g, we have

sup |gg- 1 (z)] = 0

zeT

uniformly in x € T. It follows that if I C T is an interval of length ~ qk_e/ ® such that
I'NE°®# (), then, for all x € I, we have |gi—1(x)| > ¢.°. Let {I;}icw be a covering of
T with intervals of length ~ qk_e/ ?. Since Leb(E) = o(1) as k — oo for all but at most
o(w) indices i < w, we have I; N E¢ # () and therefore, for such i’s for all z € I, we have
lgi+—1(z)| = ¢, °. Since for each ¢ the number of m < g such that {x + ma} € I; is by
Denjoy-Koksma inequality equal to gx|I;| + O(1), we conclude that the cardinality of the
set (23) is bounded from above by

S Y i<a Y 15 = o).

<w m<qg <w
LNE°=0 {z+ma}€el; LNE°=0
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Plan of the paper. The paper splits into two parts. In the first part of the paper we
establish an ergodic theorem along reduced residue classes, which is required for the proof
of our main result Theorem 0.1. Specifically, in Section 2 we establish important properties
of analytic cocycles. In Section 4 and 5 we collect a few number theoretic results on the
distribution of reduced residues to large moduli and twisted by additive phases. In Section
6 we establish the main result of this part of the paper, namely that for uniquely ergodic
skew products, ergodic sums weighted by principal characters converge.

In the second part of the paper we focus on the proof of our main result Theorem 0.1. We
start by stating several crucial results on the equidistribution of primes to high moduli and
in short arithmetic progressions in Section 8, and several results on exponential sums over
primes with polynomial phases in Section 9. In Section 10 we use results from Sections 8§,
9, 2 and 6 to prove Theorem 0.1. Finally, in Section 11 we prove Theorem 0.3. We include
below a detailed table of contents.
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Notation. We will denote by d,.(n) the r-fold divisor function, so that

d(n):= > 1

n=ni..nr

and, in particular, d(n) := ds(n). The von Mangoldt function A(n) is defined as logp
when n = p® with p prime and o > 0 and is defined as zero on all the remaining integers.
The symbol € will denote the modular inverse of e to an appropriate modulus which will
typically be clear from the context.

The symbol f(z) < g(z) will mean that there exists an absolute constant C' > 0 such
that |f(z)| < C|g(z)| for all x in the domain of definition of f and g. For instance, if f, g
are sequences then this bound will be valid for all positive integers x. When used in a
subscript of a sum or integral, the notation n ~ A means that A <n < 2A.

The Fourier transform of f : R — R is defined as

J?(I) ZI/Rf(U)e(—:cu)du.

The Mellin transform of f : [0,00) — R is defined as

flo= | " fa)er s,

Given a real number x, we let ||z|| := min,ez |z — n.
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Part 1. Ergodic theorem along reduced residue classes
2. PROPERTIES OF ANALYTIC COCYCLES

Fix o € T with the sequence of denominators {¢,}. For h € C(T) and o € T we use the
following notation:

S,(0)(@) = 3 Ao + o)

for all n € N. Observe that the cocycle identity Syim(h)(z) = S,(h)(x) + Spm(h)(x + na)
holds.

Let g be a 1-periodic real-analytic function of zero mean. Expanding in a Fourier series,
we can write g(z) = > @mem (), where e, (x) := e(mx) (with ag = 0). Since g is real
analytic and 1-periodic, its Fourier coefficients are decreasing to zero exponentially fast, so
without loss of generality, we can assume that for all m € Z,

/ 1
24 ml <e T "l with 7/ < —.
(24) lan| < e with 7 10

We start with the following lemma:

Lemma 2.1. If g is not a continuous coboundary (i.e. if there is no continuous solution
§:T — S to e(g)(x) = &(x)/E(x + ) for all x € T and where e(g)(x) = ™9 ), then

there exists a subsequence {qn, } such that g,, 11 > e for allk > 1.

Proof. We will show that if such a subsequence does not exist, then ¢ is a continuous
coboundary, i.e. assume that for some C’ > 0 and every s € N,

ds+1 < 0/6%.
Note first that for m € Z, if s is unique such that |m| € [gs, ¢s4+1), then
I
— e —e :
2¢ss1  2C" Il

By the Gottschalk-Hedlund theorem, it is enough to show that there exists C' > 0 such
that for every k € N,

(25) [mad] = llgserl| >

1Sk(9)(0)] < C.
Notice that for every = € T,

Silen)la) = enla) 2=,

and therefore, |Si(em(2)| < 7—=. By the cocycle identity, the bound on a,, and (25), it
llme|
follows that

1Sk(9)(0)] = | Z m Sk (em)(0)] < 4 Z eI |ima| 7t <

meZ meZ

8C’ Z eI = 0 < 0.

meZ

This finishes the proof. O
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Next, we will show that the only important frequencies of g come from multiples of
denominators. Indeed, for n € N, let

(26) gn(z) == Z amem(z) andlet §:= Zgn.
[ml€gn, ~£25+L] nel
Qn|m
Lemma 2.2. The function g — g is a continuous coboundary for a.
Proof. By the Gottschalk-Hedlund theorem the assertion is equivalent to showing that there
exists C' > 0 such that for every k € N,

neN
We have |Sk(e)(0)] < ”ma” and therefore,
4
Let n be unique such that |m| € [¢,, ¢ut1). Then either g,|m or
1
28 moll = ——.
(28) Imal > 5o
Indeed, if |m| = sq, +r with 1 <r < gn and s < qn+1/qn then either
o s < %t and then |ra|| > 5~ while qunaH < 3, 80 [|[mal| > E > m or
o Il > o1 /3 and [imal) > [anal) > 5 > gy

and (28) follows. Using (28) and (27), we obtain
1
|amSk(em) (0)] < —.

Let now |m| € [%8%+1 ¢, ;). Then (using [ma = ||ga| = 1/(2¢n+1)), we have

’ 4 /
|amSi(em) (0)] < ™1™t < e M8g, 4 <

[[ma|
. 10gqn+1 1 1 1
8e Qn+1—8 1_1<8 1 <<_2
qn+1 |m|T mn

in view of (24). Hence, using the definition of g,,, we obtain

k(g =D))< > %<+oo.

neN |m|>1
This finishes the proof. O

We call g the reduced form of g. By Lemma 2.2, it follows that it is enough to consider
the case g = g, i.e. when g itself is reduced.® We make this assumption for the rest of
the paper. Note that the functions g, are the same for g and its reduced form.

SWhen g(x) = g(z) + v(z) — v(z 4+ a) with v : T — R continuous, the map (z,y) — (z,y + v(z) mod 1)
establishes a topological isomorphism between T,, 4, and T, 7. More generally, if g and h are multiplicatively
cohomologous with a continuous transfer function, then the skew products T, 4 and T, 5 are topologically
isomorphic.
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Let 7 = 1/2min(7"2,7//8). For n € N, let n* < n be the largest integer such that
(29) Qn 2 ean*—l

and where we set ¢y := 0 so as to guarantee that n* always exists. Notice that by Lemma
2.1,

(30) n* — +00 as n — +o0.
We have the following lemma:

Lemma 2.3. Let K, := &t Then, for every K € {1,..., K,},

qn*

(31) sup |Skq, (9 — gn)(x)] = 0 as n — +o0.
zeT
If additionally K,, < €*™ then, for every K € {1,...,K,},
(32) sup |Skq,(9)(x)] = 0 as n — +o0.
zeT

Proof. By the cocycle identity, it follows that

K-1

Skan(9 = 90)(®) = Y Squ(9 = gn) (@ + igncr).
i=0

The statement follows by showing that, uniformly in x € T,
K| Sq,(9 = gn) ()] = 0.
Notice that S;, (¢ — gn)(®) =D  mez  amSy, (em)(z) and

|m|€[an,qn+1]

em(qna) — 1
Sgn(€m)(x) = em(fb’)m-
Moreover,
cultne) = 1) Imaol] _ (, Imilaoly
em(@) — 1 [[me] " [lma]
Then

sl

Kulam Sy, (em)(2)] < Kne™™ " min (g, =5 0

Let k € N be unique such that |m| € [qx, gx+1). We will separately consider the cases k < n
and k£ > n (notice that g — g, has no frequencies which are multiplies of ¢, ). Assume first

that k& < n. Then, by (26), |m| = rgx for some r < %= (in fact by (26), r < log i1y

2q5
follows that ||mal| = r||qgral| = 5oy and so we get

mllgnell _ e o 2l
AN n .

K,lamS,, (eqm)(x)] < K, e 7™
! [mal Gnt17
Therefore,

K, / K, _a
(33) 3 KulanSy, (em)(@)] < 2728 N femmiml ¢ gL o5

n+1 n+1

Im|€[qr,qx+1] qrlm

qx|m
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So, we have

2K, g 2K, g,
K, Z AmSq, (em)(7) < Z qk+1€ 2" Z qk+1€ 2"

Im|€[qr,qr+1] n+1 k<n*—1 In+1 n>k>n*—1
k<n

By the definitions of n* (see (29)), K, and 7, it follows that

2K, a2 -
Z Qrt1€ S Z e =o(1)

In+1 n>k>n*—1 n~ n>k>n*—1

by (30). Moreover, using the definition of K, again, and noticing that (29) holds, so g, is
exponentially big with respect to g,«_1, whence exponentially big with respect to n*q,_1,
we get

2Kn _T'q 2 _T/qn*fl 2
Y qre 2 < (qn*e 4+ ) qk+1)<—0(qn*)=0(1)

In k<n*—1 In
(recall that the denominators themselves grow exponentially fast). Therefore,

. a'mSQn(QM)(x)’ = o(1).

Im|€[qr,qk+1]
k<n

(34) K,

If £ > n, then by the definition of K, and using m > ¢,1, we obtain

—'|m|

S, (em) ()| € Kt ™™ < e < €7

K,

Therefore,

Kn‘ 3 anSa(em)(@)] = o(1).

Im|€[qr,qk 1]
k>n

This and (34) finish the proof of (31).
To show (32), it remains to notice that by the bound on the Fourier coefficients, for every
K < e?™ we have

/
T 4an

|Skq, (9n) ()] < Kgnsup |gn(2)] < Kgne™ =" = o(1).

zeT
Hence, (32) follows by (31). The proof is finished. O
Let d((z,y), (2/,vy") = ||z — 2| + ||y — ¢/|| where ||z| := min,ez |z — n|. From Lemma

2.3, we deduce the following:

Lemma 2.4. For alln € N, m < ¢, min(gu41/qn, €2™") and z € N, we have
d(T™(x,y), T™ ™% (2,y)) = o(1)

uniformly in (z,y) € T?.

Proof. Notice that the statement follows by showing that for every k& < min(kK,, ™),

A(T% (@,y), (2,9)) = o()
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uniformly in (z,y). We have, T""(z,y) = (x + kg,a,y + Skq,(9)(x)). By Lemma 2.3,
|Skqn (9)(z)| = o(1) (uniformly in z) and, by the bound on %k and the definition of K,
2k 2

[kgned| < < — =o(1)
Gn+1 Qn~*

by (30). This finishes the proof. O

The following proposition is crucial for further analysis.

Proposition 2.5. For every § > 0 there exists ns € N such that for every n > ng we can
find a function P, : T x N — R such that

(%)

Pak) = ai( I,

where d(§) < [ﬂ , the functions a; : T — R satisfy (see (26))

(35) sug\aj(x)\éqglq;ﬁl, ar(z) = gn(x), and sulj?\al(@l@‘“’",
S e

and, uniformly for every x € T, m < q,lljr‘i and w < log® ¢,

(36) ‘Sm(g)(fﬂ) — S mod wg, (9)(2) — Pu(z,m)| = 0 as n — +o0.

Proof. Fixn € N and let m = kwg,,+a, where k := kw < q’}l—? and 0 < a < wq,. Notice first
that the mean of ¢’ is zero, hence, by the Denjoy-Koksma inequality, sup,cr |S,, (¢')(z)| =
o(1). Using a < wg,, w < log®q, and the cocycle identity (splitting into sums of length
qn), We get

sup sup [S,(g')(x)] < log® g + 0(gn) = 0(qn),

aswqp €T
where the o(g,) terms comes from the last interval of length < ¢, and we use unique
ergodicity to note that sup,., |9:(¢9')(-)| = 0(gn). Therefore,

15,(6)(a) = Sula)(x + kg,0)| < 25up S, @) 2 = o),

Hence, by the cocycle identity: S,,(¢)(x) = Skq, (9)(2) + Sa(x + kgna), it is enough to show
&

1—
that for & < qul, we have

|Skan (9)(2) = Po(z, m)| = o(1),

where P,(-,-) is as in the statement of the proposition. Notice that if we construct P,(,-)
satisfying the assertions of the proposition, then

sup |P,(z,m) — P,(x, kg,)| = o(1).

zeT

Indeed, by the mean value theorem for j < d(d), (kq, + a)’ < (kg,)’ + d(8)a(2kq,)’ !,
which implies

(o) ) ) |
>0, = (k.Y + Y a;()Os(alkg,) ).
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Remebering that a < ¢, log® ¢,, for j = 1, by (35), |a1(-)Os(a)| = o(1), and by the same
equation, for every 2 J <d(9),

4;()|Oslalkgn ") < Os( a7 471" au(108” g)m'~") = O3 (10g” gu)g T+~ =
O

Os((log? ¢,)q; ¢~

1),

if n is sufficiently large. Writing
|1Sm(9)(x) = Sa(g)(x) — Pu(z,m)]

= |Skga (9)(2) = Pul(@, kgn) + Sa(9)(x + kgnar) — Sa(9)(2) + Pu(x, kgn) — Pa(z, m)],
we see that it is enough to construct P (+,-) satisfying the assertions of the theorem and

qn+1

such that (uniformly) for every k < and every x € T, we have

(37) \Skqn(g)(fﬂ) — Pu(z, kgn)| = o(1).

Notice that by (31) in Lemma 2.3 for every ¢ < q"fl (the latter number is < 24 = K,),

|S€qn(g - gn)(£)| = 0(1)>
and therefore, it is enough to show (37) for g = g,. By the cocycle identity, we have

k-1

Shau (90)(2) = D 4, (g0) (@ + i22) = kS (90 +Z( 10 (92)(@ + 1020) = 5., (9)()).

=0

We now use Taylor expansion of Sy, (¢)(+) up to order d = d(8) = [3]:

d—1 ©( (d)
| sl 5006
3.(00) &+ i) — Sy, () (@) = 32 T g ey S0 Oy e
s=1 :

Summing over i € {0, ...,k — 1}, denoting M (s) := Zfz_ol 1*, we get
(38)  Skqa(gn)(2) =

lgnar] S o)) (= o Sl gn> )6),
San(gn)( Z "‘Z e i g1
=0
Notice that
k-1 g (d) ) ; )
(39) > 28O gl < M)l sup 15y, (1) o)L
=0 z
We also have
E—1 1
4 M(s) = = — st k*®
(10) ()= 0" = gk O
1 1)

so using k < Z“ we obtain

Mdlgnall” = O (K12, ) = O(g;" a5 = o(1),
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since 3 < d+1 (by the definition of d), whence 1—dd—4§ < 0. Moreover, since gy(L ) is smooth

(and has zero mean), it follows by the Denjoy-Koksma inequality that |, n(gn )(x)] = o(1)
(uniformly in « € T) if n is large enough. So the RHS of (39) is o(1). Plugging this into
(38), we get

(41) Stan (90)(x) = kS (92)( Z lan2 5t 5 115) 4 o).

1-6
qn+1

Notice that for every s < d — 1, using k < , we obtain

S 1—-6)s—s —8
Bllnar* q£+1> g," = o(1),
and again by the Denjoy-Koksma inequality, it follows that |.S n(gn )(z)] = o(1) (uniformly
in z € T) if n is large enough. Therefore,

o0l @)

s!

Therefore, using (40), (41) implies that

(12) Sugu(9)(2) = kS, (0 Z las S0 1 4 o1 -

1gn0]* S, (95)) () -,
Sy (gn)( Z o qs+ ol kg™t + o(1).

Finally, notice that by the 1/g,-periodicity of g,,

qn—1

100 (90)(@) — qugn(@)| < 3

J=0

= O(gnllgne)),

) .Pn
gn($‘+'300 _'gn(x‘+176_)

whence

5S4, (9)(z) — kugn(2)] < qjlo@nuqnam = 0(g;%,) = ol1).

n

(s— 1))

We define a,(z) = gn(), ay(x) 1= 192l Smlon )@ (51 5 — 2 . d) and P,(z,m) =

> iy as(z)m?. Then, by (42), "
Stan (90) () = Palir, kga) + o(1).

It remains to bound the coefficients of P,(-,-). Notice that |a;(z)| = |gn(x)| < e 7, by
the bound on the Fourier coefficients of g. Moreover, for s > 2,

1

|as(z)] < — 1\Sn(gﬁf D) ()] € —=
ann+1 QHQn+1

since by the Denjoy-Koksma inequality, |9, n(g,(f))(:c)| = o(1). This finishes the proof. [

Proposition 2.5 implies the following corollary:
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Corollary 2.6. For every 0 > 0 there exists ng € N such that for every n > ng, every

m < qfllﬂ and every w < log® q,,, we have

A(T (@), T =0 (2, + Pl m)) ) = o(1),
uniformly over all (z,y) € T?, where P, is the polynomial from Proposition 2.5 and deg P, <
[5]-
Proof. Recall that T™(z,y) = (z + ma, y + Sin(g)(x)). Then notice that since w < log® ¢,
[[m — (m mod wg,)]a|| = o(1), by the bound on m. It remains to use (36). O

Finally, we state the following general property of (complex) polynomials (see [45]).

Theorem 2.7. [[45, Theorem 1.1]] There exists a global constant C > 0 such that if p(z) =
Y iy age(Agzx), then for every Borel subset E C I C T (I is an interval), we have

supg [p(t) } =
sup; [p(t)]

3. SIMPLE SIEVE THEORETIC LEMMA

Leb(E) < C’Leb([)[

In what follows, di(n) denotes the kth divisor function
dy(n) denotes the number of 1 < d < n such that d|n.

1. In particular, d(n) :=

n=nj...ng

Lemma 3.1. For d|q and any A > 0, we have

lna=1 = Z Ae + O(d(n) Z 1) + O(d(n)lw(n)>(loglogq)z),

eln pld
esz pln
p>(logq)*

where z = exp(A(loglog q)3) and A is defined by setting Ao = p(e) when ple = p <
(log q)* and ple = p|d and w(e) < (loglogq)? and \. = 0 otherwise.

Proof. If n has more than (loglog ¢)? prime factors or if (n,d) has a prime divisor greater
than > (log ¢)* then the result trivially follows. Suppose therefore that n has less than
(loglog q)? prime factors and that p|(n,d) = p < (logg)”. In that case, by the usual

inclusion-exclusion,
lna=1 = Z 1(e).

eln
ple = p|d
ple => p<log? ¢

Since n has at most (loglogq)? prime factors, we can write the above as

> ule),

eln
ple = pld
ple = p<log” ¢
w(e)<(loglog q)*
e<z
where the condition e < z is implied by ple => p < log® ¢ and w(e) < (loglog q)?.
O

To handle the contribution of the divisor function in Lemma 3.1, we will need the following
special case of a result of Shiu.
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Lemma 3.2 (Shiu’s theorem). Let k,¢ > 0 and € > 0 be given. Then, for any y > x°,

¢<y' and (a,q) =1,
Z di(n)" <. v (log :)s)ke_l.
et ¢(q)
n=a (mod q)
Proof. This follows from the main theorem of [51]. O

We will also need the following special case of Shiu’s theorem when dealing with reduced
residues in short intervals.

Lemma 3.3. Let x < q andy > q°. Then,
E ot

r<n<xr+y
(n,q)=1

Proof. By Shiu’s theorem, the sum is bounded by

on (L5 —) <1 (1-5)

PY Py
plg
It remains to notice that [, _ (1 —1/p)~" <. 1 to conclude. O

Lemma 3.4. Let A > 1000 and ¢ > 0 be given. Then, for anyx < q, ¢ <y<q,r <y’
and a < r and any d|q,

Y
Z d(n)( Z 1+ 1w(n)>(logIOgQ)2> < (log q)A/2"

r<n<z+y pld
n=a (mod r) pln
p>(logq)?

Proof. Let f = (a,r). Then n = a (mod r) implies that f|n. Using the inequality d(ab) <
d(a)d(b), we can bound the above expression by

(43) < d(f) Z d(n)( Z 1+ Z 1+ 1w(fn)>(log logq)Q) .

z/f<n<z/f+y/f pld pld
n=a/f (mod r/f) pln plf
p>(log q)4 p>(log q)4

If the middle term is non-zero then f > (logq)?. In that event, using that there are at
most log ¢ primes p|d (since d < ¢), we bound trivially

Z 1+ Z L+ 1W(fn)>(10glogq)2 < lOg q.

pld pld
pln plf
p>(logq)* p>(logq)*

This and Lemma 3.2 allow us to bound (43) by (using y < q and d(f) <. f¢ < (log q)"¢)

2

log”q
<owp

log” ¢ y
f3/4 v (log q)4/2

<

y
f
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since f > (logq)4. In the remaining cases, where the middle term in (43) is zero, we can
bound the contribution of the first term by

<d(f) Y Y dw),

pld  z/fp<n<z/fp+y/fp
p>(logq)# pn=a/f (mod r/f)

which, by Lemma 3.2, leads to

d(f) Y Y

d(A1 Yy N 2 4 d(f)]og? T NAS

< d(f)logq gdj <pf +1) < Fooed (log q)A~2 +d(f)log”g < (logq)A=3
p>(logg)*

because d has at most log ¢ prime divisors and d(f) <. f°. Finally, the contribution of
the last term in (43) can be handled by an application of the Cauchy-Schwarz inequality,
Lemma 3.2 and the fact that for any A > 0 and all ¢ sufficiently large,

DINEEEED DR

z/f<n<x/ f+y/ f z/f<n<x/ f+y/ f

w(fn)>(loglog q)2 w(fn)>Aloglogq
d
g2 Alsloss N (f)d(n) < —(Jf) -y(log g)' 4182,
z/f<n<z/f+y/f
using the inequality 2" < d(n). O

Lemma 3.5. Let z > 1 be given. There exist real coefficients Aq with |A\g| < 1 such that

ln prime < Z >\d

din
d<z

Z (Z)\d) < lo?gJ;z'

n€lz,x+y] dn
d<z

and for anyy > 2%, x> 1,

Proof. This is a standard combinatorial sieve estimate, see e.g [18]. O
We will also need the following simple result.

Lemma 3.6. Let A > 10 and d|q be given and let A, be the same coefficients as in Lemma
3.1. Then, for any v < z such that plv = p|d and pjv = p < (logq)?,

Ae 1 _cp(d) 1
2L Td g

ez
vle

If the condition plv = p|d or plv = p < (logq)? does not hold then the sum is empty.
Moreover, for v =1, we have

Z% - @+OA< 1)A—1)‘

= (log q
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Proof. Notice that the claim is trivial if v > (log¢)* as it just suffices to notice that

Ae 1 1 1
Z e < v Z e <4 (log ¢)A1"
61)<|ez e<exp(A(loglog q)3)
Therefore, assume now that v < logA g. We can further add to the subscript the condition
that pjlv = p|d and plv = p < (logq)” since otherwise the sum is empty. We notice
that since the condition e < z in the definition of ). is extraneous and implied by the other
two conditions, our sum is equal to
Z pi(ve)
ve

plev = p<(log ¢)4
plev = p|d
w(ev)<(log log ¢)*

By Rankin’s bound,

Y img
- < )
e log ¢)4
ple = p<(logq)* (log q)
w(e)>(log log q)?

Therefore, it remains to estimate

ev v e v 1
D Y e VR ()

plev = p<(log ¢)* ple = p<log” ¢ pld
plev = p|d ple = p|d piv
(e,v)=1 p<(log q)*

Notice that since plv == p|d and plv = p < (log¢)*, we have

1 (=)= I (-DIe-5) = I ()i

pld pld plv pld
({ﬁv )4 p<(logq)* p<(log g)*
p<(loggq

It remains to notice that

[T ()= (o 0(oe,)) =50 0 (g )

pld
p<(log q)*

and the claim follows. O

4. REDUCED RESIDUES IN ARITHMETIC PROGRESSIONS TO LARGE MODULI
Lemma 4.1. Let (r,q) = 1 and d|q. Suppose that o(d)q/(dr) — co. Then,

@ 2

d r
a<r n<q
(n,d)=1
n=a (mod r)

Proof. Let 6 > 0 be given. Fix a large A, say A = 10'°. We will show that for all d,q,r
such that ¢(d)q/(rd) is sufficiently large in terms of 1/, the left-hand side of the above
equation is < dgp(d)/(dr). Let W be a smooth function such that W(z) =1for 0 <z <1
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and W is compactly supported in [—d,1 + 6] and such that W®) < §7% for all & > 1 (in
particular W(0) = 14 O(6)). Since

Z‘ Z 1’< Z 1<<5-%-q,

as<r  g<n<(1+9)g g<n<(1+9)g
(n,d)=1 (n,d)=1
n=a (mod r)
it is enough to show that

%Z‘ > W(ﬁ) _W(O).#_g‘ :OCOE;)(])

as<r n=a (mod r)

as p(d)q/(rd) — oo.

Note that
Z‘ > d(ﬂ)( > 1+1w<n>>aoglogq>2>‘

asr n<2q pld
n=a (mod r) pln
p>(logg)*
q
D ICED SIEREND SRR
n<2q pld n<q
pln w(n)>(loglog q)?
p>(logg)*

by Lemma 3.4. Therefore, by Lemma 3.1, it is enough to show that

)X (Sa)w(E) - 21 (209,

as<r n=a (modr) eln
ez

After an application of the Cauchy-Schwarz inequality, we see that it suffices to show that

S X (S (E)-wo- S o (22 9)7),

asr n=a (modr) e|n
esz

By the definition of A., we can write the main sum as

(45) o > w(h).

ez eln q
n=a (mod r)

We notice that this is

/W(O)g > % + ZAE< 3 W(%) - W(O)%).

e<z e<z eln
n=a (mod r)

By Lemma 3.6 and the choice of W,
=4 Ae @ s@(d)‘ qp(d)
W _.E:___._ 5. 1%
‘ (O)T e r d < r d

e<z
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By the Poisson summation,

TG0 )
n=a (mod r)

(Note that (d,r) = 1 since d|q and A\, # 0 implies that e|d. Therefore, € is well defined.)
We find that it remains to show

1[0 Ae laey\ = ql\ |2 e(d) q\2
IS 31 o o i [N (G )
(46) r Z T’Z e Ze r re 0 d r
a=1 e<z 0#£0
Upon expanding the square and executing the summation over a, this is equal to

¢ N Aade > w(gﬁ)ﬂ%z)
3 .
T o1 00Kz €1€2 02220 rep (D)
l1ea=l2e1 (mod r)

Recall that z = exp(A(loglogq)?) <. ¢¢ for any ¢ > 0. Due to the rapid decay of W
we can truncate the sum over ¢; at re;q'*¢ at the price of a completely negligible error
term of size <4 ¢~*. Likewise, we can truncate the sum over {5 at re,q~ . It follows
that |f1es] < rejeaq 7 < rg7 1 < /7, and similarly, |[fye;] < /7. Tt follows that the
condition f1es = lyeq (mod r) implies f1e5 = loe;. We write this as ¢1/e; = ly/es = h/f
with (h, f) =1 and f < ¢°. This way we get

2 17 e
=X (D)
(hf)=1 fle

f<q®
fld

We notice that owing to the decay of /W,
— ahn |2
> () <
(h.F)=1 1
Therefore, using Lemma 3.6, the part of the sum with f < (log¢)*/? is bounded by

¢ rfo (L ey o~ L el g e(d)
< fgang o Gm) < 250 el) SR
fld

On the other hand, the part of the sum with f > (log ¢)*/? is bounded by

2
q 1 (f) e\ 2
(17) <t X EE(XT)
f>(log q)*/? €
p|lf = pld
plf = p<(logq)*
fld

the condition p2(f) being implied from the definition of A, as equal to either u(e) or 0.
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We now notice that 37 Are/e < [[,14(1 +1/p) < [ ciogq(1 +1/p) < loglogq and that
moreover,

D) 2o,
fld
plf => p<log? ¢

where w(d; y) denotes the number of distinct prime factors of d that are < y. Since w(d,y) <
logy

ogloey’ Ve conclude that the above expression is <. log® ¢ for any fixed ¢ > 0. Therefore,
(47) is

<<Ag'

r (logg)*/*
This shows that (46) is

wrt A1)

r d
finishing the proof.

5. ADDITIVE EXPONENTIALS ALONG REDUCED RESIDUES

In order to prove the remaining lemma, we will mostly appeal to the following result.

Lemma 5.1. Let A > 1000. Let d < q and r < logAq with 0 < a <r. Let § > 100 > 0
Then, for H > ¢°, ¢~¢ < |B] < e and all y < q, we have

H  p(d) H
48 E } . .
. (n,d)=1 elnb)] <as er/2 d - (logq)*
"€[é7y+H}

n=a (mod r)

Proof. We start by introducing a smooth function W such that W (z) = 1 for [(logq)=*,1—

(log ¢)~4] and W is compactly supported in [0, 1] with W®)(2) <, (log ¢)** for all x € R.
Then, with a loss of < H(log )™, we can express the left-hand side of (48) as

Z W(n_y>e(n5).

(n,d)=1 H

n=w (mod )

We express the condition n = w (mod r) using additive characters. Therefore, it is enough
to bound

> (7))l

sup
O<w<r

Using Lemma 3.1, we write

L=t = Y Ae + O(d(n) Lun)> (togloga)?) + O(d(n) > 1)
eln |d
ez g|"
p>(logg)?
with 2 = exp(A(loglogq)?) and A, the same sieve coefficients as in Lemma 3.1. The

contribution of the error term is negligible by Lemma 3.4. It therefore suffices to bound

Z Ae Z (ne}; y) exp <2m'n<% + eﬁ)).
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By the Poisson summation, the inner sum is equal to
Z/ W(ex —_ y) exp (27?@':1:(@ + eﬁ)) exp(—2mizl)dx.
 JR H r

After a change of variable (ex —y)/H <— x (and writing d instead of e to avoid clashes of
notation), this is equal to

I o ) CICRe )}

d<z

To analyze this, write
wooa 1
50 ‘ __+<__
(50) b+ roovl @
with Q = Hq™%/*, v < Q and (a,v) = 1.
Suppose first that ¢¢ < v < Hq /4. In that case since (50) is < H '¢~/%, and since
d < ¢°/?, we get

dw da| _ ¢/*
e [P N
‘ b r v H
However, since ¢¢ < v < Hqg=%/* and d < ¢°/?, for any integer ¢,
3e/4
0
v H
Therefore, combining the above two inequalities,
3&/4

N

and thus, (49) is negligible by the fast decay rate of W (since d < ¢°/?). Therefore, there
remains the case of v < ¢°. Notice that writing w/r —a/v = t/(rv) for some t € Z, we see
from (50) that if ¢ # 0 then

|t\

6] <

Also, if t = 0 then we would have |3] < H™* 35/ 4 but this is impossible since we assume
that ¢=¢ < |B]. So, in particular, ¢ # 0 and it holds that |3] =< |t|/(rv). Since we also have
|B] < e, it follows from the previous equation that v > e /r.

If (49) is non-negligible, that is, if there exists an integer ¢ such that

W+ -<L
then combining this with (50), we get
TR
v H

and since v < ¢° and (a,v) = 1, this implies that v|d.
Conversely, if v|d then (49) is equal to

(a5 2) o
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(with the main term coming from ¢ = ad/v). Therefore, it remains to estimate

Ad
H 2d
>
d<z
vld
and Lemma 3.6 shows that this is
H  ¢(d) H H  o(d) H

<4 pw) d  (logq)4/? Ser g " (log q)4/?

as needed.

As a fairly immediate consequence of Lemma 5.1, we obtain:

Lemma 5.2. Let (r,q) = 1, d|q. Then, for H > ¢'/® and r < (log ¢q)'®°, we have
1 d H H
sup Z e(nf) — — Z e(nﬁ)} < @El) 2 +

200
|Bl<e="" n€ly,y+H] (,0(7”) n€ly,y+H] (log q)

_(n,cé):ld ) (n,rd)=1

for every y < q. Moreover, for every A > 1000, ¢ > 1, H > ¢"/'°, y < ¢ and ¢ < ¢°,

Ho(q) H
(51) Y 1=—2%0 40, ).
gt q <(logq) )
n,q’ )=1

Proof. Suppose first that ¢=¢ < |5| < e”™". In this case, the result follows from Lemma 5.1
which shows that both terms are individually bounded by

H od _ H
eTr/2 d (lOg q>200 ’

Suppose now that |3] < ¢=°. Cutting into intervals I = [z,y] C [0,q] of length ¢*/4, it
remains to show that

—2)8) — e((n—z pld) a
‘ NZEI e((n —z)p) o) HZEI (( )ﬁ)} K~ o + (log )20
(1 (nird)=1

n=a (mod r)

Since |(n — z)B] < ¢7%/* for all n € I = [x,y], it suffices in fact to show that

(52) ‘ Z 1_% Z 1 p(d) H H

< . .
et p(r d e/? o (logq)*™
(n,d)=1 (n,rd)=1

n=a (mod r)

By Lemma 3.1 and Lemma 3.4, the first term on the left-hand side is for any A > 0 equal
to

I
(53) PSS 1+0(ﬁ>’

esv nel
n=a (mod r)
eln

where 2z = exp(A(loglog ¢)?) and A, the same coefficients as defined in Lemma 3.1.
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Since A. is supported on integers such that ple = pl|d, we have (e,r) = 1. It follows
that (53) is, by Lemma 3.6, equal to

U o) 0ol )

log q) log q)
Like-wise a computation (based on Lemma 3.1, Lemma 3.4 and Lemma 3.6) reveals that

1 1 p(rd) 1] [ (@) H
o(r) Z 1_gp(r). rd '|]|+O((logq)‘4—1>_7' d +O<(logq)‘4—1>'

nel
(n,rd)=1

Choosing A = 300, we therefore obtain (52). The bound (51) follows in an identical manner
by inserting the sieve weight of Lemma 3.1 and appealing to Lemma 3.4 and Lemma 3.6.
OJ

We also have the following corollary (in which we do not assume that (r,¢q) = 1):

Corollary 5.3. Let v < (logq)®® and H' > ¢'/3. Then, for every y < q and every
(a,(r,q)) =1, we have

1
G54 swp | S0 e(mp) - > emp)| <
|Bl<e="" _ o(r) g\
_(m’q()_ld ) (m gy =1

(ra) ¢l H H
o((r,q)) q e/ (logq)lo0”

Proof. The corollary is a simple consequence of Lemma 5.2. Notice that if a < r is such
that (a, (r,q)) = 1, then (m,q) = 1, m = a (mod r) is equivalent to (m, ﬁ) =1l,m=a
(mod r). Therefore, for every g € R,

doooempy= D e(mB).

(m.q)=1 (m, oy ) =1
m=a (mod/r) m=a (mod r)
mely,y+H'] mely,y+H']

It remains to use Lemma 5.2 for ¢’ = g 4= ¢ and v’ = r (notice that (¢/,r")=1). O

6. ERGODICITY OF WEIGHTED SUMS
In this section we prove the following result which is also of independent interest.

Proposition 6.1. For every uniquely ergodic T' =Ty, 4, and every n € N sufficiently large,
there exists
€ [log? g, 21log* ¢, ] NP 7

‘ZfT’“xy

k<z
k,d)=1

such that

(55) lim min  max sup
n—+00 2, €{qn,Pngn} d|zn (z,y) €T2 Z"SO

for every f € C(T?) with zero mean.
"The set on the RHS is always non-empty by the PNT. We denote by P the set of primes.
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Proof. 1t is enough to show (55) for f = e, b, c € Z. We will consider several cases:

I. n* = n. This implies that ¢, > €™?-'. In this case, we will show (55) with z, = g,.

Given a small ¢ > 0, let H € [%qfl/%a,qi/z_a] N Z be such that ¢, 1|H (this assumption

is only to simplify the notation below) and let I; = [if, (i + 1)H) for i = 0,...,[%] — 1.
Notice that the interval [[4]H, g,] has length < H, and since qncgf 7 = o(1) for every dlgy, 8
it can be ignored. We have
lgn/h]-1

(56) Yoo @y))= D Y Yo e THx,y) + O(H).

k<zn as<qn—1 1=0 kel;

(k,d)=1 (k,d)=1

k=a mod gn—1

Let z; = iH (then g, 1]|z;). Then k € I; implies that |k — 2| < q,l/2_€. Let (z;,y;) =

T (x;,y;). By Corollary 2.6 with ¢, and g,_1, m = k—2z;, 0 = 1/24¢ and w = 1, it follows
that
TH(x,y) =T % (s, y;) = T ™92,y + Pooa (@i k — 2)) + o(1),

where P,_; is a polynomial of degree at most 1 (since § = 1/2 4 ¢). Therefore, by Propo-
sition 2.5, P, _1(xs, k — z;) = (k — 2)B;, where

(57) |Bi < e T
Using this, we get

(53 3 enelTHay) =T (any) S edllk—2)B)+

keli ke[l
(k,d)=1 (k,d)=1
k=a mod gn—1 k=a mod gp—1

of Y, b

kel;
(kod)=1

k=a mod gp—1

where o(-) does not depend on d. The last term after summing over ¢ and a < ¢,_1 is of
q

order o(% - o(d)) = 0(%), and hence will be ignored. Let

hia= Y. ed(k—2z)8)

kel;
(k,d)=1
k=a mod gp—1
and let .
Vi = Z ec((m — z)5).
Pn=1) oy

mel;
Summing (58) over a < ¢,_1 (and recalling that we ignore the last term), we get
(59) Z 6b,c(Tk(iE, y)) = v Z ev,e(T (i, y:)) + O( Z o — 'Uz|)

kel as<qn—1 as<qn—1
(k,d)=1

.

8We recall that ¢(d) > d/(e” loglogd + 3/ loglogd) for d > 2.



PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS 39

Notice that by (51) with ¢’ = dg,,_1 < ¢> (and remembering that |I;| > 1/3)

, 1 _ 1 pldgn-)HY _ reld)H
vi| < ) (mdqnzl):ll = so(qn_1)0< o ) = O( ),

mel;

where we use that (d,¢,_1) =1 (since d|g, and (¢,, ¢,—1) = 1). So, by unique ergodicity,

o0 Y enelT )] = o A9,

as<qn—1

Now, n = n* and (57) allow us to use Lemma 5.2 with r = ¢,,_1 which after summing over
a < o1 < log™ gy, gives

pd) H Heo  (p(d)H
cgl'h"“_ L e Ty o )

Using this and summing (59) over i, we get

S cauo) = o Q) = o(F9%)

k<qn
(kod)=1

This finishes the proof of I (with an arbitrary p, in the required interval).
II. n* < n. Notice that by the definition of n*, ¢, < e%-*. Let w : N — N be a function
that goes slowly to +oo say, w(n) = loglog log n.

IT.a. g,_1 < m In this case, we will show (55) with z, = ¢,. We split

(60) Y Ty = 3 Y edTy).

k<gn a<qn—1 k<gn
(k,d)=1 k=a mod qn_1
(k,d)=1

By Lemma 2.4 with n—1 in place of n (and noticing that n* = (n—1)*) and z = 1, noticing
that by assumptions ¢, < m1n(q”q" L e™n-1) we get k =a mod g, implies that

(61) d(T*(x,), T*(2,y)) = o(1).
Notice that for every d|q,,

¢(d)gn > n 5 n S
qn—ld dn—1 IOg lOg d dn—1 IOg IOg dn

w(n) — +oo,
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since we are in Il.a case. Therefore, by Lemma 4.1 for ¢ = ¢, and r = ¢,_1, (61), and
unique ergodicity, we obtain

Y eIy = Y el @)l Y 1]+0<s0(c;)qn> _

k<Q7L as<qn-—1 k<Q7L
(k,d)=1 kEa(kngsglqn,l
o(d)gn 1 o ©(d)gn ©(d)gn
d Zebvc(T(x’y)HO(Z‘ >, - d>+ ( d ) =
qn_l asqn-—1 asqn-—1 k<gn qn_l
k=a mod qn—1
(k,d)=1
0<¢(d)qn)
d
This finishes the proof in this case.
II.b. ¢,_1 > m and ¢, < 16‘{:;;21%. In this case, we will show (55) with z, = p,q,

for some p, € [log” ¢,,2log” ¢,] NP. Namely, let p, € [log® ¢,,2log® ¢,] NP be any number
such that (p,,¢.—1) = 1. To see that such a p,, exists, notice that by the prime number
theorem

N tog®/? g
(62) 1T p= (log qn> - (log qn) > G > o

p€[10g2 qn,2log? qn]NP

(recall that (py,@,—1) > 1 implies that p,|¢,—1). By the bounds of p,, p,g, < e, so

“n Zn

63 n—gn: <X .
(63) I S A S logzn

Note that (pn,@a-1) = (¢n, @n—1) = 1, implies (2,,¢,—1) = 1. Since we are in case IL.b.,
Zn = Pngn < 4q, log? ¢, < fwin—l =~ Moreover, z, < 4¢, log? ¢, < e*7in1 (since g, < e™i1).
Therefore, we can use Lemma 2.4, with n — 1 in place of n, z = 1 to get that for every
k< 2z, < gt min(qu’i, e?™n=1) k= a mod ¢,_;, we have

(64) d(T*(z,y), T"(z,y)) = o(1).

Notice that by the bounds on p,, zn, = Pugn = ¢ 10g% ¢n = ¢n log?’/2 Zn. So, for every d|z,,
in view of (63),

e(d)zn “n “n 1/2
> > > 1 n — :
Qn—ld Gn—1 lOg IOg d Gn-1 lOg lOg Zn °8 : oo
We split
(65) Yoo @y)= Y Y adT )
k<zn asqgn—1 k<zn
(k,d)=1 k=a mod gn—1

(k,d)=1
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By Lemma 4.1 for ¢ = z, and r = ¢,_1, (64) and unique ergodicity, we get

66 Y adley)= Y adr@wo)l Y 1+o(H0i) -

k<zn a<qn—1 k<zn
(k,d)=1 k=a mod gn_1
(k,d)=1
p(d)zn ( ‘ p(d)zn ) <<p(d)zn)
epe(T(x, O 1— ) =
aod 2o Tl 0 X | 3 qoad 1) U
a<qn—1 a<qn—1 k<zn
k=a mod gn—1
(k,d)=1

This finishes the proof in this case.

II.C. qn—1 2 m’ An* 2 16?Zg21qn and (See (26))

1
(67) max am| < ——.
] €l 1, 5% log™ gn
Qn*fl‘m

Let p, € [log?q,,2log®¢,] NP be any number such that (p,,g,—1) = 1 (analogously to
(62), we show that such p, exists). Let z, := p,g,. By Lemma 6.3, we get that for
k< 20 < 2¢,108% gy k= a mod g1,

d(T*(z,y), T"(x,y)) = o(1).

The proof follows now the same lines as the proof of IL.b., i.e. we repeat (65) and (66).
I1.d. n—1 2 m, An* 2 n_1 and (See (26))

16 log? qn,
1
max am| =2 ——.
]l 1,2 log” gn
Qn*fllm

We then take 2, := ¢,. If m is a number reaching the max above, then e™™ %*-1 > ¢=7™ >
|am| = log+q’ and this implies that

(68) qn*—1 < [lOg lOg qn]z‘

Moreover, by (26), since a,, is a Fourier coefficient of g,«_1, by bounding the L? norm by
the supremum norm, we obtain

1
(69) sup |gns 1 ()] 2 —5—.
zeT IOg Gn

Let H := ¢:/*° > ¢”%77/(1610g? ¢,)/*= > ¢/*7%®) > ¢2/*7* by our choice of w. In

n—1

this case, we will show (55) with z, = ¢,. We will show that

(70) Y| Y ety = o XD,

u<gn ké€u,u+H]
(k,d)=1
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Then (55) will follow, since by the above we can split [0, ¢,,] (up to error < H) into disjoint
intervals {/;} (of length H) satisfying

|5 adrten] =o0)

The result then follows by summing over i. Let us show (70). Let k € [u,u+ H|, k = a+u

mod ¢,+_1. Note that k —u < H = q}f/ﬁ_e, so by Corollary 2.6 with n replaced by n*, w =1

and 0 = 1/2 + ¢, and denoting (2, y,) = T%(z,y), we obtain
TH(z,y) = T (@0, yu) = T (@0, yu + (k — u)B,) +0(1),
as deg P,~_1 < 1 by our choice of §. Moreover, by Proposition 2.5,
(71) Bu = gne—1(T + uar).
Using this and decomposing into residue classes mod g,«_1, we get
(72) ) eI (wy) =

keu,u+H)
(k,d)=1

Yo oaldT @)l Y edl(k—uw)B)l+ol Y ).

A< Gp* 1 ke€u,u+H] ke€u,u+H]
(k,d)=1 (k,d)=1

k=a mod g,*_1

Notice that if (a, (¢.«—1,d)) > 1, then the above sum is empty. If (a, (g,«—1,d)) = 1 and

1

1
then ¢ < |Bu] < e ™1 (see (35)) and since H > ¢Z = > ', by Lemma 5.1 with
T = @n+—1 and ¢ = q,, we get

d)H
S ks = o 22,
Qnx—1
k€u,u+H)
(k,d)=1
k=a mod g,*_1

where the proper bound m = 0( d;%(d) ) for the second summand on the RHS in (48)
n n*—1

follows from (68). Hence, summing over a < ¢,+_1, using (72) and (51) (which applies since

H> q111/2_25 N q}z/lo

S enelTH(a,y) = O(s@(d)H> N 0(<p(<fl>H) _ 0<¢(?H)'

), we get

k€[u,u+H] dqn*_l
(kd)=1
So, by (73),
wp(d)H
S| Y edrtew) - Y ey + o ™D,
u<gn ke€u,ut+H] u:|Bul< = kE€[uutH]

(k,d)=1 R (kd)=1
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Since for a fixed wu,

H
S T y)| < o wld),
k€u,u+H)
(k,d)=1

equation (70) follows by showing

(o< an 18 < 4%} = olan):
This however follows by (69), (71) and Lemma 6.2. This finishes the proof of II.d. and

hence also the proof of Proposition 6.1. O
Lemma 6.2. Fiz e > 0. Let n* <n and assume that
1
(74) sup |gne—1(2)| 2 ———.
zeT IOg dn

Then (uniformly) for every x € T,

{u SQn |gn*—1(x + UOé)| < q;e} = O(qn>‘

Proof. Notice first that g,«_1 is a complex polynomial whose number of terms is at most
22892 — o(logg,). Let B = {z € T : |goe_1(z)] < ga”'*}. Then, by (74) and Theo-
rem 2.7,

log4 G, 11/ o(l0g an)
] —o(1),

since £ > 0 is fixed and n grows. Notice that if 2 € E° and |2/ —z| < —45, then (remembering
dn

(75) Leb(E) < c[

that sup |g;| — 0 due to the exponential decay of the coefficients of g)
1 1
ge1(#) = g1 ()] < sup 1 ()] —5 = o(—7).
/ /
0eT gn aqn
/ 1
and so |gp_1(2')| = S
By the above, if I; N E° # (), then
—E&

inf [gn—1(2)] 2 4,

. Decompose T into disjoint intervals {I;}¢_, of equal length ~ —5.
q

n

Let J:={i : ;NE®°#0}. By (75), |J| = ¢ — o({). By the Denjoy-Koksma inequality, for
every i < ¢ and every x € T,

‘ Z X1, (z + ma) — ¢, Leb(I;)

m<qn

<2

Y

which implies that
S e+ ma)| g 2

m<qn

. 2 .
Therefore, and since |I;| ~ 25, so £ = [qf/ |, we obtain
qn

{u<qn ¢ |gnea(z+ua)l = ;7% = (€= 0(0))gy"* = g0 — 0lgn)-
This finishes the proof of Lemma 6.2. 0



44 ADAM KANIGOWSKI, MARIUSZ LEMANCZYK, AND MAKSYM RADZIWILL

1/2

Lemma 6.3. Let n be such that n* <n, q,_1 = ¢/~ and
1
(76) sup |am| < 75—
i€, 2% log” gn
Qn*fl‘m

Then, for every m < 10q, log® ¢,
d(T™(z,y), T™ ™4 (2, y)) = o(1),
uniformly over m and (x,y) € T?.

10gy, log? gn,
dn—1

(T (z,y), (z,y)) = o(1),
uniformly over k and (z,y) € T?. Notice that

Proof. 1t is enough to show that for every k <

)

2
lkgura]| < 10870 L gy
dn—1 dn

/

10gy log? gn

e we have
-

2, Therefore, we only need to show that for k£ <

| Sk (9)(@)| = o(1).
Recall that g =g =>_ ¢>1 9¢- Clearly, by the cocycle identity, we have

SUP |Skan 1 (9)(2)] < F5up |5, (9)(2)] < kY sup|Sy, (9o (@)].

>1 zeT

. 1
since ¢n—1 = ¢

But by the definition of n* (see (29)), for s € [n*,n] the interval [g;_1,log ¢,/ (7"%)] is empty
as
1OgQS Tqs—1 (1/2)7/2(15—1 o 1
T2 T2 < T2
Therefore, there are no frequencies in [g,«, ¢,] (g0 = 0 for ¢ € [n*,n]). Moreover, for the
frequencies at least q,, we apply the exponential decaying rate of Fourier coefficients to

- 5 s—1-

obtain
S [ (9] = gurO(e™™),
>n
and, clearly,
10q,, log? g,, .,
qqigq - gnr0(e~T) = o(1).
n—1

It follows that it is enough to show that

10g, log” g,
——= % " sup |8y, (90)(x)] = o(1).
n—1 tome TET
Recall that for every m € Z,
6m(Qn—la) -1
(77) Saus(em)(a) = en() AT
Moreover,
(78) em(Qn—la) -1 < ||mC_In—la|| < min (q ) mHQn—laH)
em(a) —1 [ma] " ma]
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We will separately consider the cases Sy, (gn+—1()) and Y, . 1 [Sq._,(g¢)(x)|. Let first
¢ <n*—1 and let |m| € [gr, ge+1]. Then

m|||qn_1cx 2Im|qes1
1Sy (em) ()] < (g0l 2lmlgess
[mal o

Notice that since ¢ + 1 < n*, it follows by the definition of n* and n* < n that ¢, 1 <
qn*—1 < [10g Qn*]2 < [lOg qn—1]2’ Therefore,

2 2
10g dn—1 < e—T\m\/2log qn—l'

[@m S (€m) (2)] < 2Amam| == .

807 since qn—1 2 qub/zv

10¢,, log? g,, log* q,,
wmm&n,l(em)@)l < 10e-7Iml/2208 I e_Tm/2W’
Gn—1 qn—1 n—1
Therefore,
10¢,, log® ¢n _
—= Y sup ISy, (90) ()] = 0(g,1) = o(1).
Gn—1 f<n -1 z€T
Notice that we did not use (76) in this case. It remains to bound
sup | Sy, (gn=—1)(@)].
z€eT
Let |m| € [gn+—1, ¢n+]. Notice that by (77) and (78),
2‘m|Qn*
|Sg. (em) ()] < :
qn
Using (76), |am| < e~ and n* < n,
A Sis (em) (@)] < 2|71 H < eI
Gn Gn l0g” qn
Therefore,
10g, log” g, _ 1
— a5, em) ()] < 10718 _——
08,8, (o) o) —
Summing over |m| € [gn+—1, ¢n+] gives
10g, log® g,
———— 54,1 (gn—1)(x) = o(1).
dn—1
This finishes the proof. O

Part 2. Equidistribution along primes
7. NUMBER THEORETIC LEMMA

Here, we will collect a number of standard lemmas that will be frequently used in the
upcoming sections. We also collect a number of more mundane lemmas that would otherwise
obstruct the flow of the argument.
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Lemma 7.1 (The hybrid large sieve). Let D(s,x) = »_, .y a(n)x(n)n=*. Then,

2
(19 > [ pGeiba < por+n Y 0L
X (mod q) 7 IIST n<N "
(n,q)=1
Proof. This is [41, Theorem 6.4]. O

Lemma 7.2 (Classical large sieve). Let D(x) = >,y a(n)x(n). Then,
Y. DO < (plg) +N) Y fa(n)l®

x (mod q) n<N
(n,q)=1

Proof. This is [41, Theorem 6.2]. O

Lemma 7.3 (Mean-value theorem). Let D(s) = Yy ann™° be a Dirichlet polynomial.
Then,

/ D(it) Pt < (T+N) S Jan2

Proof. Let ® be a smooth non-negative function such that ®(z) > 1 for |z| < 1 and
supp ® C [—1,1]. Then,

: . t L n
/|t<T|D(zt)|2dt< /R|D(zt)|2<1)(f)dt:mzmanamTq)(Tloga)_

Writing n = m + h, we obtain that the contribution of terms with |h| > N/T is zero.
Therefore, the above is equal to

<TY ol +T Y D laal ol
n<N 0<h<N/T n<N-h
and applying the inequality |, in] < |, |? + |ay1n]?, we obtain
N
2 2
Ty Jonl + (5 +1) Y laul
n<N n<N

which gives the claim. U

Lemma 7.4 (Vaughan’s identity). Forn >z > 1,

An) =D pd)n = 3" u(@AC) + Y p(dA)
dln deln deln

Proof. See [28, Proposition 13.4]. O
Lemma 7.5 (Heath-Brown identity). For any integer k > 1,

¢

<,(8) (1= ¢(s)M(s))",

s = é(—w (’;)as)ﬂ'-lc'(s)M(s)j

where
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Proof. This is a trivial consequence of the binomial theorem. 0]

Lemma 7.6 (Linnik identity). We have

1
re(n) = o : 1nn=>pzaa

where d;z(n) counts the number of representations of n as ny...n, with n; such that
plni = p>zandn; >1 foralli=1,... k.

Proof. Let P(s) =[],.(1—p~). Consider then

log(¢(s)P(s)) = log(1 — (1 = ((s)P(s))) = = ) | (- C(s)P(s))".

The lemma follows on comparing the coefficients of the Dirichlet polynomials on the left-
hand side and the right-hand side. O

Lemma 7.7. Let £ be a subset of tuples of the form (t,x) with |t| < x and x a char-
acter (mod q). Let D(s,x) = > ,<pa(n)x(n)n=* be a Dirichlet polynomial such that

Zm 0P < (logx)™™. Then, for ¢(q) < H <z,

n

1 (y 4 H)1/2+z’t _ y1/2+it 2
1 . dt
T XY / e DU+t ) T

X#XO y<z

H210gx H?x

< / |D(L +it, ) Pdt + —————.
4,0((]) X#onmod q) t|<(x/éix(10€x o : SO(Q) (log SL’)500

Proof. This result is essentially standard and is implicit for instance in [38, Lemma 14].
We will repeat the proof here for the convenience of the reader. We start by splitting y
into dy-adic intervals 100H < 27172 < y < 27 %z with 0 < L < logz and the interval
[0,100H]. We will first handle the contribution coming from the y € [27171z,27%2] and
then discuss the remaining (easier) case of y € [0, 100H].

First notice that

W+H!' -y y SH/y 8.(1+u)5—1

d
S 2H Juyy J S “
y+H 2H/(y+H) (1 —I—U)s -1
- HY? ————du.
0, (y+ H) . u

Using this identity, we see that

(y+H) =y (14u)*—1
D(s, )42~ Y ‘ ‘ D(s,x)y* ——Y — 2 )
‘/ﬂ@ (s,x) S ds| < e (s,X)y . ds
(t.x)€€ (t.x)g€

S (]‘ + ,U)s - ]'

o D)+ 1)
(tx)€E

for some |u|, |v] < H/y < 2YH/z. The treatment of the second term involving (y + H)®

is identical because after a change of variable y — y — H, the variable y is still localized in

an interval of length H starting at a point > H, since 27%~12 > 100H. For this reason, we

will omit this term from further discussion.

—l—‘ ds,s:%+it
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It remains therefore to bound
1 (L+u)p*—1 2
80 — ‘ D(s, S A —; | ’ <I><
CUNED Y= D ON Al IR
L XFX0 (t,x)€E

with ® some smooth non-negative function such that ®(x) > 1 for all x € [1/2,1] (notice
that this expression is an upper bound for the sum over y < x). Expanding the square,
interchanging the integral signs and using the bound

(1+u)—1 o /H2V 1
Ul (222 L),
1+ |t

oL H
_yL )dy, ul < —
X X

S

we conclude that the integral over y in (80) is

1 . 1 .
< /t|<m /uKm |D(3 + iu, x)D(3 + it, x)|
(@X)Qg (U,X)QS

H2F 1 H2"
X min (—, 7> min ( ‘ / Lrit= ’“(ID( )dy‘dtdu.
x 1+t r 1+ |u| 2-L

By the integration by parts, this is

< 277y |D(L +iu, x\)D(3 + it, x)|

It],|ul<z
(t7x)7(u7x)¢5
H2L 1 ) ] <H2L 1 ) dtdu

xmin(—,i , : :
x 14 |ul x 14t/ 14|t —ul?

Using the inequality 2ab < a® + b? (applied to each of the D(-)min(...)) then gives the

bound
H?22L 1

—2L,_2
<27z /|t<x |D(3 +it, x)|” - mm( p ’1—|—|t|2>dt'
(t.x)¢E

The part of the integral with [t| < (z/H)(logz)'*® gives after summing over L and Y, a
contribution which is

H2 H?logz
olq)

1 . 2
Z [e< m/H 1ogm )1000 |D(§ +it, X)‘ dt.

X#xo (mod q) (t,x)¢&

It therefore remains to bound the part with |t| > (z/H)(log ) which is

1 , dt
8) < Y 27— / |D(5 +it,x)|” - T
0<iioga PO o oo 1>/ H) )10 + 1t
Dissecting the range t over dy-adic intervals, we see that
1 / . 9 dt
—— 1D(5 +it, x)[* -
©(q) \ (mad q) 7 1H>(@/H)(log 2)1000 2 1+ [t[2
H? 1 1
L=y 27— / |D(% +it, x)|*dt
x? (log Zlf)2000 ZR: éo:d Q) t|~2E(z/H)(log x)1000 2
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by the large sieve, the assumptions on the coefficients of D(-) and by ¢(q) < H, this is

1 H? 1 0(q)2Rx
L —F— " T " Z 27 2R (22 Z(log )% + 2 ) (log )5
e 22 (g )
H? 1

< o(q)r  (logz)™0"

This shows that (81) is
H?z

< () (log 7)™

as required.
Finally, it remains to deal with the contribution of y € [0, 100H]. This is sligtly easier
and so we will be briefer. First, it suffices to use

S __ .8 2
} / sy Mds‘ <
It\<x S

(t,x)€E
(y+ H)* | 2 Y2
‘/ﬂ@ Dlsx) - == ds’ +‘/t|<T Dls,x)- ?ds’ ’

(tX)€E (tX)€E
where s = % + it. Once again we can focus on the second term involving y° since the
treatment of the first term with (y + H)® is similar because after the change of variable
y + H — y, the variable y still belongs to an interval of length > H ending at a point
which is > H.
Therefore, it remains to estimate

%)QO/R}/(&%D(S’ L ds‘ (D<100H)dy

with & a smooth, non-negative, compactly supported function such that ®(z) > 1 for
z € [0, 1]. Expanding the square, we get

1 D% +it,x) D(} + iu, L
A o exmnge 2T 2 R

By the integration by parts,
y H?
1+zt—zuq)< Y )d )
/Ry 100" ST ji—ap

Therefore, (82) is
2

H dt
R D(L 4+t 2, )
< Z/t|<x DG+t 0

go(q) XZ£X0 © (t,x)€E
Using that H < x, we can now bound this by

H2

H? dt
|D(% 4 it, x)|?dt + / D +it,)]? ———.
;{) /';<x 1ogx 1000/H (2 ! X)‘ gp(q) (log 2) 1090 |t|<a | (2 ! X)‘ 1 + |t|2
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2L+1

Splitting the second term into dy-adic intervals 2F < [t < and applying the hybrid

large sieve, we see that the contribution of the second term is

H2
Z 272 (ap(q)2L + :B) - (log 2)* < H*(log z) ™" + —ap(q:); - (log )17

(log 2)1000 2L

and this is sufficient. O

2
<

©(q)

Lemma 7.8 (Cancellations in Dirichlet polynomials over almost primes). Let A > 10 be
given. Let x be a character of conductor < (log N)* and t be such that (log N)** < |t| <
NA. Then, uniformly in 1 < w < VN,

VN
(log N)4

p(n)x(n) VN x(n)
’ . /2t ’ < (log N)A and ’ . /2t
pln n:> p>w pln n:> p>w

In addition,

‘ Z X Ing \/ﬁlxzxo 4 \/ﬁ
1/2+Zt 1+ |t| (lOg P)A

Proof. The third bound follows from the Korobov-Vinogradov zero-free region [42, Chapter
9, Notes| and contour integration as in [37, Lemma 2]. We will only describe the proof of
the first bound, since the proof of the second one is identical.

Let € € (0, 1000) The proof splits into two cases.

Case 1: w > exp((log N)2/3+€. By Ramaré’s 1dentity,

pp p(m)x(m) 1
Z n1/2+zt Z 1/2+n Z m2Fit ox(myw)’

i o v/ T
(m,p)=1
where
> oL
w<p<VN

We partition p into dy-adic range w < P < VN and we express the condition mp ~ N
using a contour integral so that the above expression can be re-written as

S / 3 plm)x(m) g~ plp)x(p) N7"du 1
1/2+iu+it 1/2+it+iu : ) T
w<P<V/N 27 Jjuj<iog ¥4 N/aP<me<an/p ;;Tpp o+ log N
VN
+0(s ).
(log N)A

We now conclude by using

Z X(p) VP

pl/2+it+iu (log N )54

p~P
ptm

and the trivial bound on the Dirichlet polynomial over n.
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Case 2: w < exp((log N)?3*¢). On the other hand, if w < exp((log N)?3%¢) then we
notice that

n n n n \/N
> %I ) % > N(d>+0(m)v

pln = p>w w(n)<(log N)1/100 pld = p<w
d<N1/100

where the condition d < N/ is implied from the fact that d has at most (log N)/1%
prime factors, and all of them are less than w. Interchanging the sum over d and n, and

trivially bounding the contribution of the integers n with more than (log N)'/'® prime
factors, we get that the first sum is equal to
3 pi(d)x(d) 3 plr)x(n) O( VN ) <. VN
qi/2+it nl/2+it (log N)A (log N)A

pld = p<w n~N

d<N1/100 (n,d):l
and this is <4 v/N/(log N)* using cancellations in the sum over n.

O

Recall that p, :==p mod ¢, so p, € [0,q — 1].
Lemma 7.9. For any e > 0 and intervals I C [0, N], J C [0, q| such that |I| = q- N** and

|J| > ¢°, we have
J
E logp <. Ly |1].

pel q
pe€J

Proof. Since I C [1, N], we have

Zlogp<<logNZ 1.

pel pel
pq€J pq€J

It will therefore suffice to prove the bound

J 1
Y 1< Ly %
el q 1log
pqe€J

We separate the proof into two cases. First, consider the case where |J| > ¢®/N?7%. Let
Aq denote the sieve coefficients coming from Lemma 3.5 so that

1er < Z Ad

d<z
with z = N®. Therefore,
Siey (Su)
pel nel din
pg€J ng€J  d<z

Opening the later sum in characters, we find that it is equal to

5 2 (S (Se)

wla) =

d<z
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We notice that by the Polya-Vinogradov inequality, for x # xo,

S (M) = 3 rax@) 3 x(n) < zy/gloga

nel dln d<z nel/d
d<z

Moreover, by the large sieve,

— ) ‘Zx 7]

(mod q) a€&J

Therefore, the contribution of the non-principal characters is

< zy/qlog g\/|J|.

Finally, the contribution of the principal character is

<Gm %) T (SM) < 7% (Sm0) <5

(n,g)=1 (n ‘Z) d<z d<z

by Lemma 3.5 and Lemma 3.3. This gives a final bound of the form

| |
iy N /gl i
< g v T Valog g\/]J| < . Tou N

by our assumption that |J] > ¢%/N?~%.
Let us now consider the case |J| < ¢®/N?7% in which case necessarily N < ¢*>. We cover

the interval I with < |I|/q disjoint intervals Iy,..., I C [0,2N] of length g. On each such
sub-interval we notice that
2 1=2.L

pel; pe[;
pqE€J

where I7 is an interval of length |J|. Since N < ¢* and |J| > ¢, it follows by the Brun-
Titchmarsh theorem that ;
Sk

EI*

Summing back over all I;, this gives the required bound. ([

8. HYBRID HUXLEY’S RESULTS

In this section we will prove the following “hybrid” version of Huxley’s theorem.

Theorem 8.1. Let ,& € (0,155). Suppose that H/q > z"/"¢ and H < z. Then, for

r < q'=¢ with (r,q) = 1, we have

- H H
)3D I DI TR B m-

y<z v=1  pelyy+H]
pg=v (mod r)

Moreover, if H= x then

Z‘ S b _E‘<< "
EP T | et (log H)100°

pel0,H]
pg=v (mod )
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Notice that taking r = 1 recovers the original result of Huxley in almost all short intervals.
On the other end, taking H = z and thinking of p, as p, one would recover a version of
Huxley’s theorem in arithmetic progressions to large moduli. We notice that such a version
of Huxley’s theorem (with p in place of p,) cannot be proven for arbitrary moduli ¢ using
the current technology (because of the weakness of the zero-free region for L(s, x)) and we
heavily exploit the fact that we are looking at the distribution in residue classes of p, :==p
(mod ¢q) € [0, ¢ — 1] instead of p.

Using a rather similar proof, but with different input on the character sums, we will also
prove the following variant of Theorem 8.1.

Theorem 8.2. Let ¢ € (0, o5) be given. Suppose that (H/q) > z*/°"* and H < x. Then,
for ¢/271/10 > H' > ¢'/1%0 we have

H xHH'
ZZ SUP ‘ Z e(pq3)logp — 2(q) Z 6@5)‘ <e (log 2)10°

y<z z<q 0< < pEly,y+H] (a,9)=1
vst pg=v (mod ) 0<a<q
pq€lz,z+H' a=v (mod r)
a€lz,z+H']

Moreover, if H= x then

HH'
B Y| X cwdlosr— o 3 e(af)] <o
BeR (q) (log )
z<q o<v<r p<H (a,9)=
pg=v (mod r) O<a<q
pq€lz,2+H'] a=v (mod r)
a€lz,2+H')

Remark 8.3. Notice that the result is non-trivial only for r < (log z)'%.

We will be helped to a very large extent by the fact that we are working with p, instead
of p. This has roughly the effect of a convolution, and off-loads the problem of obtaining
cancellations in ) _ x(p)logp onto the problem of obtaining cancellations in >~ x(n)
which is substantially easier. Theorem 8.2 can be thought of as the analogue (for p, instead
of p) of the Fourier Uniformity problem for primes in the Huxley range. The latter remains
an outstanding challenge.

8.1. Lemma on large values of Dirichlet polynomials. We say that a set S consisting
of tuple (¢, x) is well-spaced if whenever (¢, x), (¥, x) € S we have either t =t' or [t—t'| > 1.

Lemma 8.4. Let D(s,x) =), ya(n)x(n)n=*. Let

o=yl

n<N

Let S be a set of well-spaced tuples (t, x) such that for each (t,x) € S we have |t| < T, x
(mod q) and |D(3 +it,x)| > V. Then |S| < (logqT)*- (GNV =24 G3N¢TV~F).

Proof. This is [24, Lemma 10.2]. O

Lemma 8.5. Let D(s,x) = >, f(n)x(n)n=*V(n/N) with either f(n) =1 or f(n) =logn
and V' a fized smooth, compactly supported in [0, 00), function. Let A > 0 and assume that
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N < (¢qT)%. Let S be a collection of well-spaced tuples (t,x) with |t| < T and x # xo
(mod q). Then,

Z |D(3 +it, x)|* <a (¢T)(log qT)°.

(t,x)ES
Proof. Notice that
1 -
D) =5m [ Lis+w )V w)Ndu,
271 J(1/10g N
where V (w = [V (x)z*"'dz is the Mellin transform of V. By Holder’s inequality and

the decay of V for all A > 0,

1 4 du
ppt< f o g )]
D0 < [ [E(s+ o i) [

Therefore, it remains to show that for |u| < (¢7')%, for any ¢ > 0,

1
4 Lt+it+——+i 4 T) - (log qT)S.
(84) g%\g+wn%N+mmw<@><%q>

In order to do this notice that by sub-harmonicity,

1 1 1
L it 4+ —— -4<——//IA T iy + i, )| ded
|L(5+1 +10gN+zu)| D] D| (5+1 +logN+x+zy+zu,X)| xdy,

where D is a disk of radius 1/log(¢T"). Therefore, (84) is bounded by
) 2/ log(qT) T+(qT)*
(ogta1))* | /

—2/log(qT) x (mod q)

|L(3 + it + 2, x)|"dtdz.
—T—(qT)=

The result now follows from [41, Theorem 10.1]. O

Lemma 8.6. Let D(s,x) = >, f(n)x(n)n™*V(n/N) with either f(n) =1 or f(n) =logn
and V' a fized, smooth, compactly supported function. Let S be a set of well-spaced (t, x)
such that for (t,x) € S we have [t| < T, x # xo (mod q) and |D(3 +it,x)| >V Let A> 0
and assume that N < (qT)*. Then,

S| <4 qT(logqT)® - V4
Proof. This is an immediate consequence of Lemma 8.5. O

Lemma 8.7. Let {a(n)} be a sequence of complex numbers. Suppose that |a(n)| < d.(n)(1+
logn) for somer > 2 and alln > 1. Let € = E(A;T; q; x;€) be the set of well-spaced tuples
(t,x) with |t| < T and x (mod q) for which

(logz)4 1_it
(qT)E<M< M1/ ‘Z i > 1

Then, |E(A;T; q;z;¢)| < (log x>32r2/52+8A/e+4_
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Proof. Let R denote the cardinality of £(A;T;q;x;e). By the pigeonhole principle, there
exists a (¢7T)° < N = 2¥ < z and a subset & C € of cardinality > R/logx such that for

all (t,x) € &,
- 1/2-it VN
sup ’ >
(qT)s<u<N ; (log fl')A
for all (t,x) € €. Let k be the smallest integer > 3/e. Let f3,, denote coefficients such that

Bn = Z a(ny)...a(ng).

n=ni..ng

Note that |3, <. d.x(n)(1 + logn)* because |a(n)| < d.(n)(1 + logn). Moreover,
L .
St = | By

n<u n<uk

And in particular,

Nk/2 . ]
E /2—it
(log x)Ak RS SuP ‘ 5"X

Z Boux n-1/2-it|

Let M = N* so that M > (¢T )ek > (¢qT)3. Tt suffices therefore to estimate the number of
tuples (t, x) for which
v M

(1og x)Ak

Notice that the supremum over u < M can be easily removed using a contour integral,
i.e. writing for some small § > 0,

] 1 1/log M+iM?¢ ' s
S Bax(nn ™A = — / (X Ban—x(m)n™27) - Zds + O (0= ),

270 ) 1108 M—idt? <D

= sup
u< Nk

sup ’ ZBZX 1/2 it

u<M f<u

n<u

so that

dv 1

VM v
L+l "7 logM

+ 0.
(log )4k "

Zﬁnn x(n)n~/2=it|

Let T be the set of tuples (t X) for which the above holds, so that |T| > R/logz and

R dv
85 ‘ . —1/2—it—iv i
(85) logz logzz Z / ZV xn) 14 |v]

for some coefficients |7y, | < |5, < drk(n)(l +logn)*. We find phases 6, , ., € R so that the
right-hand side can be re-written as

M?®
dv
zGtxU —1/2—it— w . _

(tx)eT n<M

M? dv
—-1/2 629,5 X —it—iv n) - )
> qun / > ()

n<M (t X)ET
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By Cauchy’s inequality and the bound |v,| < d,+(n)(1 + (logn)¥), the above is

dv |2\1/2
Z@txy —it—iv
n)- .
Z /Ma Z X))

Expanding the square in the right-hand side, we get

(86) / / Z Z T (X () - 1—|—|v| 1—|—|u|

- (t,x)€T n<M
' ,x"eT

1/2

< ((logx>(rk +2k

By the Poisson summation, the above is bounded by

du dv
M i OE T 1/2+1/100R2
Z / /M51+\t—t/+v—u\ 1+\u\1+|v\+ ((eT) )

(t,x) E'T
(t'x

< MR(log T)?
since M > (¢T)? and R < Tq by a trivial bound. Plugging this into (85), we obtain

iy M <. (log z)R* 2R3 /AR,
logz (logz)Ak

Simplifying this inequality, yields
R < (log x) (log x) (rk)?+2Ak+2 < (logl,)32r2/52+8A/a+4‘

O

8.2. Hybrid Huxley’s theorem on a typical set of characters. In this section we will
establish a result of Huxley type on the set of (¢, x) lying outside of the exceptional set
defined in the corollary below. The exceptional set defined in the lemma below is no longer

required to be well-spaced.

Corollary 8.8. Let ¢, A, B,T,q,x > 0 be given. Let V be a smooth function, compactly
supported in [1,2] with V® (y) < (logx)B* for allk > 1 and y € R. Let Ey(A;T; q;w;¢)
be the set of (t,x) with |t| < T and x (mod q) for which there exists an (¢T)* < N < x

(allowed to depend on (t,x)) such that either

n)x(n n n VN
(87) ‘ ; % ' V(N)‘ logx ‘ Z fn1/2+” ' <N)‘ g (IOgJIV)A

with f(n) =1 or f(n) =logn. Then,

Z / 1 dt <g (log :L’)32/52+8A/€+4+2B.
v Y (EX)EEY (AT;q5w3¢)

Proof. First notice that

a(m)x(n) ., V(iu) N
Z ni/2+it 27r . Z n1/2+zt+zu 'V(ZU)N du,

n N<n<2N
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where V fR y)y*~tdy is the Mellin transform of V. Second, the Mellin transform

V(iu) has rapld decay and already for |u| > (logz)?P it is bounded by < 4.5 (logz)™.
Therefore, one can restrict to |u| < (logz)??. Consequently,

Z/ 1dt < (logz)*? Z/ 1 dt,
y (Ex)€EV (AT q;m5¢) (tX)€E(A T q;5¢)

X
where E(A;T; q; x;¢) is the set of those (t X) at which either

n1/2+zt (lOg LU n1/2+zt (log LU)
N<n<2N N<n<2N

for some N € [(¢T)%, z|. Let
(38) My(s,x) = 3 pln)x(mn~ and Di(s) = 3 filn

n<N n<N
with fi(n) =1 and f3(n) = logn. Note that if for instance the left-hand side of (87) holds
then either |My (% +it)| > VvV N(log N)=* or [May(3 +it)] > VN(log N)=4
Cover [—T,T] by intervals I of unit length. For each interval I and character x, let (¢, x)
denote the tuple that maximizes

(89) max(| Dy n|, |Dan|, [Mnl, | Dian|, | Daon|, [Man|) (5 + it, X)

as t ranges over [ and y ranges over all characters (mod ¢). In the very unlikely case that
there are two or more choices for ¢;, we pick one arbitrarily. Therefore, for each I and y
there is a unique (t7, x) that maximizes (89).

Let 7 be the subset of {(¢7,x) : I, x (mod ¢)} for which (89) is > v/N(log N)~*. Then,

d Tl
; /teg(A§T;q;x;a ; (tz /teI S | |

Taking every other interval I, we can separate T into a union of two well-spaced sets 71 U75.
Applying Lemma 8.7 to 71, 72, establishes the result. 0

The following lemma is a hybrid version of Huxley’s theorem to large progressions and
short intervals, under (essentially) the assumption of a good prime number theorem. This
latter assumption is encapsulated in our requirement that (¢, x) & Ev(A;T;q; x;¢), where
Ev(A;T;q; x;¢) is the same set as in Corollary 8.8.

Lemma 8.9. Let x > 1 be given. Let

Plsing = Y MLy (1)

with W a smooth function such that W® (y) <, 67% for all k > 1 and y € R with § <
(logx)™°, and W supported in [1,2]. Let T = 2x(logx)®°/H and ¢ € (0 be given.
Suppose that (H/q) > x'/5*% and H < x. Let A > 4000/c be given. Then,

1
’ 10000)

T

1 . 2
(90) Z /t X)ZE(A;T;q;:3¢/1000) [P+t )" dt < (log x)A4/2”

X#xo (mod q) |t|<T/2
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where E(A; T q; x;/1000) is the same set as the set Ew (A;T; q; x;/1000) defined in Corol-
lary 8.8.

Proof. Applying Heath-Brown’s identity with k& = 3 and z = (H/q)>™*/* > (22)'/3, so
that the coefficients of (1 — ((s)M(s))* are zero on integers n € [1,2z], allows us to write
P(3 +it, ) as a linear combination of Dirichlet polynomials of the form

n1,eeni <20 (N1 ...ni ny...ng)l/2+e T
n4,...,nj7<(7Hz/\q)2735/4

with 1 <i<3,4<j<6and f(n) =1or f(n) =logn. Let V be a partition of unity, that
is, a smooth compactly supported function with support in [1,2] and such that

1_ZV( )

NeN

for all integers n > 1 and with N running along a set of integers N such that [N N
X, X]| <« logX for any X > 100. We introduce such a partition of unity on each of the
variables nq, . . . Finally, we separate variables in W(m n; - ny...n;/x) by opening
W as a Mellin transform As a result, we can bound |P(3 + zt)\ as a linear combination of
at most (logz)'" expressions of the form

(91) /|qu |HN + fu + it)|du

el

with I a subset of {1,...,6} and with

Ni(s,x) := Z WV(%) , filn)=lognor fi(n)=1, 1<i<3

n~N;
Ni(s,x) := Z WV(%) , 4<i<6.
n~N; v

and where N; € N are such that Ny, Ny, N3 < o and Ny, N5, Ng < (H/q)*3/4.

Finally, since W( ) decays rapidly starting with |u| > (logz)™!, integrating (91) over ¢

and applying the Cauchy-Schwarz inequality allows us to remove the integration over u, at
the price of increasing the integration over |t| < T'/2 to integration up to [t| < T (since
T/2 > (logx)'%% > (logx)™! always).

These preliminary transformations allow us to bound (90) by

92 1 1000 / Ni... Ng) (% +it,x)|%dt
(92)  (logx) N4N5N6i“2/qm/4z et ooy | (V- No) (& + it ) P,
N1,No. N3<x 1<T

where N; € N and N;(s, x) are as above. We will now obtain a satisfactory bound for each
of the possible cases.



PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS 59

8.2.1. A first reduction. Suppose first that there exists an N; with (zq/H)*/'%° < N; <
H/q. In that case write Ny...Ng(s,x) as N;i(s,x)R(s,x) and apply an L* bound on
Ni(s,x) and the large sieve on R(s, x). This shows that the contribution of such a term is
N; (xq

(A 1000 | v
(logz)?A \H (logx) ™ + N, (log )2A=3000

and therefore, this is acceptable provided that A is sufficiently large. Thus, it remains to
deal with a Dirichlet polynomial of the form M(s, x)(I[;c; NVi)(s, x), where I is a subset
of {1,...,6} and M(s,x) is of length at most (xq/H)>*/°® and N; are the same Dirichlet
polynomials as before, but they have length > H/q.

8.2.2. The large values argument. Let T;, be the set of (¢, x) & € such that for t € T, ,,
1 1
[N;(5 +it. )l =< Ny 2 [Ni(g +it, )| <N 2

for all ¢ # j. Notice that since (¢, x) & £, we have 0 < 1 — %.

< (log z)*. ) <

Moreover, by the pigeonhole principle, there exist 1 < j < 6 and % <o<1- %
such that (92) is bounded by
1001 1 1 2
©3) < log)™ Y [ MG it TTNG it 0P

X#xo (mod gq) (t,X)ET;,0 iel

where I is a subset of {1,...,6}.

8.2.3. The case N; < (H/q)*™*/* and o < 2. In this case, we bound the expression (93)
by an L> bound applied to N;(s,x) and an L? bound applied to the remaining Dirichlet
polynomials. This shows that the contribution of this case is

1/2 2000 (4% | X so00  (H\'7E/4 g 2000
< N7 (logz)™™ - (ﬁ + F) < (logz)=™ - <E> T + (log )™ - N7

J

1—¢/100

and therefore, we see that this is < x which is completely sufficient.

8.2.4. The case N; < (H/q)*™*/* and o > 2. In this case, we bound (93) by
(94) (log )™ - M - (x/M)** =" [T, |,
where M < (xq/H)%/° is the length of the Dirichlet polynomial M(s,y) and where,
without loss of generality, we can assume that the set 7, is well-spaced (by first bounding
the integral over this set by the local maxima). By Lemma 8.4 applied to the Dirichlet
polynomial N;(s,x)? with g € N, this is
o— 2—20 rq 4—60
(95) < M- (z/M)*ZL. (log x)® . (N; YN >g).
We choose g so that
2

x(%) 2/ < Nf < 279/ and N]g+1 > gl

Such a choice is possible since N; < (H/q)*~¢/2 < (H/q)*x5/'2.
We now find that the first term in (95) is

4002 T 20—1 T
< (log ) 'MNa'g<MNg> < Qogz) 472’
J
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since the maximum is attained at o = 1 — M%glggx and x/MN{ > g=/10%0,

The contribution of the second term is (bounding by the value at o = 3 and o = 1)

1
2 2372 /—
< (log x)3002 . <% . N],—Qg + qu 9/2) < - 5/10007

where in the first expression we used that szg > Nfﬂ > 217¢/24 and in the second the
inequality z'*/?*. (¢/H)? < NY and the fact that v/ My—e/18 L g=e/500,

8.2.5. The case N; > (H/q)>™*/? and o < %. In this case, N;(s,x) must correspond to a
polynomial with smooth coefficients (since all the Dirichlet polynomials with non-smooth
coefficients are of length < (H/q)?>~3/). In particular, we bound (93) in the same way as
in (94) but now apply the stronger bound

xq iy
ool < (log)'® - 2 - N}~
which is a consequence of Lemma 8.6. This gives us the bound

xq o— —40
< (log )31 . ﬁ-M(x/M)Q LN
Since o0 < 2, we get (evaluating the above at o = § and o = 3)
3—3¢/4
3010 . % ) (M—i— M (x/M)Y? 'Nj_1> < 21100 SR 32 (%)

and since H/q > 2/t and M < 2%/ the above is < 2175/100 4 p1-2¢

>

< (logx

8.2.6. The case N; > (zq/H)Y?*<. In this case, N; must once again correspond to a smooth
Dirichlet polynomial. In particular, writing the Dirichlet polynomial M (s, x) [ [,c; Ni(s, x)
as N;(s, x)R(s, x) and applying the Cauchy-Schwarz inequality, we can bound (92) as

< (log x)2000 > /t

X#XO (mod q)

< ( l/ RS+ it,x) ).
2 t/<a(logz) 1000 /FT

X#xo (mod q)

L L2
|V, (5 + it, x)|dt

|t|<z(log z)1000 /H

By the large sieve and Lemma 8.5, this is
12 /xq A2\ 1/2
1 4000 (xq) ) ( ( ) ) 1—£/100
< (log ) i TRAbY <z
since N; > (xq/H)Y?**=.

8.2.7. The case (H/q)**/* < N; < (xzq/H)Y*** and o > 3. We apply the bound of (94)
and then use Lemma 8.4 apphed to N;(s, x)? to see that (93) is

o— 2(2—2¢ xq 2(4—60
< M(z/M)? %wwwm(m<>+ﬁTM<>)
The contribution of the first term is

<<MN].2-< I

N?M

Xz
A7z,

20—1
) (log 2)%? <
log
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since .MN]-2 <2 Y2 and o <1 — %. On the other hand, since N; > z'/37¢, the

contribution of the second term is maximized at o = %, and thus is
3—¢/2
< M(a/M)"*(log )™ - =L N7 < VM2 (log ) - (L)

and since H/q > 2/%*¢ and M < (xq/H )%/, this is < £'~¢ which is more than enough.
U

8.3. Lemma on character sums. We will also need a number of results on character
sums. For the proof of Theorem 8.1 we will need the following lemma which is a consequence
of Poisson summation and the large sieve for additive characters. The proof is a little bit
laborious due to our choice of using sharp cut-offs.

Lemma 8.10. For any x # xo (mod q) and (r,q) = 1, we have

(96) S| x| < a2 da)oga

a<q
a=v (mod r)

Remark 8.11. Notice that this is essentially optimal as the best error term that we expect

for the sum over a is \/q/r.

Proof. Let x* mod e be a primitive character inducing y, so that ¢ = ef. Therefore,

Y ox@= Y Y@= udx@ Y v

a<q a<q d|f a<q/d
a=v (mod r) (a,f)=1 da=v (mod r)
a=v (mod r)

Therefore, (96) is bounded by

<X X x|
s =t da55<[(1r/nc(l)d r)

Applying the Cauchy-Schwarz inequality, we bound this by
T 2\ 1/2
e x vw)”

df o=l a<q/d
da=v (mod r)

We now express the condition da = v (mod r) using additive characters, so that the second
inner sum is equal to

0 SRS (1) T v L 5| 5 ()]

v=1 o<e<r a<q/d 0<l<r a<gq/d

We now use the completion method to write

(98) | |
2 (%) = 215 (X e () (1) 1 S e ()
a<q/d x<er y<er 1 <y<g/d
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Writing y = ae + br with @ mod r and b mod e (recall that (r,e) = 1 since e|q and
(r,q) = 1), we find that the sum over y < er, divided by r, is equal to

% Z *(br) exp (272:171)) Z exp (2m’f€ae n 27:2;:)3@)

b mode a mod r
. . 2mixh
= ]-:(:E—dée mod 7 X (T) Z X (b) CeXp ( 6 )
b mode
Therefore, (98) can be re-written as
q *
TS @)
1<z<er
r=—dle mod r
where
2 d 2mib
Flz) = Z ( mxy) < min (17 er/Q> and G (z) := Z X*(b)eXp< i :):)
q/ 1<y<q/d v b mode €

By [43, Lemma 5.4], we have G,+(z) < /e. Therefore, the above sum is
d
<<\/E-% Z min(l, er/q>'

X
1<z<er
rz=—dle mod r

Thus, we get a total bound for (96) of

T

2\ 1/2
>t e X2 min(L— -
df =t m=—1d<€§<§£od r

Since (de,r) = 1, we can re-write the above as

©9) Gl S (1)

d|f 1<z<er
r=y mod r

2> 1/2

If de/q > 1 then

Z min (1, der/q) <K — logq
q

s
1<z<er
r=y mod r

and so (99) is < d(q)(re)*/?logq. Consider now the case of de/q < 1 and der/q > 1
Splitting the sum over z into sub-sums of length der/q, we can bound (99) by

2 (dzerZ\ Yo X

d|f 0<l<q? Zder/q<x<(€+1)der/q
r=y mod r

2\ 1/2

By Cauchy’s inequality, this is less than

12 q° 1 2y 1/2
Sor (g tos) 3o 3| X )
d|f 1<U<g?  Isysr Zder/qgmg(f—l—é)der/q

r=y mod r
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The sum over z is now bounded by < 1 (since de/q < 1) and the sum over y is constrained
to an interval containing at most % > 1 terms (since otherwise the sum over z is empty).
This gives a final bound of

der~ 1/2 1/2
(e ) (1)

which is sufficient. Finally, it remains to handle the case when der/q < 1. In this case, we
can bound (99) by

1/2 € e 72 1/2
ri/2. ( ‘ ‘ ) < r1/2~<— —+elog2q)

d|f y=1 0<j<e

< Z (r\/é + (er)?log q)

daf

and it remains to notice that since der/q < 1, we have \/r < ,/q/v/de and hence, /e <

\/Tv/q/d which is sufficient. The claim is therefore verified in all cases.
O

For the proof of Theorem 8.2, we will also need the following estimate for character sums.
The proof depends on van der Corput’s inequality and the Weil bound.

Lemma 8.12. Let ,6 > 0 and ¢ > 1. We have for H' < ¢*/*7% and x a non-principal
character (mod q),

S| 5 sorten] <ot s
<q

2<q BeER

ae[z z+H'|
Proof. By the Cauchy-Schwarz inequality, it suffices to bound

(Zsup‘ e(aﬁ)r)l/z.

z<q
ae[z z+H]

By van der Corput’s inequality [42, Lemma 1]

Y s < B2 Y | Y e

a<q O<h<VH" a<q
a€lz,z+H' <h< a€lz,z+H'

The first term gives a total contribution of < ¢'/2H"3/*. The second term gives a contribu-

tion of
<<q1/2H'1/2( DD (a+h)))1/2.

0 h<vH' 2<q a<q
<h< a€lz,z+H']

By another application of the Cauchy-Schwarz inequality, we get

(100) 3/4H’1/2< _ Z‘ Sy a+h)‘>l/4.

0 h<H' 2<q a<q
<h< a€lz,z+H']
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Expanding, we see that

(101)
Z) a+h)| < qH + S x4 @)Xz +d)x(z+a+ W)Xz +d +h),
2<q a<q O0<a#a’'<H'

a€lz,z+H'] 2<q

where we alter the terms with z > ¢ — H’ giving rise to an additional error < H” < qH'.
By [9, Lemma 7],

Z x(z +a)x(z +d)x(z + a+ h)X(z + d + h) < 8Dg"%(q, h(a — d')(a—d + h)).

Therefore, (101) is
< qH' +/g8°@ - H' Y~ (g, hw(w + h)).

O<w<H'

We notice that any n < H’®/? has at most ¢° representations as hw(w + h). Thus,

r > Y @hetw+m) <o 30 (n

0<h<vH' 0<w<H’ 0<n<H'3/2

Splitting according to the possible values d = (¢, n), we find that the above is

Z d Z > d(HlS/Q + 1) < H"¢¥ + min (H’Q, L/)q%.
rdg;m d .
Therefore,
Z Z‘ Z a+h)‘ < qH' + /7 HP < gH' + ¢35 1™,
0<h<\/_’ e [g;qu,]
This gives rise to the final bound < ¢'t*=%/*H’ + ¢H"*/* which is sufficient. O

8.4. Proof of Theorem 8.1. We are now ready to prove Theorem 8.1. This depends on
a combination of Lemma 8.9 and 8.10. Notice first that in the range ¢ < (logx)* for any
fixed A > 0, Theorem 8.1 is an immediate consequence of the following variant of Huxley’s
theorem due to Koukoulopoulos.

Theorem 8.13. Let A > 0 and € > 0 be given. Let x > H > x'/5%%. Then, uniformly in
1 < (log)* and (a,q) = 1,

H Hzx
PP P gl <

e
y<z  peEly,y+H] (log 2)
p=a (mod q)

Proof. This follows by taking @ = (logx)* in [32, Theorem 1.2] and dropping all but one
term. ]

Therefore, it suffices to establish the variant stated below.
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Theorem 8.14. Let ¢,& € (0, 1a=). Let C(e) = 10" /3. Suppose that (H/q) > z'/%F,

H < z and (logz)'%°¢©)/¢ < ¢. Then, for all r < ¢'~¢ with (r,q) = 1, we have

- H H
(102) Z Z ’ Z lng — 7 <<57§ m

y<wz v=1  pely,y+H]
pg=v (mod r)
Proof. Let 0 < W < 1 be a smooth function such that W(v) = 1 for 0 < v < 1, and
compactly supported in [—(log z) ™% 1+ (log 2)~°%] and such that W®)(y) < (log z)°%
for all k > 1 and all y € R. At the price of a negligible error term of size < Hz/(logz)5%,
we can bound (102) by

ZXT:’ Z logp~W<§)—§ o Lloo‘

y<z v=1  pelyy+H]
pg=v (mod r)

We start by expressing the congruence condition using characters, this allows to bound
our main expression by

zi\@ S (X wean(D)( X @)+ g

y<z v=1 x#xo (mod q) p€ly,y+H] aca
a=v (mod r)

where the contribution of the principal character is estimated using Theorem 8.13 and the
second part of Lemma 5.2. We now open the sum over primes using a contour integral,
getting that

3 X(p)logp.w(£>:/| ZM-W(B)-WM(M)

T p? T S
PE[y,y+H] P

with s = 1 +4t. The total contribution of the error term is < gz < Hz™® which is
sufficient. Let

X

Pls = 30 XLy (2)

and Ew (A;x; q; r;/1000) with A = 101°/e be the same set as in Corollary 8.8. We will
abbreviate the notation by dropping the subscript W from Eyy.

We separate (t, x) according to whether (¢, x) € £(A; x; ¢; x;/1000) or (¢, x) € E(A; z; q; x;€/1000).
In the first case, we notice that

|P(3+it,x)| < Vz

and that

(y + H)1/2+z‘t _ y1/2+it
D VEEe:

y+H )
< Z ‘/ x—1/2+ltdx < H\/E
y<z “VY
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Combining this with Lemma 8.10 and Corollary 8.8, we find that that contribution of the
(t,x) € & is
1 T
< —— Vz-Hyz-dt  sup Z‘ > Xl

SO(Q) X /(t,x)ES(A;x;q;x;a/lOOO) X#xo (mod gq) v=1

a=v (mod r)

H
< % . (logm)lom/62 -y/7q - d(q)logg.

We therefore get
< \/g(log )9O 2l - d(q)logq

and this gives an acceptable contribution since r < ¢*~¢ and ¢ > (log z)'00¢()/¢,
It now remains to handle the contribution of the non-exceptional (¢, ), that is, those
|t| < z and x (mod ¢) for which (¢, x) & E(A; z;q; z;/1000). Therefore, we need to bound

ZZ ‘— </t|<x P(3+it,x)- (y+H)11//;+ji; y1/2+itdt> | ( > Y(a))}.

y<z v=1 x#x (t,x)€E

We now introduce phases 0, , € R for which we can re-write the above expression as

ZZ zeyy,_ Z (/ﬂ@ p(%ﬂt,x).(y+H)11//;+ji;y1/2+n> (% )

y<z v=1 x#xo (t,x)€E a<q
a=v (mod r)

Notice that

T

Zeieu,y Z ZX b modry_ZX ay’

v=1 a<q a<q a<q
a=v mod r

where c(a,y,r) = €% medry depend only on a,r,y and have absolute value 1. Therefore,
we have re-written our main expression as

1/2+4it _ 1/2+zt
ZZ(/t|< +it’X)'(y+H)1/2+z'ty ) (ZX cla,yr )

x#x y<z X)gE a<q

We now apply the Cauchy-Schwarz inequality and the large sieve which give us

( Z Z ’/ 1 ) (y+H)1/2+it _ y1/2+it 2\ 1/2
t|<x 2
xsﬁxo y<z (t‘>|< VEE 1/2 t
By Lemma 7.7,
1 ' (y 4 H)1/2+z’t _ y1/2+z’t 2
o(q) 2. 2 ‘ |t\<x 3+t X) 1/2 + it dt
x#xo (mod q) y<z  (t,x)gE

H?log x / H?x
<= |P(+itx)Pdt + ————r.
t|<(z/H)(log x)1000 2 500
ple) S Jus o 2) ¢(q)(log z)
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The error term gives an acceptable contribution. Therefore, we end up with the problem
of showing that

1 L 5 .\ /2
H+/qxlogx - (m Z Ag(x/H)(bgw)looo |P(5 +it, x)| dt)
X7X0 (t,x)€E

is < zH(logz) 1%, At this point appealing to Lemma 8.9 (and using that (¢,x) ¢
E(A; ;g3 w;£/1000) implies (¢, x) & E(A; T q; x;/1000) with T = 2x(log x)'%%° / H) gives a
bound that is < H - z(log z)~4/* and this is completely sufficient. O

8.5. Proof of Theorem 8.2. We will only prove the first statement since the proof of the
second assertion (83) will be identical.

We can prove Theorem 8.2 by largely following the outline of the proof of Theorem 8.1
but using Lemma 8.12 instead of Lemma 8.10. Once again if ¢ < (logx)? for some fixed
B > 0 then Theorem 8.2 follows from Theorem 8.13. We quickly describe these details
below.

Proof of Theorem 8.2 for q < (logx)®. Since ¢ is small, p, takes on at most (log z)? values.

We can therefore, by the triangle inequality, separate the sum according to the value of
p =w (mod ¢) which fixes the values p, = w. This gives an upper bound of the form

D) DD DI D DR TR

y<z 2<q 0<w<gq pE(y,y+H] go(q)
w=v (modr) p=w (mod q)
wE|z,z2+H'|
and the result is now an immediate consequence of Theorem 8.13. ([

Therefore, it suffices to prove the following slightly weaker variant.

Theorem 8.15. Let ¢ € (0, 1555) be given. Let C(e) = 10"/, Suppose that (H/q) >

254 and H < x. Then, for %71/ > H' > (log 2)1°@), we have

H xHH'
(103) ZZ Zlelg ’ Z e(pgB)logp — (@) Z e(aﬂ)‘ <4 (log 2)100°

y<z 2<q ¢ pE(y,y+H] (a,9)=1
svsr pg=v (mod r) 0<a<q
pq€lz,z+H’' a=v  (mod r)
a€lz,2+H'

Proof. As in the previous proof (i.e. proof of Theorem 8.1) let W be a smooth function such
that W(v) = 1 for v € [0, 1], W is compactly supported in [—(log x) 5% 1+ (log z) %] and
W® (y) < (logz)°% for all k > 1 and all y € R. At the price of a negligible error term
of size < xH H'(log x) 75 we can bound (103) by

Sy s | Y o W(E) - P el

q

Y<z 2<q gcyop  PElYY+H] <,0( ) (a,q)=1
pg=v (mod r) a=v (mod r)
pq€lz,z+H') a€lz,z+H'|
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We proceed just as before opening the expression into characters. This gives us the following
bound

ZZ sup |—— Z ( Z x(p) long<§>)< ; X(a)e(aﬁ))’ + %7

BE]R
y<z 2<q 0 cly,y+H
<o<r X#xo  pEly,y+H] 0Sasq
a=v (mod r)
a€lz,z+H'

where the contribution of the principal character is estimated using Theorem 8.13. Express-
ing the condition @ = v (mod r) using additive characters and using the triangle inequality,
we see that we can bound the above expression by

\ZZSUP — Z ( > X(p)logp-W@)) ( ;q X(a)e(aﬁ))).

R
y<w z<q P€ X#Xo  pEly,y+H)
a€lz,z+H']

Since we take a supremum over 3, we can instead write [ as a function of y and z so that
the above expression takes the form

Y X (X s w(2))( > x(@e(as,s) )|

y<z z<q X#XO PEly,y+H]
a€lz,z+H'

Finally, we pick phases 0, . € R for which the above can be re-written as

109 Tt (X xwisw (L) (X wees,).

y<z 2<q x#xo pEly,y+H] a<q
a€lz,2+H']

Just as before, using a contour integral, we write

P 1 - (y + H)1/2+z‘t _ y1/2+it
> aiosr W() = 5= [ PGt PR o)
PEly,y+H] th<e

where 1
P(s,x) = Z % . W(g)
p

The total contribution of the error term is < grH’ < 2"/*HH' and therefore negligible.
We now look at the contribution of (¢,x) € &(C;x;q;z;¢/1000) with C' = 10" /e. Using
the bounds |P( +it, x)| < /&, we see that the contribution of (¢, x) € € to (104) is

(105) << —— Z/ V- Z‘ Chs Z’ > x(a)e(ap,:)|dt

X#X (t.x)€ 2<q a€lz,z+H']
0<a<q

H 1/2+4t y1/2+zt

1/2+ it

Applying Lemma 8.12, then the trivial bound,
H 1/2+it y1/2+it

(y +
D T

and finally Corollary 8.8, we see that (105) is
)C(e)/100

< Hyx

q , ((ogx

+ (log x)C(e)/lOOq—l/%)
©(q)
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which is negligible since ¢'/>=/1° > H' > (log 2)'0¢().
Therefore, it remains to handle the contribution of the non-exceptional (¢, x), that is,

. y+ H 1/2+4it _ y1/2+it
(106) Z Z / ew PG+ x)( ) : dt

y<:c X#XO (t,x)€E 1/2+Zt
< Y@ X emvelan,).
0<a<gq z€la—H',a)
z<q
Let
cla,y) = Z e¥=ve(af..,).
z€la—H’,a)
z<q

By an application of the Cauchy-Schwarz inequality, (106) is

1 1 » (y_l_H)1/2+it_y1/2+it ’2 1/2
<<(<p(q) 2 Z’/w (3 +it:x) 12+ it af )

X#xo (mod q) y<z  (tx)g&

(T T [Sr@en])”

y<wz x#xo (mod q) a<q

We estimate the second term by applying the large sieve. This shows that the second term
is
<z Y lela,y)]’ < zp(q)(H').
a<q
(a,q)=1
To estimate the first term we appeal to Lemma 7.7. This shows that

1 » (y + H)1/2+it _ y1/2+it 2
— tx) - dt
v(q) 22 ‘ /tl<~’v 3 i) 1/2 + it

X#xo (mod q) y<z 7 (t,x)gE

H?logx H?*x
P Lt 24—
<Tm L 2 /t|<m<logwwww (2 it 01+ s g 2y

X#xo (mod q)

By Lemma 8.9, this is
< H%x
(q)(log )™

Combining all our previous estimates we conclude that (106) is

cHH'

< (log )23

as needed.
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9. EXTENSION OF RESULTS OF MATOMAKI-SHAO

We will need the following extension of a recent result of Matomiki-Shao [39].

Theorem 9.1. Let 7 >0, 7 € (0,1077) and k > 1 be given. Let N > H > N?/37". Then,
for all N > Ny(n, k), uniformly in r < (log N)1%, (a,r) =1 and uniformly in polynomials
g(n) = 8 yi(n — N with || < H™ for all i = 2,... k and |y| < e < nt, we
have

a7 | X eloDiosp-—~ S elgn)| < nlog -~

p=a (mod r) (,0(7") N<n<N+H Y (,0(’/")

N<p<N+H
The proof separates into the oscillatory case in which the main term » . v, e(g(n))
exhibits cancellations and the non-oscillatory case in which the main term is large.

Proposition 9.2 (Oscillatory case). Let n € (0,1077) be given. Let N > H > N?/371. Let
g(n) = Zle Yi(n— N)YE. If for all ¢ < (log N)Z, with B sufficiently large in terms of k and
1/n, there exists ani € {1,...,k} such that

(log N)”
| >
gl 7
then, for all r < (log N)* and all (a,7) =1,
1 H
(108) ‘ > e(g(p))logp) < nlog - -
N<p<N+H n e(r)
p=a (mod r)
and
H
N T

N<n<N+H

In [39], Matoméki-Shao obtain under the same assumptions, cancellations in the left-
hand side of (108) for H > N?/3*¢ and » = 1. In contrast to our Proposition 9.2, they
obtain savings of an arbitrary power of the logarithm. We push their result slightly past
the N?/3 threshold, but at the cost of much weaker, barely non-trivial error terms.

We now state the much easier “non-oscillatory case”.

Proposition 9.3 (Non-oscillatory case). Let B,7 > 0 and n € (0,1077) be given. Let
N > H > N?371 Then, for all N sufficiently large with B, uniformly in polynomials
g(n) = 28 yi(n — N such that, |y| < e <n', |ul < HF fori=2,...,k and for
which there exists a ¢ < (log N)P such that ||qvi|] < (log NYPH™ for alli < k,

> e(g(p))logp—% > e(g(n))‘ <M

N<p<N+H SO( ) N<n<N+H SO(T)
p=a (mod r)

for all v < (log N)'° and (a,r) = 1.

This is a simple consequence of the Siegel-Walfisz theorem in short intervals.
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Proposition 9.4 (Siegel-Walfisz in short intervals). Let € > 0 and A > 0 be given. Then,
for (a,7) =1, r < (log N)4 and H > N7/12+¢

H H

logp = ——+ Oae( — 7).

nggzjvﬂf o(r) <<p(r)(log N)A>
p=a (mod r)

Proof. This follows from setting @ = (logz)* in the main result of [47]. O

In the “non-oscillatory case” an additional assumption on the size of the coefficients of
the polynomial g(n) is important, since for example the conclusion of Proposition 9.3 fails
for the polynomial g(n) = (n — N)/2.

9.1. The Type-I and Type-II information. The proof of Proposition 9.2 will largely
rely on the type-I and type-II information obtained by Matoméki-Shao in [39]. We will need
slight generalizations of these type-I and type-II estimates to allow for an extra congruence
condition. We quickly sketch below the necessary modifications in this subsection. We
broke down the results of [39] into many smaller propositions to make checking simpler.
Throughout, given a sequence {a,}, we will use the notation

o= (3 o)

M<m<2M

to denote its LP norm.
First, we will need the following variant of the Weyl bound.

Lemma 9.5. Let k > 0 and g(n) = S0, 7i(n — N)'. If for all ¢ < (log N)® with B
sufficiently large in terms of k there exists an i € {1,...,k} such that
(log N)”
I =L
gl T

then, for allm < (log N)'° and all 0 < a <,

H
Z e(g(n)) < (log N)1000°
rma (mod )

Proof. Pick C sufficiently large in terms of k so that if for every ¢ < (log N)¢ there exists
an i € {1,...,k} such that ||gv;|| > (log N)¢/H' then

H
Z e(g(n)) < (log V) 00"

N<n<N+H

The existence of such a C' > 0 follows from Weyl’s bound (see [42, Theorem 2 in Chapter
2]). We claim that B = 2C + 100 is admissible.

We express the condition n = a (mod r) using additive characters so that it is enough
to bound p
sup Z e(g(n) + n_> ‘

O0SE<r ! Nan<N+H "

Let (¢,7) be the tuple that maximizes the above expression. If for all ¢ < (log N)¢ we
have ||q(y1 + £/7)| = (log N)¢/H then we are done by taking B = 2C + 100 and using the
Weyl’s bound as above.
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Suppose therefore that for some ¢ < (log N)¢ and 0 < ¢ < r, we have
(109) lg(m +¢/r)]| < (log N)/H,

then v, +£/r = a/q+ O((log N)¢/H), hence v, = a'/(rq) + O((log N)°/H). This however
would imply that [|g71]] < (log N)?*¢+10/H for some ¢ < (log N)“*1%. So taking B =
2C + 100, it follows that if for each ¢ < (log N)® there exists an i € {1,...,k} such that
llgvill > (log N)Z/H? then (109) cannot hold, and hence, by the Weyl bound, we obtain a
saving of H (log N)~1000,

U

With this lemma in hand we begin with the type-I information.

Proposition 9.6. Let A > 1000, n € (0,107%), k > 1 and N?3~" < H < N be given. Let
g(n) = ¥ ~i(n — N) be a polynomial of degree k > 1. Let f(£) = 1 or f(£) = logt.
Suppose that M < H(log N)=B for some B sufficiently large with respect to A and k. Then

there exist a constant C > 0 sufficiently large with respect to A and k such that if for all
q < (log N)© there exists ani € {1,...,k} such that

(log N)©
N> =)
||q7’l|| = HZ )

then, for all r < (log N)1% complex coefficients o, supported on [M,2M] and (a,r) =1,

S elgltm)an () < % ol

m~M
N<Im<N+H
¢m=a (mod r)

Proof. Following Matoméki-Shao, we write the sum as

San Y elgltm) i)

mn~M N/m<U<N/m+H/m
¢m=a (mod r)

and we apply the Cauchy-Schwarz inequality which leads to the problem of bounding

(Creal) (2] 3 ctoempso])”

m~M  N/m<UKN/m+H/m
Im=a (mod r)

From here on, we proceed in the same way as Matomaki-Shao starting with the second
display of the proof of their Proposition 2.1, with the only difference that we use Lemma
9.5 instead of their Lemma 3.1. OJ

We will also need information on the type-II sums,

Z agfme(g(nm)).

N<Im<N+H

Proposition 9.7. Let A > 1000, n € (0,107%) and N3~ < H < N be given. Suppose
that max(N/M, M) < H(log N)™® for B > 1000 sufficiently large with A and k. Suppose
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that for all ¢ < (log N)© with C sufficiently large with respect to A and k, there is an
i€ {1,...,k} such that’

. . log N)¢

latin + i+ DN > LB

Then, for any sequence of complex numbers {a,,} and {B,} supported on respectively
[M,2M] and [N/4M,4N/M], we have, uniformly in r < (log N)'°, (a,r) =1,

H M1/4
Z amBne(g(mn)) < log M)A N2~ [etlla - [|B]l2-
M<m<2M &
N<mn<N+H
mn=a (mod )

Proof. Expressing the condition fm = a (mod r) using Dirichlet characters, we see that it
is enough to bound

> ax(OBux(m)e(g(tm))).

m~ M
N<Im<N+H

sup
x (mod r)

The result now follows by going through the proof of Proposition 2.2 in [39] with ¢ =
(log N)=4-32, O

The diophantine condition in Proposition 9.7 excludes from consideration those g for
which

(110) Y abuegtm)| x| Y aBaim)”

N<Im<N+H N<Im<N+H

for some |t| < N*1/H**2 In order to handle these remaining cases, we need additional
information on the sequences {a,} and {5,}. In particular, we will assume that either ay
or f; admits a bilinear structure. First let us establish a rigorous version of (110). This
result is implicit in [39].

Proposition 9.8. Let A > 1000, D > 10004, n € (0,107%), &k > 1 and N*3" < H < N
be given. Let g(n) = Zle vi(n — N) be a polynomial of degree k. Suppose that for some
C, there exists a ¢ < (log N)© such that for alli € {1,... k},'

. . log N)¢

latini + G+ D)) < (BT

Let {ay} be a sequence of complex numbers supported on integers ¢ not having prime factors
< K!(log N)C. Then, for N sufficiently large with respect to C' and k, either of the following
holds:

IWe set Ypp1 =0
10We set Ye4+1 = 0.
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(1) There exists B > 0 sufficiently large with respect to A,C and k such that for H' =
H(log N)=8 and all r < (log N)'°, (a,7) =1,

> anelgln)| < Kog N 57 sup Y oo

H |
N<n<N+H x (mod klgr) , o
n=a (mod ) N<N'<SN+H-H' N'sn<N'+H

N(log N)P /H'<|t|<(N/H)*+2

H
+7(1OgN)A Z |-

N<n<N+H

(2) There exists an E sufficiently large with respect to A,C, D and k, and a ¢ < (log N)¥
such that for all i € {1,...,k}, we have ||qyi|| < (log N)¥/H.

Proof. By the triangle inequality,

> m)| < Z\ > auelgn)

N<n<N+H (v,k!q) N<n<N+H
n=a (mod r) n=a (mod r)
n=v (mod k!q)

because a, is supported on integers having no prime factors < k!(log N)¢. Cover [N, N+ H]|
with < (log N)? disjoint short intervals I of length H’, we bound the above expression by

> Z\ > anelgm)|

(v,k!q) nel
n=a (mod r)
n=v (mod k!q)

By the argument in [39] following equation (4.2), given such an interval I = [N, N’ + H']
of length H" and given (v, klq) = 1, we have for all n € I, and n = v (mod klq),

e(g(n)) = vn + O((log N)™4C/k!)

provided that B is taken sufficiently large with respect to A, C' and k, and where |v| = 1,
t =27 N'(B1+a/q) for some a € Z with [t| < (log N)°©)(N/H)**1 and with the coefficients
B; defined by

k

(111) = (;) (N — N')=i3,.

i=j

In particular, it follows from this that if |¢| < (log N)P N/H' = (log N)PTPN/H then
(log N)D—i—B

—

And since (as shown in equation (4.4) of [39]) for all j € {1,... k},

Kﬁj qy) - (J;;’)ﬂ:l <ﬁ1 * gﬂ < (log N)*'9 - H™

for some a; € Z, it follows from t = 27N’ (;4a/q) and the assumption |¢| < (log N)PT2N/H
that for j € {2,...,k},

laf1] <

(log N)©©) N (log N)P+B

a3
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Finally, from (111), we get for all j € {1,..., k},

(log N)D+O(C)+B
Itgny ) < 2B

Picking ¥ = D + KC + B + logk with K sufficiently large, we note that E depends on
A, D,C and k, and that there exists a ¢ < (log N)¥ such that

(log N)*”
i

lgvsll <

for all j € {1,...,k}.
0

Finally, to rule out the possibility that the bilinear form «, 3, resonates with (mn)*, we
will use the following result of Baker, Harman and Pintz. Note that in order to apply it,
one of the sequences {a,,} or {#,} appearing in (110) needs to have an additional bilinear
structure.

Proposition 9.9. Let A > 1000, D > 10004, k > 0 and n € (0,2 x 107°) be given. Let
N3=1 < H < N. Let {a}, {Be}, {7} be three sequences of complex numbers supported
respectively on [K,2K], [L,2L] and [V,2V]| with KLV =< N. Suppose that, for |u| <
N(log N)P/2/H, we have

- B 1/2
‘ > yoEm < (log N) 10A< > |%|2) :

V<o2V V<o2Vv

Suppose that max(K/L, L/K) < NY373 and V' < N°/°=21 then

H 1
> b < o o Il

K<k<2K
L<i<L2L
V<oV
N<klv<N+H

Proof. This follows from the case g = 1 of [24, Lemma 7.3] (alternatively see [3, Lemma 9])
since for 0 > 2/3 —n,

40 — 1 2460 — 13 40 -1 _ 5
) ) = 2 a 277
3 3 3 9
See also for e.g. [39, Lemma 2.3] for the details of this deduction. Note that [39, Lemma 2.3]
is more restrictive than necessary and stated with the exponent % instead of the exponent

5. 0

~ := min (49 _9,

9.2. The oscillatory case. In this subsection we will prove Proposition 9.3. Therefore,
we will assume that for all ¢ < (log N)?, with B sufficiently large with respect to k, there
exists an index i € {1,...,k} such that

(log N)*

I
and where 7; are coefficients of the polynomial g(n) = SF_, 7i(n — N)’. In this situation, if
B is sufficiently large in terms of k then it follows from Lemma 9.5 that for all r < (log N)'°

(112) gl >
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and 0 < a<r,

N
Z e(g(n)) < (log N)1000"
nea (mod 1)

Removing the logp weight, it therefore remains to show that if B in (112) is sufficiently
large, then

1 H
113 e log— - —————.
(113) NQ;HH (9(p)) < mlog -~
p=a (mod r)

Notice that we can assume that N2/31 < H < N?/3+1 If H > N2/3+7 then the conclusion
follows from [39, Theorem 1.3].

Taking z = N'/3+190 and using Linnik’s identity (Lemma 7.6), we bound the left-hand
side of (113) by

(114) Y )|+ X elglam)| + o),

N<n<N+H N<nm<N+H
pln = p>z pln,m = p>z
n=a (mod r) n,m>z

nm=a (mod r)

where the O(N?/3721) accounts for the modifications on integers n with n = p® with a > 2.
We notice that the second sum falls exactly within the scope of applicability of Proposition
9.7. Indeed, we can write this sum as a linear combination of expressions of the form

Z apame(g(nm))

m~M
N<nm<N+H
n,m>z
nm=a (mod r)
with VN < M < N/z = N?/37100 and q,, the indicator function of integers n such that
pln = p > 2. Since 22 > M, this means that «,, is in fact the indicator function of prime
numbers.
The next lemma establishes cancellations in this bilinear sum.

Lemma 9.10. Let n € (0,1077). Let VN < M < N?/371000  Then_ for N?/31 < H <
N2/3+77,

H
Z e(g(pq)) < (log N)100

p~M
N<pg<N+H
pg=a (mod )

provided that B in (112) is taken to be sufficiently large.

Proof. By the integration by parts, we see that it is enough to prove the same result for
a sum weighted by logp and logq. Applying Vaughan’s identity (Lemma 7.4) reduces the
problem to bounding type-I and type-II sums. The type-I sums are of the form

Y elg(nmg)Bnf(n)logg
nm~M

N<mng<N+H
m<z2

mng=a (mod r)
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for some divisor-bounded coefficients f3,,, with z := NY12-7=7" and with f(n) = 1 or
f(n) = logn. By Proposition 9.6, this is <¢ H(log N)™'° provided that B in (112) is
chosen sufficiently large.

Therefore, it remains to obtain a similar saving in the type-II sums of the form

(115) > elgluvwg))A(v)p(w)logg

N<uogN+H

u~Uv~V,w~W

uvwg=a (mod r)
for UVW = M powers of two with V,WW > NY12=1=7" Since VN < M < N?2/3-1001
Proposition 9.7 establishes that (115) is < H/(log N)" if for C' > 0 sufficiently large with
respect to k and for all ¢ < (log N)¢ there is an i € {1,...,k} such that

. . log N)¢
lq(iyi + (i + )Ny || 2 %
Therefore, we can assume that there exists a ¢ < (log N)® such that for all i € {1,2,...,k},
. . log N)¢
(116) lg(ivi + (i + DN || < %

In (115), write u = ujug and w = wywg with uy, w; such that all the prime factors of wuy, wy
are < k!(log N)¢ and all the prime factors of ug,wy are > k!(log N)¢. We note that if
wy; > N or u; > N then the integer uwv has more than exp(log N/(loglog N)?) distinct
prime factors. The contribution of such integers to (115) is

< Z log q Z d3(n) < (log N)~'*° Z ds(n)e”™
N/AM<g<AN/M H/q<n<N/q+H/q N/AM<g<AN/M
w(n)>10° loglog N H/q<n<N/q+H/q
and by Shiu’s theorem (Lemma 3.2) applied to the sum over n, we see that the above is
< H(log N)~°,
It remains therefore to obtain an upper bound for

Z f(wr) Z log gA(v) pu(w2)e(g(vurwiuawsq))

6 M (1)
u1, w1 <N U2W2V 1w1
<k!(log N)C N/(u1w1)Svugw2g<N/(uiwi)+H/(uiwr)
phor = p<ki(log N) v~V wa~W/wi,ua~U/uy
pluz,we = p>k!(log N)©
vuiwi=auawz (mod r)

in the case when (116) holds. By Proposition 9.8, it suffices to show that there exists a
D > 10 such that for every w; < N7,

> A(v)(wn) log gx (vitawaq) (vugwag) " < H' - (log N) ™"

ugwav~M [/ (uiwr)
N/(urwr)<vugwag<N/(urwr)+H'
v~ Vwa~sW/wiua~U/ug
pluz,wy = p>k!(log N)¢
for H' = (H/(ujw;))(log N)~8, B a sufficiently large constant depending on k, x of con-
ductor < k!(log N)¥ with F sufficiently large with respect to k and N(log N)P/H' < |t]| <
(N/H)k+2.
Suppose that V' > UW/(ujw) (the case of UW/(ujwy) < V is essentially identical as
it amounts to swapping the roles of v and uyw,). Then since N2~ < UVW/(uywy) <
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N2/3-1000  we have V > NY47" and also V < N2/3-100n Noreover, UW < N1/3-50n+n"

and N'/3+100n < N/M < +/N. Therefore,

N/M Vv
vV N/M

and we also have NV/12-21 < UV < N/3-50m+1"  Note, moreover, that by Lemma 7.8, for

every |u| < N(log N)P/2/H, we have, for A = 106 and W,V > N¢,

max( ) < maX(N1/4+’73, N1/3—200n) — N1/3—200n

VV
(log N)loA

3 p(w)x(w) Z
l/2+it (logN 10A ’ 1/2+zu zt

w~W
plw = p>k!(log N)©

since |t| > N(log N)P/H and D is much larger than 10A. Therefore, Proposition 9.9 is

applicable and gives the required saving.
OJ

In order to handle the contribution of the first sum in (114), we will use the following
lemma. We refer the expert reader to subsection 9.4 for a quicker alternative treatment
relying on Harman’s book [24].

Lemma 9.11. Let n € (0,105). Let w = N and v = N7 and y = NV/3-1001 > =
N300 gnd N2/3=1 < H < N2/3t0. Then, there exist coefficients \g with |Mg| < 1 such
that for all N sufficiently large with respect to 1/n, and (a,7) =1, r < log'™ N,

Soelgm = Y (X a) - > elgem) (3o M)

N<n<N+H N<n<N+H din N<pn<N+H

n=a (mod r) n=a (mod r) d<wv wLp<z d<v
pln = p=z pn=a (mod r)
k
+ E g(npip2)) ( g )\d> E (—1) E e(g(npy .. .pr))
N<np1p2<N+H dln 3<k<n—4 N<npy..pp<N+H
w<p1<p2<y d<v wp1<p2<...<pp<y
npip2=a (mod ) pln = p>w
npi...pp=a (mod r)
1 H
+0 (7) log — 7)
o(r)log N

Proof. Tterating Buchstab’s identity twice, we see that

dooelgn) = D> elgn)— D elgm)+ D> elg(pgn)).

N<n<N+H N<n<N+H wp<z w<p<g<z
n=a (mod r) n=a (mod r) N<pn<N+H N<pgn<N+H
pln = p>2 pln = p>w pn=a (mod r) pgn=a (mod r)
gln = q=w tln = t>q
t prime

We will show that at the cost of an error term of size O(nlog(1/n)H/(¢(r)log N)), we can
restrict the sum over w < p < g < zto w < p < ¢ < y. Indeed, we notice that the
contribution of the integers with y < ¢ < z is bounded by

1 H
1 log = - ——
< Z Z < Z pgp(r 10gN<<770g77 @(r)log N

Ysqsz N<pgn<N+H YSqS2
w<p<zn=apq (mod r) WLPSZ
tin = t>y

t prime
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by the Brun-Titchmarsh theorem [28, Theorem 6.6].
On the remaining sum
Yo elg(n),

wLp<g<y
N<pgn<N+H
pgn=a (mod r)
tln = t>q
t prime

we apply Buchstab’s identity log N/ logw times, and this shows that this sum is equal to

> (=1F > e(g(npr...pr))-

2<k<n—4 wEp1<...<pE<yY
N<py..ppn<N+H
p1...pgn=a (mod r)
tin = t>w
t prime

It remains to express the condition pjln = ¢ > w using a sieve on the terms with
k € {0,1,2}. Let T be the subset of integers n € [1, N] with the property that all the
prime factors of n are less than w and n has at most 100[log;,, N| distinct prime factors
in the interval

I = [exp <%),exp <(k)lg()ljgr71]gV)2>] a=1,2...,J

with J, the smallest integer such that n=* <log; ; N < exp(n™*), and where log; N := oo
so that log N/log; N = 0. Moreover, letting w’ := exp(log N/(log,,, N)?), we also require
that n € T has at most
1
100{ 3 —J

w'<pLw

distinct prime factors in the interval [w’, w]. Note that wagpgw pt> %log nL.

Notice that if n € T then in fact n < N " = p. Let also T’ denote the set of integers
that can be written as n = ab with pjla = p < w and p|b = p > w, and such that
a € T and b has at most 1001log(1/n) prime factors.

We notice that on the set n € 77, we have

Lo = pow = Z p(d) = Z p(d) =: Z Ad
d|

din dln
pld = p<w pld = p<w d<v
d<v,deT

since any divisors d of n with the property that all the prime factors of d are < w is a
divisor of @ and therefore, an element of 7, and hence < v. Here, Ay is defined by setting
A = p(d) whenever d € T and Ay = 0 otherwise. Moreover,

(117) 0< Ly — pow < O A
dl

d<v
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Therefore, we have for k € {0, 1,2} the identity

e(g(npy...pr))

>

N<npy..pp<N+H
wLp1<...<pr <y
npi...pp=a (mod r)
pln = p>w

Furthermore, by (117), this is equal to

2.

N<np1..pp<N+H
w<p1<...<pp <y
npi...pp=a (mod r)

(9 npi .

p)(2) +0(

(9 npi .

2.

N<npy...pp<N+H
wLp1<...<pp <Y
npi...px=a (mod r)
neT’

P ()

din

+0( ) 1).
N<npr..pp<N+H
wLp1<...<pp <y
npi...pp=a (mod r)
pln = p>w
ngT’

S oY)

N<npy..pp,<N+H d|n

wLp1<...<pr<y  d<wv

npi...px=a (mod r)
ngT’

It therefore remains to show that the sum over n & 7T’ above is negligible for each
k € {0,1,2}. Since A\, is supported on integers all of whose prime factors are < w, and

IR

D1, ..., PE > W, We have

d<v

Moreover, the number of representations of a given integer m as np; ..

d|np1...px
d<wv

.pr With w <

p1,...,pr < z and all of the prime factors of n less than w is < (log z/logw)*. Therefore,
log 2\ 2
my Y Y (M) X () (XN
0<k<2 N<npi..pp<N+H d N<n<N+H din
npi..pr=a (mod r) d<wv n=a (mod r) d<v
w<p1 <...<pp<z ngT’

ngT’

and it remains to show that this is < nH/(o(r)log N).

Let f be a completely multiplicative function with f(p) = 1 for p <

p > 100. Then, by the union bound,

100 and f(p) = 2 for

J
Logr < (Zz—loologmzv X 2—10010g(1/17))f(n).

i=1
Therefore, (118) is

7740

>

N<n<N+H

n=a (mod r) d<v

ZM =" > Maf(d

>

N<n<N+H
n=da (mod r)

f(n).
d<v
(dr)=
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By [48, Main Theorem], we have

S fm=— Y xS )

N<dn<N+H (p(T) x (mod r) N<dn<N+H
n=da (mod r)
H gp(r))Q H
— - . P(log N) + O (7)
dp(r) ( r (log N') + O (log N)A

with P a linear polynomial. Therefore, (118) is

40 HlogN- (SO 7")>2Z Aaf(d)

< o(r) r d

d<v

and by definition of \;, we have

\af (d)
>

( Z M(d)df(d)>

I
m <
Hz

d<wv p|n — p€el;
(d,r)=1 Q(n;1;)<100|log,; 1 N|
STICTL (2) + (o)
= - Moo N0
1 el p (log; N)
(pyr)=1

by Chernoft’s bound. Since the Euler product is always larger than the error term, we can

bound the above by
< <<p€r)>2 . H (1 B %) < (4,027"))2 . 107;2]\]'

It follows that (118) is

as needed.

We notice that the first two terms,

> elgm) (Yo n)and Y elgm)( Do M)

N<n<N+H din N<pn<N+H
n=a (mod r) d<wv WLPLZ d<wv
pn=a (mod r)

fall within the scope of Proposition 9.6, and in particular, it follows that these terms are
<4 H(log N)™'%° provided that B in (112) is sufficiently large with respect to k. We notice
that the case k = 2 also falls within the scope of Proposition 9.6 since dp;p, < N?/3-100n,
Therefore, we can assume that k£ > 3. We localize the variable n in a dy-adic interval R.
We notice that if B > NY/3+1t7° then Proposition 9.6 is once again applicable. We can
therefore assume that R < N/3+n+n*,
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It therefore remains to show that for each 3 < k < ™4,

ST elglpr. ) < H - (log N)T.

N<npy..pp<N+H

w<p1<z?2w<ﬁ--<pk<y

npi...px=a (mod r)

pln = p>w

We then localize each variable p; in a dyadic interval [P;, 2P;] with w < P; < y powers of two.
Subsequently, we use contour integral to resolve the condition p; < p;1 fori =1,2,... k—1.
All these operations introduce logarithmic losses (in total (log N)?»()) and in particular,
it is enough to show that for every 1 < R < NV3+m7° P, e [w,y] for i = 1,2, ..., k with
RP; ... P, < N, we have for some A > 0 sufficiently large with respect to 1/7,

t1 it
prtppte(gnpr . .opr) <4 g
"NRZIHNPz‘ ’ (log N)A
Ngnpl..ipng—l—H
npi..pr=a (mod r)
P\n — p>w

with [t;| <y Y10 for all i = 1,2, ..., k.

Let ¢ be the first index such that P --- P, > N'/3+501  Then, necessarily ¢ > 2 and
Py Py < N?/3-501 gince Py --- Pp_y < N30 and P, < N1/3-100n  Therefore, grouping
together the variables py, ..., p, on one side, and the variables py.1,...,px, n on the other
side, we obtain a bilinear form to which Proposition 9.7 is applicable. Consequently, we
can assume that there exists a large constant C' > 0 depending on 1/5 and k such that™

c
latini + G + D)) < LT
for every i € {1,2,...,k}.

By Proposition 9.8, it remains to verify that for A, B, F' sufficiently large with respect to
1/n and k, H' = H(log N)~% and (N/H')(log N)** < |t| < (N/H)**2, and y of conductor
< K!(log N)T,

L . . . H’
nzt ity 41t o ittt nos . .. < )
> I P x(npy - ) Toe M)A
n~R,p;~P;
N<npy..pp <N+H'
pln = p>w
Importantly, we notice that ¢ is much larger than the remaining ¢,...,t;. Therefore, by

Lemma 7.8, we have, for |u| < (N/H')(log N)**~1,

Z x(n) VN
nl/2+it+iu

<4
logh N
R<n<2R
pln = p>w

as long as R > N7 and similarly for |u| < (N/H')(log N)**,

Z X (p) < vV PJ
! /2-+Fit+itj+iu

A A
P,<p<2P; log™ P

forall j =1,...,k since P; > w.

HAg usual we set Y1 = 0.
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First, let us show that we can assume that R > N". In the case k = 3 this is clear:
indeed, if R < N7 then P, ... P3sR < N'*719% which is impossible. Let us assume therefore
that £ > 4 and that R < N". In that case, we group together the variable n with the
longest variable among the p;’s. This leads to a situation in which we have four variables,
all of length > N7, all exhibiting cancellations, and all but the one shorter than % — 1007
(the outlier is still shorter than 1). It follows then from Lemma 9.12 that we can group
these variables in a way so that Proposition 9.9 is applicable.

In the remaining case, when R > N7 and k > 3, we still find ourselves in the situation
in which we have at least four variables, and all of them exhibit non-trivial cancellations.
Therefore, we conclude again by using Lemma 9.12 below and Proposition 9.9.

Lemma 9.12. Let n € (0,107°). Let k > 4. Let a1 + ...+ ar, = 1 be a sequence of real
numbers with 0 < a; < % —100n fori=1,...;k—1, and 0 < a;, < % + 100n. Then, there
exists a partition of {1,...,k} into three disjoint non-empty subsets I, J, K such that

D

1€l jeJ

1 5
<§—n and‘Zak‘<§—2n.
keK

Proof. Suppose first that k& = 4. Either a; + as < 5/9 — 21 or az + a4 < g —2n. In
the first case, we take K = {1,2} and I = {3},J = {4}. In the second case, we take
K = {3,4} and I = {1},J = {2}. Suppose now that k = 5. If for any two ¢ # j we
have a, +a; < % — 1007 then we collapse a, + a; into one element and appeal to the result
with & = 4. Therefore, we can assume that a, + a; > % — 1007 for any two ¢ # j. In
particular, § — 1009 < a; + as, a3 + as < % — 200, so we take I = {1,2},J = {3,4} and
K = {5}. Suppose now that £ = 6. Once again we can assume that for any two ¢ # j
we have ay + a; > % — 100n. Therefore, % —100n < a; + as, a3 + aq, a5 + ag < % — 100n.
Moreover, at least one of a; + as or az + a4 has to be < g — 100n, say ay + as. In that case
we pick K = {1,2} and I = {3,4} and J = {5,6}. Finally, suppose that £ > 7. In that
case, as before, we can assume that for any ¢ # j we have a; +a; > % — 100m, as otherwise,
we are back to the case k — 1 which we can assume to be proven. Then either ag or a7 is
greater than é — 50n because ag + a7 > % — 50n. Without loss of generality, assume that it

is ay. This however leads to an impossible situation as

6
1 1
3 x (5—100’0)+6—507]<;a2‘+a7+...+ak:17

so the case k > 7 reduces to the earlier case with k — 1 variables. O

9.3. The non-oscillatory case. We will prove Proposition 9.3. Suppose therefore that
there exist B > 0 and ¢ < (log N)? such that for all i € {1,...,k} we have |qv| <
(log N)P /H®. In this situation, we write

a;
vi=—+0;
q

with |0;] < (log N)ZH~*. We split into progressions (mod gr) and we apply Proposition 9.4
and the integration by parts (using that the derivative of > 6;(n — N)" is < H~'(log N)?).
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This gives us

119
(119) 1 b (e - NYa, k |
N; clolp)logp=— 5 > e( > SIS e(Z(n—N)ZHZ-)
<p<SN+H (z,qr)=1 =1 N<n<N+H 1=1
p=a (mod r) z=a (mod r)
H
+OA<(logN)A)'

We now notice that the assumptions of the theorem imply that a; = 0 for all ¢ > 2.
Moreover, if a; # 0 then without loss of generality we can assume that (a1, q) = 1. We also
notice that since |y;| < ™", we have ¢ > €"" since a; # 0. In particular, for any A > 1000,

1 ( Na1> (:m1> 1 p(gr) qr
el ——— el — ) <a : “qr +
w(rq) q (m%;:l q e qr (log ¢)*

z=a (mod r)

by Lemma 5.1. Therefore, (119) is

H H nH

SAaEE T logod S o)

as needed.

Finally, in the remaining case when a; = 0, we obtain precisely the statement of the
theorem, as in that case one can apply Proposition 9.4 with the choice ¢ = 1 and 6; = ~;
for all 7 > 1.

9.4. An alternative argument. We describe here an alternative arrangement of our ar-
gument that was communicated to us by Kaisa Matomaki and which relies on Harman’s
book [24]. Write

S(A,2) = Y elg(n)

r<n<x+H
n=a (mod r)
pln = p>z

and, as usual, let

Sy = S elglnp)).

z<pn<z+H
pn=a (mod r)
gln = ¢>z

Set y = /371001 and z = £1/3+5001 By Buchstab’s identity and a sieve upper bound, we
have

Yo elgp) =S(A VD) =S(Ay) = Y S(Ap)

r<p<z+H y<p< T
p=a (mod r)

= S(A,y) — Z S(Ap,p) + O<L)

iy o(r)logz
=5(A.) = 32 S(ny)+0( )
z2<p<\x

since the implicit variable in S(A,, p) with p > z is necessarily a prime.
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These sums can be now decomposed into appropriate type I/II sums by using [24, The-
orem 3.1] in the “non-resonating case” when e(g(m)) % m' | and using [24, Lemma 7.5]
in the “resonating case” when g(m) =~ m'. The [24, Lemma 7.5] is stated for intervals
H = 27/'2 but a minor variant also works in the case of intervals of length 2%°*~" with
z = g¥/371001  This saves us from having to prove Lemma 9.11 and decomposing into type
I and type II sums as this is then done in [24, Theorem 3.1] and [24, Lemma 7.5]. As a
result, this arrangement of the proof would save a few pages (beginning with Lemma 9.11
and ending at the “Non-oscillating case”).

10. PrROOF OF THEOREM 0.1

In this section we will prove our main equidistribution result for analytic skew products.
Fix « € T, g € C¥(T) of zero mean and T(z,y) = (x + a,y + g(x)). Notice that since
the characters form a linearly dense set, it is enough to show Theorem 0.1 for f(z,y) =
epe(T,y) = 2T+ for all b, ¢ € Z. From now on, we also fix b, ¢ € Z.

We will show that for all 0 < n < 1 and every sufficiently large N, we have

(120) > erol T () logp = O(n'*N).

p<N
Then Theorem 0.1 will immediately follow from (120) (since n > 0 is arbitrary). Fix
1>n>0and set ¢ := % and £ := €% (see Theorems 8.1 and 8.2). Assume that N € N
and let n € N be unique such that ¢, < N < ¢,+1. The proof of the theorem will split into

several cases:

Case A. N > % . Let H :=min(N,¢>%) 12 and m < N. We will show that

(121) Y eIy logs| = O 2H),
p&[m,m+H]

then (120) follows by summing over disjoint intervals of length H. Let z, € {qu, pngn}
come from Proposition 6.1 (recall that p, < 2log®q,). Let p € [m,m + H]. Since p —m <
H < qif’l_", by Corollary 2.6 (applied to p — m) with § = 1/5, w € {1,p,} (in both cases,

lw| < 21og? ¢, < log® ¢n) and (T, Ym) = T™(z, ), we have
(122)  TP(z,y) = T""™(@pm, Ym) = o(1) + T mdon (g 4+ P, p — m)),

where the degree of P, is bounded by 5. Assume that a € {0,1 ...,z, — 1}. First notice
that if p = m 4+ a mod z, with (m + a,z,) > 1, then p < z, (in fact, p|z,) and hence
such residue classes can be ignored as their contribution to the LHS of (120) is of order
Y o<z, logp = 0(2,) ~ 2, < 2qy log? ¢, = o(N), where we have used the PNT and N >

e’ We hence consider only a < z, such that (m +a, 2,) = 1. By (122), we have

(123) > epelTP(zy)logp =0 Y logp)+

p€[m,m+H] p€[m,m+H|
p—m=a mod zp p—m=a mod zp
(T Tmyym)) Y e Pu(wm,p—m))logp
pE[m,m+H]

p—m=a mod zn

12In this case, we can take 1 — & (for fixed § > 0) instead of 3/4.
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(where o) does not depend on a). Set

hmﬂ = Z ec(Pn(xmup - m)) 10gp7
p€[m,m+H]
p—m=a mod zp
and let .
Um = 6an$m>k_m .
=en D el )

ke[m,m+H]
By (123) and summing over all a < z, for which (m + a,q,) = 1, we get

(124) DY ene(T(zy) =o( Y logp)+

p&[m,m+H] p&[m,m+H]
Um Z be(T* (T, Ym)) + O( Z |hm,a — vm|)
(m+t22n):1 (m—l—tzzn):l

Again, we can ignore the term O(Zpe[m,m ] logp) in what follows: after summing over
disjoint intervals of length H, the joint error term, by a use of the prime number theorem,
contributes o(/N) in (120).

Notice that by Proposition 2.5, it follows that P, (z,,,n —m) is a polynomial (of degree
< 3) whose coefficients satisfy (35). Since N < gnyq and H = min(N, ¢>\") > N3/4 = m3/4,
it follows that we can apply Theorem 9.1'% with g replaced with P,, N with m and r with
2z, (note that in view of (35), also the assumptions on f; are satisfied). Therefore,

1
Z |Pma — U :O<nlog (—)H) = O(n'/?H)
(m—i—(zzn):l N

as (remembering that z, is of order at most ¢, log® ¢,) by taking A > 3 in Theorem 9.1, we

have z, < (logm)? for m > 64’11/3, so the theorem applies, and this range of m is sufficient
to cope with (120).

Consider now the set C == {0 < a < z,: (m+a,z,) =1} C{ad +0z,: 0<d <
Zn, (@ 2,) = 1,0 € Z}. If m = uz, +t with 0 < t < z, then a number a € C either
satisfies t + a = @’ or t +a = d' + 2z, (with 0 < @' < z,, (d/,2,) = 1), in any case we
obtain a bijection a — d’. But, by its definition, z, is a time of (uniform) rigidity, so

AT Ly, Ym), T (T~ (2, Ym)) = 0(1). Moreover (trivially), |vm,| < %, SO
Um, Z eb,c(Ta(xmu ym)) = O(H>7
(m+¢2zn):1

where we use the bound

/

LY T @) = = 3 T (T )] + 0(1) = o(1),

©(2n) (m-taon)=1 ©(2n) (o' 2m)=1

as<zn a'<zn

which follows from Proposition 6.1 (with d = z,).

B3In this case, we in fact could appeal to the results of Matomiiki-Shao and we don’t need the full
strength of Theorem 9.1. We will use Theorem 9.1 in its strongest form in case B.2.1.
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Putting the above bounds together to (124), yields
> elT?(x,y))logp = O(n'/*H).
p&[m,m+H]
This gives (120) and finishes the proof of Case A.

Case B. N < e% . Let n* < n be the largest number such that (see (29))
(125) Q> 2 67—qn*71.

B.1. N%%=¢ > ¢,. Denot/e Pq, = p mod ¢,. Notice that since N < min(eq’ll/z, Gns1), by
1/2
Lemma 2.4 (note that if e > g, 41 then still N < qnqq"—tl and €™ > q,1) it follows that

A(T7(@,y), T (w,9)) = o(1).
Therefore,
> e (,y)) logp = o(N) + ) _ e o(T7 (x,y)) log p,
p<N p<N

and therefore below we will consider the last sum. We further split this case in two subcases:

B.1.1. ¢, > ¢.=¢. In this case we use Theorem 8.2 with H := N, q := q,, 7 := 2,1
(where 2«1 comes from Proposition 6.1), H' := ¢'/3. Note that by the definition of n*,
r=zZp_1 < ¢, < log® ¢, < log®q, < log® N. Notice moreover that H/q = N/q >

~ /6 _ N1/6+a
We call an interval I C [0, q] “good” if it satisfies
N N|I
(126) sup Y enB)losp - o e(mB)| < %
p<N w\q (m,q)=1 qlog
pq=v mod r m=v mod r
pq€l mel

Otherwise, we call I “bad”. For a good I C [0, q], summing over v < r and using r < log® N,
we obtain

(127) > Sup’ > 6(pq5)10gp—% > mﬁ’—o(Nm)

(w(ra)=1 " p<N (m.g)=1
v<r pg=v mod r m=v mod r
pq€l mel

We now consider intervals [j,j + H'] (with 7 < ¢) of length H’. Recall that all the as-
sumptions of Theorem 8.2 are satisfied (with H := N, q := g, r := zp»_1 and H' = ¢'/3),
where we are in the situation x = H, so the second part of this theorem applies. Dividing
in (83) both sides by ¢, we obtain that the LHS is bounded by (1/log" N)O(NH'/q).
The number K of j < g of those intervals [j, j + H'] which are bad, i.e. for which the LHS

in (126) is bounded from below by logﬁlo ~ O(NH'/q) is hence at most qlogwo]]\[V = qlogio ~
whence K = o(q). It follows that the number of good intervals I is ¢ — o(q). By considering
these intervals in arithmetic progressions [s + tH,s + (¢t + 1)H'] (with s < H'), we must
see the same proportion of good intervals along at least one such arithmetic progression.

It follows that we can decompose [0,q] = Ule I;, where all the intervals I; are pairwise
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disjoint, |I;] = H' for 2 < i < ¢ —1 and |[1|,|I,] < H' and all but o(¢) of the intervals {I;}
satisfy (127). By (127) (summlng over good 7 < /), we have

) Y Y | T ofm-s Y dmn)| o)

i is good (v,(r,q))=1 A p<N (m,q)=1
v<r pg=v mod r m=v mod r
pe€l; mel;

Notice that

(129) Y epo(T™(z,y))logp= > > ene )) log p+

p<N i is good p<N
> D ene(T(x,y)) logp.

PqEIi
i is bad p<N
pq€l;

Since the cardinality of bad i < £ is o({), by Lemma 7.9 (with [ = [0, N] and J = I;) for
each bad I;, it follows that

Z Z eb,c(qu(x,y))logp‘ < Z Z logp < o(ﬁ)H?,N = o(N).

i is bad p<N i is bad p<N
Pq€l; Pq€l;

Therefore, we will only consider the first sum on the RHS of (129). Fix a good ¢ < £. Let
I; = [u;,u; + H'] and let p, € [u;, u; + H']. Then
H = q1/3 < qyllé(?:(l—a)) < q1/3+105

n*

[P — wi| <
(since we are in case B.1.1.) Therefore, by Corollary 2.6 with 6 = 4/7 and n = n*, it
follows that if we denote (z;,y;) = T (z,y) and take r = z,«_1, then

TPa ([L’, y) — TPq—ti (:I:ia yi) — T(pq—uz‘) mod T(l’i, Y + P, (:L’i,pq — ul)> —+ 0(1).

Moreover, P,«(z;,-) is a degree 1 polynomial, and so by the definition of a;(+) it follows that
P (25,04 — ;) = (pg — u)Bi, where B; := gp+(;). Then, by (35), |8;| < e ™% -1 L e~ (7/2r
(since r = 2«1 < @n-—110g® @u-_1, see Proposition 6.1). Therefore,

(130) Y e (T (z,y)logp=Y_ Y e (T"(x,y))logp =

p<N as<r  p<N,pq€l;
pqe€l; pg—ui=a mod r
E eve(T" (i, vi)) E ee((pg — ui)B;) log p + o( E logp).
asr PSN,pg€l; p<N
pg—ui=a mod 7 Pq€l;

The last term after summing over i < £ is 0o(A(N)) = o(IN) and hence can be ignored. Let
hi,a = Z ec((pq - uz)ﬁz) 1ng>

PSN,pg€l;
pg=u;+a mod r

N
Vi = o m%:l eo((m —u;)B;).

m=u;+a modr
mel;

and let
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Notice that if (u; + a, (r,¢)) > 1 (in particular (r,¢) > 1), then p, = u; + ¢ mod r implies
that (r, q)|p, which implies that p = (r,¢q) < ¢ < N°/¢ and hence this can be ignored (after
summing over i < £, it gives the contribution to the first summand on the RHS in (130)
at most N°/%log N = o(N)). Therefore, we will only consider those residue classes for
which (u; + a, (r,q)) = 1. Let ag := (1 —u;) mod (r,q) (we could choose any ag such that
(aO + i, (T> q)) = 1)'

By (130) and the triangle inequality, it follows that

13) Y T (m ) logp = vias > enelT (s y))+

p<N,pq€l; a<r
(ui +a7(7‘7q)):1

Z |'Ui,a - 'Ui,a()| + Z |hi,a - Uz’,a .

a<r a<r
(ui—l—a,(r,q)):l (Ui+[l,(T,q)):1

Notice that by the definitions of h; 4,v; , and (128),

Z Z |hia — Vial = o(N),

i is good a<sr
(Zi-‘r(l,(?“,q)):l
since when a goes over 0,...,7 — 1, u; + a mod r runs over the same set. Moreover, recall

that r < log®q, so we can apply (54) (with 7 replaced by 7/2 and y = 0) and we have
W < r(logr)e™™/* = o(1) since % < r?=o(e™*) and qlfig;goq = 0o(1). Now,

it follows from (54) that

N 1(r.q)e(q) i’ NH'
2 via = il <720 [qw(q(rg,oq»e”‘/‘* log'™ ¢ ]:0< q )

a<r
(Zi—l—[l,(T,q)):l

Finally, by (54), using ¢(q) log*®™ ¢ > rq and (51) (with ”f] in place of ¢'),

N [(r.q)elq) H' H’ N ‘
Vigo| K + e.(mpB;)| <
ol < S [qso((W))e”/”‘ logmo] (q)e(r) (m;)zl i)
mel,
NH'(r,q) N N 2|Ii|¢<(:§>) < NH'(r,q)
rge((rq)) — el@e(r) ¢k rqe((r.q))’

where we used @((T q)> = o(5)ela) < 5;((’1()71“0[1()‘1)). By Proposition 6.1 (applied to n* — 1

instead of n) with d = (r, q), where r = z,+_1, it follows that

|Vi,a0 Z ep,o(T" (i, yi))| =

a<sr
(ui"’_av(rvq)):l

o(FH) s X )] = o %)

q /lre((r,q)) q

a<r
(ui -‘r(l,(?“,q)):l
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Using the above estimates and summing over ¢ < ¢ in (131), it follows that (recall that
0< L+ 1),

> eno(T(z,y) logp = o(N).

p<N

This finishes the proof in this case.
B.1.2 1—e 1—¢/2 L 1—e/2 .
1.2, g, < q, .Ifqnl\qn ydet pp,i=1. lf g1 = qn 7, let p, € P be a prime

number in the interval [‘“2 ,qn ] such that (p,, g,—1) = 1. Notice that such p,, always exists

since by the prime number theorem, for a sufficiently small &’ > 0,
e/2—¢'

1 dn
II »= (qu/z) > Gn > Gn1-

e/2
pe[¥— g7/ NP

Let H := N, ¢ = puq, and r = ¢q,,_1. Notice that by the bound on p, (and remembering
that ¢, < N, so N3/* > qrz,f/?’),

E_ N > N Nl/6+6/4

g DnGn git*P z

since we are in Case B1. Note that (g,,¢,—1) = 1 and so by the definition of p,, (¢,r) = 1.
Moreover, by the definition of p,, in both cases,

1-¢/2 1-¢/2,1-¢/2 ~, 1=€2/3 _ 1-¢%/3

q =4, P qn—l =r

Therefore, 7 < ¢'=¢ (recall that ¢ = €'°). Hence, the assumptions of Theorem 8.1 are
satisfied (we use it for H = x and y = 0). This implies that (since H = N)

(132) Z} 3 logp—g = o(N).

PN
pq =v mod r

Notice that since n* < n —1 (as ¢ < gL ¢ since we are in case B.1.2.), the definition of p,
implies

Qn—1 n—1
Pg < 4= Puln < gnmax(l, 57—) < gp——.
qn Qn*

Similarly, by the definition of p, and the definition of n* (recalling that n* < n — 1),
Pq S 4= Pndn < qu/ 2qn < €271, Therefore,
pq < Qn—1 min (qq_n’ 627'II7L—1> .

n

So, by Lemma 2.4 with n — 1 in place of n (since n* < n, it follows that (n — 1)* = n*),
z =1, m = p, and remembering that r = ¢,_, we get

d(TP(z,y), TP ™" (z,y)) = o(1).
Therefore,

ZebcT”qmy ))logp = Zebc “(z,y))[ Z log p| + o(N).

p<N VT p<N
pg=v mod r
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Moreover, by (132) and unique ergodicity,

D oedT(@y) Y, logpl=

v<qn—1 p<N
pg=v mod ¢n_1

LY arenro(( X ] X s [) = oV,

-1
In-1 o, v<gn-1 p<N
pg=v mod gn_1

This finishes the proof in this case and hence also completes the proof of case B1.

B2. N°/%=¢ L ¢g,. We will split the proof into several subcases.

B2.1. ¢, > N?3/5 Let 1y« := 2z,+_1, where z,-_; comes from Proposition 6.1. Let
H := mr,«, where m is the largest such that mr, < q,lLZ". Notice that by definition
H > %qi?" > %N(l‘”)(z/?’_"/‘r’) > N?/371. We partition the interval [0, N] into consecutive
disjoint intervals I; of length H. Let I; = I = [z, 2z + H|. Notice that by the definition of
H it follows that z = £,r,«. Denote (z,,y,) := T%(z,y). Let p € I. Notice that by the
definition of H, |p— z| < H < ¢)=". So, by Corollary 2.6 (with § replaced by 7 and using
that z is a multiple of 7.+, so p — z mod r,« equals p mod r,+), we get

TP(x,y) = TP (2z,y:) = TP ™0™ (22, ys + Pueoa (22,0 — 2)) + 0(1),
where P(z,,+) := Py«_1(z,,- — 2) is a polynomial of degree < [%] with coefficients satisfying
(35). Let
har= Y. elP(x.,p))logp

pel
p=a mod 7, *

(we set hor = 0 whenever no p € I equals @ mod 7,+). Then

Zeb,c(Tp(x>y)) 1ng - Z 6b,c(Ta($Zayz))ha,I + 0<Zlogp>

pel (a,rn*):l pel
ATy *
Denote )
vy = e.(P(z,,p)).
@ (T ) nzel
Then
Z 6b,c(Ta(Iza yz))h'a,l -
(a,rp*)=1
asry,*
o Y el Ty ) O( Y Jhar —ul).
(a77‘<n* )=1 (a,7‘<n* )=1

Recall that H < ¢--". Therefore, by (35), the coefficients of P(x., -) satisfy the assumptions
of Theorem 9.1 (in which N is replaced by z, cf. the definition of P(x.,-), where obviously
H > zg_"). Hence, applying this theorem to each relevant a and summing over them, yields

> Jhar—vil = O(0'*H).

(a,rpx)=1
asry,*
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Moreover, |vr| < %. Putting the above estimates together, we get

S el y)) logp = o Ylogp) + O H) +O(H——— 37 ey (T*(232))).

pel pel (,O(Tn*) (a,rp*)=1

and the last summand is o(H) by Proposition 6.1 (with d = r,+). The proof is finished by
summing over /.
B2.2. ¢,- < N?/3=7/5 Let n' < n be the largest number such that

(133) G < N°/672%,

We consider two cases:

B2.2.1. ¢, > q,ll,_s. Let zp—1 € {Gn -1, Pn*—1Gn+—1} be the number for which the
minimum in (55) is obtained. Let H = ¢,y NY/%*¢, ¢ := q,y, 7 := 2,-_; and H' := q1{3 Note
that by the definition of n*, r = z,-_; < ¢?._; < log® ¢,» < log® N. Notice moreover that,
by (133), it follows that H < N'~¢. Moreover, H/q = NY/5*. For I C [0, N] and J C [0, q],

we call the pair (1, J) “good” if

(D DI I DU [T e I G

var P pel #la) (a,g)=1 4
(v,(ryq))=1 pg=v mod 7 a=v mod r
pg€J a€J

Otherwise, the pair (I, J) is called “bad”. We use Theorem 8.2 with x = N and H, H', q,r
(defined above).

This will give us intervals [y,y + H] of length H from which we are interested in those
for which the LHS sum »___ supgep o | - - | <e %. Most of them will satisfy this
requirement. More than that, we can decompose [0, N] = |J;_, I;, where {I;}{_, are pairwise
disjoint, |I;| = H for 2 <i < ¢ and |I|,|I,] < H (we additionally assume that |I;| > H/2),
where most of the I; will satisfy the above requirement. Then, we can fix such an [; and
repeat the same procedure by considering intervals [z, z+ H'|, where now we require that on

this interval supgeg pop | - - - | <e ﬁ)mo For most z we will see this requirement satisfied,
and in fact we can decompose [0, q] := UJ , J}, where {J;}f;l are pairwise disjoint, |J;| = H'

for 2 < j < ¢ and |Jj|,|J}| < H', and for most of the j we will see the requirement satisfied.

Finally, summing over v < 7 (and using r < (log N)'%), will yield a bound <. HTH,%'

For the remaining ¢, we can still perform the same procedure, which will give us pairs of the
form (I3, J}), where (by Theorem 8.2), we get that the cardinality of “bad” pairs (I;, J}) is

at most o(¢ - £'). We will also call the pairs of the form (Iy,.J}), (I, J}) and (L;, J}), (L, J},)
bad. Notice that adding the new bad pairs give that the total cardinality of bad pairs is

2-0+20+o0(-U')=0(l ), since £,{' — +00. We have

(135) Zebc (z,y))logp = Z Zebc ) logp =

p<N i<li<l pel;
Pg€J;
E E epe(TP(z,y))logp + E E ep,(T )) log p.
(Ii,Ji) is good PEIL; (13,7} ') is bad PEL;

i 1
Pg€J; Pg€J;
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Moreover, by the bound on the cardinality of bad pairs, by Lemma 7.9 (for each bad pair)
and since ¢ < 2N/H and ¢’ < 2q/H’,

HH'
E g ey (T ) logp < o(€- 1) = o(N).
(I3,J%) is bad pEli q
PqEJZ

Therefore, the second term on the RHS of (135) will be ignored. Fix 2 < i < ¢ — 1 and
2 < j </ — 1 such that the pair (I;, J¢) is good.

79 Vi

Let I; = [u;,u; + H]. Notice that by the definition of n/, it follows that g, > N°/672¢,
and by assumptions, ¢,- < N?377° (so0 qu41/qn- = N'Y/5¢). Therefore, n > n’ > n* and
so, by the definition of n*, NV/6+e < N5/6-22 L g,y < e, So,

H = qN1/6+6 — qn/N1/6+€ < G min(qn’-i—l,eﬂ-qn/).

Therefore, and using n* = n* (since n > n’ > n*), for p € I;, we have p —u; < H <
Qo mm(q” *: e™) and by using Lemma 2.4 with n =n/, 2 =1 and m = p — u;, we get
TP(x,y) = TP~ (T" (x,y)) = T~ "™(T"(z,y)) + o(1) =
T(p—ui) mod g+(u; mod q) (Tuz—(ul mod q) (l’, y)) + 0(1) _
TP (x;,y;) + o(1) + o(1) = TP (s, yi) + o(1),
where (z;,7;) = T~ medd)(g o) Therefore,

> e o(T(w,y))logp =Y ep (TP (i, y:)) logp + 0( > 1ogp>-

peli. pEl; pEl;
pqEJ;- pqEJ;- pqu;

Notice that the last term after summing over j, ¢ contributes o(NN) to (135) and hence can
be ignored. Moreover, splitting into residue classes mod r, we get

(136) > epe(T™(xiy))logp=> > e (TP (zi,y;)) logp =

pel; v<T pEIi,pqu;:

PgEJ; pg=v mod r
g E ep, (TP (3, y:)) logp + E E ep,c(TP (i, y;)) log p.
v<r . 7 v<r . i
S p€li,pe€J; S p€li,pe€J}

@)=~ mod @a)>1 ) mod r

If v < r is such that (v,(r,q)) > 1, then p, = v mod r implies that (v, (r,¢))|p, which
is only possible if (v, (r,q)) = p. In particular, this means that p < r. However, by the
assumptions, r < log® N and hence, p € I; and (v, (r,q)) = p is only possible if i = 1 since
the intervals I; are disjoint and have length at least H/2 > N'/6+¢/2. But, by definition,
we consider a good pair (I, J;) which implies that ¢ > 2. This implies that the second
sum in (136) is empty. Let p € I; be such that p, € J = [z}, 25 + H']. Notice that

Jr 7
1 i
¢? < @279 (since we are in case B2.2.1). Let (Z;,3:,;) = T (zs, ys).

Pg — z < H
Applymg Corollary 26 withn+1=n* 6 =1-— ﬁ and w < log® g,-_; satisfying
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Wqp+—1 = zZp+—1 (see Proposition 6.1), we get that (using r = z,~_1)

(137) TP (xh yz) - qu_Z§ (TZ; (Ih yz)) =

Te=) 08T (5 s+ Pae o1 (E15, 04 — 25)) + 0(1).
Moreover, since § > 4/7 (e is small), it follows that deg P,«_; < 1, and so by Proposition 2.5,
it follows that Py« _1(Z;7, pg—2%) = (pg—2%) By, for some | ;| < e ™4n*-1 < e~ 7"/2. Therefore,

U.SiIlg (137), lf we denote (Ii,jvyi,j) = T_Z; modr(ji’j’giJ) (SO T(pq—2§) modr(i,i7j’gi7j> =
TPa mod (g, -y )+ o(1) in view of Corollary 2.6), we obtain

(138) > eI (i) logp =

VST pEl;,pg€J?
- J
(v,(r0)) pg=v mod r

Z e.c(T" (i j, Yi ) hijo + o Z log p),

VT €l;,pg€Ji
(v,(rq))=1 PEvba=s

where

hijo = Z ec((pg — Z;)ﬁ%) log p.

pEL;,quJ]Z:
pg=v mod r

Notice that after summing over j and ¢,

Zo( Z logp>:0<210gp>:0(N),

%, pEl; ,pquJZﬁ p<N

and hence this term can be ignored. Let

H )
Uie = 0 > edla—2)By).
_(avq)zld

1
aEJj

Then, by the triangle inequality,

(139) ‘ D el T @iy vighize| < uga D eb,C(TU(xi,juyi,j))‘-i-
v<r v<r
(v,(r,q))=1 (v,(r,q))=1
Do Thie—uwgel+ D e — wigal.
v<r v<r
(v,(ryq))=1 (v,(r,q))=1

By (54) (with 7/2 instead 7), using ¢(q)log'™ ¢ > qr, |Ji| = H' > ¢'/? and Ji C [0,q], we
obtain

|uija| < <

H 1(r.a)ela) H' H' H ”
2@ Lapl(rea) e " log™ gl T olge(n) 2 edmby)

g \_
(m, () _)_1
mEJJ"”-
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HH'(r,q) HH' H S camiy)

+ <
ap((r.a))e™ = p(g)log™q — wla)e(r)l | 2 |

HH'(r,q) +HH’ H
qgro((r,)r — qr o(q)e(r)

HH'(r,q) N H
qre((r.q)) — @(q)e(r)

Moreover, by (51) (Wlth in place of ¢'),

so finally
HH'(r,q)
rqe((r,q))’

where we used <p<(r q)) = ‘p((rTq))‘P(Q) < fp(&lsfq()q))_

By the definition of r = z,-_1, using Proposition 6.1 with r = z,«_; and d = (r,q), it
follows that

wia Y ene(T (i, yig))| =

luga| <

v<r
(v,(r,g))=1
HH' (r,q) HH'
O( ) 7 ep,c(T" (i3, i) | = of )-
g /lre((r,q)) g o q
(v,(r,g))=1
Moreover, by (134) (since (I;, J}) is good),
HH'
Y Thige = g IO( )
VT q
(v,(r,q))=1
r(r.a) -

Finally, by Corollary 5.3, see (54), summing over v < r and using e ST logre

q —
0( ) and W = O(].),

H(T,)()H’ H 1  (HH
©(q) [qw(q(;,pq(;) e/ log100 ]_O< q )

Z |uij7v — Uij71| <Lr-

v<r

(v,(r,q))=1
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Therefore and by (139) and (138) (ignoring the last term in (138)),

HH'
> (T (@,y) logp = o ).
pel;
Pq€J;
Summing over all j, we get
HH'
‘Zebc (z,y) logp‘ ( . )zo(H).

pel;

Summing over all 7, yields

Zebc y))logp = o(N)

which finishes the proof.
B2.2.2. qn* < qyll,_s. In this case, we will constantly use that this implies that n* = n’.
If gy qn 5/2 let pp = 1. If g1 > qyll 6/2 let p,» € P be a prime number in the

/10
interval [ ,q€{ 10] such that (p,,¢v—1) = 1. As in B1.1.2., notice that such p,  always

exists since by the prime number theorem,

]_ q.
H p = 1 (%/) > Qn/—1-
e/

0
a7y 10
n— 5, )P

Let q := ppqu, H := ¢N'V/* and r := ¢_, > q,-. Notice that H/q = N'/%*¢ and by
(133),
H— pn’Qn’N1/6+€ < quj‘e/loNl/(i—l—e < N (6/6-2)(14e/10)+1/6+e - pj1-e/2

Moreover, since g,- < gL, ¢ and ¢ = ¢'°

1+€/20 _ 14€/20

1
q = Dn'Qn = qnr_1 > rize,

sor < ¢'¢, and (¢q,7) = 1 (by the definition of p, and (¢, ¢y_1) = 1). Thus, the
assumptions of Theorem 8.1 are satisfied with x = N and H,q,r. Therefore, for some
V < H, we can decompose [0, N] = Ji_, [; U[0, V], where I; := [(i — 1)H + V,iH + V] and
moreover for “most of” i < ¢ (that is, for £ — o({)),

(140) Z ‘ logp — g — o(H).

pel;
pg=v mod r

By the bound on H, we also have
S° 1=0(V) = 0(H) = o N),
pe[ovv]

and hence the interval [0,V] C [0, N] can be ignored. Let p € I; = [u;,u; + H|. Then
p—u; < H< que/ Y N1/6+= (by the definitions of H and p,). Moreover, by the definition
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of n’ (see (133)) and since we are in B.2.2. (using also £ < 1?/1000),

o< qnlqa{loNl/G—i-a g N/ 100/6-22)41/6+

N g

, 1/6+42¢ , ,

By (125) and since n’ > n*, it follows that ¢, 1 < €"%'. Moreover, by the definition of n’
(see (133)), gu1 = N?/672. Therefore,

1+€/10 ,
H < gy NV < g < gue™ .

Putting together the two above bounds on H, we get

H < qy min(qn,Jrl €7,

Since p —u; < H, by Lemma 2.4 with n = n’ (we may use the lemma since ¢+ = g~ ),
m =p—u; and z = p, (recall that ¢ = pq,),

TP(x,y) = TP T (,y) = T 2ot d(TW (2, y)) + o(1) =
Tt medd () + o(1) = TP (2, i) + o(1),
where (z;,y;) = T%~ " moddl(y o) Therefore,

(141) Zebc (x,y))logp = Zzebc (%, ;) log p + o(N).

p<N =1 pel;
Moreover,
> e (TP (4, ;) log p = Z S epe(T (5, ) logp.
pel; pel;
pq—v mod r
Note that since we are in B2.2.2. and by the definition of p,s (note that if g, _; > q,ll,_e/ 2
then q’i > ) > pu),
n'—1 Qn'—1
¢ = Pn@n < G Max (1, %) < ¢y max (1, - )
qn/ n*
Since n > n’ > n* (and ¢,» — 400 ), by the definition of n* it follows that ¢, < e™%/-1.
Hence, ¢ < qlfa/lo < €?™n'-1, Therefore, by using Lemma 2.4 with m = p, < ¢ <

Gr/—1 mm(q" 627%'*1), n=mn —1and z = 1, we get that p, = v mod r (recall that
= Qu_1) 1mp11es that

d(TP(z;, y:), T (i, yi)) = o(1).
Therefore,

(142) Z epe(TP(x;,y;)) logp =

pel;
pg=v modr

ene(T" (21, i) Z log p + 0( Z logp).

pel; pel;
pg=v mod r pg=v mod r
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Let

hiy = Z log p.

pel;
pg=v mod r

Then, by (142), summing over v,

Zebc xzayz 1ng_ Zebc xuyz)_'_O( zv__‘)"i_o(zlogp)
pEl; v=1

By unique ergodicity, £ 3" | ey o(T"(2,5:)) = o(H). Using (140) (for all i < £ but o(¢)),
we get

Summing over ¢, and using (141), we get
Zebc lng—O(N)
p<N

This finishes the proof.

Part 3. Counterexamples
11. COUNTEREXAMPLES

In what follows, for every irrational rotation «, we will construct a continuous cocycle
g = ga : T — R such that the Anzai skew product T'(z,y) = To4(x,y) = (v + o,y + g(x))
is uniquely ergodic and there exists f € C'(T?) such that

lim Z f(T7(0,0)) does not exist.'*

N——+400 7T

More generally, our result applies to all A C N which are almost sparse.

Definition 11.1. A set A C N is called almost sparse if the following three conditions hold:

1. lim AQILNIL ooists and is positive;
. N—+o0 [AN[1,2N]] p ’

ii. there exists a sequence of sets By C AN[1,N]|, N > 1, satisfying
| Bw|

lim ————— =0

N JAN L, V]|
and

min |k — 1| = 400 as N — 4o00;
k,L€(AN[0,N])\ By k£l

iii. [AN[N,2N]\ Baon| # 0 eventually.

e recall that the limit limN_>+Ooﬁzp<N f(T?(0,0)) exists if and only if the limit
my o400 > pen [(T7(0,0)) logp does.



PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS 99

Remark 11.2. Note that if the limit in i. 1s < 1 then 1. holds automatically.

Note also that very sparse sequences will automatically satisfy i. and . while 1. in
general is not satisfied, cf. A = {2" : n > 1}. A reason to add condition iii. is that we
aim at presenting a universal construction which yields a counterezample for all irrational
rotations. If A is very sparse (like lacunary sequences) then one can also give a relevant
construction in which an irrational rotation is adapted to A.

In order to see that the set P is almost sparse'®, let us first notice that by the prime
number theorem the limit in i. exists and equals 1/2. To obtain ii. recall:

Theorem 11.3 (V. Brun, 1919). Given a an even natural number, set D,(N) :={p < N :
p,p+a € P}. Then
N(loglog N)?

(log N)?

In Brun’s theorem we have implicit constants C,, we now select a slowly increasing
¢(N) — o0, so that depending on the constants Cj, the set By := U, vy Da(IV) yields ii.

However, the class of almost sparse sets is far beyond the set of prime numbers, cf. the
remark below to see another classical class of subsets along which an equidistribution is of
interest.

Do(N)| <a

Remark 11.4. If P € Z[z] is a non-constant polynomial with integer coefficients, deg P > 2
and A := {P(n)}nen, then A is almost sparse. Indeed, let P(x) = c,x" +...4+co with ¢, # 0,
r > 2. Assume WLOG that ¢, > 0. Fize > 0, then there exists M > 0 such that for x > M,

we have .
T

I+e
If we set ay :==[{n>M: P(n) < N}|, by :=|{n > M : C{f; < N} and vy == |{n > M :
en'(1+¢) < N}, then

L gure v cov POy (14 )/ro-1/r,

(1+¢e)2/r S P an e
50 iMoo 0y /oy = 27Y7. Moreover, P(-) is eventually increasing with P(n+1)—P(n) —
oo (since deg P > 2), so the existence of By follows. Notice finally that the assumption
deg P > 2 is necessary:'® below, we will show the existence of uniquely ergodic Anzai skew
products which are NOT equidistributed along A, and such absence of equidistribution does
not hold for instance for P(x) = x.

< P(z) < (1+e)eax".

With the above definition, our main result will be now:

Theorem 11.5. Let A C N be an almost sparse set and let o € R\ Q. There exists
g = gaa € C(T) such that T = T,, : T*> — T? given by T(z,y) = (x + a,y + g(z)) is
uniquely ergodic and there exists f € C(T?) such that

1

Nl_i}rfoo AN Z f(T™(0,0)) does not exist.

neAn<N

15We cannot expect more than that: indeed, the twin prime conjecture implies that, arbitrarily far, there
are primes which differ by 2. Unconditionally, recent results of Zhang and Maynard show that there are
infinitely many primes with bounded gaps (with the gap < 249).

16Deg1ree 1 polynomials yield sets A satisfying i. and iii. but not ii.
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Theorem 11.5 should be compared with Bourgain’s theorem which asserts that if A =P
then for every g, o as above, and every f € C(T?) the limit exists for Lebesgue-a.e. (z,y) €
T2. From now on, the set A and « are fixed, so we omit them in the formulations below.
Theorem 11.5 is a consequence of the following lemma:

Lemma 11.6. There exist g € C(T) such that T, 4 is uniquely ergodic and an increasing
sequence {M,} of natural numbers such that, for every e > 0, we can find ng for which for
every n = ng and every k € AN [M,,2M,]|\ Ba,, we have

Sk(9)(0) € (—¢,¢) if n is even
and
Sk(9)(0) € (1/2—¢,1/24¢) if n is odd.

Notice that the assertion is non-trivial provided that, as we have assumed in iii., A N
[M,,, 2M,] \ Bap, is not empty. We will prove Lemma 11.6 in a separate subsection. Before
we do that, let us show how it implies the main theorem.

Proof of Theorem 11.5. Notice that if the limit exists then, by ii., also does
1
lim —————— T%(0,0
N-rteo [A N [0, V] 2 JTH0,0),
ke A\Bn,k<N

as the sets By have density which goes to 0 (relatively on A). Moreover, because of i.,
|AN[LN\Ba|

limpy 100 OIS T 1. Therefore,
1
li T"(0,0)) =
nrtoo [A O [My, 2M,]] 2 A0, 0)
k)EAﬂ[MnQMn}\BQMn
AN|0,2M, 1
lim A0 1020 S JTH0,0)-

S A, 20| (A 0,204,
kEAﬂ[O,ZMn]\Bg]\/[n

AN, M,)| 1
1
nrtoo | AN [My, 2M,)[ AN [0, M| 2

F(T%(0,0))

k)EAﬂ[O,Mn]\BQJ\/[n

also exists. Moreover, by iii., the summation on the LHS summand is non-trivial.

But for any k € [M,,,2M,] with n even, we have T%(0,0) = (ka, Sk(g)(0)) € T x (—¢,¢)
and for every k € [M,,2M,] with n odd, we have T%(0,0) = (ka, Sx(g)(0)) € T x (1/2 —
£,1/2 + ¢). Tt is therefore enough to take any f € C(T?) of the form f(z,y) = f(y), with
f € C(T) satisfying f(0) = 0 and f(1/2) = 1. Then, along even n, the limit equals 0 and
along odd n, it is equal to 1. Hence, the limit does not exist. This finishes the proof. [

11.1. Proof of Lemma 11.6. A general idea behind the construction of ¢ comes from
[19].

Let {B,} be the sequence of sets coming from ii. in the definition of almost sparse set
and let

-1
(143) = min |k — 1|) .

( k,1€AN[0,n]\ Bn, k£l



PRIME NUMBER THEOREM FOR ANALYTIC SKEW PRODUCTS 101

By ii., it follows that &, — 0. Therefore, there exists a sequence {k,} such that

“+oo
(144) Zaqkn < +400.

n=1
We can also WLOG assume that a — ’;ﬁ > (0 and (by taking a further subsequence) that
kn-i—l > k‘i

Let f, = fr, : T — R be the following function: for every w € {0,...,qx, — 1},
1
(145) fo(x) := Ly (:c - wpk”) for x € [wpk" , e LT },
dky, Ak, Gk, Ak, +1
1 1 1 1
(146) fo(x) = me(M - x) for x € [wpk" L , WPk ¥ ],
dky, 4k, Ak, +1 4k,
and
L 1 1 1
(147) folw) = 22 for g [Pl g — WP ]
Qkn+1 Ak, Qkn+1 Gk, Qkn+1
Moreover, we assume that L, ,, > 0.
We define g : T — R by setting

+00
(148) 9@) =Y (fulz + ) = ful@)).

n=1
We have the following:
Lemma 11.7. Assume that

“+oo
max,, 1L,
(149) Z SOt =1 200 4 o6 and
—) Ak Qkn+1

400
Z MAXye(0,....qr,~1} [ Lnw = Lnjw1]

n=1

where L, ,, = L, 0. Then g is continuous.
yAkn ;

Proof. Notice that

fulz + @) = ful2)] < D

ale 4+ @) = fule + 2 | £+ By — £o(0)].
qk,, dk.,

Furthermore, either (for some j) = + py, /qr,, v+« € [1/qr,, (G +1)/qx,) or = + pr,, /qr, €
/., (G +1)/ar,) and z +a € [(j + 1)/, (j +2)/qr,) and then, by the definition of f,,
it follows that

1

Pk,
) —,
4k, 9k, +1

folr + @) — fulz +—

4k,
where j = wpg, mod qx, and j+1 = w'py, mod q,. Finally, if v € [wpg, /.., (wpr, +1)/qx,)
then = + py, /qx, € [(w+ 1)pr, /.., (W +1)pk, +1)/qx, ), so taking into account the bound
on f, given by (147), we obtain

Prs 1
Ful 4+ 72) = fo(@)] < g = Ligoa |
Qk,, Ak, +1

< maX(Ln,wa Ln,w’)
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whence, from (149) and (148), it follows that g is continuous on T. O

From now on, we assume that ¢ is defined for parameters for which (149) holds. We will
show that there exists a sequence {L, ,} satisfying (149) and such that the statement of
Lemma 11.6 holds.

Notice that by (148) and since f,,(0) = 0 for every n, it follows that for every k € N, we
have

“+oo
(150) Sk(9)(0) = falka).
n=1
The definition of {L,, ,} is inductive. Assume we have defined L;,, for w € {0, ..., g, — 1}

and ¢ < n so that max,eo,.., arp—1} Ly < 12qk,41 and max,eqo,..., arp—1} |Low — Lowt1] <
max(ngqkequ,H, 24qk,+1/qk,). We will now define L, ,, for w € {0, ..., q, — 1} so that

o max L, <12
Y wed{0,..., q};fn—l} ’ Qkn+1
and
(152) max | Lnw — Lnwi1| < max(12eg, qr, 11, 24k, 41/ Gk, )-

'LUE{O 7777 qkn_l}

This, by (144) (and the obvious fact that > 1/g, < 4+00), immediately implies that (149)
holds and therefore, in view of Lemma 11.7, g is continuous. Let wg < w; < ... < w; be all
the elements of the set (AN [%~, g, 1)\ By, (cf. iii. of Definition 11.1). By (143), it follows
that for every ¢ € {0,...,t — 1}, we have

(153) Wiy1 — Wy 2 E;;
Let w € {wy,...,w;}. Then wa € [%, W;T“l) and moreover
1
(154) ’wa e N L S
ks 2k, Qo1 Ak,
and analogously
1
(155) )wa WPk W 2
Ak, Qe Qken+1  dkp+1
Therefore and since a > ’;kﬂ, we know that f,(wa) is given by (145). Let
n—1
(156) Fum = Y fm(wa) mod 1 € [0,1).
m=1
We define L,, ,, by setting
(157) fo(wa) = L4, (woz — wpk") =2—Tyn
Ak,

if n is even and

(158) Falwa) = Ly (wa . %> = 3/2— Ty
Gk,
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if n is odd. By (154), (155) and since 7y, < 1, it follows that L, ,, € [%qknﬂ, 12qs,, 1)
In this way we have defined {L,, ., }!_,. Note also that L, ., > Ly, for i =0,...,t — 1.

Now, for any s € [w;, w;y1] (with i =0,...,t — 1), we define inductively
Low. . — Lnw
(159) Ln78+1 = Ln,s + sWi+1 ) 7,‘
Wit1 — Wy

Note that L, s > L, 1 and by iterating (159), we obtain

)anwiJrl - Ln,wi

L”vwi+(wi+1—wi) = Ln,wi + (wi-l-l — W = L”vwi+17

Wi41 — Wy
so this is indeed an extension of the definition of L,, ,,, to L, s. By (153) and the bound on
(L), it follows that for every s, we have

|Ln’s+1 — Ln7s‘ < 12an+1€qkn.
Finally, we complete the definition of L, ,, by setting
Ln,wo - Ln,wt

160 Lysi1=Lps+
(160) . " Gk, — W+ wo
for s = wy, wy+1,...,. .., Gnys - -+ o, FWo—1. As before, we verify that this definition yields
an extension of the definition of L, ,, to all of L, ;. Moreover, for s = wy, ..., qn,,- -, qn, +

wo — 1, by (160), the bound on L,, ., and wy > g, /2, we obtain

This finishes the inductive step of the construction.
We will now show that Lemma 11.6 holds for M,, := qkT". WLOG we assume that n is
even and we will use (157), the proof in case n is odd follows the same steps using (158).
Recall that by the definition of the sequence {w;}, we have AN[%&2, ¢ 1\ B,, = {w;}l_,.

Moreover, by (148), (156) and (157), it follows that mod 1, we have

Sun@)(0) = 3 filwa) = 3 filwia) + fulwa) + 3 fiwia) =

<2+ f fl(wioz)> mod 1 = f fi(w;a).

l=n+1 l=n+1

Therefore, to finish the proof of the lemma, it is enough to show that

+oo
Z filw;a) < e.

I=n+1
Fix [ > n+ 1. Since ’a—pﬂ L we have
dk; Ak;9k;+1
"UJZ'O[ _ Zp 1 2 < q < )
k, T r+1 T+ Qe +1

Hence, the formula for fj(w;a) is given by (145). Therefore and by (151), we obtain

U 12,
le le +1 le

filwar) < Ly,

/
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and hence

+o0
Z filw;a) < 12qy, Z S <e,

l=n+1 I>n+1 ke

since the sequence {k,} satisfies k,,,1 > k2 and (g,) grows exponentially fast. This finishes
the proof.

11.2. How to make this construction uniquely ergodic? In order to show that the
equidistribution along an almost sparse set A does not hold, we only use our knowledge
about (156) and the fact that the Lipschitz constants L, ,, satisfy certain growths restric-
tions, cf. (151) and (152). Our idea is now to proceed with an interchanged construction in
which

Ak, < 4qe, < qk,

(remembering that we can sparse k, and /,, as much as we need) and it is “time” ¢y, which
will guarantee that the construction is ergodic (hence uniquely ergodic). In fact, we will
show that no non-zero integer multiple of ¢ is multiplicatively cohomologous to a constant,
which guarantees that T7, , is uniquely ergodic and the only eigenvalues of it are numbers
e2™ime m ¢ 7.
We define
hn(z) = 2qu, (a: - L) if v € [L, 4 i)
., Q. Qo 24,

and

hn(x) = 2([zn<] 1 —x) if z € [L L,j +1),
e, Q. 24, e,
for j =0,...,q, — 1. Then h,, is Lipschitz continuous, with Lipschitz constant L/ = 2q,
(that is, contrary to the definition of f,, the Lipschitz constant does not depend on the
interval [7/qe,,(J + 1)/qs,); hn is 1/qe,-periodic). As before, we easily check that the
assumptions of Lemma 11.7 are satisfied and |h,(z + a) — h,(z)| < L,—2—. We define

"o, qen+1

K, = [qs,+1/2qe,] which yields the point K, g, a “close” to ﬁ and guarantees that the

n

distribution of
Skage, (- + @) = b () = hn (- + Knge, @) = hn(-)
is ,,close” to the distribution of A, (- + 52—) — hy(-) = ha(- + 3) — ha(+). Note, what will be

crucial for our final argument, that mozzl—lnl
(161) ho (- + %) — hy(+) is not close to any constant.
We define .
9@) =Y (fulw +0) + hufa+ ) = fule) = ha(w) ).
n=1

where 7, , (needed to define f,,) are given by

n—1

Twm 1= Z(fm(wa) + hp(wa)).

m=1
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We need to precise how we choose k, < ¢, < k,.+1. We have

n n—1
Sanzn<Z(fm(x+oz )+ Z (x4 ) hm(:c))) =
m=1 m=1
n n—1
D (e + K@) = fn(@) + D (hin(@ + Kngr,@) = hon(2)).
m=1 m=1
Now, K,q., o is as close to s-— as we need, so we can make the above sum uniformly as

2q¢,,
small as we need (by choosing ¢,,). Similarly,

[e.e] [e.e]

St (D2 U@ +0) = fu(@) + 3 (b + ) = h(a))) =
S ot Katr,0) = fn(@) + Y (ol + Kad,@) = hin()),

Proceeding as in the proof of Lemma 11.7 and using (152), we obtain (for some w €
{0...., qr,, — 1})
‘fm(x + KnQZna) - fm(x)| <

1 1
anéni + |Lm,w - Lm,w-l—anen <
qkm qkm +1 ka—i-l

K. < 1 N maX(mqum%mH’24ka+1/ka))
"\ G Qo1 Qo +1
By sparsing the sequence {k,} (e.g. we need much stronger assumption than (144)), we can

. 1 max(12eq; Qo +1:24Qkm +1/Tkm) \
achieve that Knqe, >~ T pT— is as small as we need.

We obtain the same goal for the second series as

40,40 +1 Qlm+1

A conclusion of these considerations is that the distribution of Sk, 4, (g) is close to the
distribution of Sk, q, (An(-+ a) — hy(-)) which by (161) is not close to any constant. This
means that T, 4 is uniquely ergodic.

Finally, given n, we have

Su:(9)(0) =
n—1
> (fn(wi) + b (wia)) + fu(wicd) + ho(wic) + Y (fn(wie) + g (wicr)).
m=1 m>n—+1
Since |w;or— =P | < i < I the third summand h,,(w;«) is as small as we need,

9y 9n90n+1 9en 900+

and we finish the proof as at the end of Lemma 11.7.
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11.3. How to make this construction uniquely ergodic and to satisfy Sarnak’s
conjecture? According to [33], (see also Theorem 4.1 in [34]) to obtain that 7' = T, , is
disjoint from Mobius, it is sufficient, for all a,b € Z, a®> + b* > 0, and all (r, s) = 1 (enough
to consider pairs of different prime numbers), to have

(162> w(x) = 7vba,b,r,s(x> = aSr(g)(r> + st(Q)(S ’ _'_C)

is a (multiplicative) coboundary for no ¢ € T (this condition implies the so called AOP
property which is sufficient for the Mobius disjointness; in fact, it yields orthogonality to
any multiplicative function).

As we need to consider only countably many cocycles 1, we can repeat the construction
from the previous section, where we automatically obtain that no A-equidistribution prop-
erty holds, while to obtain that no v is a (multiplicative) coboundary will be guaranteed
by “reserving” a subsequence {/,, } of (¢,) depending on ¢ along which S Knde, (1) is not
close in measure to any constant.

A quick analysis of the construction from the previous section shows that we had g =
g1 + g2, where g; = :3(% oT — f,) and g, = :3(hn oT — h,) and we exploited the
following:

® Sknq, (91) was (uniformly) as small as we needed; indeed, for m < n, to show that
S Knae, (fm o T — fm) is small we use the fact that K,qy, « is as close to 0 as needed,
while for m > n + 1, we have || f, o T — fr|lcm < qkmqt -+ max(12¢e,, ,24/qx,,),
so the coboundaries f,, o T — f,, are also as small as is ngeded;

® Sknq, (92) was (uniformly) as close to Sk, q, (hn ©T — hy) as needed (indeed, for
m <n—1and m > n+1, we obtain uniform norms of Sk, 4, (hn,oT — hy,) as small

as we need by the same reason as before).
Now, notice that for each t,u > 1, c € T and j : T — R, we have
(163) Si(Su(d)(u - +0)) (@) = Su(j) (uz + ).
It follows that Sicq, (S,(91)(r)() = Sric, (91)(r2), 0 i [|Sicrgs, (9l < 6. then
1Sk nae, (91(72)) ) lleery < rd. Using again (163) to Sk,q, (g2(s - +c)), we obtain that

Sknq, (¥) is close in measure to aSk,q, (Sp(hn o T — hy)(r))() + bSk,q,, (Ss(hy o T —
hi)(s - +c))(-). In view of (163), the result follows whenever

a(hn(r - +rKuqe, o) — ho(r-)) + b(hy(s - +5Kuqe, 0 + ¢) — ho(s - +¢))

cannot be close to any constant. This can be achieved by an elementary but a tedious
argument.

Since the AOP property of a system implies its orthogonality to any multiplicative func-
tion [15], we obtain the following:

Theorem 11.8. Assume that A C N is almost sparse. Then for each irrational o there
exists a continuous g : T — R such that the corresponding Anzai skew product T' = Ty, 4 :
T2 — T? has the following properties:
(i) T is uniquely ergodic.
(i) T' is orthogonal to every bounded multiplicative function w : N — C, that is, imy o ), f(T"(,y))
0 for each f € C(T?) of zero mean.
(111) An A-equidistribution does not hold for T
In particular, Theorem 0.3 holds.
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11.4. Proof of iii. of Theorem 0.3. We only show how to modify parameters in our
general construction. We consider A = {m?: m > 1}. We take f(z,y) = e(z) and then

LS HE0.0)ulm) = = 3 S )

m<N m<N
and will consider N of the form [Myl/ ?]. We define L, ., by setting (cf. (157) and (158))
7 1/2
fn(wa) :an(wa_ wpkn) - _'_Iu(w ) — Twn,
) qkn 4 ’

where w € {wo, ..., w} = AN[1,N?]\ B, . Then,

627riSw(9)(0),u(w1/2) _ 627ri%“}1/2),u(w1/2)62m2e>n Je(wa) _ M2(w1/2)(1 + On(l))

It follows that, given ¢ > 0 and taking n large enough,

1 21iS. 2(g)(0) 1 2/, 1/2 1
Dm0y~ = ST )| < ou(1) + e

n<N we{wo,...,ws }

which is arbitrarily small as ¢ < N.

As before, we can make the construction uniquely ergodic, hence minimal. Since the
set of square-free numbers has positive density, iii. of Theorem 0.3 follows. Note also that
we can adapt the above proof to other multiplicative function, like the Liouville function,

so that we obtain the negative answer to the polynomial variant of Sarnak’s conjecture in
Problem 7.1 [1].
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