
POISSONIAN PAIR CORRELATION FOR αnθ

MAKSYM RADZIWI L L AND ANDREI SHUBIN

Abstract. We show that sequences of the form αnθ (mod 1) with α > 0 and
0 < θ <

43

117
= 1

3
+ 0.0341 . . . have Poissonian pair correlation. This improves

upon the previous result by Lutsko, Sourmelidis, and Technau, where this was
established for α > 0 and 0 < θ <

14

41
= 1

3
+ 0.0081 . . ..

We reduce the problem of establishing Poissonian pair correlation to a counting
problem using a form of amplification and the Bombieri-Iwaniec double large sieve.
The counting problem is then resolved non-optimally by appealing to the bounds
of Robert-Sargos and (Fouvry-Iwaniec-)Cao-Zhai. The exponent θ = 2

5
is the limit

of our approach.

1. Introduction

A real-valued sequence (xn)n> 1 is equidistributed mod 1 if for any 0 < a < b < 1,

lim
N→+∞

1

N
#
{
n6N : {xn} ∈ [a, b]

}
= b− a.

Equidistribution is one of the most basic properties of sequences that indicates their
pseudorandom behavior. Weyl [23] showed that equidistribution modulo 1 of a se-
quence xn is equivalent to showing cancellation in exponential sums

∑

n<N

e(kxn) = o(N),

for every fixed integer k 6= 0. Subsequently, Weyl established that αnd is equidis-
tributed for all irrational α and d> 1 integer. Fejer and Csillag ([11, Corollary 2.1],
[5]) established the same property when d > 0 is not an integer and α is non-zero.
Equidistribution is a “large-scale” property: it only provides information about the

number of points inside intervals of size � 1. A finer question is to ask about “small-
scale” properties, that is distribution properties at the scale � 1

N
. The most common

statistic at this scale is the gap distribution describing the spacingsN(yk+1−yk) where
y1 < y2 < . . . < yN is an ordering of x1, . . . , xN ∈ [0, 1].
It is natural to expect that the sequence αnθ with θ 6∈ Z and α 6= 0 is distributed

like a random set of points modulo 1. This leads one to the following conjecture.
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Conjecture 1. Let α 6= 0 and θ > 0 with θ 6= 1
2
and θ 6∈ Z. Let y

(N)
1 < . . . < y

(N)
N

denote an ordering of the points αnθ (mod 1) with n < N . Then,

lim
N→∞

1

N
#
{
i < N : N(y

(N)
i+1 − y

(N)
i ) ∈ (a, b)

}
→

∫ b

a

e−tdt.

We then say that the gap distribution is Poissonian.

We exclude the case θ = 1
2
because Elkies-McMullen [7] have shown that the gap

distribution is not Poissonian in this case. This is also the only case in which the
gap distribution is known to exist. A weaker statistic than the gap distribution is
the pair correlation. The belief that the sequence αnθ behaves randomly leads to the
following conjecture for the pair correlation.

Conjecture 2. Let α 6= 0 and θ > 0 with θ 6= 1
2
and θ 6∈ Z. Then, for any s > 0,

R2

(
[−s, s], αnθ, N

)
:=

1

N
·#

{
16n 6= m6N : N‖αnθ − αmθ‖6 s

}
→ 2s

as N → ∞ and where ‖x‖ denotes the distance of x from the nearest integer. When-
ever this holds we say that the sequence αnθ has Poissonian Pair Correlation (PPC).

One can think of the pair correlation as a second moment of the gap distribution.
In particular if all higher m-correlations exist and are Poisson then Conjecture 1
would follow (see [12, Appendix A]).
We now briefly summarize the state of the art regarding Conjecture 2. There are

broadly two types of results: metric results that allow for averaging in α or θ, or
deterministic results valid for specific α and θ. As far as metric results go, PPC has
been shown for sequences of the form αnd with integer d> 2 [9, 15, 18, 19] for almost
all α. Moreover, Heath-Brown provided an algorithm for constructing a dense set
of such α’s in [9]. The case d = 2 is of particular interest due to its connection to
quantum chaos (see [3, 17]). For sequences of the form αnθ with non-integer fixed
θ > 0 PPC is known for almost all α following Aistleitner, El-Baz, and Munsch [1],
as well as Rudnick and Technau [20]. While in [22] Technau and Yesha show that
the sequence nθ has PPC for almost all θ > 7.
Deterministic results valid for specific θ and α are harder to come by. For θ = 1

2
,

El-Baz, Marklof, and Vinogradov [6] showed that the sequence (
√
n)n 6=� admits PPC.

Finally, Lutsko, Sourmelidis, and Technau [14] recently verified PPC for all sequences
of the form αnθ, where α > 0 and 0 < θ < 14

41
= 1

3
+0.008 . . .. Going beyond 1

3
requires

non-trivial bounds for certain exponential sums. The goal of this work is to extend
the range of θ by deploying heavy exponential sums machinery.

Theorem 1.1. The sequence αnθ has a Poissonian pair correlation for all α > 0
and 0 < θ < 43

117
= 1

3
+ 0.03418 . . .
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Figure 1. The distribution of gaps and spacings for the sequence n1/3,
with a step size 0.1

N
, N = 107 for gaps, and N = 5000 for spacings.

Figure 2. The distribution of gaps and spacings for the sequence
n1/2, with a step size 0.1

N
, N = 107 for gaps, and N = 5000, n 6= �

for spacings. Elkies and McMullen [7] demonstrated that the gap dis-
tribution in this case is not Poissonian, whereas El-Baz, Marklof, and
Vinogradov [6] showed that the pair correlation function is Poissonian.

1.1. Reduction to exponential sums and sketch of the proof. We define the
integral version of the pair correlation function in the standard way:

(1.1) R̃2

(
f, {xn}, N

)
:=

1

N

∑

k∈Z

∑

16 i 6=j 6N

f
(
N(xi − xj + k)

)
.
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Figure 3. The distribution of gaps and spacings for the sequence n2/3,
with a step size 0.1

N
, N = 107 for gaps, and N = 5000 for spacings.

The condition ‖xi − xj‖6 s
N

is equivalent to N(xi−xj+k) ∈ [−s, s] for some k ∈ Z.
When N becomes large compared to s, there is only one such k. Then

lim
N→+∞

R2

(
[−s, s], {xn}, N

)
= lim

N→+∞
R̃2

(
1[−s,s], {xn}, N

)
.

Smoothing 1[−s,s] and expanding into Fourier series reduces the problem of PPC for
αnθ to a problem about exponential sums. We state this below.

Proposition 1.1. Let α > 0 and θ > 0 be given. Suppose that for every even smooth
compactly supported function f , every ε > 0,

lim
N→∞

2

N2

∑

0<|k|6N1+ε

f̂
( k

N

)∣∣∣
∑

16 y6N

e(αkyθ)
∣∣∣
2

= f(0).

Then the sequence αnθ has Poissonian Pair Correlation (PPC).

Thus Conjecture 2 amounts to showing that certain exponential sums have square-
root cancellation on average.

Since the growth rate of the phase αkyθ is � αN1+θ+ε, its first derivative is much
smaller than N . Therefore, a natural first step is to apply the Poisson summation
formula to each of the three sums over k, y1, and y2 as it will shorten each of these
sums to length N θ. This step is formalized in the following proposition.
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Proposition 1.2. Let α, θ, ε be real numbers such that α > 0, ε > 0, 3ε < θ < 1−3ε,
and for K, Y1, Y2 > 0 define the subset N (K, Y1, Y2) as follows:

N (K, Y1, Y2) :=
{
η : η = m

−θ/(1−θ)
1 −m

−θ/(1−θ)
2 , where

αθK(2Y1)
θ−1

6m1 < 2αθKY θ−1
1 ;

αθK(2Y2)
θ−1

6m2 < 2αθKY θ−1
2 ;

m1 < m2

}
.

Then we have

(1.2)
2

N2

∑

k6N1+ε

f̂
( k
N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

=

f(0) +O
(
N−θ/2+ε/2 logN +N−1/4+θ/4+3ε/4 logN + S(N)

)
,

where

(1.3) S(N) :=
1

N2

∑

K 6N1+ε

dyadic

∑

Y1,Y2 6N
dyadic

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∣∣S̃(K, K̃, Y1, Y2)
∣∣,

S̃(K, K̃, Y1, Y2) :=
∑

η∈N (K,Y1,Y2)

( 1

m1m2

)(2−θ)/(2−2θ) ∑

L6 `<L̃

c1√
η

( `

η

)1/(2θ)−1

e
(
c2`

1/θη1−1/θ
)
,

L =
c3η

1− θ
K

θ/(1−θ)
1 , L̃ =

c3η

1− θ
K

θ/(1−θ)
2 , c3 = (αθ)1/(1−θ)

(1
θ
− 1

)
,

c1 =
1− θ√
c3θ

(1− θ

c3

)1/(2θ)−1

, c2 = −θ
(1− θ

c3

)1/θ−1

,

K1 := max
(
K,

m1

2αθY θ−1
1

,
m2

2αθY θ−1
2

)
,(1.4)

K2 := min
(
K̃,

m1

αθ(2Y1)θ−1
,

m2

αθ(2Y2)θ−1

)
.(1.5)

The implied constant in the error term in (1.2) depends on f , α, θ and ε.

A similar transform was used in [14]. An application of Proposition 1.2, combined
with a trivial upper bound for |S̃(K, K̃, Y1, Y2)| on the right side of (1.3) yields
Theorem 1.1 in the range ε < θ < 1

3
− ε. Thus, going beyond 1

3
requires a non-trivial

bound for S(N). We note incidentally that such non-trivial bounds are not always
possible, for example, we have S(N) � 1 for α = 1 and θ ∈ {1

2
, 1, 2, 3, . . .}.
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To a first approximation,

S(N) ≈ N−1/2−3θ/2
∑

η∈N

∑

`∼Nθ

e
(
`1/θη1−1/θ

)

where

N :=
{
m1,m2 ∼ N θ : m

−θ/(1−θ)
1 −m

−θ/(1−θ)
2

}
.

For the purpose of the sketch we can also assume that elements of N are in “generic
position” and thus of size � N−θ2/(1−θ). Given η ∈ N we let η̃ := ηN θ2/(1−θ) so that

for generic η ∈ N we have |η̃| � 1. Likewise for ` ∼ N θ we denote by ˜̀ := `/N θ so

that |˜̀| � 1. To bound S(N) we apply Holder’s inequality.

S(N) � N−1/2−3θ/2
(
#N

)1−1/k

·
(∑

η∈N

∣∣∣
∑

`∼Nθ

e
(
`1/θη1−1/θ

)∣∣∣
k)1/k

.

We notice that the phase is of size X := N1+θ. Using the double large sieve we have
the bounds,

∑

η∈N

∣∣∣
∑

`∼Nθ

e
(
`1/θη1−1/θ

)∣∣∣
k

� X1/2 ·
( ∑

η1,η2∈N

1
(∣∣∣η̃1−1/θ

1 − η̃
1−1/θ
2

∣∣∣6 1

X

))1/2

·

( ∑

`1,...,`2k∼Nθ

1
(∣∣∣˜̀1 + . . .− ˜̀

2k

∣∣∣6 1

X

))1/2

.

In the best case scenario the probability of each event inside the indicator function
is 1/X. Taking care to exclude the diagonal, this gives in the best case scenario the
bound,

∑

η∈N

∣∣∣
∑

`∼Nθ

e
(
`1/θη1−1/θ

)∣∣∣
k

� N (1+θ)/2
(
N2θ +

N4θ

N1+θ

)1/2

·
(
Nkθ +

N2kθ

N1+θ

)1/2

.

If θk is the optimal exponent that such an approach can yield, then we find θ2 =
1
3
,

θ3 = θ4 =
2
5
, θ5 =

5
13
, θ6 =

3
8
followed by smaller exponents. Thus the most beneficial

choice of exponent is k = 4. Unfortunately we are not able to directly resolve the
problem of counting eight-tuples of (`1, . . . , `8) all of size ≈ N θ such that,

|`1/θ1 + . . .− `
1/θ
8 |6N−θ.
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Instead we perturb the problem a little and apply van der Corput differencing twice,
to get that,

∑

η∈N

∣∣∣
∑

`∼Nθ

e(`1/θη1−1/θ)
∣∣∣
4

�

N4θ#N
H2

1

+
N4θ#N

H2

+
N3θ

H1H2

∑

η∈N

∑

0<|h1|6H1

0<|h2|6H2

γ(h1, h2)
∑

`∼Nθ

e
(
η1−1/θ t(`, h1, h2)

)

where

t(`, h1, h2) := ((`+ h1 + h2)
1/θ − (`+ h2)

1/θ)− ((`+ h1)
1/θ − `1/θ).

We now apply the double large sieve, and this leads to the bound
∑

η∈N

∑

0<|h1|6H1

0<|h2|6H2

γ(h1, h2)
∑

`∼Nθ

e
(
η1−1/θt(`, h1, h2)

)
� X1/2B1/2

1 B1/2
2

where X := N1−θH1H2 and

B1 :=
∑

η1,η2∈N

1
(
|η̃1−1/θ

1 − η̃
1−1/θ
2 |6 1

X

)

and

B2 :=
∑

0<|h1|,|h′

1|6H1

0<|h2|,|h′

2|6H2

∑

`,`′∼Nθ

1
(∣∣∣t̃(`, h1, h2)− t̃(`′, h′

1, h
′
2)
∣∣∣6 1

X

)

where as before t̃(`, h1, h2) denotes a suitably normalized version of t(`, h1, h2) so that
|t̃(`, h1, h2)| � 1. We bound B1 using a Taylor expansion and the bound of Robert-
Sargos [16], which gives an optimal bound for the number of tuples (m1,m2,m3,m4)
of size M such that

|mα
1 +mα

2 −mα
3 −mα

4 |6 δ.

We then bound B2 using results of Cao and Zhai [4]. Such bounds for “shifted
variables” go back to the work of Fouvry-Iwaniec [8] with subsequent improvements
by Liu [13] and Sargos-Wu [21]. Due to the complicated nature of the bound of
Cao-Zhai (see Lemma 4.4) we refrain from stating the exact bounds here. It suffices
to say that after inputting all these bounds we find an appropriate choice of H1 and
H2 that yields the following main technical proposition:

Proposition 1.3. Let α, ε,N and S(N) be as in Proposition 1.2, and let θ be such
that 3ε < θ < 43

117
− 5ε. Then we have

S(N) = o(1) when N → +∞,

where the implied constant depends on α, θ and ε.
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Theorem 1.1 clearly follows from Propositions 1.1, 1.2 and 1.3. We prove Proposi-
tion 1.1 in Section 2. We then prove Proposition 1.2 in Section 3, and Proposition 1.3
in Section 4.

1.2. Notation. We use the standard notation for the real character e(x) := e2πix.
The relations f(x) � g(x) and f(x) = O(g(x)) mean |f(x)|6Cg(x) for a fixed

number C > 0 and all large enough x. The symbols �ε and Oε mean that the
constant C might depend on the parameter ε. The relation f(x) = o(g(x)) for
g(x) > 0 means f(x)/g(x) → 0 as x → +∞. The relation f(x) � g(x) means
f(x) � g(x) � f(x). Finally, the relation f(x) ∼ g(x) means f(x)/g(x) → 1 as
x → +∞.

For brevity, the limits in the sums over dyadic intervals, such as
∑

K,Y1,Y2,R
, are

often not indicated.

1.3. Acknowledgments. The first author received support from NSF grant DMS-
1902063. The second author acknowledges the support provided by the Austrian
Science Fund FWF (I4945-N). The second author also thanks Christoph Aistleitner,
Tim Browning, and members of their research groups for the helpful conversations
during his short visits.

2. Reduction to exponential sums

We prove in this section Proposition 1.1. There is a sequence of C∞
c (R) functions

f+
j and f−

j , such that f−
j 61[−s,s] 6 f+

j for all j,
∫

R

(
f+
j (x)− f−

j (x)
)
dx → 0

when j → +∞, and f̂±
j (x) � x−A for arbitrarily large A > 0. Then, for the proof of

Theorem 1.1, it is enough to show that for any f ∈ C∞
c (R), one has

R̃2

(
f, {αnθ}, N

)
→

∫

R

f(x)dx

when N → +∞. Applying Poisson summation to the sum over k ∈ Z, we obtain

R̃2

(
f, {αnθ}, N

)
=

1

N2

∑

k∈Z

f̂
( k

N

) ∑

16 y1 6=y2 6N

e
(
αk(yθ1 − yθ2)

)
.

Moving away the term k = 0, we find

R̃2

(
f, {αnθ}, N

)
=

1

N2

∑

k∈Z
k 6=0

f̂
( k

N

) ∑

16 y1 6=y2 6N

e
(
αk(yθ1 − yθ2)

)
+ f̂(0) +O

( f̂(0)
N

)
.
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For convenience we add and subtract the diagonal term y1 = y2:

R̃2

(
f, {αnθ}, N

)
=

1

N2

∑

k∈Z
k 6=0

f̂
( k

N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

− 1

N2

∑

k∈Z

∑

16 y6N

f̂
( k

N

)
+ f̂(0) +O

( 1

N

)
.

Note that the term k = 0 is absorbed by the error O(1/N). By Poisson summation,

1

N2

∑

k∈Z

∑

16 y6N

f̂
( k

N

)
=

1

N

∑

k∈Z

f̂
( k

N

)
= f(0).

Thus,

R̃2

(
f, {αnθ}, N

)
=

1

N2

∑

k∈Z
k 6=0

f̂
( k

N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

− f(0) + f̂(0) +O
( 1

N

)
.

Since f̂(0) =
∫
R
f(x)dx, the problem reduces to showing that

1

N2

∑

k∈Z
k 6=0

f̂
( k

N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

= f(0) + o(1).

Without loss of generality, we can assume that f is even. Then the last formula is
equivalent to

2

N2

+∞∑

k=1

f̂
( k

N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

= f(0) + o(1).

Due to the fast decay of f̂(x), the summation over k can be restricted to k6N1+ε

for arbitrary small ε > 0. Thus for the proof of Theorem 1.1 it is enough to show
that

(2.1)
2

N2

∑

k6N1+ε

f̂
( k

N

)∣∣∣
∑

16 y6N

e
(
αkyθ

)∣∣∣
2

= f(0) + oε(1)

for any θ < 43
117

− 5ε (say).

3. Proof of Proposition 1.2

3.1. Poisson summation on y. We use the following form of the Poisson summa-
tion formula (see [10, Theorem 8.16]):

Lemma 3.1. Let f(x) be a real function on [a, b] such that

Λ6 f ′′(x)6 cΛ, |f (3)(x)|6 cΛ(b− a)−1, |f (4)(x)|6 cΛ(b− a)−2
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for some Λ > 0 and c> 1. Then
∑

a<n<b

e
(
f(n)

)
=

∑

α<m<β

1√
f ′′(xm)

e
(
f(xm)−mxm +

1

8

)
+Rf (a, b),

where α = f ′(a), β = f ′(b), f ′(xm) = m,

Rf (a, b) � Λ−1/2 + c2 log(β − α + 1).

When Y1 and Y2 are much different in size we estimate their contribution using
van der Corput’s theorem (see [10, Theorem 8.20]):

Lemma 3.2. Let b − a> 1, f(x) be a real function on [a, b], and ν> 2 such that
Λ6 f (ν)(x)6 cΛ, where Λ > 0 and c> 1. Then

∑

a<n<b

e
(
f(n)

)
� Λκ(b− a) + Λ−κ(b− a)1−22−ν

where κ = (2ν − 2)−1 and the implied constant is absolute.

Let us split the sum over y6N in (2.1) to dyadic intervals (Y, 2Y ], so that
Y 6N/2. Then, applying Lemma 3.1 with f(y) = −αkyθ, substituting m → −m,
and taking the conjugation, we get

∑

Y 6 y<2Y

e
(
αkyθ

)
= Tk(Y ) +Rk(Y ),

where

Tk(Y ) =
∑

αθk(2Y )θ−1 6m<αθkY θ−1

c4√
k

( k

m

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)m−θ/(1−θ) − 1

8

)
,

c4 =
1√

αθ(1− θ)

(
αθ

)(2−θ)/(2−2θ)
, c3 =

(
αθ

)1/(1−θ)
(1
θ
− 1

)
,

Rk(Y ) � Y 1−θ/2

√
k

+max
(
1, log(kY θ−1)

)
.(3.1)

Similarly, split the sum over k6N1+ε in (2.1) to dyadic intervals (K, 2K]:

2

N2

∑

K

∑

K 6 k<2K

f̂
( k
N

)∣∣∣
∑

Y

(
Tk(Y ) +Rk(Y )

)∣∣∣
2

=:

2

N2

∑

K

(
S1,1(K) + S1,2(K) + S2,1(K) + S2,2(K)

)
,

where the sums S1,1, S1,2, S2,1, S2,2 correspond respectively to Tk(Y1)Tk(Y2), Tk(Y1)Rk(Y2),

Rk(Y1)Tk(Y2), Rk(Y1)Rk(Y2).
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We start by estimating the contribution from S2,2. Applying trivially f̂ (k/N) � 1
and (3.1), we find

S2,2(K) =
∑

K 6 k<2K

f̂
( k

N

) ∑

Y1,Y2

Rk(Y1)Rk(Y2) � K(logN)2
((N1−θ/2

√
K

)2

+
(
logK

)2)
.

Hence,

(3.2)
2

N2

∑

K

S2,2(K) � N−θ(logN)3 +N−1+ε(logN)5,

which is negligible.

The sums S1,2 and S2,1 are similar, so we only consider S1,2:

S1,2(K) =
∑

K 6 k<2K

f̂
( k

N

) ∑

Y1,Y2

Tk(Y1)Rk(Y2).

Applying Cauchy inequality to the sum over K 6 k < 2K, we obtain

S1,2(K)6
∑

Y1,Y2

( ∑

K 6 k<2K

∣∣f̂
( k

N

)∣∣2|Rk(Y2)|2
k(2−θ)/(1−θ)

k

)1/2

·

( ∑

K 6 k<2K

∣∣∣
∑

αθk(2Y1)θ−1 6m<αθkY θ−1
1

(c4
m

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)m−θ/(1−θ) − 1

8

)∣∣∣
2)1/2

.

Hence,

(3.3) S1,2(K) �
∑

Y1,Y2

( ∑

K 6 k<2K

|Rk(Y2)|2k1/(1−θ)
)1/2∣∣U1,2(K)

∣∣1/2,

where

U1,2(K) :=
∑

K 6 k<2K

∑

m1,m2∈

[αθk(2Y1)θ−1,αθkY θ−1
1 )

( c24
m1m2

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)η(m1,m2)
)
,

where η(m1,m2) = m
−θ/(1−θ)
1 − m

−θ/(1−θ)
2 . Changing the order of summation we

obtain

U1,2(K) =
∑

m1,m2∈

[αθK(2Y1)θ−1,2αθKY θ−1
1 )

( c24
m1m2

)(2−θ)/(2−2θ) ∑′

K 6 k<2K

e
(
c3k

1/(1−θ)η(m1,m2)
)
,

where
∑′

denotes the sum with the additional restrictions

m1,m2 ∈ [αθk(2Y1)
θ−1, αθkY θ−1

1 ].
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Next, substitute

m1 := m, m2 := m+ r.

Without loss of generality, let us assume that m1 6m2, which implies that r> 0.
Next, we can split the sum U1,2 into its diagonal (r = 0) and non-diagonal (r > 0)
terms. Furthermore, we can split the non-diagonal sum into dyadic intervals r ∈
(R, 2R], where R satisfies R6(2− 2θ−1)αθKY θ−1

1 . We get

(3.4) U1,2(K) = D1,2(K)+

∑

R

∑

R6 r<2R

∑

m: m,m+r∈

[αθK(2Y1)θ−1,2αθKY θ−1
1 )

( c24
m(m+ r)

)(2−θ)/(2−2θ) ∑′

K 6 k<2K

e
(
c3k

1/(1−θ)η
)
,

where η = η(m,m + r) = m−θ/(1−θ) − (m + r)−θ/(1−θ) ∼ rm−1/(1−θ). Note that the
sum over k can be empty, in which case the necessary bound follows immediately.

Remark 3.1. From now on, we assume that αθKY θ−1
1 > 10. In this case, the sum

over m contains more than one term. Otherwise, we trivially have U1,2(K) � K,
which, by (3.3), implies

S1,2(K) �
∑

Y1,Y2

Y1�K1/(1−θ)

((Y 1−θ/2
2√
K

)2

K1/(1−θ)
)1/2

K1/2 � K1/(2−2θ)N1−θ/2 logN,

which contributes to the right hand side of (1.2) no more than

2

N2

∑

K�N1−θ

K1/(2−2θ)N1−θ/2 logN � N−1/2−θ/2 logN,

which is negligible.

For the diagonal term D1,2(K), we have

(3.5) D1,2(K)6
∑

K 6 k<2K

∑

m∈
[αθK(2Y1)θ−1,2αθKY θ−1

1 )

(c4
m

)(2−θ)/(1−θ)

� K−θ/(1−θ)Y1.

Next, we treat the non-diagonal part of U1,2. We apply the first part of Lemma 3.2
to the inner sum over k (assuming it is non-empty) in (3.4) with Λ = RY1K

−2 and
ν = 2. We get

∑′

K 6 k<2K

e
(
c3k

1/(1−θ)η
)
�

K
(
RY1K

−2
)1/2

+
(
RY1K

−2
)−1/2

= (RY1)
1/2 +K(RY1)

−1/2.
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Thus, combining this bound with (3.4) and (3.5), we find

U1,2(K) � K−θ/(1−θ)Y1+
∑

R

(
RKY θ−1

1 (KY θ−1
1 )−(2−θ)/(1−θ)

[
(RY1)

1/2 +K(RY1)
−1/2

])
�

K−θ/(1−θ)Y1 +K1/2−θ/(1−θ)Y
3θ/2
1 +K−1/2−θ/(1−θ)Y

θ/2
1 �

K−θ/(1−θ)Y1 +K1/2−θ/(1−θ)Y
3θ/2
1 .

Hence, from (3.3),

S1,2(K) �
∑

Y1,Y2

( ∑

K 6 k<2K

max
(
1,
(
log(kY θ−1

2 )
)2
,
Y 2−θ
2

k

)
k1/(1−θ)

)1/2

·

(
K−θ/(1−θ)Y1 +K1/2−θ/(1−θ)Y

3θ/2
1

)1/2 �
∑

Y1,Y2

(
K1/2 logN + Y

1−θ/2
2

)(
(KY1)

1/2 + (KY θ
1 )

3/4
)
.

Here we used the inequality max(1, (log kY θ−1
2 )2)6(logN)2. Finally,

S1,2(K) � N1−θ/2 logN
(
(KN)1/2 + (KN θ)3/4

)
,

and so

(3.6)
2

N2

∑

K

S1,2(K) � logN

N2

(
N2−θ/2+ε/2 +N7/4+θ/4+3ε/4

)
,

which is o(1) if ε < θ < 1−3ε. The contribution from S2,1(K) is estimated similarly.

It remains only to evaluate the contribution from S1,1(K):

S1,1(K) =
∑

Y1,Y2

∑

K 6 k<2K

f̂
( k

N

)
Tk(Y1)Tk(Y2) =: D1,1(K) + E1,1(K),

where D1,1(K) is the diagonal term (Y1 = Y2, m1 = m2),

D1,1(K) =
∑

Y

∑

K 6 k<2K

f̂
( k

N

) 1

αθ(1− θ)k

(
αkθ

)(2−θ)/(1−θ)
∑

αθk(2Y )θ−1 6m<αθkY θ−1

m−(2−θ)/(1−θ).

By [2, Theorem 3.2], the inner sum is
(
αθkY θ−1

)1−(2−θ)/(1−θ) −
(
2θ−1αθkY θ−1

)1−(2−θ)/(1−θ)

1− (2− θ)/(1− θ)
+O

(
(KY )−(2−θ)/(1−θ)

)
.
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Simplifying the coefficients and using
∑

Y Y = N +O(1), we obtain

S1,1(K) =
∑

Y

∑

K 6 k<2K

f̂
( k

N

)
Y +O

(∑

Y

∑

K 6 k<2K

k1/(1−θ)(KY )−(2−θ)/(1−θ)
)
+

E1,1(K) = N
∑

K 6 k<2K

f̂
( k

N

)
+O

(
K
)
+O

(
logN

)
+ E1,1(K).

Finally,

(3.7)
2

N2

∑

K

S1,1(K) =

2

N

∑

k6N1+ε

f̂
( k

N

)
+O

( 1

N

)
+O

((logN)2

N2

)
+

2

N2

∑

K

E1,1(K) =

1

N

∑

k∈Z

f̂
( k

N

)
+Oε

( 1

N

)
+O

((logN)2

N2

)
+

2

N2

∑

K

E1,1(K) =

f(0) +O
((logN)2

N2

)
+

2

N2

∑

K

E1,1(K).

To complete the proof of Proposition 1.2, we need to show that the sum with E1,1(K)
is bounded by S(N) given in (1.3).

3.2. Poisson summation on k. We have

E1,1(K) =
∑

Y1,Y2

∑

K 6 k<2K

f̂
( k

N

) ∑

m1 6=m2

αθk(2Yi)
θ−1 6mi<αθkY θ−1

i

( c4√
k

)2( k2

m1m2

)(2−θ)/(2−2θ)

·

e
(
c3k

1/(1−θ)η(m1,m2)
)
.

We first remove the factor f̂(k/N) by partial summation:

Lemma 3.3. Let {ak} and {bk} be sequences of complex numbers, and c > 1 be a
constant. If T > 0 is such that |bk − bk+1|6T/k, then

∣∣∣
∑

A<k<B

akbk

∣∣∣6
(

max
A6 k6 cA

|bk|+O(T )
)

max
A6 Ã6 cA

∣∣∣
∑

A6 k<Ã

ak

∣∣∣

for any positive integers A and B satisfying A6B6 cA.

Now we apply Lemma 3.3 to E1,1(K) with bk = f̂(k/N) and

ak =
∑

m1 6=m2

αθk(2Yi)
θ−1 6mi<αθkY θ−1

i

( c4√
k

)2( k2

m1m2

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)η(m1,m2)
)
.
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Since clearly |f̂(k/N)− f̂((k + 1)/N)| � 1/N , we can choose T � 1. Thus,

E1,1(K) �
∑

Y1,Y2

max
K 6 K̃ 6 2K

∣∣∣
∑

K 6 k<K̃

c24k
(2−θ)/(1−θ)−1·

∑

m1 6=m2

αθk(2Yi)
θ−1 6mi<αθkY θ−1

i

( 1

m1m2

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)η(m1,m2)
)∣∣∣.

Next, we remove the factor c24k
(2−θ)/(1−θ)−1 from the sum over k by the second appli-

cation of Lemma 3.3 with

ak =
∑

m1 6=m2

αθk(2Yi)
θ−1 6mi<αθkY θ−1

i

( 1

m1m2

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)η(m1,m2)
)
,

bk = c24k
(2−θ)/(1−θ)−1, T = cK(2−θ)/(1−θ)−1

with some constant c > 0. Note that

∣∣bk − bk+1

∣∣ � 1

k
k(2−θ)/(1−θ)−1.

Thus,

E1,1(K) � K(2−θ)/(1−θ)−1
∑

Y1,Y2

max
K 6 K̃ 6 2K

∣∣∣
∑

K 6 k<K̃

∑

m1 6=m2

αθk(2Yi)
θ−1 6mi<αθkY θ−1

i

( 1

m1m2

)(2−θ)/(2−2θ)

e
(
c3k

1/(1−θ)η(m1,m2)
)∣∣∣.

Changing the order of summation, we obtain

(3.8) E1,1(K) � K(2−θ)/(1−θ)−1
∑

Y1,Y2

max
K 6 K̃ 6 2K

∣∣∣
∑

m1 6=m2

αθK(2Yi)
θ−1 6mi<2αθKY θ−1

i

( 1

m1m2

)(2−θ)/(2−2θ) ∑

K1 6 k6K2

e
(
c3k

1/(1−θ)η(m1,m2)
)∣∣∣,

where K1 and K2 were defined in (1.4) and (1.5).
Due to the symmetry between m1 and m2, we can add the restriction m1 < m2

to the corresponding sums in (3.8). Then, applying Lemma 3.1 to the sum over k
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in (3.8), we get

(3.9) E1,1(K) � K(2−θ)/(1−θ)−1
∑

Y1,Y2

max
K 6 K̃ 6 2K

∣∣∣
∑

η∈N (K,Y1,Y2)

( 1

m1m2

)(2−θ)/(2−2θ)

·

∑

L6 `<L̃

c1√
η

( `

η

)1/(2θ)−1

e
(
c2`

1/θη1−1/θ +
1

8

)∣∣∣,

where L, L̃, c1, c2 were defined in Proposition 1.2. The factor e(1/8) does not affect
the absolute value of the inner double sum and, thus, can be omitted. We complete
the proof by combining together the estimates (3.2), (3.6), (3.7) and (3.9).

4. Proof of Proposition 1.3

4.1. Van der Corput differencing. Let us denote the sum over η ∈ N (K, Y1, Y2)
in (3.9) by S̃(K, K̃, Y1, Y2), as in Proposition 1.2. Set the notation m2 =: m, m1 =:
m− r. We then consider the sum over r. It has � KY θ−1

1 terms with the restrictions
r � KY θ−1

2 on the one side and (when Y1 > 2Y2) r � KY θ−1
2 on the other side. We

split it to the dyadic intervals (R, 2R] as follows:
∣∣S̃(K, K̃, Y1, Y2)

∣∣ =
∑

R�KY θ−1
2

dyadic

∣∣W (K, K̃, Y1, Y2, R)
∣∣,

where

W (K, K̃, Y1, Y2, R) :=
∑

η∈NR(K,Y1,Y2)

( 1

(m− r)m

)(2−θ)/(2−2θ) ∑

L6 `<L̃

c1√
η

( `

η

)1/(2θ)−1

e
(
c2`

1/θη1−1/θ
)

with

NR(K, Y1, Y2) :=
{
η : η = m

−θ/(1−θ)
1 −m

−θ/(1−θ)
2 , where

αθK(2Y1)
θ−1

6m1 < 2αθKY θ−1
1 ;

αθK(2Y2)
θ−1

6m2 < 2αθKY θ−1
2 ;

m1 < m2, m2 −m1 ∈ [R, 2R)
}
.

Applying Cauchy inequality, we obtain

∣∣W (K, K̃, Y1, Y2, R)
∣∣2 6

( ∑

η∈NR(K,Y1,Y2)

( 1

(m− r)m

)(2−θ)/(1−θ)(1
η

)1/θ−1))
·

( ∑

η∈NR(K,Y1,Y2)

∣∣∣
∑

L6 `<L̃

`1/(2θ)−1e
(
c2`

1/θη1−1/θ
)∣∣∣

2)
.
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For the number of terms in NR(K, Y1, Y2) we clearly have

(4.1) #NR(K, Y1, Y2) �
{
KY θ−1

1 KY θ−1
2 , if Y1 > 2Y2;

RKY θ−1
2 , if Y2/26Y1 6 2Y2.

In fact, #NR(K, Y1, Y2) = 0 when Y1 is much larger than Y2, and, at the same time,
R is small compared to KY θ−1

2 . Note also that #NR(K, Y1, Y2) = 0 when Y1 6Y2/4
by the definition. Next, recall that

(4.2) L � ηKθ/(1−θ).

For η ∈ NR(K, Y1, Y2) one has η � Z, where

(4.3) Z = Z(K, Y1, Y2, R) :=

{
Y θ
1 K

−θ/(1−θ), if Y1 > 2Y2;

RY2K
−1/(1−θ), if Y2 6Y1 6 2Y2.

Then, applying partial summation to the sum over ` (with a` = e(c2`
1/θη1−1/θ),

b` = `1/(2θ)−1, T = L1/(2θ)), we find

∣∣W (K, K̃, Y1, Y2, R)
∣∣2 �

(
#NR(K, Y1, Y2)

( 1

KY θ−1
1 KY θ−1

2

)(2−θ)/(1−θ)( 1

Z

)1/θ−1)
·

(
ZKθ/(1−θ)

)1/θ−2
( ∑

η∈N (K,Y1,Y2)
η�Z

∣∣∣
∑

L6 `<L1

e
(
c2`

1/θη1−1/θ
)∣∣∣

2)
=

#NR(K, Y1, Y2)K
−3/(1−θ)(Y1Y2)

2−θZ−1
( ∑

η∈N (K,Y1,Y2)
η�Z

∣∣∣
∑

L6 `<L1

e
(
c2`

1/θη1−1/θ
)∣∣∣

2)
.

Then

(4.4)
∣∣S̃(K, K̃, Y1, Y2)

∣∣ �
(
K−3/(1−θ)(Y1Y2)

2−θ
)1/2 ∑

R�KY θ−1
2

dyadic

(#NR(K, Y1, Y2)

Z

)1/2

U(K, K̃, Y1, Y2, R)1/2,

where

(4.5) U(K, K̃, Y1, Y2, R) :=
∑

η∈NR(K,Y1,Y2)

∣∣∣
∑

L6 `<L1

e
(
c2`

1/θη1−1/θ
)∣∣∣

2

.

To estimate U(K, K̃, Y1, Y2, R), we first apply the van der Corput inequality (see [10,
Lemma 8.17]):
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Lemma 4.1. For any complex numbers zn we have
∣∣∣
∑

a<n<b

zn

∣∣∣
2

6

(
1 +

b− a

H

) ∑

|h|<H

(
1− |h|

H

) ∑

a<n,n+h<b

zn+hzn,

where H is any positive integer.

Applying this lemma to the sum over ` in (4.5) with H = H1 = Lκ1 for some
0 < κ1 < 1, which will be chosen later, we obtain
∣∣U(K, K̃, Y1, Y2, R)

∣∣6
∑

η∈NR(K,Y1,Y2)

(
1 +

L1 − L

H1

) ∑

|h1|<H1

(
1− |h1|

H1

) ∑

L6 `<L1−h1

e
(
c2η

1−1/θt(`, h1)
)
,

where
t(`, h1) := (`+ h1)

1/θ − `1/θ.

Then
∣∣U(K, K̃, Y1, Y2, R)

∣∣ �
∑

η∈NR(K,Y1,Y2)

(L2

H1

+
L

H1

∑

0<|h1|<H1

∣∣∣
∑

L6 `<L1−h1

e
(
c2η

1−1/θt(`, h1)
)∣∣∣
)
�

#NR(K, Y1, Y2)
L2

H1

+
L

H1

∑

η∈NR(K,Y1,Y2)

∑

0<|h1|<H1

∣∣∣
∑

L6 `<L1−h1

e
(
c2η

1−1/θt(`, h1)
)∣∣∣.

Applying Cauchy inequality again, we find

∣∣U(K, K̃, Y1, Y2, R)
∣∣6#NR(K, Y1, Y2)

L2

H1

+
L

H1

( ∑

η∈NR(K,Y1,Y2)

∑

0<|h1|<H1

1
)1/2

·

( ∑

η∈NR(K,Y1,Y2)

∑

0<|h1|<H1

∣∣∣
∑

L6 `<L1−h1

e
(
c2η

1−1/θt(`, h1)
)∣∣∣

2)1/2

.

Next, we apply Lemma 4.1 for the second time with H = H2 = Lκ2 for some
0 < κ2 < 1, which will be chosen later:

∣∣U(K, K̃, Y1, Y2, R)
∣∣ � #NR(K, Y1, Y2)

L2

H1

+
L

H1

(
#NR(K, Y1, Y2)H1

)1/2·
( ∑

η∈NR(K,Y1,Y2)

∑

06 |h1|<H1

(
1 +

L1 − h1 − L

H2

)
·

∑

0<|h2|<H2

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
))1/2

,
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where γ(h2) := 1− |h2|/H2,

t(`, h1, h2) :=
(
(`+ h2 + h1)

1/θ − (`+ h2)
1/θ

)
−

(
(`+ h1)

1/θ − `1/θ
)
.

Hence,

∣∣U(K, K̃, Y1, Y2, R)
∣∣ �

#NR(K, Y1, Y2)
L2

H1

+
L

H1

(
#NR(K, Y1, Y2)H1

)1/2(
#NR(K, Y1, Y2)H1

L2

H2

)1/2

+

L

H1

(
#NR(K, Y1, Y2)H1

)1/2( L

H2

)1/2

·
(∣∣∣

∑

η,h1,h2

η∈NR(K,Y1,Y2)
0<|hi|<Hi

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/2

.

We rewrite the last inequality as

(4.6)
∣∣U(K, K̃, Y1, Y2, R)

∣∣6A1(R) + A2(R)+

A3(R)
(∣∣∣

∑

η,h1,h2

η∈NR(K,Y1,Y2)
0<|hi|<Hi

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/2

,

where

A1(R) := #NR(K, Y1, Y2)
L2

H1

, A2(R) := #NR(K, Y1, Y2)
L2

H
1/2
2

,

A3(R) :=
L3/2(#NR(K, Y1, Y2))

1/2

(H1H2)1/2
.

Substituting the bound from (4.6) into (4.4), we get

∣∣S̃(K, K̃, Y1, Y2)
∣∣ �

(
K−3/(1−θ)(Y1Y2)

2−θ
)1/2 ∑

R

(#NR(K, Y1, Y2)

Z

)1/2(
|A1(R)|1/2+

|A2(R)|1/2+|A3(R)|1/2
(∣∣∣

∑

η,h1,h2

η∈NR(K,Y1,Y2)
0<|hi|<Hi

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/4)

.
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Then we have

S̃(K, K̃, Y1, Y2) �
∑

R

(
B1(R) + B2(R)+

B3(R)
(∣∣∣

∑

η,h1,h2

η∈NR(K,Y1,Y2)
0<|hi|<Hi

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/4)

,

where

B1(R) :=
(
K−3/(1−θ)(Y1Y2)

2−θ#N 2
R(K, Y1, Y2)L

2

ZH1

)1/2

,(4.7)

B2(R) :=
(
K−3/(1−θ)(Y1Y2)

2−θ#N 2
R(K, Y1, Y2)L

2

ZH
1/2
2

)1/2

,(4.8)

B3(R) :=
(
K−3/(1−θ)(Y1Y2)

2−θ#N 2
R(K, Y1, Y2)L

3/2

Z(H1H2)1/2

)1/2

.(4.9)

Upon inserting it into (1.3), we obtain

(4.10) S(N) � 1

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

(
B1(R) + B2(R)+

B3(R)
(∣∣∣

∑

η,h1,h2

η∈NR(K,Y1,Y2)
0<|hi|<Hi

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/4)

=:

SB1(N) + SB2(N) + SB3(N),

where the meaning of the notation SBi
(N) is clear.

Let us first estimate SB1(N) and SB2(N).
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Case 1. Y2/26Y1 6 2Y2. Combining (4.1), (4.2), (4.3), and (4.7), we get

1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K(2−θ)/(1−θ)−1
∑

R

B1(R) �

1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K(2−θ)/(1−θ)−1K−3/(2(1−θ))(Y1Y2)
1−θ/2·

∑

R

RKY θ−1
2 RY2K

−1

(
RY2K−1/(1−θ)

)1/2(
RY2K−1

)κ1/2
� 1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

Kκ1/2Y
1−θ/2
1 Y

1/2+θ/2−κ1/2
2 ·

∑

R

R3/2−κ1/2 � 1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K3/2Y
1−θ/2
1 Y

−1+2θ−κ1θ/2
2 � N−1/2+3θ/2−κ1θ/2+3ε/2.

Similarly,

1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K(2−θ)/(1−θ)−1
∑

R

B2(R) �

1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K(2−θ)/(1−θ)−1K−3/(2(1−θ))(Y1Y2)
1−θ/2·

∑

R

RKY θ−1
2 RY2K

−1

(
RY2K−1/(1−θ)

)1/2(
RY2K−1

)κ2/4
� 1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

Kκ2/4Y
1−θ/2
1 Y

1/2−κ2/4+θ/2
2 ·

∑

R

R3/2−κ2/4 � 1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

K3/2Y
1−θ/2
1 Y

−1+2θ−κ2θ/4
2 � N−1/2+3θ/2−κ2/4+3ε/2.

Case 2. Y1 > 2Y2. We have

1

N2

∑

K,Y1,Y2
Y1>2Y2

K(2−θ)/(1−θ)−1
∑

R

B1(R) �

1

N2

∑

K,Y1,Y2
Y1>2Y2

K(2−θ)/(1−θ)−1
∑

R

K−3/(2(1−θ))(Y1Y2)
1−θ/2 K2(Y1Y2)

θ−1Y θ
1

Y
θ/2
1 K−θ/(2(1−θ))Y

κ1θ/2
1

�

logN

N2

∑

K,Y1,Y2
Y1>2Y2

K3/2Y
θ−κ1θ/2
1 Y

θ/2
2 � N−1/2+3θ/2−κ1θ/2+3ε/2 logN.
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Similarly,

1

N2

∑

K,Y1,Y2
Y1>2Y2

K(2−θ)/(1−θ)−1
∑

R

B2(R) �

1

N2

∑

K,Y1,Y2
Y1>2Y2

K(2−θ)/(1−θ)−1
∑

R

K−3/(2(1−θ))(Y1Y2)
1−θ/2 K2(Y1Y2)

θ−1Y θ
1

Y
θ/2
1 K−θ/(2(1−θ))Y

κ2θ/4
1

�

logN

N2

∑

K,Y1,Y2
Y1>2Y2

K3/2Y
θ/2
1 Y

θ−κ2θ/4
2 � N−1/2+3θ/2−κ2θ/4+3ε/2 logN.

Thus,

SB1(N) � N−1/2+3θ/2−κ1θ/2+3ε/2 logN,(4.11)

SB2(N) � N−1/2+3θ/2−κ2θ/4+3ε/2 logN.(4.12)

In the remainder of the paper, we will estimate SB3(N).

4.2. Double large sieve. We handle the fivefold exponential sum over η, `, h1, h2

by combining the techniques of Bombieri-Iwaniec, Fourvy-Iwaniec-Cao-Zhai, and
Robert-Sargos. Specifically, we use the double large sieve (as described in [16,
Lemma 8]) to reduce the sum to two spacing inequalities.

Lemma 4.2. Define

S =
∑

k6K

∑

`6L

a(k)b(`)e
(
Xu(k)v(`)

)
,

B1 =
∑

16 k1,k2 6K
|u(k1)−u(k2)|6X−1

1, B2 =
∑

16 `1,`2 6L
|v(`1)−v(`2)|6X−1

1,

where |a(k)|6 1, |b(`)|6 1 are complex valued functions, |u(k)|6 1, |v(`)|6 1 are real
valued functions. Then

S � X1/2B1/2
1 B1/2

2 .

For convenience, we change the range of the summation over h1 and h2 in SB3(N)
in (4.10) from |hi| < Hi to dyadic intervals hi � H̃i, where H̃i denotes the size of the
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dyadic interval. There exist H̃1 6H1 and H̃2 6H2 such that

SB3(N) � logN

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

B3(R)·

(∣∣∣
∑

η,h1,h2

η∈NR(K,Y1,Y2)

hi�H̃i

γ(h2)
∑

L6 `<L1−h1−h2

e
(
c2η

1−1/θt(`, h1, h2)
)∣∣∣
)1/4

.

Next, we apply Lemma 4.2 to the inner sum over η, h1, h2, ` in (4.10) with a ≡ 1,
b = γ(h2), X = Z1−1/θL1/θ−2H̃1H̃2,

B1 =
∑

η1,η2∈NR(K,Y1,Y2)

|ηΘ1 −ηΘ2 |6ZΘX−1

1, Θ := 1− 1

θ
,

B2 =
∑

L6 `,˜̀<L1−h1−h2

h1�H̃1, h2�H̃2

|t(`,h1,h2)−t(˜̀,h̃1,h̃2)|6TX−1

1, T = L1/θ−2H̃1H̃2.

Then, using (4.9), we find

(4.13) SB3(N) � logN

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

B3(R)X1/8B1/8
1 B1/8

2 �

1

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

K−3/(2(1−θ))(Y1Y2)
1−θ/2·

(
#NR(K, Y1, Y2)L

)3/4

Z1/2(H1H2)1/4
X1/8B1/8

1 B1/8
2 .

We estimate B1 and B2 separately. First, we replace B1 by a larger quantity. We
drop the restriction r ∈ [R, 2R) and set

η1 := m
−θ/(1−θ)
1 −m

−θ/(1−θ)
2 , η2 := m

−θ/(1−θ)
3 −m

−θ/(1−θ)
4 ,

where m1,m3 � KY θ−1
1 and m2,m4 � KY θ−1

2 . Applying the first-order Taylor
approximation to

((
m

−θ/(1−θ)
3 −m

−θ/(1−θ)
4

)Θ
+O(ZΘX−1)

)1/Θ

,

we get

m
−θ/(1−θ)
1 −m

−θ/(1−θ)
2 = m

−θ/(1−θ)
3 −m

−θ/(1−θ)
4 +O

(
ZX−1

)
.
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Then

B1 6
∑

αθK(2Y1)θ−1 6m1,m3<2αθKY θ−1
1

αθK(2Y2)θ−1 6m2,m4<2αθKY θ−1
2

|mβ
1−mβ

2−mβ
3+mβ

4 |6 cZX−1

16
∑

16m1,...,m4<4αθKY θ−1
2

|mβ
1−mβ

2−mβ
3+mβ

4 |6 cZX−1

1,

where β := −θ/(1−θ) and c > 0 is the appropriate constant. To estimate this quan-
tity, we use a slight variation of Robert and Sargos’s inequality (see [16, Theorem 2]):

Lemma 4.3. Let M > 2 be an integer, a2 > a1 > 0, δ > 0 and α 6= 0, 1 be real num-
bers, N (M, δ) be the number of quadruplets (m1,m2,m3,m4) of integers, a1M 6mi <
a2M , i = 1, . . . , 4, satisfying the inequality

|mα
1 +mα

2 −mα
3 −mα

4 |6 δMα.

Then

N (M, δ) �ε M
2+ε + δM4+ε.

Thus,

(4.14) B1 �ε1 (KY θ−1
2 )2+ε1 +

(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4+ε1

with some ε1 > 0.
We estimate B2 using the result of Cao and Zhai (see [4, Theorems 1 and 2]):

Lemma 4.4. Let M,H1, H2 be integers > 10 such that H1 6H2 6M2/3−ε, ∆ > 0,
α 6= 0, 1, 2, 3 be real, and let T := Mα−2H1H2. Furthermore, let F(M,H1, H2,∆)

be the number of sextuplets (m, m̃, h1, h̃1, h2, h̃2) with M 6m, m̃ < 2M , h1, h̃1 � H1,

and h2, h̃2 � H2, satisfying
∣∣t(m,h1, h2)− t(m̃, h̃1, h̃2)

∣∣6∆T.

Then

F(M,H1, H2,∆)M−2ε � MH1H2 +∆(MH1H2)
2 +M−2H2

1H
6
2 +H2

1H
8/3
2 .

Alternatively, if H1 is much smaller than H2, namely one has H1M
ε < H2 6M1−ε,

and H1H2 6M3/2−ε, then one also has the inequality

F(M,H1, H2,∆)M−2ε � MH1H2 +∆(MH1H2)
2 + (MH7

1H
9
2 )

1/4 +M−2H4
1H

4
2+

(∆M4H15
1 H17

2 )1/8+(∆M4H3
1H2)

1/2+(H13
1 H15

2 )1/6+(∆M2H8
1H

10
2 )1/4+(M−1H5

1H
6
2 )

1/2.

We first assume that H̃1 and H̃2 are separated at least by the factor of Lε1 . Pre-
cisely, we have either H̃1L

ε1 � H̃2 or H̃2L
ε1 � H̃1, where ε1 will be chosen later.

The case H̃1 ≈ H̃2 will be considered at the end of the paper. Applying the second
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part of Lemma 4.4 to B2 we obtain

B2 �ε1 L
2ε1

(
LH̃1H̃2+X−1(LH̃1H̃2)

2+(LH̃7
1H̃

9
2 )

1/4+L−2H̃4
1H̃

4
2+(X−1L4H̃15

1 H̃17
2 )1/8+

(X−1L4H̃3
1H̃2)

1/2 + (H̃13
1 H̃15

2 )1/6 + (X−1L2H̃8
1H̃

10
2 )1/4 + (L−1H̃5

1H̃
6
2 )

1/2
)
.

Here we make the same choice of ε1.
Next, note that the expression X1/8B1/8

1 B1/8
2 is maximized when H̃1 and H̃2 take

their maximum values, that is, when H̃1 = H1 and H̃2 = H2. Therefore,

SB3(N) � N ε+ε1

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

K−3/(2(1−θ))(Y1Y2)
1−θ/2·

(
#NR(K, Y1, Y2)L

)1/4

Z1/2(H1H2)1/4
(
Z1−1/θL1/θ−2H1H2

)1/8·
(
(KY θ−1

2 )2 +
(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4
)1/8

·
(
LH1H2 +X−1(LH1H2)

2 + (LH7
1H

9
2 )

1/4 + L−2H4
1H

4
2 + (X−1L4H15

1 H17
2 )1/8+

(X−1L4H3
1H2)

1/2 + (H13
1 H15

2 )1/6 + (X−1L2H8
1H

10
2 )1/4 + (L−1H5

1H
6
2 )

1/2
)1/8

.

Next, we consider two cases once again.

Case 1. Y2/26Y1 6 2Y2.

From (4.1), (4.2), and (4.3) we have

#NR(K, Y1, Y2) � RKY θ−1
2 , Z � RY2K

−1/(1−θ), L � ZKθ/(1−θ) � RY2K
−1,

X = Z1−1/θL1/θ−2H1H2 = K2Y −1
2 R−1H1H2.
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Then

(4.15) S
(1)
B3

(N) := SB3(N ; Y2/26Y1 6 2Y2) �
N ε+ε1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

Y
1−θ/2
1 Y

1/2+θ/4
2

∑

R

R

(H1H2)1/4
·

(
K2Y −1

2 R−1H1H2

)1/8(
(KY θ−1

2 )2 +
(KY θ−1

2 )4

K3Y θ−2
2 R−2H1H2

)1/8

·
(
RY2K

−1H1H2 +
(RY2K

−1H1H2)
2

K2Y −1
2 R−1H1H2

+ (RY2K
−1H7

1H
9
2 )

1/4 + (RY2K
−1)−2H4

1H
4
2+

((RY2K
−1)4H15

1 H17
2

K2Y −1
2 R−1H1H2

)1/8

+
((RY2K

−1)4H3
1H2

K2Y −1
2 R−1H1H2

)1/2

+ (H13
1 H15

2 )1/6+

((RY2K
−1)2H8

1H
10
2

K2Y −1
2 R−1H1H2

)1/4

+ ((RY2K
−1)−1H5

1H
6
2 )

1/2
)1/8

.

The most contribution to the sum over R comes from R maximal, namely R �
KY θ−1

2 . It corresponds to Z � Y θ
2 K

−θ/(1−θ), X � KY −θ
2 H1H2, L � Y θ

2 , H1 � Y κ1θ
2 ,

H2 � Y κ2θ
2 . Then, we get

S
(1)
B3

(N) � N ε+ε1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

KY
1/2+3θ/4
2

(H1H2)1/4
·

(
KY −θ

2 H1H2

)1/8(
(KY θ−1

2 )2 +
(KY θ−1

2 )4

KY −θ
2 H1H2

)1/8

·
(
Y θ
2 H1H2 +

(Y θ
2 H1H2)

2

KY −θ
2 H1H2

+ (Y θ
2 H

7
1H

9
2 )

1/4 + Y −2θ
2 H4

1H
4
2+

( Y 4θ
2 H15

1 H17
2

KY −θ
2 H1H2

)1/8

+
( Y 4θ

2 H3
1H2

KY −θ
2 H1H2

)1/2

+ (H13
1 H15

2 )1/6+

( Y 2θ
2 H8

1H
10
2

KY −θ
2 H1H2

)1/4

+ (Y −θ
2 H5

1H
6
2 )

1/2
)1/8

.
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The maximum contribution to the sum over K, Y1, Y2 comes from Y2 (which is
� Y1) and K maximal, namely Y1, Y2 � N , K � N1+ε. Thus,

(4.16) S
(1)
B3

(N) � N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH1H2

)1/8(
N2θ +

N4θ

N1−θH1H2

)1/8

·

(
N θH1H2 +

(
N θH1H2

)2

N1−θH1H2

+ (N θH7
1H

9
2 )

1/4 +N−2θH4
1H

4
2 + (N5θ−1H14

1 H16
2 )1/8+

(N5θ−1H2
1 )

1/2 + (H13
1 H15

2 )1/6 + (N3θ−1H7
1H

9
2 )

1/4 + (N−θH5
1H

6
2 )

1/2
)1/8

.

Case 2. Y1 > 2Y2.

From (4.1), (4.2), and (4.3) we have

#NR(K, Y1, Y2) � KY θ−1
1 KY θ−1

2 , Z = Y θ
1 K

−θ/(1−θ), L � ZKθ/(1−θ) = Y θ
1 ,

X � KY −θ
1 H1H2.

Simplifying the right hand side in (4.13), we obtain

S
(2)
B3

(N) := SB3

(
N ; Y1 > 2Y2

)
�

logN

N2

∑

K,Y1,Y2
Y1>2Y2

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
(
KY −θ

1 H1H2

)1/8B1/8
1 B1/8

2 ,

where (logN)-factor comes from the sum over R.
Here we need to consider two more cases. First, we assume that the first term in

the bound (4.14) for B1 is dominating:

Case 2.1. (KY θ−1
2 )2+ε1 �

(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4+ε1.
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This condition can be rewritten as Y 2−θ
2 � KY 2θ

1 (H1H2)
−1. We have

(4.17) S
(2.1)
B3

(N) := SB3

(
N ; Y1 > 2Y2; Y 2−θ

2 � KY 2θ
1 (H1H2)

−1
)
�

N ε+ε1

N2

∑

K,Y1,Y2
Y1>2Y2

Y 2−θ
2 �KY 2θ

1 (H1H2)−1

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
(
KY −θ

1 H1H2

)1/8·

(
KY θ−1

2

)1/4(
Y θ
1 H1H2 +

(Y θ
1 H1H2)

2

KY −θ
1 H1H2

+ (Y θ
1 H

7
1H

9
2 )

1/4 + Y −2θ
1 H4

1H
4
2+

( Y 4θ
1 H15

1 H17
2

KY −θ
1 H1H2

)1/8

+
( Y 4θ

1 H3
1H2

KY −θ
1 H1H2

)1/2

+ (H13
1 H15

2 )1/6+

( Y 2θ
1 H8

1H
10
2

KY −θ
1 H1H2

)1/4

+ (Y −θ
1 H5

1H
6
2 )

1/2
)1/8

.

Recall that H1H2 = Y
(κ1+κ2)θ
1 with κ1 + κ2 6

3
2
− ε1. The most contribution in the

last upper bound for S
(2.1)
B3

(N) comes from K, Y1, Y2 maximal. We get

(4.18) S
(2.1)
B3

(N) � N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH1H2

)1/8
N θ/4·

(
N θH1H2 +

(
N θH1H2

)2

N1−θH1H2

+ (N θH7
1H

9
2 )

1/4 +N−2θH4
1H

4
2 + (N5θ−1H14

1 H16
2 )1/8+

(N5θ−1H2
1 )

1/2 + (H13
1 H15

2 )1/6 + (N3θ−1H7
1H

9
2 )

1/4 + (N−θH5
1H

6
2 )

1/2
)1/8

.

Case 2.2. (KY θ−1
2 )2+ε1 �

(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4+ε1.
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Similarly, this condition can be rewritten as Y 2−θ
2 � KY 2θ

1 (H1H2)
−1. Since the

second term in the bound for B1 (4.14) dominates in this case, we obtain:

(4.19) S
(2.2)
B3

(N) := SB3

(
N ; Y1 > 2Y2; Y 2−θ

2 � KY 2θ
1 (H1H2)

−1
)
�

N ε+ε1

N2

∑

K,Y1,Y2
Y1>2Y2

Y 2−θ
2 �KY 2θ

1 (H1H2)−1

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
(
KY −θ

1 H1H2

)1/8·

( (KY θ−1
2 )4

KY −2θ
1 Y θ

2 H1H2

)1/8(
Y θ
1 H1H2 +

(Y θ
1 H1H2)

2

KY −θ
1 H1H2

+ (Y θ
1 H

7
1H

9
2 )

1/4 + Y −2θ
1 H4

1H
4
2+

( Y 4θ
1 H15

1 H17
2

KY −θ
1 H1H2

)1/8

+
( Y 4θ

1 H3
1H2

KY −θ
1 H1H2

)1/2

+ (H13
1 H15

2 )1/6+

( Y 2θ
1 H8

1H
10
2

KY −θ
1 H1H2

)1/4

+ (Y −θ
1 H5

1H
6
2 )

1/2
)1/8

.

The maximum contribution to this expression comes from K, Y1 maximal and
Y2 � 1. We get

(4.20) S
(2.2)
B3

(N) � N3ε+ε1
N−1/4+5θ/8

(H1H2)1/4

(
N θH1H2 +N3θ−1H1H2 + (N θH7

1H
9
2 )

1/4+

N−2θH4
1H

4
2 + (N5θ−1H14

1 H16
2 )1/8 + (N5θ−1H2

1 )
1/2 + (H13

1 H15
2 )1/6+

(N3θ−1H7
1H

9
2 )

1/4 + (N−θH5
1H

6
2 )

1/2
)1/8

.

Combining (4.16) and (4.18), we find

(4.21) S
(1)
B3

(N) + S
(2.1)
B3

(N) �

N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH1H2

)1/8(
N2θ +

N4θ

N1−θH1H2

)1/8

·
(
N θH1H2 +N3θ−1H1H2 + (N θH7

1H
9
2 )

1/4 +N−2θH4
1H

4
2 + (N5θ−1H14

1 H16
2 )1/8+

(N5θ−1H2
1 )

1/2 + (H13
1 H15

2 )1/6 + (N3θ−1H7
1H

9
2 )

1/4 + (N−θH5
1H

6
2 )

1/2
)1/8

.

We can drop the term N4θ/(N1−θH1H2) in the second factor by assuming that
H1H2 � N3θ−1. Choose ε1 < ε. Then, from (4.10) and (4.21),

S(N) � SB1(N) + SB2(N) +N4ε

9∑

i=1

Si + S
(2.2)
B3

(N),
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where Si correspond to nine terms in the bound in (4.21). We have

S1 = N−1/2+3θ/4+1/8+θ/4, S2 = N−1/2+5θ/4.

Then S1, S2 = o(N−4ε) if θ < 3
8
− 4ε = 0.375− 4ε. Similarly,

S3 = N−3/8+29θ/32H
3/32
1 H

5/32
2 , S4 = N−3/8+5θ/8H

3/8
1 H

3/8
2 ,

S5 = N−25/64+61θ/64H
6/64
1 H

8/64
2 , S6 = N−7/16+19θ/16H

−1/8
2 ,

S7 = N−3/8+7θ/8H
13/48
1 H

15/48
2 , S8 = N−13/32+31θ/32H

3/32
1 H

5/32
2 ,

S9 = N−3/8+13θ/16H
3/16
1 H

4/16
2 .

By combining the expressions with the bounds (4.11) and (4.12) for SB1(N) and
SB2(N), we obtain that S(N) = o(1) when

θ < min
( 1

3− κ1

,
2

6− κ2

,
12

29 + 3κ1 + 5κ2

,
3

5 + 3κ1 + 3κ2

,
25

61 + 6κ1 + 8κ2

,
7

19− 2κ2

,

18

42 + 7κ1 + 9κ2

,
13

31 + 3κ1 + 5κ2

,
6

13 + 3κ1 + 4κ2

)
− 5ε,

which is maximized at (κ1, κ2) = (12
43
, 24
43
). Therefore, we have θ < 43

117
− 5ε, with the

largest term being S7. From (4.20) we find

S
(2.2)
B3

(N) � N4ε
(
N−1/4+3θ/4−(κ1+κ2)θ/8 +N−3/8+θ−(κ1+κ2)θ/8+

N−1/4+21θ/32−κ1θ/32+κ2θ/32 +N−1/4+3θ/8+(κ1+κ2)θ/4 +N−17/64+45θ/64−16κ1θ/64+

N−5/16+15θ/16−2κ1θ/16−4κ2θ/16 +N−1/4+5θ/8+κ1θ/48+3κ2θ/48+

N−9/32+23θ/32−κ1θ/32+κ2θ/32 +N−1/4+9θ/16+κ1θ/16+2κ2θ/16
)
,

which is o(1) when

θ < min
( 2

6− κ1 − κ2

,
3

8− κ1 − κ2

,
8

21− κ1 + κ2

,
2

3 + 2κ1 + 2κ2

,
17

45− 16κ1

,

5

15− 2κ1 − 4κ2

,
12

30 + κ1 + 3κ2

,
9

23− κ1 + κ2

,
4

9 + κ1 + 2κ2

)
− 5ε.

It covers the interval θ ∈ [0, 43
117

) when (κ1, κ2) = (12
43
, 24
43
). Note that with this choice

of (κ1, κ2) the condition H1H2 � N3θ−1 is also satisfied.

4.3. Case H̃1 ≈ H̃2. We assume that L−ε1H̃1 � H̃2 � Lε1H̃1. We estimate SB3(N)
using the first part of Lemma 4.4:

B2 �ε1 L
2ε1

(
LH̃1H̃2 +X−1(LH̃1H̃2)

2 + L−2H̃2
1H̃

6
2 + H̃2

1H̃
8/3
2

)
.
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We can similarly conclude that the expression X1/8B1/8
1 B1/8

2 is maximized when H̃1

and H̃2 are both maximal, which occurs when H̃1 = H1 and H̃2 = Lε1H1. Then

SB3(N) � N ε+ε1

N2

∑

K,Y1,Y2

K(2−θ)/(1−θ)−1 max
K 6 K̃ 6 2K

∑

R

K−3/(2(1−θ))(Y1Y2)
1−θ/2·

(
#NR(K, Y1, Y2)L

)1/4

Z1/2(H1H2)1/4
(
Z1−1/θL1/θ−2H2

1

)1/8·
(
(KY θ−1

2 )2 +
(
(KY θ−1

2 )θ/(1−θ)Z1/θL2−1θH−2
1

)
(KY θ−1

2 )4
)1/8

·
(
LH2

1 +
(LH2

1 )
2

Z1−1/θL1/θ−2H2
1

+ L−2H8
1 +H

14/3
1

)1/8

.

Case 1. Y2/26Y1 6 2Y2.

Similarly to (4.15), we have

S
(1)
B3

(N) � N ε+ε1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

Y
1−θ/2
1 Y

1/2+θ/4
2

∑

R

R

(H1H2)1/4
·

(
K2Y −1

2 R−1H2
1

)1/8(
(KY θ−1

2 )2 +
(KY θ−1

2 )4

K3Y θ−2
2 R−2H2

1

)1/8

·

(
RY2K

−1H2
1 +

(
RY2K

−1H2
1

)2

K2Y −1
2 R−1H2

1

+
H8

1(
RY2K−1

)2 +H
14/3
1

)1/8

.

Again, the most contribution to the sum over R comes from R maximal, so we get

S
(1)
B3

(N) � N ε+ε1

N2

∑

K,Y1,Y2

Y2/26Y1 6 2Y2

KY
1/2+3θ/4
2

(H1H2)1/4
·

(
KY −θ

2 H2
1

)1/8(
(KY θ−1

2 )2 +
(KY θ−1

2 )4

KY −θ
2 H2

1

)1/8

·
(
Y θ
2 H

2
1 +

(Y θ
2 H

2
1 )

2

KY −θ
2 H2

1

+
H8

1

Y 2θ
2

+H
14/3
1

)1/8

.
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Next, we take maximum values of K, Y1, Y2, yielding

(4.22) S
(1)
B3

(N) � N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH2

1

)1/8(
N2θ +

N4θ

N1−θH2
1

)1/8

·

(
N θH2

1 +

(
N θH2

1

)2

N1−θH2
1

+
H8

1

N2θ
+H

14/3
1

)1/8

.

Case 2. Y1 > 2Y2.

We have

S
(2)
B3

(N) � logN

N2

∑

K,Y1,Y2
Y1>2Y2

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
(
KY −θ

1 H2
1

)1/8B1/8
1 B1/8

2 .

Case 2.1. (KY θ−1
2 )2+ε1 �

(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4+ε1.

Note that now X � KY −θ
1 H2

1L
O(ε1). Similarly to (4.17), we get

S
(2.1)
B3

(N) � N ε+ε1

N2

∑

K,Y1,Y2
Y1>2Y2

Y 2−θ
2 �KY 2θ

1 (H2
1 )

−1NO(ε1)

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
·

(
KY −θ

1 H2
1

)1/8
(KY θ−1

2 )1/4
(
Y θ
1 H

2
1 +

(Y θ
1 H

2
1 )

2

KY −θ
1 H2

1

+
H8

1

Y 2θ
1

+H
14/3
1

)1/8

.

Taking the maximal K, Y1, Y2, we obtain

(4.23) S
(2.1)
B3

(N) � N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH2

1

)1/8
N θ/4·

(
N θH2

1 +
(N θH2

1 )
2

N1−θH2
1

+
H8

1

N2θ
+H

14/3
1

)1/8

.

From (4.22) and (4.23), we find

S
(1)
B3

(N) + S
(2.1)
B3

(N) � N3ε+ε1
N−1/2+3θ/4

(H1H2)1/4
(
N1−θH2

1

)1/8(
N2θ +

N4θ

N1−θH2
1

)1/8

·

(
N θH2

1 +

(
N θH2

1

)2

N1−θH2
1

+
H8

1

N2θ
+H

14/3
1

)1/8

.
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With our choice of (κ1, κ2) we have N2θ > N4θ/(N1−θH2
1 ). Thus,

S
(1)
B3

(N) + S
(2.1)
B3

(N) � N3ε+ε1
N−3/8+7θ/8

H
1/4
2

·

(
N θH2

1 +

(
N θH2

1

)2

N1−θH2
1

+
H8

1

N2θ
+H

14/3
1

)1/8

= N4ε
(
N−3/8+θ+κ1θ/4−κ2θ/4+

N−1/2+5θ/4+κ1θ/4−κ2θ/4 +N−3/8+5θ/8+κ1θ−κ2θ/4 +N−3/8+7θ/8+7κ1θ/12−κ2θ/4
)
,

which is o(1) when

θ < min
( 3

8 + 2κ1 − 2κ2

,
2

5 + κ1 − κ2

,
3

5 + 8κ1 − 2κ2

,
9

21 + 14κ1 − 6κ2

)
− 5ε,

which covers the range [0, 43
117

) when (κ1, κ2) = (12
43
, 24
43
).

Case 2.2. (KY θ−1
2 )2+ε1 �

(
(KY θ−1

2 )θ/(1−θ)ZX−1
)
(KY θ−1

2 )4+ε1.

Similarly to (4.19), we find

S
(2.2)
B3

(N) � N ε+ε1

N2

∑

K,Y1,Y2
Y1>2Y2

Y 2−θ
2 �KY 2θ

1 (H2
1 )

−2NO(ε1)

KY
1/4+θ/2
1 Y

1/4+θ/4
2

(H1H2)1/4
(
KY −θ

1 H2
1

)1/8·

( (KY θ−1
2 )4

KY −2θ
1 Y θ

2 H
2
1

)1/8(
Y θ
1 H

2
1 +

(Y θ
1 H

2
1 )

2

KY −θ
1 H2

1

+
H8

1

Y 2θ
1

+H
14/3
1

)1/8

.

The maximum contribution comes from K � N1+ε, Y1 � N , Y2 � 1:

S
(2.2)
B3

(N) � N3ε+ε1
N−1/4+5θ/8

(H1H2)1/4

(
N θH2

1 +N3θ−1H2
1 +

H8
1

N2θ
+H

14/3
1

)1/8

�

N4ε
(
N−1/4+3θ/4−κ2θ/4 +N−3/8+θ−κ2θ/4+

N−1/4+3θ/8+3κ1θ/4−κ2θ/4 +N−1/4+5θ/8+κ1θ/3−κ2θ/4
)
,

which is o(1) when

θ < min
( 1

3− κ2

,
3

8− 2κ2

,
2

3 + 6κ1 − 2κ2

,
6

15 + 8κ1 − 6κ2

)
− 5ε,

which covers the range [0, 43
117

) when (κ1, κ2) = (12
43
, 24
43
).
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