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CONDITIONAL LOWER BOUNDS ON THE DISTRIBUTION OF

CENTRAL VALUES IN FAMILIES OF L-FUNCTIONS

MAKSYM RADZIWI L L AND KANNAN SOUNDARARAJAN

To Henryk Iwaniec, with admiration

Abstract. We establish a general principle that any lower bound on the non-vanishing of
central L-values obtained through studying the one-level density of low-lying zeros can be
reûned to show that most such L-values have the typical size conjectured by Keating and
Snaith. We illustrate this technique in the case of quadratic twists of a given elliptic curve,
and similar results would hold for the many examples studied by Iwaniec, Luo, and Sarnak
in their pioneering work on 1-level densities [5].

1. Introduction

Selberg [11, 12] (see [8] for a recent treatment) established that if t is chosen uniformly
from [0, T ] then the values log |·(1

2
+ it)| are distributed approximately like a Gaussian

random variable with mean 0 and variance 1
2
log log T . More recently, Keating and Snaith [6]

have conjectured that central values in families of L-functions have an analogous log-normal
distribution with a prescribed mean and variance depending on the “symmetry type” of the
family. This is a powerful conjecture which gives more precise versions of conjectures on
the non-vanishing of L-values; for example, it refines Goldfeld’s conjecture (towards which
remarkable progress has been made with the work of Smith [13]) that the rank in families of
quadratic twists of an elliptic curve is 0 for almost all twists with even sign of the functional
equation. In [7] we enunciated a general principle which shows the upper bound (in a
sense to be made precise below) part of the Keating–Saith conjecture in any family where
somewhat more than the first moment can be computed. In this paper, we consider the
complementary problem of obtaining lower bounds in the Keating-Saith conjecture, which is
intimately tied up with questions on the non-vanishing of L-values. One analytic approach,
conditional on the Generalized Riemann Hypothesis, towards such non-vanishing results is
based on computing the 1-level density for low lying zeros in families of L-functions, and
our goal in this paper is to show how this approach (in the situations where it succeeds
in producing a positive proportion of non-vanishing) may be refined to give corresponding
lower bounds towards the Keating–Snaith conjectures. In a later paper, we shall consider
similar refinements of the mollifier method, which is another analytic approach that in many
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cases establishes non-vanishing results unconditionally. Algebraic approaches such as Smith’s
work [13] on Goldfeld’s conjecture are capable of establishing definitive non-vanishing results
(or, for other examples, see Rohrlich [9,10] and Chinta [2]), but we are unable to refine these
methods to show that the non-zero values that are produced in fact have the typical size
predicted by the Keating-Snaith conjectures.
To illustrate our method, we treat the family of quadratic twists of an elliptic curve E

defined over Q with conductor N , where the 1-level density of low lying zeros has been
studied by many authors, notably Heath-Brown [3]. Let the associated L-function be

L(s, E) =
>∑

n=1

a(n)n2s,

where the coefficients a(n) are normalized such that |a(n)| f d(n). Since elliptic curves are
known to be modular, L(s, E) has an analytic continuation to the entire complex plane and
satisfies the functional equation

Λ(s, E) = ëEΛ(12 s, E),

where ëE , the root number, is ±1 and

Λ(s, E) =
(:N

2Ã

)s

Γ(s+ 1
2
)L(s, E).

Throughout the paper, let d denote a fundamental discriminant coprime to 2N , and let
Çd = (d· ) denote the associated primitive quadratic character. Let Ed denote the quadratic
twist of E by d, and let its associated L-function be

L(s, Ed) =

>∑

n=1

a(n)Çd(n)n
2s.

If (d,N) = 1 then Ed has conductor Nd2 and the completed L-function

Λ(s, Ed) =
(:N |d|

2Ã

)s

Γ(s+ 1
2
)L(s, Ed)

is entire and satisfies the functional equation

Λ(s, Ed) = ëE(d)Λ(12 s, Ed)

with

ëE(d) = ëEÇd(2N).

Note that, by Waldspurger’s theorem, L(1
2
, Ed) g 0. Of course L(1

2
, Ed) = 0 when ëE(d) =

21, and in this paper, we shall restrict attention to those twists with root number 1. Put
therefore

E = {d : d a fundamental discriminant with (d, 2N) = 1 and ëE(d) = 1}.



LOWER BOUNDS ON THE DISTRIBUTION OF CENTRAL VALUES 3

The Keating-Snaith conjectures predict that for d * E , the quantity logL(1
2
, Ed) has an

approximately normal distribution with mean 21
2
log log |d| and variance log log |d|. To state

this precisely, let ³ < ³ be real numbers, and for any X g 20, let us define

(1) N (X ;³, ³) =
∣∣∣
{
d * E , X < |d| f 2X :

logL(1
2
, Ed) +

1
2
log log |d|√

log log |d|
* (³, ³)

}∣∣∣.

Then the Keating-Snaith conjecture states that, for fixed intervals (³, ³) and as X ³ >,

(2) N (X ;³, ³) = |{d * E , X f |d| f 2X}|
( 1:

2Ã

∫ ³

³

e2
x2

2 dx+ o(1)
)
.

Here we interpret logL(1
2
, Ed) to be negative infinity if L(1

2
, Ed) = 0, and the conjecture

implies in particular that L(1
2
, Ed) 6= 0 for almost all d * E . Towards this conjecture, we

established in [7] thatN (X ;³,>) is bounded above by the right hand side of the conjectured
relation (2). Complementing this, we now establish a conditional lower bound forN (X ;³, ³).

Theorem 1. Assume the Generalized Riemann Hypothesis for the family of twisted L-
functions L(s, E × Ç) for all Dirichlet characters Ç. Then for fixed intervals (³, ³) and

as X ³ > we have

N (X ;³, ³) g |{d * E , X f |d| f 2X}|
(1
4

1:
2Ã

∫ ³

³

e2
x2

2 dx+ o(1)
)
.

Above we have assumed GRH for all character twists of L(s, E); this is largely for conve-
nience, and would allow us to restrict d in progressions. With more effort one could relax
the assumption to GRH for the family of quadratic twists L(s, Ed). Note that the factor 1

4
in our theorem matches the proportion of quadratic twists with non-zero L-value obtained
in Heath-Brown’s work [3].
While we have described results for the family of quadratic twists of an elliptic curve, the

method is very general and applies to many situations where 1-level densities of low lying
zeros in families have been analyzed and yield a positive proportion of non-vanishing for the
central values. The work of Iwaniec, Luo, and Sarnak [5] gives many such examples, and the
technique described here refines their non-vanishing corollaries, showing that the non-zero
L-values that are produced have the typical size conjectured by Keating and Snaith. For in-
stance, consider the family of symmetric square L-functions L(s, sym2f) where f ranges over
Hecke eigenforms of weight k for the full modular group (denote the set of such eigenforms
by Hk), with k f K (thus there are about K2/48 such L-values). Assuming GRH in this
family, Iwaniec, Luo, and Sarnak (see Corollary 1.8 of [5]), showed that at least a proportion
8
9
of these L-values are non-zero. We may refine this to say that for any fixed interval (³, ³)

and as K ³ >
∣∣∣{f * Hk, k f K :

logL(1
2
, sym2f)2 1

2
log log k:

log log k
* (³, ³)

}∣∣∣ g
(8
9

1:
2Ã

∫ ³

³

e2x2/2dx+o(1)
)K2

48
.

We end the introduction by mentioning the recent work of Bui, Evans, Lester, and Pratt [1]
who establish “weighted” (where the weight is a mollified central value) analogues of the
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Keating-Snaith conjecture. This amounts to a form of conditioning on non-zero value since
central values that are zero are assigned a weight equal to zero. The use of such a weighted
measure allows [1] to establish a full asymptotic, however as a side effect they have little
control over the nature of the weight.
Acknowledgments. We are grateful to Emmanuel Kowalski for a careful reading of the
paper, and helpful comments. The first author was partially supported by DMS-1902063.
The second author is partially supported by an NSF grant, and a Simons Investigator award
from the Simons Foundation. The paper was completed while KS was a Senior Fellow at the
Institute for Theoretical Studies, ETH Zürich, whom he thanks for their excellent working
conditions, and warm hospitality.

2. Notation and statements of the key propositions

We begin by introducing some notation, as in our paper [7], and then describing three
key propositions which underlie the proof of the main theorem. Let N0 denote the lcm of 8
and N . Let » be ±1, and let a mod N0 denote a residue class with a c 1 or 5 mod 8. We
assume that » and a are such that for any fundamental discriminant d with sign » and with
d c a mod N0, the root number ëE(d) = ëEÇd(2N) equals 1. Define

E(», a) = {d * E : »d > 0, d c a mod N0},
so that E is the union of all such sets E(», a).
We write below

2L2

L
(s, E) =

>∑

n=1

ΛE(n)

ns
,

where |ΛE(n)| f 2Λ(n) so that ΛE(n) = 0 unless n = pk is a prime power. If p & N0, we
may write a(p) = ³p + ³p for a complex number ³p of magnitude 1 (unique up to complex
conjugation), and then

ΛE(p
k) = (³k

p + ³p
k) log p.

Note that

2L2

L
(s, Ed) =

>∑

n=1

ΛE(n)

ns
Çd(n).

For fundamental discriminants d * E with |d| f 3X , and a parameter 3 f x define

(3) P(d; x) =
∑

pfx
p&N0

a(p):
p
Çd(p).

Let h denote a smooth function with compactly supported Fourier transform

ĥ(¿) =

∫ >

2>
h(t)e22Ãi¿tdt,
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and such that |h(x)| j (1+x2)21 for all x * R. For concreteness, one could simply consider
h to be the Fejer kernel given by

(4) h(x) =
(sin(Ãx)

Ãx

)2

, ĥ(t) = max(12 |t|, 0).

Lastly, let Φ denote a smooth, non-negative function compactly supported in [1
2
, 5
2
] with

Φ(x) = 1 for x * [1, 2], and we put Φ̌(s) =
∫>
0

Φ(x)xsdx. Below all implied constants will
be allowed to depend on N , h, and Φ, which are considered fixed.
Our first proposition connects logL(1

2
, Ed) with the sum over primes P(d; x) (for suitable

x) with an error term given in terms of the zeros of L(s, Ed). Such formulae have a long
history, going back to Selberg, and the work here complements an upper bound version that
played a key role in [14].

Proposition 1. Let d be a fundamental discriminant in E , and let 3 f x f |d|. Assume

GRH for L(s, Ed), and suppose that L(1
2
, Ed) is not zero. Let ³d run over the ordinates of

the non-trivial zeros of L(s, Ed). Then

logL(1
2
, Ed) = P(d; x)2 1

2
log log x+O

( log |d|
log x

+
∑

³d

log
(
1 +

1

(³d log x)2

))
.

To analyze sums over the zeros we shall use the following proposition, whose proof is
based on the explicit formula. The ideas behind this proposition are also familiar, and in
this setting (and in the case 3 = 1 below) may be traced back to the work of Heath-Brown [3].

Proposition 2. Let h be a smooth function with h(x) j (1 + x2)21 and whose Fourier

transform is compactly supported in [21, 1]. Let L g 1 be a real number, and 3 be a positive

integer coprime to N0, and assume that eL32 f X2. If 3 is neither a square, nor a prime

times a square, then

(5)
∑

d*E(»,a)

(∑

³d

h
(³dL
2Ã

))
Çd(3)Φ

(»d
X

)
j X

1
2
+ë3

1
2 e

L
4 .

If 3 is a square then

∑

d*E(»,a)

(∑

³d

h
(³dL
2Ã

))
Çd(3)Φ

(»d
X

)
= O(X

1
2
+ë3

1
2 e

L
4 )

+
X

N0

∏

p|3

(
1 +

1

p

)21 ∏

p&N0

(
12 1

p2

)
Φ̂(0)

(2 logX
L

ĥ(0) +
h(0)

2
+O

( 1

L

))
.(6)

Finally if 3 is q times a square, for a prime number q, then

(7)
∑

d*E(»,a)

(∑

³d

h
(³dL
2Ã

))
Çd(3)Φ

(»d
X

)
j X

LN0

log q:
q

∏

p|3

(
1 +

1

p

)21

+X
1
2
+ë3

1
2 eL/4.
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Finally, to understand the distribution of P(d; x) both when d is chosen uniformly over
discriminants d * E , and when d * E is weighted by contributions from low-lying zeros, we
shall use the method of moments, drawing upon the following proposition.

Proposition 3. Let k be any fixed non-negative integer. Let X be large, and put x =
X1/ log log logX . Then

(8)
∑

d*E(»,a)
P(d; x)kΦ

(»d
X

)
=

( ∑

d*E(»,a)
Φ
(»d
X

))
(log logX)

k
2 (Mk + o(1)),

where Mk denotes the k-th Gaussian moment:

Mk =
1:
2Ã

∫ >

2>
xke2

x2

2 dx =

{
k!

2k/2(k/2)!
if k is even

0 if k is odd.

Further, for any parameter L g 1 with eL f X2 we have,

∑

d*E
P(d; x)k

(∑

³d

h
(³dL
2Ã

))
Φ
(»d
X

)
= O(X

1
2
+ëe

L
4 )

+
X

N0

∏

p&N0

(
12 1

p2

)
Φ̂(0)

(2 logX
L

ĥ(0) +
h(0)

2
+O

( 1

L

))
(Mk + o(1))(log logX)

k
2 .(9)

3. Deducing the Theorem from the main propositions

We keep the notations introduced in Section 2. Let X be large, and put x = X1/ log log logX .

Lemma 1. Let ³ < ³ be real numbers. Let GX(³, ³) denote the set of discriminants d * E
with X f |d| f 2X such that

P(d; x):
log logX

* (³, ³),

and such that there are no zeros Ãd = 1
2
+ i³d of L(s, Ed) with |³d| f (logX log logX)21.

Then, for any · > 0,

|GX(³, ³)| g
(1
4
2 ·

)( 1:
2Ã

∫ ³

³

e2t2/2dt+ o(1)
)
|{d * E : X f |d| f 2X}.

Proof. Take Φ to be a smooth approximation to the indicator function of the interval [1, 2],
and let » and a mod N0 be as in Section 2. The first part of Proposition 3 (namely (8))
together with the method of moments shows that

(10)
∑

d*E(»,a)
P(d;x)/

:
log logX*(³,³)

Φ
(»d
X

)
=

( 1:
2Ã

∫ ³

³

e2t2/2dt+ o(1)
)( ∑

d*E(»,a)
Φ
(»d
X

))
.
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Next, take h to be the Fejer kernel given in (4), and L = (22 ·/2) logX . Then the second
part of Proposition 3 together with the method of moments shows that

∑

d*E(»,a)
P(d;x)/

:
log logX*(³,³)

∑

³d

h
(³dL
2Ã

)
Φ
(»d
X

)
=

( 1:
2Ã

∫ ³

³

e2t2/2dt+ o(1)
) ∑

d*E(»,a)

∑

³d

h
(³dL
2Ã

)
Φ
(»d
X

)

=
( 1:

2Ã

∫ ³

³

e2t2/2dt+ o(1)
)( 1

12 ·/4
+

1

2
+ o(1)

) ∑

d*E(»,a)
Φ
(»d
X

)
.

Note that the weights
∑

³d
h(³dL/(2Ã)) are always non-negative, and if L(s, Ed) has a zero

with |³d| f (logX log logX)21 then the weight is g 2+o(1) (since there would be a complex
conjugate pair of such zeros, or a double zero at 1

2
). Combining this with (10), and summing

over all the possibilities for » and a, we obtain the lemma. �

Lemma 2. The number of discriminants d * E with X f |d| f 2X such that
∑

(logX log logX)−1f|³d|
log

(
1 +

1

(³d log x)2

)
g (log log logX)3

is j X/ log log logX.

Proof. Applying Proposition 2 with 3 = 1, h given as in (4), and 1 f L f (2 2 ·) logX , we
obtain (after summing over the possibilities for » and a)

∑

d*E
Xf|d|f2X

∑

³d

(sin(³dL/2)
³dL/2

)2

j X
logX

L
.

Integrate both sides of this estimate over L in the range log x f L f 2 log x. Since, for any
y > 0 and t 6= 0,

1

y

∫ 2y

y

(sin(Ãtu)
Ãtu

)2

du k min
(
1,

1

(ty)2

)
,

we obtain ∑

d*E
Xf|d|f2X

∑

³d

min
(
1,

1

(³d log x)2

)
j X

logX

log x
= X log log logX.

Now if |³d| g (logX log logX)21 then

log
(
1 +

1

(³d log x)2

)
j (log log logX)min

(
1,

1

(³d log x)2

)
,

and therefore we may conclude that
∑

d*E
Xf|d|f2X

∑

(logX log logX)−1f|³d|
log

(
1 +

1

(³d log x)2

)
j X(log log logX)2.

The lemma follows at once. �
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With these results in place, it is now a simple matter to deduce the main theorem. By
Proposition 1 1 we know that for d * E with X f |d| f 2X

logL(1
2
, Ed) = P(d; x)2 1

2
log logX +O(log log logX) +O

(∑

³d

log
(
1 +

1

(³d log x)2

))
.

Lemma 1 tells us that for d * GX(³, ³) we may arrange for P(d; x)/
:
log logX to lie in

the interval (³, ³) and for there to be no zeros with |³d| f (logX log logX)21. Lemma 2
now allows us to discard j X/ log log logX elements of GX(³, ³) so as to ensure that the
contribution of zeros with |³d| g (logX log logX)21 is O((log log logX)3). Thus there are

g
(1
4
2 ·

)( 1:
2Ã

∫ ³

³

e2t2/2dt+ o(1)
)
|{d * E : X f |d| f 2X},

fundamental discriminants d * E with X f |d| f 2X for which

logL(1
2
, Ed) +

1
2
log logX:

log logX
+O

((log log logX)3:
log logX

)
* (³, ³),

which completes the proof.

4. Proof of Proposition 1

A straight-forward adaptation of Lemma 1 from [14] (itself based on an identity of Selberg)
shows that for any Ã g 1

2
with L(Ã, Ed) 6= 0, and any x g 3 one has

(11)

2L2

L
(Ã, Ed) =

∑

nfx

ΛE(n)

nÃ
Çd(n)

log(x/n)

log x
+

1

log x

(L2

L

)2
(Ã, Ed)+

1

log x

∑

Ãd

xÃd2Ã

(Ãd 2 Ã)2
+O

( 1

xÃ log x

)
.

Here Ãd runs over the non-trivial zeros of L(s, Ed), and this identity in fact holds uncondi-
tionally.
Now assume GRH for L(s, Ed) and write Ãd = 1

2
+ i³d. If L(1

2
, Ed) 6= 0, then integrating

both sides of (11) from 1
2
to > yields

logL(1
2
, Ed) =

∑

nfx

ΛE(n):
n log n

Çd(n)
log(x/n)

log x
2 1

log x

L2

L
(1
2
, Ed)

+
1

log x

∑

³d

Re

∫ >

1
2

xÃd2Ã

(Ãd 2 Ã)2
dÃ +O

( 1:
x(log x)2

)
.(12)

We may restrict attention to the real part of the integral above since all the other terms
involved are real, or noting that the zeros Ãd appear in conjugate pairs.
Consider first the sum over n in (12). The contribution from prime powers n = pk with

k g 3 is plainly O(1). The contribution of the terms n = p is P(d; x) + O(1), where the
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error term O(1) arises from the primes dividing N0. Finally, by Rankin–Selberg theory (see
for instance [4]) it follows that

(13)
∑

pfy
p&N0

(³2
p + ³p

2) log p

p
=

∑

pfy
p&N0

(a(p)2 2 2) log p

p
= 2 log y +O(1),

so that, by partial summation, the contribution of the terms n = p2 equals

∑

pf:
x

p&N0

(³2
p + ³p

2)

2p

log(x/p2)

log x
+O(1) =

∑

pf:
x

p&N0

a(p)2 2 2

2p

log(x/p2)

log x
+O(1) = 21

2
log log x+O(1).

Thus the contribution of the sum over n in (12) is

(14) P(d; x)2 1
2
log log x+O(1).

Next we turn to the sum over zeros in (12). If |³d log x| g 1, then note that
∫ >

1
2

xÃd2Ã

(Ãd 2 Ã)2
dÃ = O

( 1

³2
d

∫ >

1
2

x
1
2
2ÃdÃ

)
= O

( 1

³2
d log x

)
= O

(
log x log

(
1 +

1

³2
d(log x)

2

))
.

If |³d log x| f 1, then we split into the ranges 1
2
f Ã f 1

2
+ 1

log x
and larger values of Ã. The

first range contributes
∫ 1

2
+ 1

log x

1
2

Re
xÃd2Ã

(Ãd 2 Ã)2
dÃ =

∫ 1
2
+ 1

log x

1
2

Re
( 1

(Ãd 2 Ã)2
+

log x

(Ãd 2 Ã)
+O((log x)2)

)
dÃ

= Re
(
2 1

i³d
2 1

1/ log x2 i³d
+ log x log

2i³d
1/ log x2 i³d

+O(log x)
)

= O
(
log x log

(
1 +

1

³2
d(log x)

2

))
,

while the second range contributes

j
∫ >

1
2
+ 1

log x

x
1
2
2Ã

(1
2
2 Ã)2

dÃ j log x = O
(
log x log

(
1 +

1

³2
d(log x)

2

))
.

Thus in all cases the sum over zeros in (12) is

(15) O
(
log x log

(
1 +

1

³2
d(log x)

2

))
.

Finally, taking logarithmic derivatives in the functional equation we find that

L2

L
(1
2
, Ed) = 2 log(

:
N |d|) +O(1).

The proposition follows upon combining this with (12), (14), and (15).
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5. Proof of Proposition 2

The proof of Proposition 2 is based on the explicit formula, which we first recall in our
context.

Lemma 3. Let h be a function with h(x) j (1+x2)21 and with compactly supported Fourier

transform ĥ(¿) =
∫>
2> h(t)e22Ãi¿tdt. Then, for any fundamental discriminant d * E

∑

³d

h
( ³d
2Ã

)
=

1

2Ã

∫ >

2>
h
( t

2Ã

)(
log

Nd2

(2Ã)2
+ 2Re

Γ2

Γ
(1 + it)

)
dt

2
∑

n

ΛE(n):
n

Çd(n)
(
ĥ(logn) + ĥ(2 logn)

)
,

where the sum is over all ordinates of non-trivial zeros 1/2 + i³d of L(s, Ed).

Applying the explicit formula to the dilated function hL(x) = h(xL) whose Fourier trans-

form is 1
L
ĥ(x/L), we obtain

∑

³d

h
(³dL
2Ã

)
=

1

2Ã

∫ >

2>
h
( tL
2Ã

)(
log

Nd2

(2Ã)2
+ 2Re

Γ2

Γ
(1 + it)

)
dt

2 1

L

∑

n

ΛE(n):
n

Çd(n)
(
ĥ
( logn

L

)
+ ĥ

(
2 logn

L

))
.(16)

We multiply this expression by Çd(3) and sum over d with suitable weights. Thus we find

(17)
∑

d*E(»,a)

∑

³d

h
(³dL
2Ã

)
Çd(3)Φ

(»d
X

)
= S1 2 S2,

where

(18) S1 =
1

2Ã

∫ >

2>
h
( tL
2Ã

) ∑

d*E(»,a)
Çd(3)

(
log

Nd2

(2Ã)2
+ 2Re

Γ2

Γ
(1 + it)

)
Φ
(»d
X

)
dt,

and

(19) S2 =
1

L

∑

n

ΛE(n):
n

(
ĥ
( log n

L

)
+ ĥ

(
2 log n

L

)) ∑

d*E(»,a)
Çd(3n)Φ

(»d
X

)
.

The term S1 is relatively easy to handle. If 3 is a square, it amounts to counting square-free
integers d lying in a suitable progression modN0 and coprime to 3. While if 3 is not a square,
the resulting sum is a non-trivial character sum, which exhibits substantial cancellation. A
more general term of this type is handled in Proposition 1 of [7], which we refer to for a
detailed proof. Thus when 3 is not a square we find

(20) S1 = O(X
1
2
+ë
:
3),
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while if 3 is a square

S1 =
X

N0

∏

p|3

(
1 +

1

p

)21 ∏

p&N0

(
12 1

p2

)
Φ̌(0)(2 logX +O(1))

ĥ(0)

L
+O(X

1
2
+ë
:
3).(21)

We now turn to the more difficult term S2. First we dispose of terms n (which we may
suppose is a prime power) that have a common factor with N0. Note that since d is fixed in
a residue class modN0, if n is the power of a prime dividing N0 then Çd(n) is determined by
the congruence condition on d. Thus the contribution of these terms is

(22) j 1

L

∑

(n,N0)>1

Λ(n):
n

∣∣∣
∑

d*E(»,a)
Çd(3)Φ

(»d
X

)∣∣∣ j ·(3 = �)
X

L
+X

1
2
+ë
:
3,

where ·(3 = �) denotes 1 when 3 is a square, and 0 otherwise.
Henceforth we restrict attention to the terms in S2 where (n,N0) = 1. Note that if

d c a mod N0 then d is automatically 1 mod 4, and the condition that d is a fundamental
discriminant amounts to d being square-free. We express the square-free condition by Möbius
inversion

∑
³2|d µ(³), and then split the sum into the cases where ³ > A is large, and when

³ f A is small, for a suitable parameter A f X . We first handle the case when ³ > A is
large. These terms give

∑

³>A

µ(³)
∑

dca mod N0

³2|d

Φ
(»d
X

) 1

L

∑

(n,N0)=1

ΛE(n):
n

(
ĥ
( log n

L

)
+ ĥ

(
2 logn

L

))
Çd(3n)

j
∑

³>A

∑

dca mod N0

³2|d

Φ
(»d
X

)
(logX) j X

N0A
logX,(23)

upon using GRH to estimate the sum over n and then estimating the sum over d trivially.
We are left with the terms with ³ f A, and writing d = k³2 we may express these terms

as

(24)
1

L

∑

(n,N0)=1

ΛE(n):
n

(
ĥ
( log n

L

)
+ ĥ

(
2 logn

L

)) ∑

³fA
(³,n3N0)=1

µ(³)
∑

kca³2 mod N0

( k

3n

)
Φ
(»k³2

X

)
.

We now apply the Poisson summation formula to the sum over k above, as in Lemma 7
of [7]. This transforms the sum over k above to

(25)
X

n3N0³2

(N0

n3

)∑

v

e
(va³2n3

N0

)
Çv(n3)Φ̂

( Xv

n3³2N0

)
,

where Çv(n3) is a Gauss sum given by

Çv(n3) =
∑

b mod n3

( b

n3

)
e
(vb
n3

)
.
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The Gauss sum Çv(n3) can be described explicitly, see Lemma 6 of [7] which gives an evalu-
ation of

Gv(n3) =
(12 i

2
+
(21

n3

)1 + i

2

)
Çv(n3),

from which Çv(n3) may be obtained via

(26) Çv(n3) =
(1 + i

2
+
(21

n3

)12 i

2

)
Gv(n3).

The term v = 0 in (25) leads to a main term; we postpone its treatment, and first consider

the contribution of terms v 6= 0. Since ĥ is supported in [21, 1], we may suppose that n f eL.

The rapid decay of the Fourier transform Φ̂(¿) allows us to restrict attention to the range
|v| f 3eLA2X21+ë, with the total contribution to S2 of terms with larger |v| being estimated
by O(1). For the smaller values of v, we interchange the sums over v, performing first the
sum over n using GRH. Thus these terms contribute

X

3LN0

∑

0<|v|f3eLA2X−1+ë

∑

³fA
(³,3N0)=1

µ(³)

³2

∑

(n,³N0)=1

ΛE(n)

n
:
n

(N0

n3

)
e
(va³2n3

N0

)
Çv(n3)

(
ĥ
( logn

L

)
+ ĥ

(
2 log n

L

))
Φ̂
( Xv

n3³2N0

)
.

We now claim that (on GRH) the sum over n above is

(27) j ³3
3
2

√
X|v|

Xë,

so that the contribution of the terms with v 6= 0 is

(28) j X
1
2
+ë3

1
2

∑

1f|v|f3eLA2X−1+ë

|v|2 1
2 logA j 3eL/2AXë.

To minimize the combined contributions of the error terms in (28) and (23), we shall choose

A = (X/3)
1
2 e2

L
4 , so that the effect of both these error terms is

(29) j X
1
2
+ë3

1
2 e

L
4 .

To justify the claim (27) we first use (26) to replace Çv(n3) by Gv(n3) so that we must
bound (for both choices of ±)

∑

(n,³N0)=1

ΛE(n)

n
:
n

(±N0

n3

)
e
(va³2n3

N0

)
Gv(n3)

(
ĥ
( logn

L

)
+ ĥ

(
2 logn

L

))
Φ̂
( Xv

n3³2N0

)
.

First consider the generic case when n is a prime power with (n, v) = 1. Here (using Lemma
6 of [7]) Gv(n3) = 0 unless n is a prime p not dividing 3 in which case Gv(p3) = (v

p
)
:
pGv(3).
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Thus such terms contribute to the above
(±N0

3

)
Gv(3)

∑

p&³v3N0

ΛE(p)

p

(±vN0

p

)
e
(va³2p3

N0

)(
ĥ
( log p

L

)
+ ĥ

(
2 log p

L

))
Φ̂
( Xv

p3³2N0

)

The rapid decay of Φ̂(¿) implies that we may restrict attention above to the range p >
X12ë|v|/(3³2N0). Then splitting p into progressions modN0 and using GRH (it is here that
we need GRH for twists of L(s, E) by quadratic characters, as well as all Dirichlet characters
modulo N0) we obtain the bound

j |Gv(3)|
Xë3

1
2³N0√
X|v|

j 3
3
2³Xë

√
X|v|

,

which is in keeping with (27). Now consider the non-generic case when n is the power of
some prime dividing v. We may assume that n|v2 (else Gv(n3) = 0 by Lemma 6 of [7])

and also that n g X12ë|v|/(3³2N0) else the Fourier transform Φ̂ is negligible. Using that

|Gv(n3)| f (v, n3)
1
2 (n3)

1
2 f (|v|n3) 1

2 (which again follows from Lemma 6 of [7]) we may
bound the contribution of these terms by

j
∑

n|v2
Λ(n)

(|v|3) 1
2

(X12ëv/(3³2N0))
j (log v)Xë 3

3
2³2

X
√
|v|

j 3
3
2³Xë

√
X|v|

,

since log v j logX j Xë and ³ f A f
:
X. Thus these terms also satisfy the claimed

bound (27).
Now we handle the main term contribution from v = 0, noting that Ç0(n3) = 0 unless n3

is a square, in which case it equals Ç(n3). Thus the main term contribution from v = 0 is

X

LN0

∑

(n,N0)=1
n3=�

ΛE(n):
n

Ç(n3)

n3

( ∑

³fA
(³,3nN0)=1

µ(³)

³2

)
Φ̂(0)

(
ĥ
( log n

L

)
+ ĥ

(
2 log n

L

))
.

Thus this main term only exists if 3 is a square (so that n is a square), or if 3 is q times
a square for a unique prime q (so that n is an odd power of q). In the case 3 is a square,
writing n = m2 and performing the sum over ³, we obtain that the main term is

X

LN0
Φ̂(0)

∑

(m,N0)=1

ΛE(m
2)

m

( ∏

p|m3

(
1+

1

p

)21 ∏

p&N0

(
12 1

p2

)
+O

( 1

A

))(
ĥ
(2 logm

L

)
+ĥ

(
22 logm

L

))
.

Using (13) and partial summation we conclude that the main term when 3 is a square is

2 X

LN0
Φ̂(0)

(∏

p|3

(
1 +

1

p

)21 ∏

p&N0

(
12 1

p2

)
+O

( 1

A

))(∫ >

1

(
ĥ
(2 log y

L

)
+ ĥ

(
2 2 log y

L

))dy
y

+O(1)
)

=2 X

N0
Φ̂(0)

h(0)

2

∏

p|3

(
1 +

1

p

)21 ∏

p&N0

(
12 1

p2

)
+O

(X
A

+
X

L

)
.

(30)
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Suppose now that 3 is q times a square, for a (unique) prime q. Here the main term may be
bounded by

(31) j X

LN0

log q:
q

∏

p|3

(
1 +

1

p

)21 ∏

p&N0

(
12 1

p2

)
;

naturally we can be more precise here, but this bound suffices.

6. Proof of Proposition 3

The k-th moment in (8) is treated in Proposition 6 of [7]. Briefly, expanding out P(d; x)k

we must handle ∑

p1,...,pkfx
pi&N0

a(p1) · · ·a(pk):
p1 · · · pk

∑

d*E(»,a)
Çd(p1 · · · pk)Φ

(»d
X

)
.

When p1 · · · pk is not a perfect square, the sum over d exhibits substantial cancellation (as
mentioned earlier in (21)). The main term arises from terms where p1 · · · pk is a perfect
square, which cannot happen when k is odd. When k is even, the contribution to the main
term comes essentially from the case when there are k/2 distinct primes among p1, . . ., pk with
each distinct prime appearing twice. The number of such pairings leads to the coefficient Mk,
and Rankin-Selberg theory is used to obtain

∑
pfx a(p)

2/p = log log x+O(1) > log logX .

To establish (9), once again we expand P(d; x)k and are faced with evaluating

∑

p1,...,pkfx
pi&N0

a(p1) · · ·a(pk):
p1 · · · pk

∑

d*E(»,a)
Çd(p1 · · ·pk)

(∑

³d

h
(³dL
2Ã

))
.

We now appeal to Proposition 2. The terms where p1 · · · pk is neither a square nor a prime
times a square contribute, using (5),

j X
1
2
+ëe

L
4

∑

p1,...,pkfx

1 j X
1
2
+ëe

L
4 .

It remains to consider the cases when this product is a square (which can only happen when
k is even) and when it is a prime times a square (which can only happen for odd k). In the
first case, we obtain (by (6)) a main term

X

N0

∏

p&N0

(
12 1

p2

)
Φ̂(0)

(2 logX
L

ĥ(0)+
h(0)

2
+O

( 1

L

)) ∑

p1,...,pkfx
pi&N0

p1···pk=�

a(p1) · · · a(pk):
p1 · · ·pk

∏

p|p1···pk

(
1+

1

p

)21

.

As before, this main term is dominated by the contribution of terms where there are k/2
distinct primes among p1, . . ., pk each appearing twice, and thus we obtain

X

N0

∏

p&N0

(
12 1

p2

)
Φ̂(0)

(2 logX
L

ĥ(0) +
h(0)

2
+O

( 1

L

))
(Mk + o(1))(log logX)

k
2 .
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This establishes the result (9) for the case k even. When k is odd, the contribution of the
terms when p1 · · · pk is a prime times a square may be bounded by (using (7) of Proposition
2)

j X

LN0

∑

qfx

log q

q

(∑

pfx
p&N0

a(p)2

p

)k−1
2 j X

N0

log x

L
(log logX)

k−1
2 j X

N0

(log logX)
k−1
2 ,

which establishes (9) since Mk = 0 here.
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