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ONE-LEVEL DENSITY ESTIMATES FOR DIRICHLET L-FUNCTIONS
WITH EXTENDED SUPPORT

SARY DRAPPEAU, KYLE PRATT, AND MAKSYM RADZIWILL

ABSTRACT. We estimate the 1-level density of low-lying zeros of L(s,x) with x ranging
over primitive Dirichlet characters of conductor & [Q/ 2,Q] and for test functions whose
Fourier transform is supported in (-2 — 1093,2 + 1093) Previously any extension of the
support past the range (—2,2) was only known conditionally on deep conjectures about
the distribution of primes in arithmetic progressions, beyond the reach of the Generalized
Riemann Hypothesis (e.g Montgomery’s conjecture). Our work provides the first example of
a family of L-functions in which the support is unconditionally extended past the “diagonal
range” that follows from a straightforward application of the underlying trace formula (in
this case orthogonality of characters). We also highlight consequences for non-vanishing of

L(s, x).

1. INTRODUCTION

Motivated by the problem of establishing the non-existence of Siegel zeros (see [CI02] for
details), Montgomery [Mon73] investigated in 1972 the vertical distribution of the zeros of the
Riemann zeta-function. He showed that under the assumption of the Riemann Hypothesis,
for any smooth function f with supp f C (

() Jim N(lT) 2 f<lo2g7rT /f L <Sigjzu>2)d“

T<vyy'<2T

where N(T') denotes the number of zeros of the Riemann zeta-function up to height 7" and
7,7 are ordinates of the zeros of the Riemann zeta-function, and 6(u) is a Dirac mass at 0.
Dyson famously observed that the right-hand side coincides with the pair correlation function
of eigenvalues of a random Hermitian matrix.

Dyson’s observation leads one to conjecture that the spacings between the zeros of the
Riemann zeta-function are distributed in the same way as spacings between eigenvalues of a
large random Hermitian matrix. Subsequent work of Rudnick-Sarnak [RS94] provided strong
evidence towards this conjecture by computing (under increasingly restrictive conditions) the
n-correlations of the zeros of any given automorphic L-function. Importantly the work of
Rudnick-Sarnak suggested that the distribution of the zeros of an automorphic L-function
is universal and independent of the distribution of its coefficients [RS96].

For number theoretic applications, the distribution of the so-called “low-lying zeros”, that
is zeros close to the central point is particularly interesting (see e.g [HB04, You06] for various
applications; see also [GS18] and [Wat21], for instance, for results in a different direction).
Following the work of Katz-Sarnak [KS99] and Iwaniec-Luo-Sarnak [ILS00], we believe that
the distribution of these low-lying zeros is also universal and predicted by only a few random
matrix ensembles (which are either symplectic, orthogonal or unitary).
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Specifically the work of Katz-Sarnak suggests that for any smooth function ¢ and any
natural “family” of automorphic objects F,

1 log ¢
(2) #—]_-7;%}?(?'%) #f—_>>oo/R¢($)Kf($)d%

where 7, are ordinates of the zeros of the L-function attached to m, ¢, is the analytic
conductor of m and Kx(x) is a function depending only on the “symmetry type” of F.
One may wish to consult [ILS00] and [SST16] for a more detailed discussion.

There is a vast literature providing evidence for (2) (see [MMR*16]). Similarly to Mont-
gomery’s result (1) all of the results in the literature place a restriction on the support of
the Fourier transform of ¢. This restriction arises from the limitations of the relevant trace
formula (in some families it is not always readily apparent what this relevant trace formula
is). In practice an application of the trace formula gives rise to so-called “diagonal” and
“off-diagonal” terms. Trivially bounding the off-diagonal terms corresponds to what we call
a “straightforward” application of the trace formula. R

A central yet extremely difficult problem is to extend the support of ¢ beyond what a
“straightforyard” application of the trace formula gives. In fact most works in which the
support of ¢ has been extended further rely on the assumption of various deep hypotheses
about primes that sometimes lie beyond the reach of the Generalized Riemann Hypothesis
(GRH).

For example, Iwaniec-Luo-Sarnak show that inAthe case of holomorhic forms of even weight
< K one obtains unconditionally a result for ¢ supported in (—1,1) and that under the
assumption of the Generalized Riemann Hypothesis this can be enlarged to (—2,2) (it is
observed in [DFS] that assuming GRH only for Dirichlet L-functions is sufficient). Iwaniec-
Luo-Sarnak also show that this range can be pushed further to supp QAS C (—22/9,22/9)
under the additional assumption that, for any ¢ > 1, (a,¢) = 1 and ¢ > 0,

Z e(2y/p/c) <. x/*FE.

p<z
p=a (mod c)
A similar behaviour is observed on low-lying zeros of dihedral L-functions associated to an
imaginary quadratic field [F103], where an extension of the support is shown to be equivalent
to an asymptotic formula on primes with a certain splitting behaviour.

Assuming GRH, Brumer [Bru92] studied the one-level density of the family of elliptic
curves and proved a result for test functions supported in (—5/9,5/9); this corresponds to the
“diagonal” range for this family. Heath-Brown [HB04] improved this range to (—2/3,2/3),
and Young [You06] pushed the support to (—=7/9,7/9). One-level density estimates for this
family have deep implications for average ranks of elliptic curves. In particular, the work of
Young was the first to show that, under some reasonable conjectures, a positive proportion
of elliptic curves have rank 0 or 1 and thus satisfy the rank part of the Birch and Swinnerton-
Dyer conjecture’.

As another example, it follows for instance from minor modifications of [HR03, CLLR14]
that in the family of primitive Dirichlet characters of modulus < @) one can estimate 1-level

1A stronger conclusion was later reached unconditionally by Bhargava and Shankar [BS15] through other
methods.
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densities unconditionally for ¢ with <$ supported in (—2,2).2 As a by-product of work of
Fiorilli-Miller [FM15, Theorem 2.8], it follows that for any 6 € (0,2), this support can be
enlarged to (—2 — 4,2 + §) under the following “de-averaging hypothesis”

S D SR S Sl [ SR

Q/2<4<Q  p<u 0/222<0 (aa)= = o(q)
p=1 (mod q) p=a (mod q)

2

In this paper we give a first example of a family of L-functions in which we can uncondi-
tionally enlarge the support past the “diagonal” range that follows from a straightforward
application of the trace formula (in this case orthogonality of characters).

Theorem 1. Let ® be a smooth function compactly supported in [1/2,3], and ¢ be a smooth
function such that supp ¢ C (—2 — W’ 2+ 1093) Then, as Q — oo,

) 53@(%) > Ye(Eh) oY e(d) X 1o

q (mod q) x q X (mod q)
prlmltlve primitive

Here § + i, correspond to non-trivial zeros of L(s,x) and since we do not assume the
Generalized Riemann Hypothesis we allow the v, to be complex.

Remark. In stating the theorem we have, for technical simplicity, made a suitable approx-
imation to the conductor ¢, appearing in (2).

Note that ¢, initially defined on R, is analytically continued to C by Compactness of supp g/g
Our arguments can be adapted to show that if supp ¢ C (=2 — @ +¢e,2+ W —¢) for
some ¢ > 0, then the error term in (4) is O(Q*7%) with J = §(¢), up to altering slightly the
main terms: after applying the explicit formula as in section 2.2, include the terms of order
= Q?/log Q into the main term instead of treating them as error terms.

We remark that we make no progress on the “de-averaging hypothesis” (3) of Fiorilli-
Miller, which remains a difficult open problem. We estimate the original sum over primes
in arithmetic progressions, on average over moduli, by a variant of an argument of Fou-
vry [Fou85] and Bombieri-Friedlander-Iwaniec [BFI86] which is based on Linnik’s dispersion
method. The GRH will be dispensed with by working throughout, as in [Dral5|, with char-
acters of large conductors.

The asymptotic formula (4) is expected to hold true without the extra averaging over g.
This extra averaging over ¢, and the cancellation of arguments which comes along, play an
important role in our arguments.

If the GRH is true for Dirichlet L-functions, then let any 0 < k < 2% be fixed, and

1093
let A > 1 be small enough that " :=2(A—1) 4+ Ax € (0 as well. Defining
- o /sinT(2 4 K)ry?2
¢(x) - )‘< 7T(2 + K)ZIZ' ) )

where u is a smooth, positive approximation of unity such that ¢(0) > A~'¢(0) = 1, and
using the inequality
log @
1= 205 m) <120 £0)
§j¢ o (3:%) #
X

This is in fact the GL(1) analogue of the result of Iwaniec-Luo-Sarnak for holomorphic forms.

’ 1093)

6= xu
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we deduce from Theorem 1 that the proportion of non-vanishing L(%, X) with x ranging over
primitive characters of conductor in [Q/2,Q] is at least 1 — A2+ &)1 =1— (24 x)7! for

any k < %. We record this consequence in the Corollary below.

Corollary 2. Let ¢ € (0,1077). Assume the Generalized Riemann Hypothesis for Dirichlet

L-functions. Then for all Q) large enough, the proportion of primitive characters x with
modulus € [Q/2, Q)] for which

L(3,x) #0
1s at least ] o5
5 + % — e > 0.51118.

Corollary 2 is related to a recent result of Pratt [Pral9] who showed unconditionally that
the proportion of non-vanishing in this family is at least 0.50073. We note that both the
arguments of [Pral9] and those presented here eventually rely on bounds of Deshouillers-
Iwaniec [DI82] on cancellation in sums of Kloosterman sums.

Notations. We call a map f : R, — C a test function if f is smooth and supported
inside [1,3].
Forw e N, neZ and R > 1, we let

1
uR(na w) = ]-nEl (mod w) — T/ Z X(n)

w
P ok
Note the trivial bound
5 ()] € Lot (o wy + ),
p(w)

The symbol n ~ N in a summation means n € [N,2N)NZ. We say that a sequence (o, ),
is supported at scale N if a,, = 0 unless n ~ N.

The letter £ will denote an arbitrarilly small number, whose value may differ at each
occurrence. The implied constants will be allowed to depend on €.

Acknowledgments. Part of this work was conducted while the second author was sup-
ported by the National Science Foundation Graduate Research Program under grant number
DGE-1144245. The third author acknowledges the support of a Sloan fellowship and NSF
grant DMS-1902063. The authors thank the anonymous referee for helpful remarks, and
Jared Lichtman for helpful discussions on Proposition 6.

2. PROOF OF THEOREM 1

2.1. Lemmas on primes in arithmetic progressions. We will require two results about
primes in arithmetic progressions. The first is a standard estimate, obtained from an appli-
cation of the large sieve.

Lemma 3. Let A > 0, X,Q,R > 2 satisfy 1 < R < Q and X > Q*/(logQ)?*, and f be a
test function with || f9]| <; 1. Then

(6) ZQ %ZNf(X)Mn)uR(n, )| < QUog QI VX (1+ 35+

The implied constant depends at most on A and the implied constants in the hypothesis.

NG XS/S).
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Proof. By Heath-Brown’s combinatorial formula for primes [IK04, Proposition 13.3] (with K =
2), we restrict to proving the bound with A(n) replaced by convolutions of type I and II, of

the shape
DD am (M XYY,

n=m/t
m~M

DD e (XM <M< X,

n=m/t
m~~M

where |a,,| < (log X)74(m) and the analogous bound holds for [y; here we noted that
if my < me < VX and mimy > X4, then either X4 < mymgy < X3* or XV < my <
X1/2. We treat the type I case by the Polya-Vinogradov inequality [IK04, Theorem 12.5],
getting a bound O(M R3/?(log Q)°M)). We treat the type II case by the large sieve [IK04,

Theorem 17.4], getting a contribution O(vX (log Q)°M(Q ++vVM +/X/M++vXR™)). O
The second estimate is substantially deeper and we defer its proof to Section 4.

Proposition 4. Let k € (O,%) and € > 0. Let ¥ and f be test functions, A > 0,

X, QW R>1, and b € N. Assume that
Q2

<« X« Q2+I€’ X11/20Q_1 < R < Q2/3X_2/9,
(log @)*

b<QF QI < W < Q,

and that || f9D]|, |¥W||o <; 1. Then, if € > 0 is small enough in terms of k, we have
Z ( )ZA ( )uR(nbw)<<Q1 “VX.
weN

The implied constant depends at most on k, A, and the implied constants in the hypotheses.
Proof. See Section 4. 0
2.2. Explicit formula. We let x € (0, 1205) be such that supp ¢ C (=2 — K, 2+ K).

We rewrite the left-hand side of (4) by applying the explicit formula, e.g. [Sic98, The-
orem 2.2], where the quantity ®(p) there (not to be confused with our test function) is

replaced by ¢(45~= 2 10g (), so that F(z) = @qﬁ(@). For ¢ > 1 and x (mod ¢) primitive,

we obtain
(p—3)logQ

Re()e0.1)
e(p)el(0,
(7) L(pn)=0
~ logq A( )~ logn
=0 0 —
<logQ> 9050 ~ logQ Z R ¢(logQ)
since the terms I, J appearing in [Sic98, Theorem 2.2] satisfy }[ } ‘ (3, b)} < (logQ)~1

for b € {0,3} by reasoning similarly as in [Sic98, Lemma 3.1]. Let U(x) (x)z. Summing
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(7) over x and ¢ we see that to conclude it remains to show that

®  S@=3 () X g T T H(55) = @)

qeN x(q)
primitive

We will in fact obtain the following slightly stronger result.

Proposition 5. Let k € (0
of K, we have

For all Q large enough and € > 0 small enough in terms

5@ = 0(125):

The implied constant depends on ¢ and £ at most.

’ 1093)

We break down the proof of Proposition 5 into the following three sections.

2.3. Orthogonality and partition of unity. Applying character orthogonality for prim-
itive characters (see the third display in the proof of Lemma 4.1 of [BM11]), we get

()1 x Re()

n=1 (mod w)

(9) 5s(Q)
Let V' be any test function generating the partition of unity
x
>V(z) -1
jez
for all x > 0. Inserting this in (9), we obtain

2 vw v) p(w) An) . rny\~(logn
SolQ) = log @ Jze% ZZ\I] ( ) Tnzl%d w)WV<Y)¢(IOgQ) .
1/2<X:=21<2Q%*"

Set fi(z) = 272V (z )qﬁ(log(;m ) for 1 < 27 < 2@Q*™. Differentiating the product, we have
that for all £ > 0, there exists Cy > 0 such that ||f}k)||OO < Oy, for all j. We deduce

Ss(@) < sup X V?sup |T(Q, X)),
/

1<<X<<Q2+N

where f varies among test functions subject to || f*) || < Cy 4, and

2T (5)AA 2 wrz)

n=1 (mod w)

We handle the very small values of X by the trivial bound
n Xlog@Q
S A(n)f(}> <logQ Y 1< ,

n=1 (mod w) X/2<n<3X
n#1,n=1 (mod w)

which implies

T(Q,X) < XlogQ221 < X(log Q).

vw=Q
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It will therefore suffice to show that for

Q*/(log Q) < X < Q*",

we have

VXQ
log @

2.4. Substracting the main term. We insert the coprimality condition (n,v) = 1. Since

SE ()8 T, er)

n=1 (mod w)

TR X) <

(n,v)>1
Y Y e Y
v<Q plv w|pk—1
1<k<log X
<<Q1+E,

we obtain

Srv(@)ent ) ee

(
n,v)=1

Let 1 < R < @/2 so that R < vw for any v,w appearing in the sum. We replace the
condition n = 1 (mod w) by ug(n,w). The difference is

>l (2) X A S =0

q mod q) (n,q)= vlg/r
r= COnd(X)<R
rlq

since r < ¢ by our choice of R, so that
vw ) ﬁ 14€
PHN () Hete) 3 A Junionw) +0@")

We next remove the coprimality condition on n, using the trivial bound (5). For the first
term 1,=1 (mod w) 1N ug(n,w), this was already justified above. For the second term, we get

< RQ~ 1+€ZZZlogp<< RQ".

UwAQ plv

Since R < @, both error terms are acceptable. We get
T(Q, X) =T(Q, X, R) + 0(Q"),

T(Q, X, R) ZZ\II <Uw> “—%A(w),
(10) ZA ( )uR(n w).

where
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We are required to show that

vVXQ

11 Q,X,R) < —

(1) T(Q.X.R) < 1t

2.5. Reduction to the critical range. We now impose the additional conditions
(12) QPP < R<QY?,  k<2/3.

Observe that this x is the same as that appearing in the statement of Proposition 4. The
condition Kk < % is convenient for applying (6) below, but is rather loose since & is ultimately
required to be much smaller than 2

Let B € [1,Q"?] be a parameter In 7(Q, X, R), we write £ = b “B) and exchange
summation, so that

T@QX,R) <Y %) Z \If(b%”)A(bw)‘
b,v

< (log B)? bs1}l<% ‘ Z (bzgw>A(bw)’ + Ey + B,

where F; (resp. F») corresponds to the sum over b, v restricted to b > B (resp. v > B). We
recall that supp ¥ C [3, 3] by hypothesis. On the one hand, we have

bw<3Q
b>B

< QBT |A(g)

q<3Q

< QU2YXB
using (6) along with our hypotheses (12). On the other hand, we have

B 33 7 1A ()

bwgé%/B
<7 Y |A(g)]
q<3Q/B

<QVX(QB™ +Q7)

again by (12) and (6); we have used the bounds Q'"*vVXR™ <« Q¢ and Q' X3/® «
Q~¢, which follow from Q"/?*¢ < R and x < 2/3 respectively upon reinterpreting e.
Grouping the above, it will suffice to show that

3 \IJ(%")A(W) < QX

uniformly for b,v < @ and test functions W and f. Assume now k € (0, %). Then the

conditions on R in (12) and in Proposition 4 overlap, so that we may apply Proposition 4
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with W =
Proposition

b%. This gives the above bound, and completes the proof of (11), hence of
5.

3. EXPONENTIAL SUMS ESTIMATES

In this section, we work out the modifications to be made to the arguments underly-
ing [DI82] in order to exploit current knowledge on the spectral gap of the Laplacian on
congruence surfaces [KS03]. We will follow the setting in Theorem 2.1 of [Dral7], since we
will need to keep track of the uniformity in go. We also take the opportunity to implement
the correction recently described in [BFI].

Let & > 0 be a bound towards the Petersson-Ramanujan conjecture, in the sense of [Dral7,
eq. (4.6)]. Selberg’s 3/16 theorem corresponds to # < 1/4, and the Kim-Sarnak bound [KS03]
asserts that 0 < 7/64.

Proposition 6. Let the notations and hypotheses be as in [Dral7, Theorem 2.1|. Then

rd
ZC: Zd: zn: Z: Zg:bnmsg(c, d,n,r, s)e(n;)

c=co and d=dp (mod q)
(grd,sc)=1

Loy ((CDNRS)TOPPK(C, D, N, R, S)|bw,r.sl|2,
where by rsll3 = D2, |bprs|”, and here

K(C,D,N,R,S)? = qCS(RS + N)(C + RD)

13
(13) + CYDS((RS + N)R)"™ (1 + L)' + D°NR.

Remark 7. The bound of Proposition 6 is monotonically stronger as 6 decreases, since the
first term is larger than C'S(RS+N)(RD+¢C'). Under the Petersson-Ramanujan conjecture
for Maass forms, which predicts that § = 0 is admissible, the second term in (13) is smaller
than the first.

Proof. The proof of the proposition, as with all results of this type, relies on the Kuznetsov
formula and large sieve inequalities for coefficients of automorphic forms. The application
of the Kuznetsov formula requires one to understand the contribution of holomorphic forms,
Eisenstein series, and Maass forms (whether the holomorphic forms appear depends on the
sign of the variables inside the Kloosterman sum). We divide these forms into the exceptional
spectrum and the regular spectrum. The exceptional spectrum consists of those (conjecturally
non-existent) Maass forms whose eigenvalues ¢; = % + ity have t; € iR. By the definition of
6§ above we have that |t;| < @ for all f in the exceptional spectrum. The regular spectrum
consists of everything that is not exceptional. The contribution of the regular spectrum is
handled as in [Dral7], and does not require any modification here. We improve upon the
analysis of [Dral7| in handling the exceptional spectrum by keeping track of the dependence
on @ (see the remark made in [Dral7, p. 703]). The statements of [Dral7] which are affected
are Lemma 4.10, Proposition 4.12, Proposition 4.13 and the proof of Theorem 2.1. The
treatment of the exceptional spectrum rests upon a weighted large sieve inequality. These
weighted large sieve inequalities are proved, following [DI82], by an iterative procedure.
With the notations of [Dral7], the changes to be made are as follows :
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— Lemma 4.10 bounds sums of the form

Z Z y 2l

q<Q feB(g,x)
qlg  treiR

Y 1pe(n)

N<n<2N

and serves to control the first step of the recursion. The bound

ST vl ST ()

q<Q feB(g,x) N<n<2N
qolg  treiR

2

< (QN)(Qqp' + N + (NY)'*)N

may be replaced by the bound
< (QN)s (qu—l 4 N"— (Ny)2€(Q1—49 + N1_4€))N.

This does not require any change in the recursion argument, but merely to use the
bound |tf| < € in the very last step, page 278 of [DI82], whereby /Y/Y; is replaced
by (Y/ Y1)

— In Proposition 4.12 one bounds sums of the form

1 4m\/mn
Z ambn,r,s Z E(b ( ‘ ) 50071/8(771, :l:n7 C)

(T;’Z’)Zi c&C(oo:1/s)

in terms of quantities L,eg and Ley.. In place of

N 1+ X'/ MN \"* VRS
LQXC_<1+\/RS>\/ RS <RS+N) 1+X\/7||bNRSH2

we claim the improved

Lexe = qO%_w(l + %) (1 +R)§_1)29<R;]\S“Jiv]\f)9<1 + Rs)l/2 2@1\/;(\/—Hbms“2

To obtain this bound one uses the new bound for Lemma 4.10 and follows the argu-
ments of [DI82; section 9.1].
— In Proposition 4.13, one bounds

Z by r.sX(c)g(c,m, n, 7, s)e(mt)S(nF, £mg; sc)

c,m,n,r,s
(serg)=1

in terms of quantities Kreg and Ko.. The term
K2 = C*S?\/R(N + RS)
can be replaced by
K2_ = C*S%(R(N + RS))¥(1 + %)1—49‘

This is seen by using the new definition on L. in Proposition 4.12, and by keeping
track of a factor ¢~ '1*% coming from the term (1+ X 1)%%/(1 + X).
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— Finally, we modify the proof of Theorem 2.1 at two places. First, the bound for Ag
on page 706, as explained in [BFI], is wrong unless further hypotheses on (b, ;) are
imposed. The correct bound in general is

Ay < ¢ *(log S)’D(NR)?||bw, g.s]J2,

and this yields the term D?NR instead of D?NRS™!. Secondly, our new bound
for Kex in Proposition 4.13 gives a contribution C**9S?(R(RS+N))' =20 (1+4 &1 )1~
instead of C3S%y/R(RS + N) in the definition of L2 . and L*(M;)? on p.707 of [Dral7].
This yields a term Cl+4eDS((N+RS)R)1_29(1+§—%)1_49 instead of C2DS+/(N + RS)R
in eq. (4.39) of [Dral7], and by following the rest of the arguments we deduce our
claimed bound.

O

4. PRIMES IN ARITHMETIC PROGRESSIONS: PROOF OF PROPOSITION 4

The proof of Theorem 1 relies on Proposition 4 which for the convenience of the reader
we recall below.

Proposition. Let x € (0, %) ande > 0. Let W, f be test functions, A >0, X,Q,W,R > 1,

and b € N. Assume that

2
(IO;QQ)A < X < Q2+/§’ X11/20Q_1 <R< Q2/3X_2/9,

<@ QUKW <KQ,
and that || f9 ||, W9 e <; 1. Then, if € > 0 is small enough in terms of k, we have

S (%) 3 A(n)f(%)uR(n, bw) < Q' VX,

weN

The implied constant depends at most on k, A, and the implied constants in the hypotheses.

Remark 8. What is crucial in our statement is the size of the upper bound, which should
be negligible with respect to Qv X. On the other hand, we are only interested in values
of X larger than Q?. This is in contrast with most works on primes in arithmetic progres-
sions [FI83, BFI86, Zhal4], where the main challenge is to work with values of X much
smaller than @2, while only aiming at an error term which is negligible with respect to X.
The main point is that in both cases, the large sieve yields an error term which is always
too large (see [IK04, Theorem 17.4]), an obstacle which the dispersion method is designed
to handle.

In what follows, we will systematically write
X = Q2+w
so that —o(1) <@ < Kk +0(1) as Q — oc.

4.1. Combinatorial identity. We perform a combinatorial decomposition of the von Man-
goldt function into sums of different shapes: Type d; sums have a long smooth variable, Type
ds sums have two long smooth variables, and Type II sums have two rough variables that are
neither too small nor too large. We accomplish this decomposition with the Heath-Brown
identity and the following combinatorial lemma.
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Lemma 9. Let {t;}1<;<; € R be non-negative real numbers such that 3 ;t; = 1. Let
A, 0,0 >0 be real numbers such that

1
—5<E,
)

o T_9
o< §— 3,

— 2\+o0< %
Then at least one of the following must occur:
— (Type d,) There exists t; with t; > & + X.
— (Type dy) There exist i, j, k such that é — 0 <ttt < %+ A, and

Z t: <o.

i {tit e}

— (Type 11) There exists S C {1,...,J} such that

Proof. Assume that the Type d; case and the Type II case both fail. Then for every j we
have t; < % + A, and for every subset S of {1,...,J} we either have

th <o
or

th>%—(5.

jes
Let si,..., sk denote those t; with % —0<t; < % + A. We will show that K = 3. Let ¢ be
any other ¢;, so that tr < é — 0, and therefore t: <o. We claim that

Zt; < 0.
J

If not, then )’ it > % — 0. By a greedy algorithm we can find some subcollection S* of the
¢ such that

Since 20 < é — 0 this subcollection satisfies the Type II condition, in contradiction to our
assumption.
Now we show that K = 3. Observe that K > 3, since if K < 2 we have

K
1= t;=> si+> ti<2(3+N)+o<l
j i=1 j

Furthermore, we must have K < 3, since if K > 4 we have

K
1:thZZsi>4<%—5>>1.
j i=1

This completes the proof. O
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Using e.g. Heath-Brown’s combinatorial identity [HB82], we deduce the following.

Corollary 10. Let f be a test function, v : N — C be any map, and X > 1. Then there
ezists a sequence (C;);>0 of positive numbers, depending only on f, such that we have

> A (i )utn)

neN

(14) < (log X)¥(Ty + Ty + T),

where

(15) Ty = sup sup ZZ ( >Bmu mn)|,

N>>X1/3+/\ geg neN
MN=X BeS| Su

(16) T, = sup sip DD D g ( - )gz<n )ﬂmu(mnlnz) ,

x1/3— 6<<N2<N1<<X1/3+A g1, gzeg N
MN; Ny=<X pES "}nnjﬁ

(17) TH = sup sSup Z Z O‘mﬁnu(mn) )

XN X3 a,fes | " '
MNx<X o M

where the implied constants are absolute, G is the set of test functions g satisfying ||g¥]|s <
C; and S is the set of sequences (B,) satisfying |B,| < d(n)®.

Proof. By the Heath-Brown identity [IK04, Proposition 13.3|, there exists bounded coeffi-
cients (c¢y)1<j<4 such that

Mm)=Des >0 Toglnn) [T umy)

n=mi..mjni..ny
m;<(3X)1/*

for any n involved in the left-hand side of (14). Let ¢ be a test function inducing a partition
of unity in the sense that >, 1(5;) =1 for all z > 0. Then we have

ZA(n)f(%)u(n):icJ Z S(My,..., My, Ny,...,Ny),

J=1  (M,...,M;j,N1,...Nj)eUy;

S(My,...,Ny) = Z logm (Hqﬂ(nj))(Hu m;) ( >>f<%)u(man),

where U is the set of 2J—tuples of powers of 2 such that X/6 < M;...M;N;...N,
6X, and p*(m) = p(m) if m < (3X)Y* and 0 otherwise. We abbreviated my...n;
my...myny...ny. The set U; has at most O((log X)*~1) elements. By Lemma 9, for
cach choice of J and (M, ...,N;) € U; we have cither N > X3+ for some N € {N;},
or %X1/3‘5 < N/, N" < 6X/3+ for some N', N” € {N;}, or %X" < N < 6X/39 for some
subproduct N of N; and M; (here we used that for X large enough, we have (3X)Y/* <

I IA
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1X1/379). Sorting the sum over J and (Mj,...,N;) according to this trichotomy, and
writing log(n;) = log N1 + log(ny/Ny), the above is bounded in absolute values by

< (log X)¥(Ty + Ty + Tyy),

* n mn
R TS J Dot LA e
%X1/3+>‘SN BGS me~ M
|r|<8
% nq N9 ninaom
T w2 al(§)e(5) o (G )
X/6<N1NaM<6X g1, gge{wwlog} n1.mgEN 1 2 14V2
§X1/3TOSNG Na<X /312 me~M
Ir|<8
TG = sup sup A B f ( ) (mn)]| .
X/6<NM<6X «a,8€S n% eI\ or MN
$XT<N<6X1/379 n~N
r|<8

Here the conditions m ~ M and n ~ N in the sums were added by an additional bounded
dichotomy (which is the reason for the presence of the sup over r). F 'inally, letting f be
the Mellin transform of f, we have by Mellin inversion f(x f f(it)z=" dt, and the

map t — f(it) is of Schwartz class on R. In particular, for M, N, r, g, as in T} we have

n n
> o(5) 0t (ol < sup| 30 a1 Bmslmn)
neNm~M neNm~
where g,(z) = (1+12)f(it)x~"g(x) (the factor 1+ t> being included so that we could write a
supremum) and f,,; = m~"3,, € S. We note that g, is a test function satisfying || 09 |o <

C; where Cj = SUPo< ¢ m<jto 185 £ (it) || o || 2~ ¢ g™ ()| s can be bounded in terms of f only.
This yields the contribution of 7 in our claim. The contributions of T, and Tj; are obtained
in the same way. O

In what follows, we successively consider T},T5 and Ty, which we specialize at

u(n) = Z W(%)uR(n, bw),

weN

and we will denote
R = X".

4.2. Type d; sums. We suppose M and N are given as in (15). The quantity we wish to
bound is

101, N) = 2 ¥ (77 %ﬁm( % o(%)

mn

(m,bw)=1 1 (mod bw)

—@ > xm) Y xme()).

X (mod bw) (n,bw)=1
cond(x)<R
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By Poisson summation and the classical bound on Gauss sums [IK04, Lemma 3.2], we have

> (M) =i Y a(f—j)e@—j)w@*),

n=m (mod bw) 0<|h|<W1lte /N
1 c N _ Q°R'/?
— — ) =—90)1(x = O .
7 2 () = A0 =+ (Y5
Therefore,

2%2% ( ) Yo B D a(%)e<f—j)+0(z\mw@€).
’ (=t O

Our goal is to get cancellation in the exponential phases by summing over the smooth variable
w. We apply the reciprocity formula

which implies

N1 _(Nh bwh
M=52 () X 3 () ()
w (m,bw)= 0<|h|<W1l+e /N

m~M

+ O(MR3/2Q€ + Q1+€N_1).
We rearrange the sum as
w bwh

(mb 0<|h|<WI+e/N (w,m)

mn

By partial summation and a variant of the Weil bound [Dral5, eq. (2.4)], the sum on w is
< ((h, m)WM™ + \/(h,m)vV'M)Q
Summing over h and m, we obtain a bound
Ti(M, N) < QY + M32Q° + MRY?Q°.
This bound is acceptably small provided

N> <£>2/3+5 — XiTaete taee
Q
1/2 p3/2 i
N> XQ% — X Tt
These inequalities are satisfied, for all sufficiently small € > 0, under the assumptions
w 4+ w
18 A>— < —.
(18) 32+w) T 92tw)

We have proved the following.
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Lemma 11. Under the notations and hypotheses of Corollary 10, and assuming (18), we
have

T, < Q7 VX,

The implied constant depends on X\, p and w.

4.3. Type dy sums. The treatment of the type dy sums (16) is nearly identical to [BFI86,
Section 14]. For convenience, we rename (N1, No, M) into (M, N, L) so that we have M N L =<
X. We wish to bound

o(M, N, L) Zﬁez (%)( ZWZ a(57) e (3)

{~L (w,0)=
¢mn=1 (mod bw)

s 2 O 0 () () xtem)
SO( w) Y (rg(()d) bw) (mn,bw)=1
cond(x)<R

We perform Poisson summation on the m-sums to get

S ()6 () () -0

m=fn (mod bw) |h|<
b ~ €
> xtman () = A w0110 = x0) + 0 (@R
(m,bw)=1

where H = W'*t¢M~1. The contribution of the error terms is
< LNR*?@¢.

The zero frequency of Poisson summation cancels out. For the non-zero frequencies we
employ reciprocity in the form

(T _ Bk (A
bw ) n LNW )’

and the error term contributes a quantity of size O(Q'™). We therefore have
(19)

. h bwh
vy =4 3 a3 () 3 oa(y) ¥ a5 (5
(ZZbNL (w, ):1 (n,bw)=1 0<|h|<H
+0(Q" + LNRY2()7).

We next separate the variables h and w. We change variables to write

/\%@_B/ @% AW
g1 buw _MRglMe b Y.

Since ¢g; and ¥ are test functions, the integral is restricted to y =< M/W. We move the
integral to the outside to write the first term of the right-hand side of (19) as

(20) < L sup Zﬁé 2 e( )ZZ ( )s (wy)gz(@e( bZ%h)'

bW
y=M/W 0<|h|<H
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We then use [DI82, Theorem 12|, amended as described in [BFI], more specifically, with the
dictionary (the bold symbols denote the variables names from [DI82])

c,C < n, N, d D+ w, W,
nNohH 1 RoU,D
S, S < f, L, bn,f,a,s < 1b/:be(—hy/b)5g

Since A < 1/6, we have H < L if ¢ is sufficiently small. Therefore, with the same notations,
we find the bounds

K(C,D,N,R,S) < {NL*(N + W)+ N’WL** + W?H)'?,
Ibn rs|l2 < LE(HL)Y2.

It will also be easier to sum up the bounds if we assume
(21) N < Wi,
We find
Ty(M, N, L) < LNRY2Q° + O* (\/YL + VMNLY + L1/2W>
< LNR2Q + @ (VXL + VMNLY'),

the second inequality following since LY?W < XY2[. This contribution is acceptable
provided

(22) M > Xt=tarts N s xetete T
and
(23) MB32NV2 s xatatat2e
The bounds (21)—(23) are satisfied if
1 w 1 w 1
(24) 5<E—m, )\<6—m, Py

We therefore conclude the following.

Lemma 12. Under the notations and hypotheses of Corollary 10, and assuming (24), we
have

Ty, < Q'°VX.
The implied constant depends on X, 9, p and w.

4.4. Type II sums. In the type II case (17), we wish to prove the bound
Tu(M, N) Z\If( )ZZamﬁnuR (mn, bw) < VXQI,

where « is supported at scale M, [ is supported at scale N, MN =< X, and X7 <
N < X379 We have |a,,| < 7(m)°®, and similarly for 3. We use Linnik’s dispersion
method [Lin63], following closely [Fou85]; see also [BFI86, Section 10].
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We interchange the order of summation and apply the triangle inequality, writing our sum
as

Applying the Cauchy-Schwarz inequality, we arrive at
(25) Tu(M,N)* < M(log M)°ID,

where

p=%/(3)| T (@) em 2 2300 ) ot
mn=1 (mod bw) X a0 28 ()
Here f is some fixed, non-negative test function majorizing 1j; . It suffices to show that
D < NQ* .
We open the square and arrive at

(26) D:D1—2RQD2+D3,

say. We treat each sum D; in turn.

4.4.1. Ewvaluation of Ds. By definition we have

=Y (LTSN X v (i) e () s

w1,w2,Nn1,n2 X1,X2
(mny,bw1)=1  x; (mod bw;)
(mna,bwa)=1 cond(x;)<R

The computations in [Dral7, p. 711-712] can be directly quoted, putting formally

(27) V() = 1(b | q)¥(q/(0W)),

with the modification that cond(x;xz2) < R? (instead of R, as stated incorrectly in [Dral7]).
Writing H = Q°b[w,, ws] M, we get

1
P=MrO(@ 3 st 2 W, o, 2 )

wi,wexW X1,X2 0<|h|<H d|(h,blw1,w3])
n1,ma=<N COnd(Xj)<R
2
= M3+ O(Q°N*RP),

where the main term is computed as in [Dral7, p. 712] to be

w1y Wo — _ w(bwyws)
My =M @@Q@@qm@lnn .
’ f Zunzjm ;1:”22 b% p%l:lthe W W ! 2X( ! 2) bw1w2¢(bwl)(p(bw2)
(nj,bw;)=1 cond(x)<R
cond(x)|b(w1,w2)
The error term is acceptable provided

NR® < Q*=.
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Since N < X'/3 this is acceptable provided

4 —w

(28) p < BOT o)

4.4.2. Evaluation of Dy. We have

P=X YT 3 () (@) Ry X xmr ()

(nj,bw;j)=1 cond(x)<R (m,w2)=1

The computations in [Dral7, p. 712-713] can be also quoted directly with the identifica-
tion (27). We obtain

Dy = M3 + O(RY2N?Q'e).
This is acceptable if

2 21
2 Sy
(29) P <32 T 501 =)

4.4.3. Fvaluation of D;. We have

D=3 v () v () e 2 1 (5)-
lE}:L u;)gwn)l nlg w mn;=1 (mod bw;j)
nlz’ﬁlg (inod b)

We need to separate the variables wq, wo, n1,no from each other, and this requires a subdi-
vision of the variables. We decompose these variables uniquely, following [FR18], as follows:

(d = (n17n2)7
ny = ddll/l, with d1 ‘ d*>® and (d, I/1) = 1,
No = dl/g,

qo = (wl,wz),
w; = qog;, @ € {1,2}.

The summation conditions imply

(dlelaQOCh) = (dl/z,qoqg) =1.

We therefore have

Z > Z Di(d, dy, qo),

=1d;]d> (qo,d)=
9041 qo492 m
- YTy v () () e 2 1 (5)-
q1,92,V1,V2 mddiv1=1 (mod bgoq1)
(dvi,v2)=(q1,92)=1 mdra=1 (mod bgoga)

(q1q2,d)=(v1,d)=1
(v1,q1)=(v2,92)=(v1v2,bq0)=1
divi=ve (mod bgo)
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Using smooth partitions of unity we break the variables into dyadic ranges: d < D,d; <
D+, qop < Qo. The contribution from d < D and d; < Dy is

O(
< QeMZ Z Z Z |de1u1||ﬁdvz| < Q€MN2 Z Z d?dl (gll)

d=D dy|d>® vy<N/ddy va<N/d D dy|d>®
d1 <D

< Q°MN?*D{** D1,

where the sum over ¢g,q; was bounded by O(73(|mddiv; — 1|)) = O(QF), likewise for the
sum over ¢y (note that mdry # 1 and mddyvy, # 1). This bound is acceptable provided

X
(30> DDl > Q2 N2—¢’
so we may henceforth assume DD; < XQ~2*¢.

The contribution from ¢y < ) is

R IEDIEED 3 DEEEED DI

90=<Qo 1XQ/qo n1=n2 (mod qo)  mxM

m=n1 (mod qoq1)
couy ¥ L vy
q0=Qo0 q1XQ/qo0

ni=nz (mod qo)
n;=

< Q° (MN*Qy' + MN),

where in the first line the sum over ¢ was again bounded by 7(|mdvs — 1]). This is acceptable
provided

n]x

qoq1

X

X
(31) N>> PRy and QO > Q2 N’

Q

so we may henceforth assume Q, < XQ <.
We use Poisson summation, following [Dral7, pp. 714-716]. Let

dd11/1 (mod bqul),

F=b =< -
q = bgoq1q2, H {d]/z (mod bgogz).-

Note that ¢ > W > Q'=. With H = g™ M~ < Q*™/(qoM), we get for any fixed A > 0

2) Y i) =5 L)) roe

m=p (mod q)

The zero frequency in (32) contributes the main term, which, after summing over d, d, qo
(and reintegrating the values DD, Qg larger than X Q~2"¢ which were discarded earlier), is

given by
M,y ZZZZ ( ) ( )@Hﬁm (w1, w]

w1,w2,n1,n2
(nj,bw;)=1
ni=n2 (mod b(wi,w2))

The error term in (32) induces in D;(d, dy, qy) a contribution

< Q_10N2,
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and therefore in D; a contribution O(1), which is acceptable.
We solve the congruence conditions on g by writing

dyvy — vy = byot, pddivy =14 bgoqit, pdvy = 1 4 bgogam,
with ¢,/,m € Z. We deduce
pdt = qil — gom, t = qinl — qdivim.

Then we have the equalities, modulo Z,

I 1 N 14
q  bgoqiqe ddiv1bgoqige  ddivigo
_ 1 N (dd, L e
ddiv1bgoqiqe  viqe  ddy
_ 1 tqiveddy  bgoqivige
= ddynbaoqigs g dd,
_ 1 divi — va uoddy bgogin g
— ddiv1bgoqige bqo VG2 dd,
By estimating trivially the first term, we have
(33) e<h_~/~b> _ e(hdlyl — Vo qivadd,y _ thOCI1V1CI2) 4 O( Hqq )
q bqo V142 dd, NW?
The error term here is < Q°X !, which contributes to D;(d, dy, qo) a quantity
2+€N N
)Q(qudl (1+7)

and upon summing over (d,dy,qg), this contributes to D; a quantity O(Q***N2?X~!). This
error is acceptable if

(34) N < Q*=.

Then we insert the first term of (33) in (32), and insert the Fourier integral. The non-zero
frequencies contribute a term

Ridda) = [ XYY S w () v (B

q1,92,V1,V2 h|<H
(dv1,v2)=(q1,92)=1 0<lhl<
(q192,d)=(v1,d)=1
(¥1,91)=(v2,q2)=(v1v2,bq0)=1
divi=ve (mod bgo)

2
QOQ1Q2) ( divy — v qiaddy thIOQ1V1CI2> <—htMQO)
t h — dt.
</ ( w2 )\ v ad, )\ e

So far, we have obtained under the conditions (31) and (34) the bound
Dy = M, + Ry +O(NQ*™),

Ry = > > R(d.dy, q).

Qo,DD1«XQ~2+e d=D
Q,D,D; dyadic dlAgl
0~L0
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We now restrict the summation over ¢, ¢» in residue classes modulo dd;, to account for
the oscillatory factors. Let A, Ay € (Z/dd1Z)*, and

MBIy b
bn r,s — ) - e( - ) ) |
[ ] Z Z Z /del 1/6d 9 ddl bW2
V1 120 0<|h|SH
s h(dwav)=baom
(dV1,V2):(V1V2’bqO):1
(v1,d)=1

divi=ve  (mod bqo)

d 2ed
s(e-d.nors) = () (7)1 ().
Then
Maqo
Ri(d, di,qo) = b2 /txf1 Z Ra(t, (A7) dt,
A1, (mod ddl)*
Ri(t, (\;) = Z bnrsglc,d,n,r s)e<@>.
’ ’ n,r,s,c,d o R sc
e=A1, d=)2  (mod ddy)
(se,rdbddy)=1
We apply Proposition 6, with sizes given by
%4 N HN
C=D=—, §S=—, R=Nd N=——.
%’ ddy’ v dbgo
Let X = Q%Y,so Y = Q®. Note that
RS =< N?’D7 1, N < *N*Y'D'Q;* < °RS, C < Q°RD.

We get
Ri(t, ;) < Q°(DD1)*?K||bn r,s]|2,

where

QK% < Q*N'D™1D,Q;% + Q¥ N0 D=2+20 n-20x-2-40(1 | [y /NYL=4 | Q2 N3y -1 D=1, -,
To bound the term ||byn g sl|/2, We assume

(35) XQ7* = o(N),

so that D = o(N) by virtue of the line below (30), and the case djv; = vy never occurs
in by, »s. Then

Q2+€ N N
lbn, .55 < Z |Badyon B |* < QoM DD, \ DQ i

V17V27h
divi=ve (mod qo)
0<|h|<H

< QE(N?’Y_lD_2D1_1Q52 + N2Y_1D_1D1_1Q61).

We deduce
6

7@/1 (t, ()\j)) <Q° Z QM1 NIk2 Ymc,sanAD;?k,s 70716,6’

k=1
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where for each k, n, = (7k¢)1<e<6 is given by

(/1 1 20 + 1 20 + 1 1 1\ )
3 7/2 3 — 30 7/2 — 30 5/2 3
=12 12 ~1/2 ~1/2 ~1 ~1
{m} = 12 || o | 0 le—12 |12 || o
3/2 3/2 1-6 1-6 3/2 3/2

L \—3/2 —2 —20-3/2) \-20-2/ \-5/2) \-3/)

Summing over \;, integrating over ¢, and multiplying by %V—qg L Q°N~YQ,, we get

6
Rid,di, qo) < Q° Y Qe Nty matl pnat2 st gueet

k=1

We sum over d, d; and ¢y in dyadic intervals of lengths D, D and @)y, obtaining

6
_ ‘ 542 +2
E Rl(d, dquo) < QE E an,lNﬁk,z 1Y77k,3+1D77k,4+3D717k7 gkﬁ )
d=D k=1
dlxDl, dl‘doo
q0=Qo
(dvb):(q()vd):l

Finally we sum this dyadically over @)y, D, D subject to Qo + DD, < Y ()°. We get

6
R < QF § Qe Nk2= 1y mk,3+1+max (0,7 6+2)+max(0,nk,4 43,7k, 5+2)
k=1

Here, the terms for k = 5,6 are majorized by the term k = 1, therefore,

4
R < Q° Z QGk,lN@k,QY@kﬁ’
k=1
where
1 1 14260 1420
0/2) \4) \4=0) \7/2—-9¢

We conclude that

D, = M+ O(Q*°N)
on the condition N < Q~° min(QY ~%/2, Q*3Yy ~8/3, Q%Y_%, Q*3Yy~ 3(711229‘9)). Upon us-
ing 6 < 7/64, these conditions are implied by

50—249w 50—217w

(36) N« X° min(X 22(532) , X B30rw) | X T5tw) )7

and the above hypotheses (31), (34), (35).
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4.4.4. Main terms. The main terms M; and M3, which are real numbers by the symme-
try ni <> no, combine to form

My — M3 = MJ?(O) Z Z \Ij(%>‘l}(%> b[wl,wg]sotb(wl, w;))

X Z Z Z 5n15—mX(n1)m~

X prim ni,n2
cond(x)>R  (nj,bwj)=1
cond(x)|b(w1,w2)

We may quote the computations in [Dral7, p. 717], again with the identification (27), to
obtain

My — M| < Q°M(N + N*R™%) < Q°(X + NXR™?).
This is acceptable provided
(37) N> Q"%  R>»Q*™
4.4.5. Conclusion. The hypotheses (28), (29), (31), (34), (35), (36) and (37) are all satisfied
if
1 242w w 1 w

<p< = —

1
38 1/8 ) —.
(38) w < 1/8, w<o< < 9 301

3 3 T5(2+w)  202+w)
We therefore conclude the following.
Lemma 13. Under the notations and hypotheses of Corollary 10, assuming (38), we have
Ty < VXQ'™.

4.5. Proof of Proposition 4. We combine Lemmas 11, 12, 13 and 9. Setting 0 = w + ¢
and recalling that w < 1/8, we obtain the conditions

w 1 w
01w N6 2
242w 1 w
Berwm) O 12 22t@)
w 1 w
22+@) "9 32tw)

The third is implied by our hypothesis on R. The first two can be satisfied whenever —o(1) <
w < 2% — o(1). This proves Proposition 4.

1093
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