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BIAS IN CUBIC GAUSS SUMS: PATTERSON’S CONJECTURE

ALEXANDER DUNN AND MAKSYM RADZIWILL

ABSTRACT. Let W be a smooth test function with compact support in (0,0). Con-
ditional on the Generalized Riemann Hypothesis for Hecke L-functions over Q(w), we
prove that

1 , 271)2/3 ® X5/6
D - ( D ezmms/p>W(%) _ 7T)2 f W (2)a~ Yo dz - =,
p=1 (mod 3) \/ﬁ z (mod p) 3F(§) 0 og

as X — o and p runs over primes. This explains a well-known numerical bias in the
distribution of cubic Gauss sums first observed by Kummer in 1846 and confirms (con-
ditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson [Pat78b]
from 1978.

There are two important byproducts of our proof. The first is an explicit level aspect
Voronoi summation formula for cubic Gauss sums, extending computations of Patterson
and Yoshimoto. Secondly, we show that Heath-Brown’s cubic large sieve is sharp up to
factors of X°(1) under the Generalized Riemann Hypothesis. This disproves the popular
belief that the cubic large sieve can be improved.

An important ingredient in our proof is a dispersion estimate for cubic Gauss sums.
It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic
main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of
the fundamental reasons why our result is conditional.
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2 ALEXANDER DUNN AND MAKSYM RADZIWILL

Appendix A.  Appendix 7

1. Introduction

1.1. Exponential sums over primes. Kummer [Kum?75, Paper 16,17] studied the dis-
tribution of the cubic exponential sums
p 3
n .
Sy = e(—), e(x) := ¥,

> ; .
with p =1 (mod 3) prime. The bound |S,| < 2,/p is well-known, and we can consequently
write

S,

2\2_) = cos(276,), 6, ¢€[0,1]. (1.1)
This specifies the value of 0, — % up to sign. This sign ambiguity can be resolved by
noticing that (1.1) is the real part of an explicit root of unity defined in (1.7). To probe
whether 6, is equidistributed, Kummer computed the frequency with which cos(276,)
lay in the intervals I; = [5,1], [, = [-%,3] and I3 = [—1,—1], for p < 500. Kummer
observed that cos(2m6,) tended to lay more frequently in I; than in I5 or I3 (the ratio he
observed was 3 : 2 : 1 respectively). If this bias persisted, then the angles 6, would not
be uniformly distributed. Subsequent calculations by von Neumann-Goldstine [vNG53],
Lehmer [Leh56] and Cassels [Cas69] cast doubt on the persistence of this observation and
suggested that cos(2m6,) lay equally frequently in Iy, I and I3, and that 6, was uniformly
distributed. In light of the new numerical evidence, Patterson [Pat78b] enunciated a
corrected conjecture. This conjecture explained the bias observed by Kummer, and was

consistent with the numerical data.

Conjecture 1 (Patterson, 1978). As X — oo,
Z S, 202m)*P XP/6
= 2 50(3)  log X’

p=1 (mod 3)

where p runs through primes.

Patterson obtained this conjecture by developing Kubota’s theory of metaplectic forms
[Kub69,Kub71], and by appealing to a heuristic form of the circle method [Pat78b]. Unfor-
tunately, even under the assumption of the Generalized Riemann Hypothesis, Patterson’s
heuristic fell short of a proof. This was due to insufficient bounds for the minor arcs. Sub-
sequently, in 1979, Heath-Brown and Patterson [HBP79] established that 6, is uniformly
distributed in [0, 1] as p varies among primes congruent to 1 modulo 3. This decisively
disproved Kummer’s guess. A nice summary up to this point can be found in a standard
text of Davenport [Dav00, Chap. 3]. Some 20 years later, in 2000, Heath-Brown [HB0O0]
sharpened his earlier result with Patterson and obtained unconditionally the nearly tight
upper bound

> 5 <o X006t (1.2)
p<X 2\@

p=1 (mod 3)
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for any given € > 0. Heath-Brown [HBO0O, pg. 99] also stated a refined form of Patterson’s
conjecture that features an error term capturing square root cancellation®.

In this paper we confirm Patterson’s conjecture, conditionally on the assumption of the
Generalized Riemann Hypothesis. This can be also viewed as a conditional sharpening
of (1.2). We will explain in a later part of the introduction why the assumption of the
Riemann Hypothesis (or similar unproven hypothesis) appears to be necessary at this
point.

Theorem 1.1. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let W be a smooth function that is compactly supported in (0,00). Then as X — oo

we have , /
2 3 X5/6
2 QSP 'W%) ~ 2 J W(e)e™  de - 1=,
p=1 (mod 3) \/ﬁ § 0g

where p runs through primes.

Notice that the constant that we get is consistent with Patterson’s [Pat78b] prediction:
if W () — 1po,17(x) then,

7r)2/3

30(2)

2(2m)%3
5r(2)

Theorem 1.1 shows that the angles 6, cannot be equidistributed with square-root cancel-
lation in the error term. We make this precise in Theorem 1.2.

0
J W (z)z™V5dz —
0

Theorem 1.2. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let f be a smooth 1-periodic function and W be a smooth function that is compactly
supported in (0,00). Then we have

3 f(Hp)W(§>=L1f(:c)d:c > ow(2) (1.3)

p=1 (mod 3) p=1 (mod 3)
1 27’(‘ 2/3 X5/6 X5/6
2 or)d W (x)z/%d ( )
+ L f(z) cos(2mzx)d - (D) J x - log X +o0 g X/’

as X — 0.

It is unlikely that (1.3) can be established unconditionally given the current state of
knowledge. For instance, with the choice f(x) = e(30x), ¢ # 0, (1.3) implies a zero-free
strip for certain L-functions associated to Groflencharaktern.

Before proceeding to a high level sketch of the ideas in the paper, we remark that it
is possible to slightly sharpen the rate of convergence in Theorems 1.1 and 1.2. One can
save roughly one power of log X.

1.2. Gauss sums over Eisenstein integers. Let w = €™/ and let Z[w] denote the
ring of Eisenstein integers (in Q(w)). It is well known that any non-zero element of Z|w]|
can be uniquely written as (Ac with ¢ € {+1,tw, +w?} a unit, A = /=3 = 1 + 2w
the unique ramified prime in Z|w]|, i € Zso, and ¢ € Z|w] satisfying ¢ = 1 (mod 3).

!The constant in Patterson’s conjecture appearing in [HB00] is mistated due to a misprint
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Furthermore, we have a cubic symbol (%)3 defined fora =1 (mod 3) and @w =1 (mod 3)
prime. This is defined by

(ﬁ) = o@D (mod w),
w/3

and the condition that it takes values in {1,w,w?}. It is clearly multiplicative in a and
can be extended to a multiplicative function in w by setting

a a
@, =TT

for any b = 1 (mod 3) with b = [ [, w; and w; primes. The cubic symbol obeys cubic

reciprocity: given a,b=1 (mod 3) we have

(5, @), (14

We also have supplementary laws for units and the ramified prime. Given d = 1 + ap\? +
azA® (mod 9) with ay, az € {—1,0, 1}, then

(D), i (), "

The cubic exponential sums S, are intimately connected to cubic Gauss sums over
Eisenstein integers. For any rational prime p = 1 (mod 3), we can write p = ww@ with @
prime in Z[w]. Then

Sp
2./p

where the normalised Gauss sum is given by

0= Y (D)D) )=, (1.7)

|c| c c

= Re g(w), (1.6)

z  (mod ¢)

for any ¢ € Z|w] with ¢ =1 (mod 3). Here | - | denotes the Euclidean distance of ¢ from
the origin. We write g(c) for the unnormalized Gauss sum, namely g(c) := |c|g(c). We
also note that

. c

g(c)* = M(C)H- (1.8)

Thus §(c) is a cube root of u(c)c/|c| (see [Hasb0, pp. 443-445]). However, given a prime
w =1 (mod 3), there is no known formula efficiently predicting which cube root g(w)
corresponds to.

Formula (1.6) shows that Patterson’s conjecture is equivalent to the statement

_ 2(2m)%3  XP/6
Z g(w) ~ N :
5U(%)  logX

N(w)<X
w prime

w=1 (mod 3)

2We note that the work of Matthews [Mat79] gives an explicit formula expressing g(w) as a product of
the Weierstrass p-functions evaluated at (N (7) — 1)/3 values. Despite the beauty of Matthews’ formula,
it is not computationally efficient.
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From the point of view of Weyl’s equidistribution criterion it is also natural to ask about
the behavior of §(w)* with k € Z. Patterson enunciated in [Pat78b] a complementary
conjecture. It states that for all k£ ¢ {0,1, —1} we have,

N X5/6
N(;@( g(w)k = O(logX) (1.9)

w prime
w=1 (mod 3)

as X — oo. We conditionally establish a version of this conjecture with wide uniformity
in k.

Theorem 1.3. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let W be a smooth function compactly supported in (0,00). Then as X — o0 we

have
o 5/6
S o= W () = o(x)

w=1 (mod 3)

w prime

uniformly in 1 < |k| < X1/10

Theorem 1.2 is a nearly immediate consequence of Theorem 1.1 and Theorem 1.3.
Notice that in the case K = 0 (mod 3) (k # 0), Theorem 1.3 unambiguously requires a
zero-free strip for L-functions associated to Groflencharaktern.

1.3. Cubic Gauss sums and automorphic forms. Developing Kubota’s theory [Kub69,
Kub71], Patterson [Pat77] established a functional equation for a Dirichlet series of the

form
g(p, c)
2 No

c=1 (mod 3)

= B (2)e(F)

z (mod c)

where

Subsequently, Yoshimoto [Yos87] followed Patterson’s approach to obtain a functional
equation for the Dirichlet series

v 9(c)y(c)
c=1 (mod 3) N(C>S
where v is a primitive Dirichlet character such that 3 is not principal. Yoshimoto
specifically excludes the case when 1® is principal to prevent the (Kubota) multiplier
from interfering with ¢. We develop both of these computations further, obtaining a
functional equation for the Dirichlet series

c=1 (mod 3) N(C>S

and ¢ a periodic function modulo 7 with r = 1 (mod 3). We specialise our computation
to the case when ¢ is the conjugate of a cubic character to modulus r. The result for this
specific choice of ¢ could have been obtained more directly by combining [Pat77, Theorem
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6.1] and [HB0O, Lemma 4.1]. However, we found it advantageous to develop a more general
approach. First, we believe that the result will be useful in later works. Second, this more
general approach improved our understanding of (and confidence in) the formula. Third,
our functional equations explicate the root number. These formulas are too lengthy to be
introduced here. We refer the reader to Section 5 where they are stated in detail.

As in earlier works [HB0O, HBP79], this Voronoi formula is used to understand the
so-called Type-I sums

2 fl(cr)arV(N;;))V(Néc)), CR =X, (1.10)
er=1 (mod 3)

with «,. arbitrary coefficients bounded in absolute value by 1. A sharp bound for (1.10)
in the range C' > R? was established in [HB00]. In the proof of Theorem 1.1 we need an
asymptotic slightly past this range (with an error term « X°%7¢). In Section 8 we use
the Generalized Riemann Hypothesis (to cancel out the contribution of cubes) to obtain
adequate pointwise (for a single value of r) Type-I information as long as C' > N(r)'*¢, for
any given £ > 0. We also give alternative estimates in Section 11 that use the averaging
over r in a non-trivial way: we obtain adequate Type-I information on average in the
range C' > R?>7¢, under the Generalized Riemann Hypothesis. For the interested reader
we note that there are two ways of bypassing the Riemann Hypothesis in this case. One
is to assume that the sequence «, has a bilinear structure. The second would be to obtain
“subconvex” bounds in the r aspect for the Dirichlet series >._; (04 3) 9(cr)N(c)™*. Since
a more significant bottleneck appears elsewhere we have not endeavoured to make these
results unconditional.

1.4. Cubic Gauss sums and the cubic large sieve. In order to obtain the bound

Z g(w) <. X5/6+a’
N(w)<X
w prime
w=1 (mod 3)
Heath-Brown develops in [HB00, Theorem 2] the so-called “cubic large sieve”. The cubic-
large sieve states that for any sequence (3, supported on squarefree b € Z|w],

by |2
3 ,ﬁ(a)) 3 6b(—) ‘ < (ABF-(A+B+(AB)™) Y |g,% (1.11)
N(a)<A N(b)<B ass N(b)<B
a=1 (mod 3) b=1 (mod 3) b=1 (mod 3)
Immediately after stating (1.11) in [HB00], Heath-Brown writes:

“It seems possible that the term (AB)%? could be removed with further
effort, and the bound would then be essentially best possible. However,
the above suffices for our purposes. It should be noted that if the variables
are not restricted to be squarefree, a result as sharp as Theorem 2 would
be impossible. The proof of Theorem 2 is modelled on the corresponding
argument for sums (over Z) containing the quadratic residue symbol, due
to the author [3] (local cit. [HB95]). The latter is distinctly unpleasant,
but fortunately some of the difficulties may be reduced in our situation by
the introduction of the term (AB)%3 in Theorem 2. ”
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This assertion that the term (AB)%? can be removed is then frequently repeated in sub-
sequent literature. For example, in [BGL14] it is asserted that

“As in [12] (local cit. [HB00]), the term (AB)%3 is not optimal and can
most likely be replaced with (AB)Y2.”

To our great surprise we found that the term (AB)%? in Heath-Brown’s cubic large sieve

can’t be removed. We state our optimality result in terms of operator norms. For A, B >

10, and (f3)pez) an arbitrary sequence of complex numbers with support contained in
the set of squarefree elements of Z|w], let

saB = Y 2w Y a()f

) ) T 2 b als .

A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)

For A, B > 1, consider the operator norm

B(A, B) := sup {Z(A, B.B): Y |6 = 1}. (1.12)
b

Theorem 1.4. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
Q(w). Let A, B = 10, then for any € > 0 we have

(AB)*? «. B(A, B) <. (AB)%3+¢ for Ae [v/B, B*|\[B'~¢, B1**],
(AB)¥373%¢ «_ B(A, B) <. (AB)***¢  for Ae [B'~¢, B1*%].

Remark 1.1. Only the lower bounds in Theorem 1.4 are conditional on the Generalized

Riemann Hypothesis for Hecke L-functions over Q(w). The upper bounds follow uncondi-

tionally from Heath-Brown’s cubic large sieve, and are included for the sake of comparison

with the lower bounds.

One example establishing optimality in the range A = B~ (for any given small € > 0)
is G, = g(b). This follows from applying our Voronoi summation formula in Proposition
8.1, and then subsequently using the non-trivial main term that arises when summing
cubic Gauss sums over all elements of Z[w] (see Section 9 for details). This is far from
the only obstruction. Any sequence of the form £,g(b) with S, non-negative and not
correlated with cubic symbols would provide a counterexample.

To address this limitation of the cubic large sieve we introduce a correction term. This
allows us to beat the exponent (AB)%*3, albeit only for sequences that have substantial
cancellations against all non-principal cubic characters. We show that there exists a small
fixed 9 > 0 such that for any sequence 3 on Z[w] satisfying

e |3 <1 for all be Z[w];

e [, supported on square-free w-rough integers (i.e all prime factors of b € Z[w] have
norm > w);

e [3, supported on b =1 (mod 3) with N(b) = B;
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then
N(a) _ b (2m)%/3 @ B, |2
QE;M u2(a)V( A ))bEZZM ﬁbg(b)(a)s_ 3T(2) N(a)'/® bEZZM W‘
a=1 (mod 3) (ba)ol

5 5 Za@) -o(HEE ruers),
] b

heZ|w w
0<|h|<BZ%/A
h+#60

where &7 denotes an integer of the form k3 with k € Z[w]. In particular, if the sequence [,
exhibits square root cancellations against all non-trivial cubic characters and w > (AB)®,
then (1.13) is « (AB)°W(AB + B? + (AB)?3~¢ . B). This suggests that in order to
beat the cubic large sieve, the correction term alone is not enough; we really need to
know additional information about the sequence (3. It is tempting to try to use Dirichlet
polynomial techniques to bound (1.13). However, the optimal term (AB)%? in the cubic
large sieve adds substantial technical challenges preventing us from being able to use these
techniques. Precise versions of (1.13) are given in Propositions 9.1 and 9.2.

Using the above estimates we are able to show in Section 10 that for a broad class of
sequences we have

. (2m)*? 0 Bppt? (ab)
D alBglab) ~ = > . (1.14)
a,b=1 (mod 3) 3F(§) a,b=1 (mod 3) N(ab> 1/

Note that p?(ab) can be inserted at will since b is supported on w-rough integers and
w > (log X)!% is reasonably large. It is perhaps appropriate to call (1.14) a dispersion
estimate. Compared to the usual dispersion estimates we use the assumption of the
Generalized Riemann Hypothesis instead of the usual Siegel-Walfisz assumption, and the
condition ab =1 (mod ¢) is replaced by the term g(ab).

The estimate (1.14) will be indispensible in estimating so-called Type-II sums, which
we discuss in the next section. Our example suggests that the GLs-spectral large sieve
recently established by Young [You21] might also be optimal. In the same vein, it is also
interesting to note that Iwaniec and Li found unexpected main terms appearing in the
spectral large sieve for I';(¢) [ILO7]. Other versions of the cubic large sieve have been
established by Baier and Young [BY10] in their work on the first moment of Dirichlet
L-functions (over Q) twisted by cubic characters.

1.5. The overall strategy of the proof. Having explained above the main ingredients
in our proof we will now explain how they are combined in Sections 13 and 14. It will be
useful to compare the argument with [HB00]. In order to establish the bound

D (@) « X0t (1.15)

N(w)<X
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in [HB0O0], Heath-Brown needs to address two types of sums,

3 aag(ab)v<Ni“))v(Néb)), AB = X; (1.16)
ab=1 (mod 3)

3 aaﬁbg(ab)v(Nf))v(Né“), AB = X. (1.17)
ab=1 (mod 3)

The first sum is known as a Type-I sum and the second sum as a Type-II sum. If we are
aiming for a bound of the form X°/%*¢ for the sum over primes then we need to bound the
Type-II sums by « X°6+¢ in the range A > X'/3 (since we will apply Cauchy-Schwarz
on the a-sum and thus we can hope for at most a saving of v/A in the most favourable
scenario). We also need to bound the Type-I sums by « X*%*¢ in the range A < X/3.
The main point is that if asymptotic estimates are not sought, then proving bounds with
an X°-loss is sufficient.

If we aim to refine Heath-Brown’s bound (1.15) to an asymptotic then first we need
to refine the Type-I estimate to an asymptotic. This can be done simply by a careful
derivation of Voronoi summation. We also need to push the range slightly past A > X/3,
but this does not present us with any significant difficulties under the Generalized Riemann
Hypothesis (other than the tedium of the computations).

Second, we need to refine Type-II estimates to an asymptotic; this is significantly more
tricky. For this it is necessary to use our version of the cubic large sieve with the correction
term. Since the error term needs to be smaller than X we now need to take A > X/3+¢
in the Type-II sums. This however creates a problem since the ranges in which we can
handle Type-I and Type-II sums are not enough to obtain primes. In fact we now need
to also bound the contribution of so-called Type-III sums of the form

S awav (SRR (). ase-x

with A, B,C = X'/3%9C) and a,b, ¢ supported on primes. Bounding these sums with
a power-saving presents a real challenge that we do not know how to solve. The main
problem arises when A = B = C' = X3, In that regime, executing Voronoi summation
on any single variable produces an essentially self-dual situation. Furthermore, the only
admissible way of applying Cauchy-Schwarz is by grouping two variables together, and
this then leads to a very long off-diagonal that appears even more difficult to handle.

Instead, we use the Generalized Riemann Hypothesis in Section 7 to refine the large
sieve bound to a bound that is tight up to constant factors and holds with wider uniformity
than the Type-II bound stated above. As a consequence we can show that the overall
contribution of these Type-III sums is only € times the expected main term. This strategy
was previously used by Heath-Brown in his work on primes in short intervals [HB88]. Our
work is the first to execute this idea in the context of an oscillating sequence with a main
term of density X °.

Finally we note that our Type-II bound (as stated) is not able to handle the narrow
range X1/27¢ < A, B < X'/?*¢. So instead in this range we use the same kind of ideas
that we used to handle Type-III sums. This is not necessary and we could have obtained
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a power-saving in this range with a little bit more work. However, this wouldn’t have
made a significant difference so we refrained from this additional work.

1.6. Acknowledgements. We warmly thank Samuel Patterson for his helpful corre-
spondence and encouragement, as well as Matthew Young and Scott Ahlgren for their
helpful feedback on the manuscript. We also thank the referee for their meticulous com-
ments on the manuscript. M.R. was supported on NSF grant DMS-1902063 and a Sloan
Fellowship.

2. Basic facts about Q(w)

Let Q(w) be the Eisenstein quadratic number field, where w is identified with ™3 e C.
It has ring of integers Z[w], discriminant —3, and class number 1. It also has six units
{+1, tw, +w?} and one ramified prime A := 1 + 2w = /=3 dividing 3. Let N(z) :=
No(w)/o(z) = |z]* denote the norm form on Q(w)/Q. Each ideal 0 # ¢ 4Z[w] is principal.
If (¢,3) = 1, then ¢ has a unique generator ¢ = (c¢) that satisfies ¢ = 1 (mod 3).

Whenever we write d|c with ¢ =1 (mod 3), it is our convention that d =1 (mod 3). If
p=1 (mod 3) is a rational prime, then p = @@ in Z[w] with N(w) = p and w a prime
in Z[w]. If p=2 (mod 3) is a rational prime, then p = @ is inert in Z[w] and N(w) = p*.
Define

2mi(z+%)

2miTrer(2) _ e 2eC
, .

é(z):=e

For ¢ € Z|w] with ¢ =1 (mod 3), the cubic Gauss sum is defined by

g(c) == d (mZOd ) (g)gé(g). (2.1)

We have the formula [Has50, pp. 443-445]

g(e)’ = u(o)c’e, (2.2)

where p denotes the Mébius function on Z[w]. Observe that (2.2) implies that g(c) is
supported on squarefree moduli. We write

for the normalised cubic Gauss sum. Note that |g(c)| = p?(c) for all ¢ € Z[w].

An important property of g(c) is twisted multiplicativity [Has50, pp. 443-445]. It states
that

Gab) = (%) 3(a)§(b) for a,beZ[w] satisfying (a,b) = 1. (2.3)
3

Both sides of (2.3) are zero when (a,b) # 1, and so (2.3) can be trivially extended to all
a,b € Z|w]. Recall that cubic reciprocity and a supplement to cubic reciprocity for the
units/ramified prime are is given in (1.4) and (1.5) respectively.
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3. Notational conventions and definitions

Throughout the paper, @ will denote a general prime in Z|w] satisfying (w, 3) = 1, and
A := 4/—3 is the unique ramified prime. We also denote by £ an element of the form b
with b € Z[w]. For z = 3, let

2= |] = (3.1)
N(w)<z
w=1 (mod 3)
w prime
For a given w > 1, we say that a € Z|w| with a = 1 (mod 3) is w-rough if and only if
(a, Z(w)) = 1.
Unless otherwise specified, it should be clear from context whether § means modular
inverse (with respect to an appropriate modulus) or complex conjugation.
Many estimates in this paper hold for a large class of sequences given in Definition 3.1
below.

Definition 3.1. Givenn > 0, A > 1, and w > 1, let C,(A, w) denote the set of sequences
a := (ag) such that

(1) || < 1 for all a € Z|w];

(2) aq is supported on squarefree w-rough a € Z[w] with a =1 (mod 3);

(3) ag =0 unless N(a) = A;

(4) For any € > 0, t€ R, { € Z and k,u € Z|w] with k,u =1 (mod 3), we have

2 o) M@ (2), <« N @i (5s) T 62)
a=1 (mod 3)

ula
provided that ¢ # 0, or if £ = 0, then provided that k # (J.

The Generalized Riemann Hypothesis is used to show that axiom (3.2) above holds
for sequences of interest to us (i.e. smoothed indicator functions on the set of w-rough
integers in Z[w].) See Section 6 for details.

Where important, the dependence of implied constants on auxiliary parameters will be
indicated in subscripts i.e. Oq¢ ..., Kcea,.. and ».¢ 4 . It will be crucial to give the
implied constants of certain error terms in the proofs of Theorem 1.1 and Theorem 1.3
explicitly in terms of some of the auxiliary parameters. Such terms are clearly indicated.

4. Poisson summation formula

We will need a minor variant of the number field Poisson summation formula.

Lemma 4.1. Let V : R? — C be a smooth Schwartz function. By an abuse of notation,
set V(x +1y) :== V(x,y). Then we have

Z V(m) = % Z]JRQ V(x,y)é(@)dxdy. (4.1)

meZ[w] keZlw
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Proof. Let A := Z|w], viewed as a discrete lattice embedded in C. We identify z + iy with
(z,y) € R% Poisson summation gives

Z Vix) = covol Z V

x€A xEA*
where A* = A"'Z[w] is the dual lattice to A,

V(x) := J}W V(u,v)e(2(zu + vy))dudv,

and

covol(A) = ?

Observe that
Re[(z + 1) (u —iv)] = zu + yv.
Thus Poisson summation for Z[ ] is given by
Z V(m f (z,y)e(2Re(k(z + iy)))dzdy. (4.2)
meZlw keA k2

We can replace k by k in (4.2), since )\’IZ[w] is closed under conjugation. Thus (4.1)
holds, as required. [ |

Lemma 4.2. Let 0 # q € Z|w], ¥ : Z[w] — C be a g-periodic function, and V : R? — C
be a smooth Schwartz function. Then

2 ok
X, mVim) =~ 3 wuwv(a),

keZlw

Q= Y we(-13)

t (mod q)

V)= [ vepe(" ) dsdy

Remark 4.1. For each t € Z|w], note that the additive character

where

and

has minimal period 3¢ (not 3Aq).
Proof. We have

mEZ[w] t (mod q) meZ[w]
Application of Lemma 4.1 to the summation over m gives

Z Vimg+t) = Z JRQ (x +iy)qg +1t)e (k< 3 ))dxdy.

mEZ[w] keZ
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A linear change of variable then shows that

5 vona+ 0 =e(-3) 2= 5 | Ve wa. )

meZ|w] q)\ ﬁN(Q) keZ[w] q)\
The result follows upon summing both sides of (4.3) over ¢t (mod ¢) with the g-periodic
weights (). [

We will specialise to the case where the test function is radially symmetric.

Lemma 4.3. Let q € Z|w] with ¢ = 1 (mod 3), ¥ : Z|w] — C be a q-periodic function,
and V' : R — C be a smooth Schwartz function. Then for any M > 0 we have

meZ[w] M 9v3N(q) keZ[w] q
m=1 (mod 3)
where
. k ( kx
bw=e(-55) Y vBMae(——),
z (mod q)

andV : C = C is defined by

- « Ar|u|

o 2
V() ._L AE: o )dr. (4.4)

Proof. Application of Lemma 4.2 gives

R R PRCIR(C DEC T

meZ[w]
m=1 (mod 3)

where 1
: t
U(k) = v(t)e( = )- (4.5)
. (I% 34) ( 3)\q)
t=1 (mod 3)

We first simplify the integral. A change of variable gives

JRZ V(:c2 A; y2>é<k(:; qu'w)dxdy =M | Via'+ yz>é(W>dmg, (4.6)

We change x + iy to polar coordinates via the substitution z + iy = re®”. Let x € [—m, )
be a fixed angle (depending on k and ¢) such that

A .
in R Bd i k0
1 it k=0.
Then (4.6) becomes

M fooo rV (r?) L% é <W> dddr. (4.7)
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We eliminate the translation by x by a linear change of variable in 9 and the fact that
the integrand is periodic with period 27. Therefore (4.7) becomes

* o Arir cos(0)|k[v M
MJ rV(rQ)J exp ( mir cos(V) | >d19d7°.
0 0 3v/3lq|
Observe that by [DLMF, (10.9.2)] and the fact that Jy(x) is real-valued we obtain

1 o iz cos(¥)
Jo(x) = Dy e dd.
0

47T7’|]{Z|\/M
2n M dr.
" J 7 3v3l4| “ag )"

It remains to compute (k). The Chinese Remainder theorem guarantees that we can
write any ¢ (mod 3¢) as t = ag + 3b with a a representative of a residue class (mod 3)
and b a representative of a residue class (mod ¢). Necessarily a =g (mod 3). Thus (4.5)

becomes
s N SN D vwe(5)

Thus (4.7) is equal to

sz ooa s od 0
_(_F (_bk
_e( 3>\)b (%dq)w(i%)\b)e< q)

where the displays followed from the fact that ¢ = 1 (mod 3), ¢ is periodic modulo ¢
with (¢,3) = 1, and Remark 4.1. [ |

We now state the final version of the Poisson summation formula needed for this paper.

Corollary 4.1. Let ny,ny € Z[w] be squarefree and satisfy ny = ny = 1 (mod 3). Let
d = (n1,n2) and V : R — C be a smooth Schwartz function. Then for any M > 0 we
have

d

my\ 7T )y A7 (552) 5 (252) M (1 /d)g(n/d)
Z < >3< >3V(N( )>: : 9\%N(n1t(r]zg/d)

meZ[w]
m=1 (mod 3)

X am (), (), (A,

keZ[w]

where

and V : [0,00) — C is given by
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Proof. We apply Lemma 4.3 to

where 1, denotes the principal character modulo d. Observe that v, ,, is n1nse/d periodic.
All that remains to do is to compute 9, ,,. We have

et o8) 5 DDA @
(,d)=1
Observe that 3\ = (=\)? and (n1ny/d,3) = 1, so (4.9) becomes
b =(-51) 5 (), G )

z  (mod ning/d)
(z,d)=1

Since n; and ny are squarefree we have (nyny/d?,d) = 1. We use the Chinese remainder
theorem to write z = a(nyny/d*) + bd. We find that

N Y G e

z (mod ninz/d)

(z,d)=1
) S NS A )
(a,d)=1

Observe that (ny/d,ny/d) = 1. To evaluate the sum over b we use the Chinese remainder
theorem again. Writing b = t(n1/d) + u(nq/d) gives

w5 (BN S ()l )

t (mod na/d) u  (mod m1/d)

= Calk) <n2k/d)3(nf/d):a(n?fjd)s(nz;d)?, 9(ni/d)g(na/d),

where the last display follows from the primitivity of characters <m) and <—) )
3

na/d 3
Finally,
(n2><n1):n2/d d ny/d d :<d)(d>
ny/d/s\ny/d/ 3 ny/d) s \ni/d ), \noj/d ), \no/d ), ny/d/3\ny/d/ 3’
where the last equality follows from cubic reciprocity. This completes the proof. |

We close this section with standard estimate for V.

Lemma 4.4. Let V : R — C be a smooth compactly supported function. Then for any
integer k =0,

V(u)| <py (1+u))™*, wueC. (4.10)
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Proof. Integrating (4.4) by parts k € Zs( times using [DLMF, (10.22.1)] gives

V) - (-1)’@(%?)'“# f b2y . rk+1Jk(4;T:/|g|>dr. (4.11)

The claim immediately follows. |

5. Voronoi summation in the level aspect

The Fourier coefficients of the cubic theta function essentially sample cubic Gauss sums.
Naturally, automorphy of the theta function is a key input in the proof of our level aspect
Voronoi summation formula.

5.1. Geometry, groups, and the cubic theta function at cusps. Let H? denote
the hyperbolic 3-space C x R*. We embed H? in the Hamilton quaternions by identifying
i = +/—1 with 7 and w = (z,v) = (z + iy, v) € H? with 2 + yi + vk, where 1,4, 7, k denote
the unit quaternions. In terms of quaternion arithmetic, the group action of SLy(C) on
H? is given by

a b

yw = (aw + b)(cw + d) v = (c d> € SLy(C) and w e H3.

In terms of coordinates,

(az + b)(cz + d) + acv? v 3
) = H”. 5.1
yw < |CZ + d|2 + |C|2'U2 ) |CZ i d|2 n |C|2U2 , w (Z”U) IS ( )

Let I' := SLy(Z[w]). It is a standard fact that I' is generated by the elements

(w0 (11 (0 -1
pe (5 8) () w me (0 )
Let A € Z|w] satisfy A =0 (mod 3), and
['(A):={yel':y=1 (mod A)}.

Observe that I'; (A) is a normal subgroup of I since it is the kernel of the reduction modulo
A map. Let

Iy 1= (SLa(Z),I'1(3)) = SLa(Z)['1(3) = I'1(3) SLa(Z), (5.2)

where the last two equalities follow because I';(3) is normal in I'. We also have [I" : T'y] =
27 (see [Pat77, §2] for the calculation). We also observe the trivial (but useful) fact that
for any ¢, ¢ € I' we have that

I'(3)g=T1(3)g" <= g=g (mod3).
Furthermore, for any g, ¢’ € I' we have that
g=¢g (mod3) = Tag =Ty (5.3)

More properties of these groups can be found in [Pat77, §2].
Let

x:T13) = {1, w,w?
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be the famous cubic Kubota character [Kub66, Kub69], given by

It was shown by Patterson [Pat77, §2] that x extends to a well-defined homomorphism
x: Ty — {1, w,w?},
when one defines x|sp,z)= 1.

Remark 5.1. There is a useful alternative expression for x(y) to the one given in (5.4).
For v = (2%) € I'1(3), we have the determinant equation ad — be = 1 with 1 +bc =1
(mod 9). Given 0 # ¢ € Z|w] we write ¢ = £ wic where k > 2, 0 < j < 2 are integers,
and ¢ € Z[w] is such that ¢ =1 (mod 3). Thus

/

(a_cd>3 - (1 —fbc):a - (1 —ibc)lz’j(l —fbc)i(l—ibc)?, =1L

where the last equality follows from 1+ bc =1 (mod 9), (1.4), and (1.5). Hence
c c b
(@)= (@)= @)

(%)3 if = (ZZ) el1(3) and ¢ #0,
1 otherwise.

and we obtain

x(7) = (5.5)

Let (w) denote the cubic metaplectic theta function of Kubota on H3. Tt is automor-
phic on I'y with multiplier x. It has Fourier expansion (at o) given by

O(w) = ov?/? + Z UKI (4r|plv)é(uz), we H?,
HENBZ[w
where
o =322, (5.6)

and the other Fourier coefficients were computed by Patterson [Pat77, Theorem 8.1]. They
are

(07 4] = e, s
e g(wA?,0)| 3™ i p= A led?, n 1
(1) = 4 ezglg(wT\%\i’»”/m ifop= 2 ed’, =1 (5.7)
g(1,c)|4|3n/2+5/2 if p=+X"3cd®, n=0
L0 otherwise,
where
c,deZlw], c¢,d=1 (mod3), and pu*(c)=1. (5.8)

It follows from (5.7) that 7(-) is an even function.
Implicit in [Pat77, §7 and §8] is a careful study of #(w) at various cusps of I'y. We
extract the information that will be of use to us. Let {v; : j = 1,...27} be the complete
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set of inequivalent representatives for I';)\I" given in [Pat77, Table 1T pg. 129]. Particular
coset representatives y; of I';\I" of importance to us are

_]_1w (1 —w (1 0 d_lO
71—772—01773—0 1 /Yw—wlaan Y19 = W2 1)

For each j =1,2,...,27, let

Fj(w) == 0(y;(w)), weH. (5.9)
If ge ', then
759 = 95(9)Vk;(g), for some g;(g) €y and 1< k;(g) <27. (5.10)
Thus
Fi(g(w)) = x(9;(9)) Fiy(p)(w) for all w e H. (5.11)

Each Fj is automorphic on I'1(9) with multiplier x by [Pat78a, Lemma 2.1]. Following
Patterson, we define

Zd (WK s(dn|plv)e(uz), w e HP, (5.12)

where the d;(u) have support contained in A™*Z[w]\{0}, and have expressions in terms
of 7(u), m(pn) [Pat77, (8.8)] and m(u) [Pat77, (8.9)], see Appendix A. For the reader’s
convenience we state formulae for 7 (u) and 75(p) here. They are given by

wg(A2, ¢ } } if p=X\"ted?
96’231w29(w)\2 o4 i p=wAed?

C

(5.13)

miln) = 9¢5" g(w?2, ¢) )| if p=wX"ed?
0 otherwise,
and
9w?g(X2, c)| 4| if p=—-X"ted?
96’%g(w)\2 )| if p=-X"twed?
= 76 5.14
) et = At o4

Jwe s g(w?A2, ¢
0 otherwise,

where ¢ and d are as in (5.8). The formulas for the d;(p) are given in [Pat77, Table III
pg. 151]. We have also included them in Appendix A. We have the Fourier expansions
(at o) [Pat77, pg. 148],

ov(w)?? + Ff(w) if 1<j<09, 3
(w) = {F*(w) i 10< <27 w e HP. (5.15)

To understand the maps j — g;(-), j — k;(-) and j — x(g;(-)) occurring in (5.10) and
(5.11), it suffices to compute them on the generators of I' = SLy(Z[w]): P, T, and E. The
values of k;(E) appear in [Pat77, Table III]. We have included the k; values on all three
generators in Appendix A.
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5.2. Conjugation and coefficient sieving. It is more convenient for us to work with
the F;(w). It follows from (5.15) that they each have Fourier expansion (at o0) given by

Fi(w) — = we M, (5.16)

=y ov¥3 + D dj(—,u)vK%(47T|,u|v)é(uz) if 1<75<9
> di(—p)o Ky (4| plv)é(pz) if 10<yj<27’

since Kj/3(x) € R for z > 0.
The Fourier coefficients of F(w) are given by

where the last equality follows from the fact that 7(-) is even. Let
S:={\3cdeQw):c,deZw], ¢, d=1 (mod3) and p?*(c)=1}, (5.17)

and

(dr|pulv)e(uz), weH.

Remark 5.2. We study the function F; (w)g because its Fourier coefficients are supported
on S and the u = A 3cd3th coefficient is §(c)|d| up to an absolute constant (cf. (5.7)).
These are the coefficients (up to twisting) we want to appear in our Voronoi formula (cf.
Proposition 5.3).

Lemma 5.1. Let F}(w)s be as above. Then

Filw)s = 3 (Fitw) + T5(w) + w*Fy(w)).

and Fy(w)s is automorphic under T'1(9) with multiplier Y.

Proof. Following [Pat78a, Theorem 5.2], we detect € S additively. From (5.7), we have
(e NPZ[w] : é(wp) =w? and T(u) #0} =S.

Thus

H(w)s = zov?3(1 4+ w + w?)

+ - Z WUK% (47| pfv)é(pe) (1 + weé(wp) + w?é(2w))
HEXN3Z[w]

1/— - S
o <F1 () + W (w) + w2F3(w)>, (5.18)
where the last term in (5.18) was obtained by writing (§ %) = (§ %) (} ) and using

automorphy of Fy(w) = A(w) on T'y with multiplier . This proves the first claim. Each
F; is automorphic on I'1(9) with multiplier , and so the second claim follows. [
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5.3. Twists. Let r € Z[w] with 7 = 1 (mod 3), and ¢ be a function on Z[w] that is
periodic modulo 7. In view of (5.12), the i-twist of F(w) is defined by

Fi(wi) = Y d; (=) (N )oK (4npfv)é(pz),  w e H. (5.19)
w
In view of (5.16), the ¢-twist of F;(w) is
_ 0)v¥? + F* (w; 1<j<9
plsn= {(lff_w((w)iﬂ) e 10<<jj<< or wEH (5.20)

Remark 5.3. The Fourier coefficients of all the F; have support contained in A™*Z[w].
This explains why we define a general twist by ¥(A*(-)) in (5.20). In the special case
Fy = 0, (5.7) tells us that the Fourier coefficients have support contained in A\~*Z[w].
Thus our twisting definition produces an extraneous ¢ () factor in this case. This will be
immaterial in our final results.

Define the Fourier transform
~ _/ux
D)= Y w(x)e<7), we Z[w]. (5.21)
z (mod )
Fourier inversion tells us that
1 ~ ux

= — e —— Z|w].
V) = 53 (%] T)@b(u)e( %), wezl]
We also define the following non-Archimedean analogue of a Bessel K /3-transform,

P(u) = Y (@)Sys(z,uir), ueZw), (5.22)

z (mod r)

Sys(@,uir) = (%)3 3 <%>3é(xd : “), (5.23)

d (mod r)
(d,r)=1
Md)(Mta)=1 (mod r)

where

is the cubic Kloosterman sum. Note that it is convenient for us to have the A\* = 9 factors
built into the congruence in the cubic Kloosterman sum. These factors naturally appear
when we use the automorphy of the F'; (with multiplier ) on the group I';(\?) in the
proof of the following result.

To isolate twists of the cubic Gauss sums, we need to analyse

Fi(w;v)s = ) (N )oKy (dalplv)é(pz),  w e H. (5.24)
pes
Lemma 5.2. Suppose r € Z|w] with r =1 (mod 3), and ¥ is a sequence on Z|w] that is

periodic modulo r. Suppose that 1 is supported only on residue classes coprime to r. For

w = (2,v) € H?, we have
T () Lo o o
Fi(w;)s = BTO’){Fl + why +w Flo}(<_ r2(

z v
|22+ 02) " |r]2(|2]2 + v

)>;{Z>. (5.25)
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Proof. Fourier inversion and Lemma 5.1 imply that

B = o S ST (- 20 0)

4 4

= 3]\71(r) Z @(d)(ﬁ(z — ¥,U) +w72<z — ¥,v> +w273<z — g,v))

d (mod r)
(d,r)=1

(5.26)
Given our 7 =1 (mod 3), and each d in (5.26), we have (r, \*d) = 1. Thus there exists

r  =XMa
()\461 b ) Erl(?’)a
and hence there exists

0 1\ [ r —Ma\ [(Md b
V= (—1 o) ()\4d b ): <—r )\4a) €. (5.27)

Note that we also used (5.2) implicitly in the above display.
A direct computation shows that

Aa = v A4
_ = - . 5.28
7( (|22 + 02) [r2(J2 +v2)) (Z ’ ’“) (5.28)

We now carefully factorise the v in (5.27) as a word in P, E and T so that (5.28) and
automorphy can be used in (5.26). For each k = m + nw € Z[w], m,n € Z, let

A(k) := PT"PT™"P = ((1) ’f) .

For each r,b € Z|w] occurring in (5.27), let

W(r,b) = E*A(r)EA(B)EA(r) = (1 A 1_*5];)

Then
—9d + br + 9bdr —b—9ab + b*r ~
W(r,b)Ey = (r + 18dr — br? — 9bdr?> —9a + 2br + 9abr — b2r2> =7 el1(9). (529)

Equivalently,

v = E*W(r,b)'7. (5.30)
To obtain (5.31) immediately below we use (5.28), (5.30), (5.10), (5.11), and the fact that
each Fj is automorphic on I'y(9) with multiplier x. For each j = 1,2, 3,
- \id _ 3 S —y
E (z - —,v> = X(g;(E"W (r,6)7)) - X(9)

r

J

Ma Z v ) (5.31)

Foommwomn (—_ , .
X Lk (E3W (r,b)—1) r r2(|z|2—i—v2) |r|2(|z|2—i—v2)
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We claim that

ki (E°W (r,b)71) = 1; (5.32)
ks (E*W (r,0)7") = 19; (5.33)
ks (E°W (r,b)") = 10. (5.34)

We will use (5.3) and the computations below to establish (5.32)—(5.34). Observe that

3 1 ,1 . -1+ b?“ b
NEW(r,b)” B (—27“ +br? —14br

=FE® (mod 3). (5.35)

Thus v, E3W (r,b) "1y, € Ty, and (5.32) follows. Note that (5.33) (resp. (5.34)) follow
similarly from

3 11 (w+ 1)b — 2wr + wbr? —w + b+ wbr
VEW(r,0) " g = <—(w +1) = 2r + (w+ 1)br + br? —1+br
=T7'E® (mod 3), (5.36)
(resp.)
3 1 o1 (w—wb+ 2wr —wbr —wbr? w+b—wbr
VW (b)) = ( w—2r — wbr + br? —1+0br
=E* (mod 3). (5.37)

We now compute the automorphy factor x(g;(E*W (r,b)™")) - X(¥) for each j = 1,2,3
n (5.31). The displays (5.35)—(5.37) prove that

G (B*W (r,b)™") = B3W (r,b)" Y,
g2(E3W(7’, b)*l) = 72E3W(7", b)~ lyfgl
93<E3W(7’ b)il) = 73E3W<7" b) 710 )

respectively. In order to use either (5. 4) or (5.5) to compute X(g;(E*W (r,b)~')) we note
that x|si,z) = 1 and Egi(E°W(r,b)™"), ETgo(E°W (r,0)7), E93(E3W(7’ b)~1) € I'i(3)
(cf. (5.35)—(5.37)). We also repeatedly use the determinant equation 8lad + br = 1 from
(5.27). Now,

X(g1 (B W (r,0)7)) = X(Egi(E*W (r,b)71))
{ it —14+br£0
otherwise
= 1. (5.38)

Similar computations yield
X(g3(E*W (r,0) " (Egs(E°W (r,0)7"))

) =X

:{(1—71))3 i w(l—b+2r —br—br?) £0
1

:1’

w+b—wbr
otherwise

(5.39)
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and

X(g2(E°W (r, b))
= X(ETg(E*W (r,b)71))

( w+bi;li):+br71)3 if (W + 1)b — Quwr + wbr?
1
=1.

—(w+1)=2r+ (w+br +br*#0
otherwise

(5.40)

We also have

7+ 18dr —br? — 9bdr?\ [ 8ladr + 18dr — 9bdr?
—9d+br +9%dr ), \ —9d+br+9dr ),

9ar + 2r — br?
—9d + br +9bdr ), \=9d + br + 9bdr ) ,

<9d) ( 9d + br + 9bdr> (by cubic reciprocity)

1 9ar + 2r — br?
—9d + br + 9bdr> (—9d +br + 9bd7‘)
3

9a + 2 — br
9_d 1 — 8lad — 729ad? B % 9d + 1
r 9a +1+8lad ), \r /), \9a+1+8lad/,
1 4
- (g—a) '(9“ )~ (), o)
r/3 1 3 T /3
We combine (5.31)—(5.41) in (5.26). Note that Fyg = F}y and Fyg = Fy; by (5.15). We

then use the Fourier expansions (5.16) to open I, Fj, and F},, and assembling the sum
over d (equivalently a) shows that

Futws s = g7 (R + P+ ) (- oy rgep s o)
where
W(u) := 2 15(60(#);?(%), u € Z[w]. (5.42)

d (mod r)
(d,r)=1
(Md)(M\a)=1 (mod r)

After opening i(d) using the definition (5.21), and interchanging the order of summation,
we readily see that W(u) = ¢(u) for all u € Z|w]. |

For the coming lemma it will be instructive to open the definition of é(-),

é(pz) =e(pz +mz), zeC.
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For ¢/ € Z\{0} and 1 < j < 27, let

e

. j(—u)@b(k‘*u)quKé (4m|plv)e(pz + @z), i £>0
2 dj(—u)@b(k‘*u)ﬂ'é‘vK%(47T|u|v)6(uz +7z), ifl<0’

Fi(wi, ) = Ff(w; 9, 0) =

For ¢ = 0, F;(w;1,0) := Fj(w; 1) from before. We have

1 (D) Fwy), if >0
@)l | (2)F(w; ), if €<,

Fi(w;v,0) = w = (z,v) e H’. (5.43)

We apply differential operators in the proof of the next lemma. Thus we remind the
reader that Fj(w;,0) = G;(2,Z,v;1,£) is a function of z,Z and v, although the Fj
notation suppresses this.

With these observations in mind we deduce the following Corollary.

Corollary 5.1. Suppose r € Z|w]| with r =1 (mod 3), and ¢ is a sequence on Z|w] that
1s periodic modulo r. Suppose that 1) is supported only on residue classes coprime to r.
By abuse of notation, write F;((0,v);9,£0) as Fj(v;1,0) for allv > 0, 1 < j < 27 and
(e Z. Then we have

(-1)°

E(U;¢7€>S = W

7\ ¢ . . _ - 1 ~

(-) (5#0}71* + 0p=0F1 + wFy + W2F1*0) (—2; Y, —£>,
r |r|?v

or equivalently,

- - o L N 3.(—1 l Ia Z_
<F1*55¢0 + Fidp—o + wF}y + W2F1*0> (039, —0) = W (;> <|7’|2 v 5)

Proof. Setting z = 0 in (5.25) gives the claim when ¢ = 0. If £ > 0, we write |2|? = 2Z and

apply the operator W(a_az)z‘z:(] to both sides of (5.25). A computation with the chain
rule yields

R0, 05 = g (0 (P + 7)) (0.5 ) 0 ).

When ¢ < 0 a similar argument with the operator @ 1)| 7 (% ‘ l) yields the analogous
z=0

result. [ |

5.4. Poles and Dirichlet series. Let ¢ be as in Corollary 5.1. For Re(s) > 1, { € Z
and 1 < j < 27, consider the family of Dirichlet series

D(s, Fj;,0) = )

LT NGy
T (V) ()
D(s, Fi; ¢, 0)s = ), (M)w](v(:)bz(“) (5.44)

nes



BIAS IN CUBIC GAUSS SUMS 25

For Re(s) > 1, we introduce the integral transforms

o0
Mo F,0) = | F(ws o, 00241 2oy

0

A(S,Eﬂﬂ,@s = f Fl(v;w’g)svsta,gCZu

0

where by abuse of notation we wrote Fj(v;¢,¢) = F;((0,v);4, ). In the case ¢ = 0 we
will omit the index ¢ from the notation.

Lemma 5.3. For Re(s) > 1 we have

n 2514 i 1 i 1 5.1 7\
A(s, Frs, €) = ( )" r(s+—2 6)r(s+—2 + 6)D(3,FJ,¢,€),

. _ 1 —2s—¢| |€| o 1 |€| 1 .
Als, Fis e, 0)s = 72m) F<s+—2 6)r(5+—2 + 6)D(S,F17w,£)g.

Proof. The proofs of both identities are virtually identical, so we prove the latter, with
¢ < 0. For Re(s) > 1 we have

Ms T, s = [ 3 T 6, (anlaloyo e
nes
<A4u>(£ "
(47) 2s+lé\ Z J Kl T T

. 1 ¢ (X))
=Z(27r) |Z‘F<s+?—6)f‘<s+ 5 +6); NG :

(5.45)

The interchange of summation and integration above for Re(s) > 1 is justified by absolute
convergence (cf. [DLMF, (10.25.3),(10.30.2)]). Furthermore, (5.45) follows from [DLMF,
(10.43.19)]. [

Proposition 5.1. The completed Dirichlet series A(Fy, s;1))s admits a meromorphic con-
tinuation to the whole complex plane C. It has a unique pole (that is simple) at s = 5/6,
with residue

Res A(s, F1;9)s = _ov(0)_ (5.46)

Res D(s, Fi; ¥)s
=5

For { # 0 the Dirichlet series A(FY, s;1,{)g is entire. Moreover, for all { € 7. we have the
functional equation

(5.47)

7\

3(—1)EN (1) (;) A(s, s, 0)s = A(1 — 8, FF + wFry + w2 00, —0). (5.48)

This functional equation also determines the poles of A(s, FY + wFjy + w*FYy; ’QZ)
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Proof. For Res > 1 we have

N(r)~t 0

Fy(v;1, 0) g 92y + J Fi(v;, 0)gv** 924y, (5.49)

N(r)—1

A(s, Fryp, O)s = J

0
When ¢ = 0 observe that F(v;1,{)s has exponential decay at co by (5.17) and (5.24).
The same claim holds when ¢ # 0 using (5.43) (termwise differentiation of the Fourier
series) and the same reasoning as before. Thus the second integral in (5.49) has analytic
continuation to an entire function.

Let
Gl d.0) = (Fy + wFfy + 0 Fy) (i 0) i £=0 . (5.50)
T e+ Ot (i, ) L0 | |
Using (5.50) and Corollary 5.1 gives
N~
j B (00, )50 -2y
0
B (_1)6 7N\ N(r)~*t 1 - 25— |f]—2
T 3N(r) (;) ; G(UWW, —£>v dv (5.51)
_oDON() 8
6 5 — %
-1 ZN —28 =\ —f [© - L L N
+ ( ) 3(T> <;> Jvl (Fl* + WFI*Q + w2F1*0> ('U;’QD, —E)Umizsdv. (552)

When ¢ = 0 observe that (Fy + wFyy + w?F,)(-,1, —() has exponential decay at o by
(5.19), Appendix A (the expressions for d;(u)), (5.7), (5.13), and (5.14). The same claim
holds when ¢ # 0 using (5.43) (termwise differentiation of the Fourier series) and the
same reasoning as before. Thus the integral in (5.52) has analytic continuation to an
entire function. This gives the meromorphicity and entirety claims in the Proposition, as
well as (5.46). Observe that (5.47) follows from (5.46) and Lemma 5.3.

We now prove the functional equation (5.48). From (5.49) and (5.51) we found that

—(_I)ZZW% ()" f "G -0t + f " T, 050,

o N(r)-?
(5.53)

A(S, F1a wa E)S =

We now repeat a similar argument, but instead start with
G (w1, 0) = (FF + wFy + W F) (w; 0, 0), forall weH® and (eZ. (5.54)
For Res > 1 we have
A(s, G*; 0, —0) = Jl G*(v; 0, — )20y + JOO G*(v; 0, —0)wr =24y, (5.55)
For Res > 1 we have 0 1

1 1 0
f G (v; 1, —0)v** =20y = f G(v; 0, —0)v* =20y — 6, - ?L(Ol)_ (5.56)
0 0 §—
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Then (5.56) holds for all s € C by meromorphic continuation. Similarly, for Res < —1,
we have

) ') i’
J G*(v; v, —O) > 1l=2qy = J G(v; 1, —O)w* 924y + 5g=030¢(0) (5.57)

1 1 68—1.

Then (5.57) holds for all s € C by meromorphic continuation. Insertion of (5.56) and
(5.57) into (5.55) gives

1 00
A(s,G*;1p, —l) = f G(v; 1, —O) > 1920y 4 f G(v; 1, —O)w* 1924y, (5.58)
0 1

where both integrals are to be interpreted as the meromorphic continuations of the original

integrals. Using Corollary 5.1 we obtain
A |
) f Fl(—;w,£> v 12y
o NP S

)é foo Fi(v:, 0)gv=%dv.  (5.59)

N(r)~*

fl @(v; J’ —5)1)2”‘["2@ _ 3(—1)ZN(7")1’|£‘ <
0

SIS S s

- 3(—1)3N(r)2*23<
Substitution of (5.59) into (5.58) gives

A(s, G*; v, —{) = 3(_1)ZN(7’)2_28(2)Z JOO Fi(v; ¢,€)sv|é_25dv+foo G(v; v, — ) Hl=2qy .

r N(r)-1 1
Equivalently,
— ~ N [ — ©_ ~
A(1=5, G, ~0) = 3(=1)'N () (*) J Fl(USwag)SU2s+|é_2dv+J Glv; b, — )0/~ do.
r N(r)-1 1
(5.60)
After combining (5.53) and (5.60) we obtain
31N> (L) Als Ty, 05 = A1 = 5,75, —0),
as required. (]

5.5. Sieving for §(c). Let r € Z|w] satisfy r = 1 (mod 3), 1 be a primitive character
to modulus r, and ¢ € Z. Then let

N

w(d) ()"

N Re(s) > 1.

CRICTNIE Y

d=1 (mod 3)

~"

In the case ¢ = 0 we omit ¢ from the notation and write (g)(s;%). We denote the
principal character modulo r by 1,. Any J <Z|w] with (J,3) = 1 has a unique generator
d =1 (mod 3). Thus when ¢ = 0 and ¢ = 1,, the above L-function coincides with the
Dedekind (-function of Q(w), except at the local factors of primes dividing (Ar). Note
that (g()(s; ¥, £) has standard meromorphic continuation to all of C; the only case when
this function is not holomorphic is when ¢ = 1, is the principal character and ¢ = 0, in
that case there is a unique simple pole at s = 1. Standard functional equations for these
L-functions can be found in [Miy89, §3.3].
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Lemma 5.4. Let r € Z|w] with r = 1 (mod 3), and @ be a primitive cubic Dirichlet
character on Z|w] to modulus r. For { € Z and Res > 1 we have

5 G ()" 37925 p(s, 0, 0)s (5.61)

~1)4 :
=1) N(c)® Cow)(3s = 331, 30)

c=1 (mod 3)
where D(s, F1;1,0)s is as in (5.44).

Remark 5.4. Note that we have abused notation in the results and proofs that follow:
i € Q(w) is used to index Fourier coefficients of various automorphic forms, and pu(-)
denotes the Mébius function on Z[w]. Meanings should be clear from context.

Proof. The Dirichlet coefficients on the right side on (5.61) have support contained in
Z|w]\{0} since 373 = N(A\3)7*. The vth Dirichlet coefficient on the right side of (5.61)
is given by

1/ v/X3\¢ -
W(pjm) Y W\ p)u(d)d]. (5.62)
d=1 u(eriod 3)
(d,r)=1
v=\3pud3

Recall the definition of S in (5.17). If v ¢ X3S, then (5.62) is zero. Therefore we can
assume that v € A3S. If pe S and 7(u) # 0, then by (5.7) we must have

(1) = 37g(e)l /],
where
pw=A?3ef> forsome e f=1 (mod3) and p?*(e)=1.
Thus (5.62) is equal to

0
() X e (@l
e,f,d?ir)(:rrllod 3)
v=e(df)?

e V\* .
=0T () N o) (5.63)
e,f,d=1 (mod 3)

(df,r)=1

v=e(df)?
where the last display follows from the assumption that v is a primitive cubic character
to modulus r. Note that it is redundant to have p?(e) = 1 in (5.63) because this condition
is automatically captured by (2.2). Mobius inversion then tells us that the right side of
(5.63) is equal to

CO(E) Y el Y ud)

e,u=1l (mod 3) dlu
(u,r)=1 d=1 (mod 3)
v=cu?

as required. (]



BIAS IN CUBIC GAUSS SUMS 29

The following lemma records the standard evaluation of Ramanujan sums over Z|w].
The lemma follows from the evaluation

() = {gp(w) if u=0 (mod w)

)

-1 otherwise
for w=1 (mod3) prime and wueZw],
and the multiplicativity of Ramanujan sums i.e.
Crn(U) = cp(u)ey,(u) for u,m,ne€Zlw] with m,n=1 (mod 3)
and (m,n) = 1.
Lemma 5.5. Let m € Z|w] be squarefree and satisfy m =1 (mod 3). Then for u € Z|w],

enw) = Y é(%):%mﬂ?u))gof%)’

z  (mod m)
(z,m)=1

where o(-) is the Euler phi function on Z|w].

Let r € Z|w] be squarefree and satisfy » = 1 (mod 3). We are now able to study the
the analytic properties of the Dirichlet series

—— Re(s) > 1. (5.64)
c=1 (mod 3) N<C>

The following result records a level aspect (i.e. in the conductor of the cubic twist in
(5.64)) functional equation for (5.64) that generalises [Pat77, Theorem 6.1]. It explicates
the root number and level, and is crucial to our paper. Yoshimoto [Yos87] established level
aspect analogues of [Pat77, Theorem 6.1] for twists of Gauss sums by arbitrary non-cubic
Dirichlet characters. Clearly, Yoshimoto’s results do not cover the case we need.

Remark 5.5. The functional equation in [Pat77, Theorem 6.1] could be potentially used
to obtain a functional equation for (5.64) similar to the one presented below in Proposition
5.2 (at least when (r,c¢) = 1). Patterson exploited the fact that (5.64) (and its variants)
are the Fourier coefficients of cubic metaplectic Eisenstein series attached to the essential
cusps of I'1(3) with respect to x. The drawback of the functional equation in [Pat77,
Theorem 6.1] is that the dual side of is a linear combination of variants of Dirichlet series
of twisted cubic Gauss sums that involve the ramified prime, and this obscures the root
number. We found it advantageous to work directly with the automorphy of the cubic
theta function (this is a more advanced starting point since the purpose of [Pat77] was to
compute the Fourier coefficients of the cubic theta function).

Proposition 5.2. Let r € Z[w] be squarefree and satisfy r = 1 (mod 3), and ¢ := (;)3
Let 0 € Z. Then the Dirichlet series

R(s;,0) = Re(s) > 1, (5.65)
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admits meromorphic continuation to all of C. If ¢ = 0, the Dirichlet series

Cow)(3s = 33 1r, BOR(s5 9, () (5.66)

has a unique pole located at s = %, and it is simple. If ¢ # 0 the Dirichlet series (5.66)

defines an entire function. We have

Ress:% (Coe)(3s — 5:1,)R(s;0))

and for { € Z we have the functional equation
C@(w)(gs - %; ]-ra 3€>R(87 ¢> E)
_gm(T) e TG
NS IENG)E TG +
x (o) (2 = 3s; 1, =30 RI(1 — s;—0),

T

where

Ri(s:6) = (-1)fi7" )

veA~1Z[w]

for some Dirichlet coefficients a'(v). The coefficients a'(v) have support contained in the
set

Q"= {v = Chwh® : Le Zo_y, (e {+], 4w, tw?,
hoh',w=1 (mod3), hAK|r* (wr)=1 and p*(hw)=1},

and for v e QF,

A if L>0
a'(v) = WP (= NBw)e( W By) if L=—1, (ef{-1,—w,—w?}, (5.67)
wro(—=AL=Bw)e(AL3y)  dif L =—1, (e{l,w,w?}
and
b ) = u )P0 68
) =) o) (5.68)

Remark 5.6. Recall that 7(-), 74 (-) and 7»(-) are given in (5.7), (5.13) and (5.14) respec-
tively.

Proof. Meromorphic continuation of (g(.(3s — %; 1,,30)R(s;1,¢) to all of C follows from
Lemma 5.3, Proposition 5.1 and Lemma 5.4. If £ # 0, then it is entire. If £ = 0 , then it
has a unique simple pole at s = 5/6 with residue

Res,

A) (27)°/34(0)

_s (Cow)(3s — 3 1L)R(s;¢)) = (; 5 3T2T(2)N(r)53"
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~

We now evaluate ¢ (u) (defined in (5.22)). Recall from (5.42) and the argument following
it that we have

~ A ~ a\ _/au
D(u) = (—) 3 ¢(d)(—) e(—), e Z[w). (5.69)
"3 d (mod r) rss "
(d,r)=1
(Md)(M\a)=1 (mod r)
Moreover, using the definition (5.21) and the fact that ¢ is primitive gives us

@Z(d) - <g> 3%-

We have ad = A8 (mod r) in (5.69). Therefore

2

D(u) = (%)3%%@, (5.70)

where ¢, (-) denotes the usual Ramanujan sum. In particular,

J(0) - (iz)gmw(r).

r

Lemma 5.4 tells us that

A _
Gota (35~ § 1, 30R(si0,0) = (-1 (2) 37925D(6, Friwn s
3

Thus Lemma 5.3 and Proposition 5.1 imply that
C@(w)<38 - %Q 1?7 3£)R(37 1% 6)

_ (f)@ i@ s2 0+ -+ - S>CQ( (531, -30)
s w 2 ) T
r/ 3PN (s + - s+ U4 1
X (é) 3—38 D(l ; S, G*;¢> _€> : (571)
r)s Gowl(z — 351, =30)
where G*(w; 1, £) is as in (5.54). Observe that (5.70) gives
D(s. G* oo L
(2) 3o D GRG0,
r)s  Cow(B3s — 51, —30)
where
Ri(s:0) = 373 D& G ()0 oy (5.72)

Co)(3s — 35 1,,30)

We now analyse the Dirichlet coefficients of Rf(s; ). Let al,(v) and a* ,(v) be the
Fourier coefficients of RI(s; —¢) and D(s, G*; —{) respectively. Using the definition of
G*(w;,0) in (5.54) and Appendix A for the closed form expressions for di(u), dio(p),
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and dyo(p) gives

aZy(p) = ﬁ)_é(ah(—,u) + wdyg(—p) + w2d10(—,u))
_ ﬁ )Z (7= + WP reme(n) + wn(—wme() ). (5.73)

Consultation with (5.7), (5.13) and (5.14) shows that the a*(u) have support contained
in the set

Ui={pu=NC(cj keZs_y, (e{xl tw,tw’}, c¢j=1 (mod3) and p’(c)=1}.
Each of the three terms in (5.73) have disjoint support. In particular,

| T(=w) if k>-3
aié(:u) = (_> ’ w27-1(_w2:u>é(:u> if k=-4, (€ {_17 —Ww, _w2}
W7_2(_w:u)é(:u> if k=-4, (e {1>waw2}

_. <|Z—|>_éa*(,u). (5.74)

Observe that (5.72) and (5.73) imply that the coefficients af(-) have support contained in
AU < A'Z[w]\{0}. Then

/AP \ * 4
= (ppm) N et nudld

(d,r)=1
d=1 (mod 3)

Evaluation of the Ramanujan sum using Lemma 5.5 gives

a (V) = (—1)4" i B a* r o(r)
) = (1) (M) Z (u)u<(A4u’r>)(p(wlﬂ)u(dﬂdk (5.75)
(d;,f)[il
d=1 (mod 3)

To continue the evaluation of a'(v) in (5.75), we write each u € U occurring on the right
side uniquely as

My = NFChw(Rw')? with (e {+1, 4w, +w?},
h’v h'/ | ,r,OO’ (ww',r) = 17 hu hla U),’UJ, =1 (mod 3) and ,uz(hw) =1.
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Then
; v - * T @\r
al ) = (=1 (1) > a (k) ) S
v v=AF+3¢ B (h'w'd)3 ( 7) ¢((hh’3,r))
h,h' waw',d=1  (mod 3)
p? (hw)=1
hoh! |7
(dww’,r)=1
(5.76)
Furthermore, (5.74) tells us that
a* (N Chw(h'w')?)
(=M Chw(h'w')?) if k>=-3

= W (=MwChw(Ww')3)e(NChw(hw')?) it k= —4, (e {-1,—w,—w?}.
wra (—MwChw(h'w')?)é(NChw(Ww')®)  if k= -4, (e{l,w,w’}

Further consultation with (5.7), (5.13) and (5.14) shows that

* !/ ! * h'/w/
a* (N ¢Chw(h'w')?) = bk,c(hw)ﬁ, (5.77)

for some sequence of coefficients b () on squarefree elements of Z[w] that are congruent
to 1 (the sequence depends only on k and (). Using (5.77) in (5.76), we obtain

-/
o) = (-1 () >
v v=AF+3Chw(h'u)?

h,h/  wu=1  (mod 3)
1 (hw)=1

bl;,((hw> /u T ()0(’/")
]| |“<(hh/3,r)>¢((hh;‘3ﬂ) (5.78)

h,h!|r®
(vw,r)=1

X ( Z ,u(d)).
dlu
d=1 (mod 3)

Mobius inversion tells us that v = 1 in (5.78). Subsequent use of (5.77) (in reverse) gives

1 _ (_ i L - a* w 13 r SO(T)
! ) = (1) (1) A ot () g

h,h/, w=1 (mod 3)
(i (hw)=1
h,h!|r®
(w,r)=1

For a given v, there is at most one summand on the right side on (5.79). This completes
the proof. [

5.6. Voronoi formula. We are finally able to prove a variant of the Voronoi summation
formula.
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Proposition 5.3. Let W be a smooth Schwartz function, compactly supported in (0, 0).
Let { € Z. Then for X > 0 we have

I CORERICS
" (dr)=1

st (2 (2m)7 P (r)g(r)
= b0 - X W(é)gmr( 2)N(r )5/3

r 7\ ¢ V)bl (v -t — (2m)* 3u
() 2 o) )
d=1 (mod 3)

(d,r)=1

(5.80)

where the a'(-) and bl(-) are as in (5.67) and (5.68) respectively, and W, : Ry — C is
defined by

g
§| N %;W(s)ds, (5.81)

_ 1 TE+ s+
Wé(u) . 2— w ] 6
Ti)oemiw  T(s+ - DI(s+

for e € (0, 1oa55). For any A > 0 we have

o o ) (W/(L+ 9% if ju] < (1+¢%)
Wi(u) <wa (14 [€])°- {(u/(l O i ful> (14 6) (5.82)
Proof. We have
cd? N(cd?)
B 2, ldiate >( ) <| d3|> W( X )
d,c=1 (mod 3)
(d,r)=1 '
% ; Cot) (35 — 21, 30 R(s;0, ) X*W (s)ds,  (5.83)

where R(s;1,0) is given in (5.65). We shift the contour to Res = —e. Proposition 5.2
tells us that we collect a pole at s = 2 when ¢ = 0. Thus (5.83) is equal to

~ /5 (271-)5/3g(r) (r) 1 —e+im0 ~
. Y5/6 e ! - 1. . s
Op—p - X W<6>37/21“(§)N(r)5/3 + i) . C@(w)(Bs 2,1T,3£)R(s7w,£)X W (s)ds.
(5.84)

We evaluate the integral in (5.84) by applying the functional equation in Proposition 5.2.
We obtain

1 —€+100 -
T C@(w)(gs - %; ]-ra 3€>R(87 ’QD, E)XSW(S)dS
T J—e—ioo
B L Zéﬁ(?> —L J‘€+ioo (27‘(‘)48_2 1"(% + % _ S)F(% + \LQ _ S)
2mi 372 \r i N()* T(s + % — (s + % +3)
X Co) (3 — 3s; 1, —30)RI(1 — 5, —0) X*W (s)ds. (5.85)
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Expanding the absolutely convergent series we see that (5.85) is equal to

- 3, \ —¢
g(r (F)f Z aT<V)bI<V)($—,,\)
72(271)2 \ 5/2
37/2(2m)% \r ver T N(v)N(d)
d=1 (mod 3)
(d,r)=1
—&+1i0 4 3 sT 5 e T 7 14} "
y L ((27r) N(d V)X) G+5 —s)l(E+5 —s9) T (s)ds
270 ) i N(r)? D(s+ 4 - L(s+ 4 4 1

The above display can be expressed as

M <f>—z Z CLT(V)bI(V)(‘ZgZ‘)_Z . I\/[// <(27T)4N(d31/)X>.

37/2(2m)2 \r

veA"17Z[w]
d=1 (mod 3)
(d,r)=1
This establishes (5.80). The decay bound (5.82) follows from a direct computation with
Stirling’s asymptotic [DLMF, (5.11.1)].
|

6. Cancellations in sequences over primes

We begin with a remark about ordering integral ideals in number fields.

Remark 6.1. Let K be an algebraic number field of degree n, and let a and b denote
integral ideals of K. The order on integral ideals of K, <y, will essentially be given by
the norm N /q. That is, Ng/g(a) < Nk/g(b) implies a <x b. For ideals with equal norm

the ordering can be arbitrary. For instance, if N g(a) = Ng/g(b) and & and b are some
fixed choice of ideal numbers of a and b respectively, then one could declare that a <x b
if and only if arga < argb. We will abuse notation and denote <g(,) by < when the
meaning is clear from context

Lemma 6.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to Q(w) twisted by Griflencharaktern. Let W be a smooth test function with
compact support in (0,00) and my = max{l, maxeo,c) |W(2)[}. Let B =10, 10 < w <
M < N « B, and 7 € Z|w] satisfy m =1 (mod 3) be a prime or 1. If R < % with
K > 1000, then the sequence

1 N(b
e () 2

w
b:Hf:ﬁ”j
w;j=1 (mod 3)
w1 <w2<..<wWRr
M<N(w;)<N

(bym)=1

belongs to C,(B,w) (given in Definition 3.1) for all n > 12

Remark 6.2. Note that scaling my is a minor technicality introduced so that the given
3 satisfies the first axiom of Definition 3.1.
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Proof. 1t is clear the first three properties in Definition 3.1 follow from definition of 3.
After Mellin inversion of W,

1 1 24100 - R
- B
& 2T myy J W(v) Z H N

10 b:Hf:1 wj j=1
M<w)<wa<..<wp<N
wj=1 (mod 3)
TFET
it suffices to check the fourth property of Definition 3.1 for all n » 1/K. Forte R, (€ Z
and k,u € Z|w] with k,u =1 (mod 3), it suffices to estimate

) ﬁb(|b|) (D) Ny, (6.1)
u\b

provided that ¢ # 0, or if £ = 0, then provided that & # (3. Without loss of generality we
can take u = 1 since the case u # 1 reduces to this case after combinatorial manipulations.
Thus (6.1) (with u = 1) is equal to

w; \¢
11 e &) (=)
_ W (0)B® mn L g, (6.2)
27T'lmW 2—i00 M<w1<w22<...<wR<lej[ N(w]> '
w;j=1 (mod 3)
wWFET

The Newton-Girard identity [Mac95, (2.14")] implies that

5 2 (E),(Z)

M<wi<ws<..<wpr<N j=1 N< )U &
wj=1 (mod 3)
WiFET
. k\J gt
B D § (= VR R i
=0 ol m;ljm Ve N(w)](vfzt)
mi1+2ma+--+Rmr=R w=1 (mod 3)
TWHT

(6.3)

We can assume without loss of generality that M and N are half-integers. Using [Dav00,
pg. 105] each sharp cut-off can be written as

. /1 B Bl()()
(%);(%)]é v dsdw

kNI , e w
Z N(w)j(v—it) - 27” Jf v — zt) + s — w; (f>317r7J€)N M o~

M<N(w)<N 100
w=1 (mod 3) 1/log B—iB

TWHT

+O0(B™) say, Re(v) =2, (6.4)
where (for Re(s) > 1/2) we have

D(s; (i)ilw,jﬁ) := log (o) (s; (—) 1,,j0) — Z Z

m22w=1 (mod 3)
WHET

(&) @)™

mN (zo)ms
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We shift the v-contour in (6.2) to Re(v) = 1/2 + 1/log B. From (6.4), the Riemann
hypothesis, and [IK04, Theorem 5.19], we deduce that (uniformly in j > 1)

(L))"

1 1
2 2
2 : N ()i « (log” B)-log (2+(1+|v|+|t|)(1+|€|)N(k‘)B>,Rev > §+logB
M<N(w)<N
w=1 (mod 3)
WHET

Substitution of this bound into (6.3) shows that for Re(v) = 1/2 + 1/log B we have
w; \£
M<wi<we<..<wp<N j=1 N(wj)vilt
wj=1 (mod 3)

@ #T
« CF(log?k B) - log?® (2 + (1 + ol + L) (1 + |€|)N(k)B)
« (C/e")*(log* B%) - log™" (2 + (1 + ol + ) (1 + |€|)N(k)B)E>,
for some absolute constant C' > 1 and any fixed € > 0. Returning to (6.2) (and recalling
that we shifted the contour to Re(v) = 1/2 + 1/log B) we see that (6.1) is
« (C/eMEpH 2T B (10027 B2) 1og™ (2 + ((1 + [t (1 + |[¢))N(k)B)"). (6.5)
We use the hypothesis 1 < R < log B/(K loglog B), the inequality
(logz)* < Lz, z>1, L=>1,
and Stirling’s asymptotic formula [DLMF, (5.11.1)] to conclude that (6.5) is
«. BY2FO0O/K43e (1 4 (1 1 [¢)EN (),
say. This concludes the proof. |

A minor variation of the above proof gives a smoothed version of the Lemma.

Lemma 6.2. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to Q(w) twisted by Griflencharaktern. Let V and W be a smooth test functions
with compact support in (0,00), and let my and my be as in Lemma 6.1. Let R € N,
B>10,10<w<MS<NKKB, and P,,...,Pr > 1 be such that P,---Pr = B. If
R < LBB with K > 1000, then the sequence

= Kloglog
1 N (b) "1 /N(w)
ooV 5) X TGV (ERS)),
mw B b:]_[lewj- ey my Pj
w;j=1 (mod 3)
w<we<..<wWRr
M<N(w;)<N

belongs to C,(B,w) (given in Definition 3.1) for all n > 2.

Remark 6.3. A sum over R running through any subset of [1,log B/(K loglog B)] can
be introduced in the definition of B occurring in both Lemma 6.1 and Lemma 6.2 with
no change to the conclusions.
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Lemma 6.3. Suppose A, B > 10, X := AB, 0 < n1,m2 < 1/4 and wy > wy = 10. Let
a = (o) €Cp (A, w), and B = (By) € C, (B, ws) be such that

By #0 = (w|b = wy < N(w) < wy). (6.6)
Let 10 < M < N and v := (v.) be given by

Ye = Z O‘aﬁb-

M<N(c)<N
a,beZ|w]
a,b=1 (mod 3)
ab=c

Then v = (Ve) € Crnaxfy o} (X W2).
Remark 6.4. It will be helpful to recall the definition of Z?(z) in (3.1).

Proof. Observe that the hypotheses (6.6) and ws < w; imply that v = (.) is supported
on squarefree wy-rough integers. We also have 7. # 0 = N(c¢) = X from the supports
of a = (a,) and B = (f,). Each ¢ € Z[w] with ¢ =1 (mod 3) has a unique factorisation
¢ = ab with (a, Z(w;)) = 1 and b | &(wy). Thus hypothesis (6.6) implies that |y.| =
|aa5b| <1

It only remains to prove inequality (3.2) in Definition 3.1 for v = (v.). Without loss of
generality we can assume that M and N are half-integers and that M = X (resp. N = X),
otherwise drpr<n(e) (resp. dn(e<n) is a redundant condition. Using [Dav00, pg. 105], the
sharp cut-off can be written as

1/log X +iX 100

H N dsdw ) x-an

sw SWw

5M§N(c)<

1/logX zXlOO

say. The integrals incur an acceptable loss of O((log X)?). Thus it suffices to show that

'?c = Z Oéaﬁb

a,beZ|w]
a,b=1 (mod 3)
ab=c

satisfies (3.2). In other words, for t e R, £ € Z and k,u € Z[w] with k,u =1 (mod 3), we

need to estimate
> () (5) ver (6.7

ceZ[w]
ulc

provided that ¢ # 0, or if £ = 0, then provided that k& # £). Observe u has a unique
factorisation u = wjuy such that (u, Z(w;)) = 1 and us | & (wy). Hypothesis (6.6)
implies that that (6.7) is equal to

<;O‘ (|Z|>Z<_> Zt>(25b<|b|> ( ) N o). (6.8)

uila uz‘b
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Since o = () € Cp, (A, wq) and B = (5,) € C,, (B, ws), we see that (6.8) is

L (1+|£|)€N(k)6(1+|t|)e( A )1/2+771+€( B )1/2+n2+a

N(Ul) N(u2)
Le (1 + |€|)EN(k)a(1 4 |t|)E(N)§u)> / +max{n1,n2}+€’

as required.

7. Narrow Type II/III estimates

We establish estimates for type-11/I11 sums that are useful in narrow ranges correspond-
ing to two or three variables of equal size respectively. In the three variable case, two
variables are clumped together to reduce to a type-II analysis. These estimates will be in
ranges where sharp bounds are required (but not asymptotics).

7.1. Sieve weights. We will need to use auxiliary sieve weights in the proof of our
narrow range bounds.

Lemma 7.1. Given w = y* > 1, there exists coefficients (Aq)aezp.] such that
(1) M = 1 and |\| <. N(d)¢ for all d € Z[w] and all & > 0;
(2) \g =0 if N(d) > y* ord# 1 (mod 3);
(8) For all n € Z[w] we have
Smpwn-1 < D, Ad (7.1)
d|

d| 2 (w)
N(d)<y?

(4) They satisfy

Ad 1
& : (7.2)
de;w] N(d) ~ logy

Proof. Given d =1 (mod 3), define

A=) u(e)u(f)(l - M) (1 - w)-

N() N (f)<y logy logy
e,f=1 (mod 3)
d=[e,f]

Properties (1) and (2) are immediate from the definition. Property (3) follows from

dzlnj w=( Y u(e)(1—%))2. (7.3)

N(e)<y
d| & (w) e|(n, 2(w))
N(d)<y? e=1 (mod 3)
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It remains to check property (4). Observe that

A ple)p(f) (, logN(e)\, logN(f)
de;[w] N(d) N(e),%;f)gy N([e, 1) (1 logy >(1 log y )
e,f=1 (mod 3)

1/10gy+zoo
fJ‘ H(s,w){g)(l+ s+ w) Yyt dsdw
G+ e+ w) 7w Togy)”

(7.4)

1/1ogy 100

where H(s,w) is an analytic and absolutely convergent Euler product for Re s, Rew >
—1/4. One can conclude that the display in (7.4) is « 1/logy by shifting contours or by
carefully bounding the integral using a Taylor expansion around the pole. |

7.2. Narrow Type-II/III bound. We are now ready to state the main result of this
section.

Proposition 7.1. Let € € (O,m), A B>10, X := AB, 10 < w < X, andn > 0.
Suppose that o = (ey,) is a sequence supported on squarefree w-rough a € Z|w] with a = 1
(mod 3) and N(a) € [A/10,10A]. Suppose that 3 = (5,) € C,(B,w). Then

| 3 cwnaten] < ptel(418k + 4% 3 gis)) 1)

a,beZ[w]

+o. (B Xl%(ﬁ + é)) £ O.(XH - (Afw)100),

with K > 1 an absolute constant.

Proof. Without loss of generality we can include the condition (a,b) = 1 on the left side
(7.5) by (2.2). Application of (2.3) and Cauchy-Schwarz gives

|3 i) <leb( Y| Xaa0(5),)" (7.6)

a,beZ[w] , age(Z .

a=1 (mod 3)
Let V : R — R be a fixed smooth positive function with compact support in [1/100, 100].
We also stipulate that it satisfies V' = d}1/10,10;- By positivity of the right side of (7.6), we
introduce both the smooth function V' and the sieve weight (7.1) on the a-sum. Thus the
right side of (7.6) is

<lak( Y V(Ni@))ZBb@(b)(%)gf N Ad)m, (7.7)

acZlw] b dla
a=1 (mod 3) d| P (w)
N(d)<y?

where y? := w. Expansion of the bracketed sum in (7.7) gives

S Y BBnit)il) Y W@)@(%)g (7.8)

d|2( ) b1,b2€Z[w] a€Zlw] , dla
N(d)<y? a=1 (mod 3)
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Diagonal contribution to (7.8). The diagonal contribution b; = by =: b to (7.8) is

S ov(My s se( ) (79)

aeZ[w] beZ[w] dla
a=1 (mod 3) (a,b)=1 d| P (w)
N(d)<y?

We can drop the condition (a,b) = 1 by non-negativity of (7.9) (the bracketed sieve weight
divisor sum is non-negative by (7.1)). Thus

PIETNCID) v (YD)

d\ Z(w beZ|w acZlw]

N(d)<y a=1 (mod 3)
47TA )\d . kj .
= —8l3 = ¢(—=— )V (kA/A/N()) =: 2, (7.10)
& 2([1;“)) N(d>>ke%:w] < 3A>
N(d)<y?

where (7.10) follows from Poisson summation (in the form of Lemma 4.3).

Non-diagonal contribution to (7.8). The non-diagonal b; # by contribution to (7.8) is

Z Ad Z Bo, By G(b1)g (b )@(%)S aZ V(W)@(%)s'

dP(w)  b1,baeZw] eZ[w]
N(d)<y? b1#b2 a=1 (mod 3)

(7.11)
For each fixed by, by € Z|w] occurring in (7.11), let e := (b1, be). Poisson summation (in

the form of Corollary 4.1) tells us that

a=1 (mod 3)

47 (3%, (55), A9 fe)g(bafe) 1k (R keVA
- /9\/—N/( d)N(b1by/e) ke%[:w]ce(k)(m>3<m) (\/ blb2>.
(7.12)

Remark 7.1. Since by # bq, the character (F/e)iﬁ(f/e)iﬁ in (7.12) has conductor with
norm > 1. Hence the dual frequency k = 0 contributes zero to (7.12).

Observe that (2.3) and the squarefree property of b; and by imply that

900)3002) = 901/03() (57;), 702/) 56 (5.7
=i/ (57.), (57 )y (7.13)
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Upon insertion of (7.12) and (7.13) into (7.11), we see that (7.11) becomes

47TA ﬁb1ﬁ_bz
Z > % NS
(m

d‘] w] b1 #bQEZ[u}]
N(d)<y e=1 od 3) (b1,b2)=e
d?ekN /d%ekN - ke A
C.(k |4 ) 7.14
xk(E;[w]C( )(51/6)3(192/6)3 (*/N(d)blb2> ( )

Remark 7.2. Note that Poisson summation constitutes a key step in the proof - the dual
side (7.14) has no Gauss sum weights.

Estimates for 2 and A". We estimate & and .4 displayed in (7.10) and (7.14) respec-
tively.
Consider . Lemma 4.4 tells us that

47TA Ad v L+e . (A fup) 2000
\ﬂﬁb(d';) i) 7 0) 0L (Af) 20,

N(d)<y

Application of (7.2) gives
IBIZ + O (X - (A/w) ™). (7.15)

9 « A
log w

Consider .#". For a given d, e € Z|w] in (7.14), we split the k£ # 0 sum into two subsums:

e 0 # k € Z|w] such that d*ck = [,

e 0 # k € Z|w] such that d*ck # (.
Denote the contributions to .4 by each of these two cases by .47 and .45 respectively.
Thus A = A + 5.

Since 1%(d) = p*(e) = 1 and (d, e) = 1, we deduce that d*ck = D iff k = de?h® for some
h € Z|w]. Notice that (4.8) and Lemma 5.5 imply that
h
(——Q@

de*h?
= o 458) -
2 deh?) = o~ )le
where the last equality follows from the fact that d = e = 1 (mod 3) and Remark 4.1.
Thus

[Q 18
w

w

47 A ﬁb1ﬁ_bz
M= (e) NG
33[ 66; [w] blil)QZEZ

e=1 (mod 3) (b1,b2)=¢
h3 . 3h3
Y é( 3>\) ( bf)( ) (7.16)
heZw] 1v2 dIJ’(
(h,b1ba/e?)=1 N(d)<y?

Note that the extra factor of 1/3 in the above display for .41 accounts for the fact that
(w'h)® = k3 for i € {0,1,2} and 0 # h € Z[w]. Using Lemma 4.4 and recalling (7.2), we

see that all this leads to
1 2/3 6] \2 5
M« o (P( X Jopm) +Alsk) (7.17)

beZ[w]
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We now focus on A5. We have

47TA ﬁb1ﬁ_bz
Z ) Z Z N (b1b,)

d\g’ e€Z|w] b1 #b2€Z[w]
N(d)<y e=1 (mod 3) (b1,bz)=e
- d*ekN (d2eky - kev A
X Co(k \% .
ke;w] ( )(61/6)3(62/6>3 ( N(d)blb2>
d2ek+0

The term .45 is small because the characters ( dzhek ) and ( d Ek)g are both non-principal.

Using Lemma 4.4 and Lemma 5.5, we re-install the diagonal b; = b, in .45 with acceptable
error O(X¢(A+B)). After rescaling the variables by — eb; and by — eby and using Lemma
4.4, we obtain

1 5eb1Bsz
Z N(e) Z N (bybs)

d\] eeZ[w] b1,b2€Z[w]
( y e=1 (mod 3) (61,62)21
d*ek d*ekN - kv A
< OO )
keZ[w] 1 3 2 3 N(d)ebl b2
d?ek#0
N(k)«X®(1+N(d)B?/(N(e)A))
+ O(X5(A + B)).

After combining (4.11) and the Mellin-Barnes integral representation [DLMF, (10.9.22)]
for the J-Bessel function, we obtain

Tete I'(—s) 277 u|\ 28
p2ltt dsd 7.18
f Jem F(L+s+1)(3\/§> sar; ( )

for u # 0, L € Z~,. For L € Z-, sufficiently large and fixed depending on € > 0, Stirling’s
asymptotic formula [DLMF, (5.11.9)] implies that

TeriXe ['(—s) 27r|u\ 25
= V(L p2l+l dsdr + O, (X 2000
2m f JHXS F(L+s+1)<3\/§> sdr + Oc( )
(7.19)

for u # 0.

We Mébius invert the condition (by,by) = 1 in the expression for .45 above, and then
separate variables using (7.19). A subsequent interchange of the absolutely convergent
finite (recall that V() is compactly supported) sums and integrations by Fubini’s Theorem
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gives
S = (~1)*- f [ Y e T8 (2 VAy
9\/—1 e—iXe D(L+s+1)\ 343
1(f)
X Z 1+s Z AT( £\1+2s
(M(w) N (d) iy NG
N(d)<y® f=1 (mod 3)
Co(R)N(K)® d?ekN (d2ek
X Z Z 1+s
eeZ[w] keZ[w] N(e) < f >3< f >3
e=1 (mod 3) d?ek#8

N (k)< X®(1+N(d)B2/(N(e)A))

) (blez[w] \/% <dbfk>3N(b1)s) < Z \/ﬁ]iff(% (dj)jk>3N<b2>s>>d8dr

szZ[w]
+O(X(A + B)).

We use Axiom 4 of Definition 3.1 to estimate the sum over b; and by (square root cancel-
lation), and then estimate the remaining sums trivially using Lemma 5.5. We obtain

Speaprx( Y Sy aUl o a

d|Z(w) N(d> fezZlw] N(f> e€Z|w] N(e>
N(d)<y? 1<N(f)«B 1<N(e)«B
p(e)
x> > ) +X°(A+B)
= Zo] wle/g)
(k76):g
N(k)«X®(1+N(d)B?/(N(e)A))
« X°B*(A + B?). (7.20)

7.2.1. Conclusion. Combining (7.15), (7.17) and (7.20) tells us that

K 2
(78) < — (A2/3( 2 N|<Bb;|1/6> +AH/6H§> —i—Og<B2n<A+B2)XE)+O€<X1+€-(A/w)_2000),

log w

for some absolute constant IC > 1. Chasing this bound through (7.7) and (7.6) gives the
result.
|

8. Type I estimates

We now establish Type-I estimates. In the Proposition below we use the Riemann
Hypothesis for the Dedekind zeta function attached to Q(w) in order to restrict the sum
to squarefree numbers.

Proposition 8.1. Assume the Riemann Hypothesis for the family of Dedekind zeta func-
tions attached to Q(w) twisted by Grofiencharaktern. Letr € Z|w] be squarefree and satisfy
r =1 (mod 3). Lete € (0,75m5), and W : R — R be a smooth function with compact
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support contained in [1,2]. Then there exists p(e) € (0, 15055) such that

u \?¢ u ~ 7)5/3775/6 r
U§M atun) (1) W(y) o () r(? >><@<Z - Nf5>3/6

u=1l (mod 3)

U ) )
+ Oa((l + )2 - <W b U N ()T (] €6)>>’

forallleZ and U > 1.

Remark 8.1. The function p(¢) is somewhat arbitrary. For instance, it follows from (8.6)

that p(e) = 3¢ — 3¢ is an acceptable choice.

Remark 8.2. Mellin inversion of the smooth function, the Class number formula [Lan94,
Chapter VIII, §2, Theorem 5], and a contour shift together imply that

1

(27)%/3 12 (1) N (u)
3I(3) u—t z(r:nod 3)N(u)1/6W< U >'N(T)1/6 (8.1)
(u,r)=1
T 5 (27‘(‘)5/3U5/6 (,0(’/“) [71/3+e
- (6) 3721 () o) (2 1) N(r)7/S " OE(W)‘

Thus when ¢ = 0, we can use the main term in (8.1) in Proposition 8.1 at negligible cost.
Proof. Mobius inversion implies that
_ u\* /N(u)
) v ()
2, §lur) ( |u|> U

ueZ[w]
u=1l (mod 3)

3

S QT 00 Y G e O R s

u,e€Z[w] e=cd
u,e=1  (mod 3) ¢,d=1 (mod 3)
(e,r)=1

Remark 8.3. Note that the factor of |e| in (8.2) reflects the periodicity property possessed
by the coefficients of the cubic theta function on cubes. See Remark 5.2.

On the right side of (8.2) we introduce a smooth partition of unity in the ¢ variable.
Let V : R — R be a fixed smooth function with compact support contained in |1, 2] such
that

Z V(Néc)) =1 forall 0#ceZw]. (8.3)
C dyadic

Insertion of (8.3) into (8.2) yields

3 g(ur)(i)ZW<N(Su)>= DRA(eR%} (8.4)

C dyadic
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where

wen)= Y gwld(L) N el

Jul

u,deZ]w) ceZ[w]
u,d=1 (mod 3) c=1 (mod 3)
(d,r)=1 (e,r)=1
cd \3'__ s N(c) N(cd)®N(u
S v(E2 ) ( ). 8.5
8 ( ed]| ) C U (8:5)

We have suppressed the dependence of .Z(C,U) on the smooth functions V' and W in
the notation.

Large dyadic C'. We estimate the contribution to the right side of (8.4) from all dyadic
values of C satisfying

C > (UN<7,))1/12+5/2'

We Mellin invert the smooth functions V' and W in (8.5). We then use the rapid decay of
their holomorphic Mellin transforms W and V in vertical strips to truncate the integra-
tions appropriately. A subsequent interchange of the order of absolutely convergent finite
sums and integrations by Fubini’s Theorem gives

1 (G0 e
MO) = ey f f V() (w) U™
(2mi)* Joscqrianeron Jicasienzroon
y gy Ud Y Cw
< ( Y gur)N @) () N
u,deZ[w]
U/(100C3)< N (ud3)<100U/C3
u,d=1 (mod 3)
(d,r)=1
3¢
D w0 ) N@YET ) dsdw + O ((C(1L+ [£) 7).
ceZ[w] |C|
C<N(c)<2C
c=1 (mod 3)
(e,r)=1

To bound the sum over ¢ we appeal to the Riemann Hypothesis for the Dedekind zeta
function attached to Q(w) twisted by a Gréflencharakter. Estimating the other summa-
tions trivially, we obtain

U 1+e € € U5/6_p(6)
C dyadic
C>(UN(7.))1/12+5/2

for some p(e) € (0, 15055 )- See also Remark 8.1.

Small dyadic C'. Tt remains to estimate

> M (C,U).

C' dyadic
1/2SCS(UN(T))1/12+5/2
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Rearranging the sums in (8.5), and then using (2.3), we obtain

M(CU)=3g(r) >, e |(| |>3E ()V<Né0))

ceZ[w]
c=1 (mod 3)
(e,r)=1
TuN [ ud® \¢ N (ud?)
X dgz:[w] 156 (7), (raaer) W (75 (8.7)
d,uz(’ld )(mod 3)
T =1

Application of Voronoi summation (in the form of Proposition 5.3) gives

2 ldau )ﬁ“ﬁﬂyw(é\;%é)ﬁ’)

d,ueZlw]
d,u=1 (mod 3)
(d,r)=1
_ U W@) (2m)*(r)g(r)
= g:ON(C)s/z 6 37/2F(§)N(7”)5/3
- l/' iy
L) (f)J 5 ot ()b} (v) () Mv/<(27r)4N(d3u)U)
372(2m)2 \r S NN@ NTON@E2) )
d=1 (mod 3)
(d,r)=1

where the a'(-) and b](+) are given by (5.67) and (5.68) respectively. Insertion of the above
display into (8.7) gives

A(CU)=T(CU)+ &E(C,U), (8.8)
where
_ (21)° = 5\ @(r) s pn(e) o (N(e)
7(C,U) = 542037/2F(§)W(6)N(T)7/6U C%]w] N(C)QV( =),
c=1 (mod 3)
(e,r)=1
and

M2 e V)bl (v
E(C,U) = %( ) 2 (()])\?(;)5/2<|d3y|)

ved~1Z[w]
d=1 (mod 3)
(d,r)=1
c\3 (N(c)\ > (2m)*N(dPv)U
8 CeZZM |C|M(C>(H) V( C )Wé( N(c3r?) )
c=1 (mod 3)
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We now collect the main term from the various .7 (C,U). We have

U3/4
>, Ten- 3 7o o)

C dyadic C dyadic

1/2<C<(UN(r))1/12+e

~ 5\ (2m)3BU/S p(r)
i () g ey T

where the error term follows from a trivial estimation of the tail of (g
The various &(C,U) contribute the error term in the statement of the result. By the

rapid decay of W in (5.82), we truncate the d and v sums in &(C,U) to

C3N(r)?
N(d*v) « (UN(@#)(1 + |€]))9%(1 4 £4) - (1 + %) . Z,
with negligible error. To separate variables, we subsequently use the definition (5.81)
of W and Mellin inversion on V. We truncate the resulting integrations appropriately

using the rapid decay of Vand W. A subsequent interchange of the order of absolutely
convergent finite sums and integrations by Fubini’s Theorem gives

&(C,U) = N<T)1/2 (_> —¢ J‘i(UN(T)(lJrfD)E/mOO J‘i(UN(T)(lJrlZ))E/lOOO 1"(% + % )F(% + % —w)
372 (2m)* —i(UN () (1+2)))=/1000 J i@ N(r)(1+]e]))=1000 T'(w + % — )l (w + %l +3)
(27r)4U> W~ e~
——— ) C*V(s)W
< (Sgr) CTEOT@)
al(v)bl(v) d3v \ ¢ c\3¢
r N (¢)/2—s—3w (_) )d d
8 ( Z N (v)1=w N (d)5/2=5v <|d3y|> 2 (c) welig) )dsdw
ved 1 Z[w] ceZ[w]
d=1 (mod 3) c¢=1 (mod 3)
(d,T):l (C,T’)=1
N(d®v)«Z C<N(c)<20

+ O-((UN(r)(1 + [€]))~1).

We estimate the sum over ¢ using the Riemann hypothesis for the Dedekind zeta function
attached to Q(w), and the quotient of Gamma factors using Stirling’s asymptotic [DLMF,
(5.11.1)] The other sums are estimated trivially using (5.67), (5.68), (5.7), (5.13) and
(5.14). We obtain

E(C,U) <. N(r)Y*10 (1 4 2)

t
Z Z - a'(v)] e o(r) Cl+e/10(1 I |€|)e/10
o & NN pr/e)
d=1 (mod3)
(d,r)=1
(Av,r)=e
N(d3v)«Z

« N(T)1/2+€/4U€/4(1 +€6)Cl+€/4(1 + |€|)5/4’
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and so

Z g(c’ U) &L U1/12+5N<7,)7/12+e . (1 + £6><1 + |£|)5 (8.10)
C' dyadic
1/2<C<(UN(r))1/12+e/2

After combining (8.6), (8.9) and (8.10), we obtain the result.

We also record the following nearly immediate Corollary.

Corollary 8.1. Assume the Riemann Hypothesis for the family of Dedekind zeta functions
attached to Q(w) twisted by Griffencharaktern. Let r € Zw] be squarefree and satisfy
r =1 (mod 3). Let e € (0, 15555), and V,W : R — R be smooth functions with compact

support contained in [,4]. Then there exists p(e) € (0, t5o55) Such that
u\* N(u) N(ur)
2 9(“7“)<|u|) vET I ()
ueZ[w]
u=1l (mod 3)
(2m)*? pi(u) o N(u) N(ur) 1
= 0y V W :
"er) = 1y N ( U ) ( X ) N(r)1/s
(u,r)=1
[75/6-0()

[1/3+e >

+o€((1+ |€|)€-( N

forallleZ and X =2 U > 1.

N0 +U1/12+8N(r)7/12+8(1 +€6)> n

Proof. If UN(r) = X then we simply apply the previous result with a different weight
function and use the Remark 8.2. If UN(r) is not of the order of magnitude of X then
both main terms are zero. |

Remark 8.4. The main term in Corollary 8.1 is larger than the error term when U >
(N(r)(1 + £6))1+e),

9. Improved cubic large sieve

The cubic large sieve of Heath—Brown is as follows.

Theorem 9.1. [HBO00, Theorem 2] Let A,B > 1, ¢ > 0, and (B)pez[) be an arbitrary

sequence of complex numbers with support contained in the set of squarefree elements of
Z|w]. Then

)G &(2)3)2 - (A+ B+ (AB#)(ABY Y BP. (9.1)

N(a)<A N()<B beZ[w]
a=1 (mod 3) b=1 (mod 3)

Recall the operator norm B(A, B) defined in (1.12). The Duality Principle [IK04, (7.9)-
(7.11)] and cubic reciprocity imply that

B(A,B) = B(B, A). (9.2)
See also [HB00, Lemma 4]. We also have the following simple monotonicity property.
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Lemma 9.1. [HB00, Lemma 5] There exists an absolute constant C = 1 as follows. Let
A, Bl, Bg > 1 and BQ = CBl log(QABl) Then,

B(A, Bl) < B(A, Bg)

We now prove that Heath-Brown’s cubic large sieve is optimal under the Generalized
Riemann Hypothesis for Hecke L-functions over Q(w).

Proof of Theorem 1.4. The upper bounds in the given ranges follow from the cubic large
sieve Theorem 9.1, and are unconditional.

We now focus on the conditional lower bounds. Let & > 0 be small and fixed, A, B > 10,
X := AB and A € [10, X/27¢]. Consider the sequence

B, = g(b)W(%), (9.3)

where W is a smooth compactly supported function in (1,2). It is supported only on
squarefree elements by (2.2). Then

> el X qew(SA)E)[

A<N(a)<2A B<N(b)<2B
a=1 (mod 3) b=1 (mod 3)

=Y ) (E)aan| (o (22) na 23))

A<N(a)<2A b=1 (mod 3)
a=1 (mod 3)
5/6\ 2
N A<A1/6> + O(XW(AT/12B1/12 | A13/6 B1/6)) (9.4)
2ew A2/3Bs/3, (95)

where display (9.4) follows from Voronoi summation (Proposition 8.1) and the GRH
hypothesis, and (9.5) follows from the fact that we are in the range A « (AB)Y?7¢.
Thus B(A, B) »¢ (AB)?3 » A+ B for A « (AB)Y*7¢ and A e [X/3, X/?]. Combining
this result with (9.2) then gives the claim when A e [v/B, B*]\[B'~¢, B'*%]. The result
in the range A € [B'¢, B1*%] then follows from (9.2) and Lemma 9.1, so B(A, B) >»
B(AX 73 B) » (AB)%373¢, n

In light of the proof of Theorem 1.4, we renormalise the sequences we consider in the
cubic large sieve by setting ¢, := §(b) 8, where B := (B )sez[w] is @ sequence supported on
squarefree b =1 (mod 3). Note that |cy| = |G| on squarefree b =1 (mod 3) by (2.2). We
are able to refine Theorem 9.1 in a special case by:

(1) Introducing a non-trivial asymptotic main term;
(2) Assuming additional cancellations/density restrictions for the sequence 3 = ().

Proposition 9.1. Let V : (0,0) — Rsq be a smooth compactly supported function,
0<n<1/4, A,B,w > 10 and X := AB. Suppose that w > (log X)1° and B = (3) €
Co(B,w). Let ¢ € (0, 15555) and @ = 1 (mod 3) be a prime or 1. Then there exists
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p(e) € (0, 5ag5) such that uniformly in 1 < N(m) < w we have

23 (a 5
ae%:w] w(a) ( ))beZZ B (b) ( ) B (SF(>§) N(a))l/G Zw N(ﬁb;%‘
a=1 (mod 3) (ba)

mla

&,

A2/3BS/3 1 57r;£1 A2/3—p(a)B5/3—p(e) A1/6+aB5/3
N () (o * N(ﬁ)) N(x) | N(m)ee
X
+ (N(1)X)* (N(ﬂ)l/sz/mA’l/lz 4 B e (1 " (B2/A)’1000)).
s
Proposition 9.1 will follow from a modification of the proof of Proposition 9.2 using

sieve weights, and from Lemma 9.2 below. At the close of this section we sketch how
Proposition 9.1 follows.

Proposition 9.2. Let V : (0,0) — Ry be a smooth compactly supported function,

0<n<1/4, A,B,w > 10 and X := AB. Suppose that w > (log X)1° and B = (3) €
Cp(B,w). Lete € (0, 15555), A =1, m =1 (mod 3) be a prime or 1, and v =1 (mod 3)

be squarefree such that (w,~) = 1. Then there exists p(e) € (0, 15555) such that uniformly
in 1< N(y) <A and 1< N(m) <w we have

5 v Mﬁb (), - S v zwb 90

aeZlw] beZ 3T (
a=1 (mod 3) a)
m™2|a

. N o 7)2/3\3 A23
<2(N(17)2_C@<jy(5;1n)>v<2)92\f<( ) S ‘ Z 1/6)

N@z)(/*i:zfz“+<AN<¢>X>6<BQ+%N«T>A2+X<1+<BZ/A>woo>>>>

+05(

o, . <O (A2/3p(€)B5/3p(6) . A2/3B5/3< 1 57”&1 )
=hATE N(r) N(7) \w10 " N(r)
A1/6+€B5/3
€ 1/2 R29/12 4 —1/12
XN () B AT ))

Proof. Using (2.2) and inclusion-exclusion with the condition (a,b) = 1, we see that the
expression in (9.6) is equal to

)23 57:17 B
ae%[:w] ( )‘( be; Brg(b ( ) - (3??3%) N(ag)g/g be%:w] N(bl;l/ﬁ)
a=1 (mod 3) (bﬁm)

mv?|a
@5 T@ < B\
* (0@ N ZE]W)\- (0.7)
(b,a)#1
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Since V' is non-negative we can apply the parallelogram identity
X + Y|P <2(X]?+|V]?) forall X,Y eC, (9.8)

to the display above. This shows that (9.7) is

T 2/3 7217 2
<2( X ( )) Z g () _(:?rgg) iV(a%E/G)bZ N(il;l/ﬁ‘ (9:9)

a€Z[w] beZ[w cZ[w]
a=1 (mod 3) (b, 'ya)
™2 |a
(2m)*? p?(a) o (N(a) By |
+ 0y=1 V( >) ) )> (9'10)
TTOr(3)? ae%:w] N(a)/3" \ A be;w] N (b)/6
a=1 (mod 3) (ba)#1
mla

where we used (2.2) to obtain the last display. The term in (9.10) is equal to

4/3 2 N A2/3B5/3
2 Z Nﬁbblfb21/6 2 ]\/;L (al)/sv( ila)) - 5V=1O<N 9/10)'
I(3)? b1,boeZfw 12) aeZ[w] (a) (m)w
a=1 (mod 3)

(a1

(a7b2)§é1

(9.11)
The estimate in (9.11) follows from the triangle inequality, the fact (bybe,m) = 1 (bybs is
w-rough and 7 is w-smooth) and

1 logB? 1 1
— K f > 1 X 10 .
;b N(w ) loglog32 w9107 or w > (log X) say
w0102
w prime

We repeatedly use this w-roughness argument in the course of the proof.
It suffices to compute the term in (9.9). We make the change of variable a — 77y2a.
After using cubic reciprocity and (2.2), it suffices to compute

2\ Nl(a /T )2/3 v=1—~ an )
ae%:w] V(WH Z[:] Brg(b >(b)3< 67)3 B (32F(>§) i\f(agr()l/ﬁ) be%:w] N(ﬁbgl/fi) '
a=1 (mod 3) (b,mya)= (912)

1

Expansion of the square in (9.12) shows that we need to evaluate the diagonal term

B RGN oy ) R

acZlw] c€Z[w ]_

a=1 (mod 3) (b, ﬂ'ya) 1
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the cross term

2 2/3 (by)
(g — _2( 7T) ,\/ 1R Z /Bbl 1 Bbg

b TN(BL/6
3 b1, bQEZ 2

2

: Z VGG ) 019

and the trivial term,

)23\ 2 a 2
:<(§F()§))5V=1 3 V(N(ZV ) A or] 1/3‘ Z 1/6‘. (9.15)

a€Z|w]
a=1 (mod 3)

The appearance of p?(ar) in 7 is due to [§(am)|* = p?(ar) (a consequence of (2.2)).

In the course of this proof we will establish the three asymptotic estimates:

- T)2/3 2/3 2/3 B5/3
=55 (o) VG ], 2 vl + O (o)

+ Oa((AN(w)X)E(B 2?(]7\:;)” N (1+ (B?/A)—NOO))), (9.16)
2 2 (2m)2/3\2 A?/3 By |2
€ = —QV( >5w 19\/—<Q(w (2:1 )<3r( )) N(w))be;w] N(b)l/ﬁ)

A2/3—p(a B5/3—p €
+ 0y (05( ) + O (X N (m)V/2B2/12 A1/12)

N(m)
) o

and

~ /2 o 9 )2/3\ 2 A2/3 5
7= 5”:1‘/(5) 93 2:1 <(3F(>2)) N(ﬂ)) Z N(ﬁzfiw)
<Q(w ( ) 3 beZ|w]
A2/BBS/3 Al/6+aB5/3
N(m)? ) 7=t E(N(ﬂ')l/2+€>
Thus ¥ + € + 7 using the asymptotics (9.16), (9.17) and (9.18) respectively gives an
asymptotic expression for (9.12). Substitution of this asymptotic expression into (9.9),

and subsititution of (9.11) into (9.10), will give the result.
We now turn our attention to proving (9.16)—(9.18).

b0y O - 0( (9.18)

The diagonal term 2. After expansion of the square in (9.13), we obtain

7= % Bib)Bng <b2>(”b”) (”Z:) 2 V(W)@(%)g-

b1,b2€Z]w] aeZlw]
(b1b2,my)=1 a=1 (mod 3)
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If (b1, ) = d, then recall that (7.13) tells us that

300130 = a0/ 5D (773, (573

Thus an application of Poisson summation (in the form of Corollary 4.1) on the a sum
shows that

— i Z Z Bblﬁb2
9\/§N(7T72) deZlw]  bibeeZlw] V N (b1b)

d=1 (mod 3) (b1,b2)=d

(d,ry)=1
x 2, <k><d22/2’“) (Z?Zf)s’*(%)- (919)

keZw]
For a given d, 7, € Z[w] in (9.19), we split the k& sum into two subsums:
e k € Z|w] such that dr?yk = (T}
e k € Z|w] such that dr?yk # 1.
Denote the contributions to & from each of these two cases by 2, and %, respectively.
Thus Y = 9, + Y.

Consider 2,. Since p*(dry) = 1, we deduce that dr’yk = (3 if and only if k =
(dv)*mH for some H € Z[w] with H = (3. Observe that (4.8) and Lemma 5.5 imply that
~ 2 _ 5(_(dy)?mH
ca((dy)*mH) = é(— 5= )¢(d). Thus

3\
41 A Be, By,

D = ———0 o(d) s Ve B
9\/§N(7Tf}/2> de;[w] b1,b§Z[w] N(bl bg)

d=1 (mod 3) (bl,bg):d

(d,my)=1 (bibo/d2?,my)=1
¢ (dy)>*mHN - (dPHAA
- ng] (- 2\ )V ( bibs ) (9-20)

H=8
(H,byby/d?)=1

We further write 2, = 27 + 25, where %; denotes the sum in (9.20) restricted to d = 1,
and 27 denotes the sum in (9.20) restricted to d # 1. The support of 3 guarantees that
d # 1 implies that N(d) > w. Thus by Lemma 4.4 we have

|86, B, | N (byby)"?
D7 < o(d) L < + 1)
N(7y?) de%:w] bl,b;zm N (b1)N(by) N(d)AY3
(d,ry)=1 (b1,b2)=d
d=1 (mod 3) (b1b2/d?,mvy)=1
N(d)>w
A2/SBS/3 ABXe¢ A2/SBS/3 X 1+e
< + & + . (9.21)

“wN(m?)  N(m?) " wN(my?)  N(my?)

We now consider ;. We write H = h?® with 0 # h € Z[w] (h is necessarily non-zero in

this case). We have
o(-I2) e(-E) - (9.22)
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This can be seen by writing h = (Au with u = 1 (mod 3), ¢ € {£1, w, +w?}, and
i € Z=p. Then the last equality in (9.22) follows from

() =) =

Thus
. A Bo, Bry h3\/Z
(772 b1 boeZlw] V N (by)N(b2) 3 \f heZ[w] 172
(b1,b2)= (h,bibs)=1
(b1b2,7r’y)=1

Note that the extra factor of 1/3 in the above display accounts for the fact that (w'h)3 = h?
fori e {0,1,2} and 0 # h € Z|w]. We remove the condition (h, b1by) = 1 at negligible cost
since B3 is supported on w-rough squarefree integers in Z[w] with w > (log X)1°. Thus

Gt Y 4”ZV(M)

N(m2) g VNOON(®) 3343 b1by
(b1,b2)=
(blb277F’Y):1
A2/3 35/3 AB
—_ — . .24
* O(N(W’}/2)’LU9/1O> O(N(W’}/2)’LU9/1O> (9.24)

Observe that V(1) = V(|u|) is a Schwarz function by Lemma 4.4. Application of Poisson
summation (in the form of Lemma 4.1) to the sum over h € Z[w] yields

55,2 V) =5 S [ (S a2

We simplify the right side of (9.25). Recall that V(u) = V(|u|) is radial. After changing
T + iy into polar coordinates re”, the right side of (9.25) becomes

19

i 2 f“ j W) (M v

_ 8T N(biby)'? n mre“9 N (byby)/6
S f f e Jrdrdd. (9.26)
meZ[w
For all m € Z|w], Lemma 4.4 implies that
o mrem N (byby)"/6
f f e Jrdrdy
2m mre® N (bby)Y/6 _
J J (r*)870,x] )e( 3 21/26 )rdrdﬁ + O (X 7200, (9.27)

For 0 # m € Z|w], repeated integration by parts on the right side of (9.27) shows that

i 1/6
f f )00,y (T N(iffg Jrdrdd <. X¥(B/A4) "N (m) ™. (0.28)
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We substitute (9.27) and (9.28) into (9.26), and then sum trivially over 0 # m € Z[w].
Chasing the result through (9.25) gives

Z <h3\/—) _ 167’(’2 N(blb2)1/3
biby /34 Al/3

33{ L V(r®)rdr + O.(X5(B*/A)~1").  (9.29)

We now evaluate the main term on the right side of (9.29). We open V using the definition
(4.4), and find that the main term is

1672 N (byby)'3 [* o [ rdmrtu
3 e L uV (u )L Jo( 3v3 )rdrdu. (9.30)

For each fixed u € (0,00), we make the change of variable w = 47r3u/(3+/3) in the
r-integral. Thus (9.30) becomes

A 4/3N bib 1/3 oo 0 B
( 331 <£1/23) L ul/gV(uz)dufo Jo(w)w™3dw. (9.31)
A change of variable shows that
* l~ys
s—1 2 _ 2
Jo wV (u)du = 2V<2), for seC, (9.32)
and [DLMF, (10.22.43)] implies that
00 . 25_1F(%)
J w*  Jp(w)dw = ——=5, for—1<Re(s—1) <1/2. (9.33)
0 I'1-3)
Using (9.32), (9.33) and Euler’s reflection formula [DLMF, (5.5.3)], we see that (9.31)
becomes
21 1 (2m)#3\ 2~ 12\ N (byby)3
— Vi) —————. 34
9\/5( 3T(2) )V (E) = (9-34)

After retracing (9.29) (9.30), (9.31) and (9.34), we obtain
h3y/A 21 (2m)#3\ 2~ 12\ N (bi1by)'/3
= vV(iZ)——=L €XEB2A71000. )
33\f Z ( b1bs ) 9\/§<3r(§)) <3) T O0=(X5(B*/A) 7). (9.35)
Substitution of (9.35) into (9.24) gives

. T T 2/3 2 A2/3 Bblﬁ_bg
7r = 9275((:;();)) V@N(w) 2 | NN B

b1, szZ
(b1,b2)=
(blbznw):l
A2/335/3 AB X 1te ) 1000
+0(mmamm) * O (mmam) * O-(ymn B/A™). (030

Using w-roughness of the support of 3, we drop the conditions (by, bs) = 1 and (b1by, 77y) =
1 at the expense of the error term of the same order of magnitude of that occurring in
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(9.36). After recalling that 2, = 27 + 27, (9.21), and (9.36), we obtain

. )2/3 2/3
% =55 (o) 7 (3) | 2wl

0(%) + 0. (% (1+ (B2/A)*1000)). (9.37)

We now consider %,

AT A B, B,
D, = Mooy
© T 9VBN(m2) de;] 5 gz 2 VN (bib)

d=1 (mod 3) (b1,b2)=d

(d,my)=1
~ dmyk W kdy/A
X ke;[w] Cd(k)( bl/d >3< b2/d >3V<W> (938)
dm? k6

We rescale by — db; and by — dby and use Lemma 4.4 in (9.38). We obtain

@2 _ 471' A Z L Z /Bdbl/Bsz
dezw]
(m

9IV3N (m72) N) | VNOON(b)
d=1 3) (b1b2,my)=1
(d,my)= (b1 ,b2)=1
~ dmvk\ rdm?yky - Jn/A
’ kG;[w] Cd(k‘)< by )3( bo >3V<dblb2N(7w2)l/2)
dr’yk+#0
N(k)«Z
+ O((N(m)AX)™1), (9.39)
where
e B2N(m)A?
2= (ANmX) (1+ —5e55)

We Mébius invert (by, by) = 1 and separate variables by opening V using (7.18) and (7.19).
Rearranging the absolutely convergent finite sums and integrals by Fubini’s theorem gives

e L) (y2),2L+1 I'(=s) 21/ A 2
72 = 9@\/_N (mv2) J JE ixe Ve F(L+s+1)(3\/§N(7r)1/2N(7)>
<Y il Y e 5 am () () vy
N(f)1+2s N(d>1+s f 3 f 3

feZlw] deZ|w] keZ[w]
f=1 (mod 3) d=1 (mod 3) dnlvk#0
(fimy)=1 (d,my)=1 N(k)«Z
dm’~k dm2~k
9 ( Z Brav, ( oy ) N(bl)is>( Z B, ( T2y ) N(bg)’s>dsdr
pem VO b /s wert VN(02) Y b2 /s
(b1,my)=1 (b2,my)=1

+ O:((N(m)AX) 1),
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for any fixed L € Z~;. We use Axiom 4 of Definition 3.1 to estimate the sum over b; and

by, and then estimate the remaining sums trivially using Lemma 5.5. We obtain
AB* N B2+277N(7T)A2)

N(my?) N(my?)

Dy <. (AN(w)X)‘f( (9.40)
Since 7 < 1 we have AB? < X. After recalling (9.37), (9.40) and the fact that 2 =
D + D, we obtain (9.16).

The cross terms €. Recall that (9.14) records the cross term. Observe that (2.3) tells us

that
2

aoatan) (i), (5), = tamb). (9.41)

Substituting (9.41) into (9.14) gives

_ 2 B B N(a)N(m)y glamb)
@ - _23?@5*:1%(%%@]N(be)bl/a ae%:w] V(=220 N(m)%). (9.42)

a=1 (mod 3)
((],7T7b1)=1

We now evaluate the sum over a € Z[w] in (9.42) using our asymptotic formula for

type-I sums in Proposition 8.1 (for level 7b;). Thus there exists p(e) € (0, t5055) such that

N(a)N(m)y glambi)

Say v(He)
bi1€Z|w] a€Z|w] A N(a,']r)l/G
a=1 (mod 3)
_ ‘7<2) (27’(’ 5/3A2/3 Z 5(,1 7Tb1)
3/ 3720 (3 5/6 C@(w (2; 1y, )N (7D )7/6
2/3—p(e) R5/6—p(e
n Oa <A B > i Oe (XaN(W)1/2Blg/12A_1/12) ] (943)
N(r)

We now use the fact that 3 is supported on w-rough squarefree elements of Z[w]| that are
congruent to 1 modulo 3. We have

@(mby) . 50
1 = log (1 — Beury
og <N(7Tbl)> w% Og( w;) Z LN (w9/10 + N(ﬂ‘))
w prime @ prime
Thus
p(mh1) 1 O
=1+0 : 9.44
N(ﬂ'bl) + (w9/10 + N(ﬂ')) ( )
Similarly, we also have
1 1 1
- + O —g715 ) 9.45
C@(w)@? 1.p,) C@(w)@; 1,) <w19/10> ( )
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Insertion of (9.44) and (9.45) into (9.43) gives

N(a)N(m)\ g(amby)
Z Bb, Z V( A )]i(om)l/ﬁ

b1€Z[w] acZ(w]
a=1 (mod 3)
(2 (27T)5/3AZ/3  Bu A2/3-0(e) B5/6-p(c)
B (§> 37/2F(§)§Q(w (2;1,) Z N (by) 1/6 ( N(m) )

(9.46)

A2/SB5/6( 1 57#1 >)

€ 1/2 p19/12 4 —1/12
+ O (X N(m)7“B7*=A )+O( N w9/10+]\7(7r)

Insertion of (9.46) into (9.42) gives (9.17).

The trivial term 7. Recall that (9.15) records

7o (EYen 3 v e s af o

acZlw]
a=1 (mod 3)

Mellin inversion of the smooth function, the Class number formula [Lan94, Chapter VIII,
§2, Theorem 5] and subsequent contour shift to the right of the 1/6-line (in the s-variable)
gives

D V(N(G)N(W)> p*(a)

1/3
e T] A N(am)
a=1 (mod 3)
~ 1/3;1 N
= L V( ) Cow) (s +1/3;14) A ds
2mi (o) (25 +2/3; 1) N(m)s+1/3
2 27TA2/3 A1/6+€
=V(= Opz1 - N + O | ——5—
<3) #1- V() )9\/34@(@(2; 1,)N(x) <N(7T)1/2+€>
- 27TA2/3 2/3 A1/6+a
N V( )9[gQ LN 5“¢1O(N(7r)2> * Oa(N(W)i/zTe)- (9.48)
Insertion of (9.48) into (9.47) gives (9.18). [

Lemma 9.2. Given y > 1, there exists coefficients (Aa)gezfu) such that

(1) My =1 and |N\g| <« N(d)® for all d € Z|w] and all € > 0;
(2) A\ =0 if N(d) > y* ord # 1 (mod 3);
(3) For all n € Z|w] we have
2(n) < > A (9.49)
d?|n

(4) For any e > 0 and 7 € Z|w] a prime m =1 (mod 3) (or 1) we have

Ad 1 B
- +O:y™177). 9.50
de;[w] N(d)?  Cow)(251x) ( ) (9.50)

(d,m)=1
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Proof. Given d =1 (mod 3), let
A = Z ple)plf)

N(e),N(f)<y
e,f=1 (mod 3)
d=e.f]
Properties (1) and (2) are immediate from the definition. Property (3) follows from

Z)\dz( Z ,u(e))z.

&ln N(er<y
e2|n

It remains to check property (4). We have

Ad ple)p(f) ple)pl(f) C1/24e
2 S= DL e = YL s O (951)
deZ|w] N<d) N(e),N(f)<y N<[€7 f]>2 e,f=1 (mod 3) N([e’ f])2
(dﬂT):l eufz(lf ()riold 3) (ef,w):l

The main term in (9.51) is equal to

w=1 1;[10d 3) <1 " @PQ ! 1)> - w=1 E[lod 3) (1 - N(;)2) - C@(w)(12§ 1)’

wWHT TWHT

as required. [ |

Proof of Proposition 9.1. In the first display of the statement of Proposition 9.1 we use
property (3) in Lemma 9.2 with y = X¢ with € > 0 small and fixed, and inclusion-
exclusion on the condition (a,b) = 1. We see that the first display in Proposition 9.1
is

a ~ 2/3
= ae%[:w] V<Njgl )>‘< beZZ[] 5b9(b><§>3 B <3 ) )16 b; 1/6>
a=1 (mod 3) (byya)=1
la
23 Gla
+ ((??F()g) Ng(EL 3/6 be;[:w] ( )1/6)) (gA ) (9-52)
(b,a)#1

Since V' is non-negative and Zﬂa Ay = 0, we can apply the parallelogram inequality (9.8)
0 (9.52). We see that the right side of (9.52) is

- -
o5 (M) 3 (D), I S A
a=1 ﬂ—(‘I?l’IOd 3) (bya)=1
+<92F”(>§4>f ) ;i;;tl)/ngﬁf‘))) 3 %D(ZW (9.53)
omi ot 9 e e
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We interchange the order of summation and use (2.2) in (9.53). We see that the right
side of (9.53) is equal to

v=1 (mod 3)
N(a) o0y (212 6,.9(a) By |2
V b)(—) — 9.54
X < ae;[w] < >) bGZZM Bug( )(a)3 3F(§) N(a)l/6 beZZM N(b)l/ﬁ‘ ( )
a=1 (mod 3) (byya)=1
wla,v?|a
(2m)* p(a) . (N(a) By |
i 5’y=1 9F(§>2 aE;[w] N(a)l/gv( A )) bGZZ[w] N(b)l/ﬁ‘ >) (9:55)
a=1 (mod 3) (ba)#1

mla

Observe that (9.55) matches (9.10), and is estimated by (9.11). If (w,v) = 1, then the
divisibility condition in (9.54) becomes 7y* | a. Thus (9.54) in this case matches (9.9),
and is estimated asymptotically by by 2 + € + .7, where , ¢ and .7 have asymptotic
expressions given by (9.16), (9.17), and (9.18) respectively. Summing the asymptotic
expression for Z + € + .7 over v with (v, 7) = 1 (with sieve weights )\, ) using properties
(1), (2), and (4) of Lemma 9.2 yields the bound stated in Proposition 9.1. If (m,7) # 1,
then the divisibility condition in (9.54) becomes 7* | @ with 7 | v and 7 # 1. Performing
a similar computation to the previous case gives the result. [ |

10. Broad Type II estimates

We prove the following type-1I estimates for sequences in C, (-, w).

Proposition 10.1. Let W be a smooth function compactly supported in [1,2], 0 < n <
1/4, A, B = 10 and set X := AB. Let « be a sequence supported in N(a) € [A/10,10A]
with a = 1 (mod 3) squarefree. Suppose that w > (log X)'°, B8 = (8,) € C,(B,w),

€ (0, 1ga55) @nd ™ =1 (mod 3) a prime or 1 satisfying 1 < N(w) < w. Then there exists
p(e) € (0, 1aa5) such that
_ N(ab) (2m)%/3 aaBop®(ab) ./ N(ab)
Z aaﬁbg(ab)W< ) = 5 W( )
a,beZ[w] X 3F(§) a,beZ[w] N(ab)1/6 X
la la

12, AY/3R5/6 1 S, AL/3—p(e)/2 B5/6—p(€)/2
* Oa(( Z |aa|2> ’ ( 1/2 < o/20 7&11/2) T 1/2
o T] N(m) w N(m) N(m)

la

A1/12+e/2B5/6
+ N (m)1/4+e/2

1/2

NN g K0 gy )

Remark 10.1. Suppose m = 1 say. Then for dense sequences a, 3 and given £ > 0, the
result is non-trivial in the range X3¢ < B < X?>=¢, for some appropriate choice of €,
and w.
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Proof. Observe that (2.3) gives

T 2/3 2 a a
T aan(aton - v ()

7r\a

(%)

I

_(@m)pP
ab; ]aaﬁb( QF@) N(alb)l/6>

7r|a

(a,b)=1

L (7 B3 (b) 2n)%3 §a) 5,
271 J i aEZ[w] (be; ( ) 3{‘(%) N(a 1/6 be%:w] N(b)1/6+s>
mla (ba)=1

(10.1)
Application of triangle inequality and then Cauchy-Schwarz to the a-sum shows that

1(10.1) 2 <<( > Iaal2> fi@(iﬂi( 2 NQ(G)V(NXO)

a€Zlw] a acZ(w]
a=1 7l—(‘rélod 3) mla
Bg(b) (W)” 3(a) By  ?
)be;] ()~ orey v Z Ny )

(b,a)= (b, a)

where V' : R — R a smooth compactly supported function such that V' > 1p10,10). Using
Proposition 9.1 gives the result. |

11. Average Type-I estimates

In this section we prove an average Type-I estimate. This average Type-I estimate will
be more directly useful to us than the pointwise Type-I estimate proved in Section 8.
Recall that £ € Z, c =1 (mod 3), and

ale) =30 (%)

c]
Proposition 11.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta
function attached to Q(w) twisted by Grdﬂenchamktem Let L € Z, € € (0, 155005 ) A >
1000 be large and fived, and (log X )4 < w < X¢. Let V, W be smooth functions, compactly

supported in [3,4]. Let 0 < n < 100/A and a = (o) € Cp(X,w). Then uniformly for
C > X257 and [{] < XY we have

3 argé(CT)V(N(@)W(N(cr)):(27T)2/3 5 anpp(er) (1)

2 1/6
reZfw] ¢ X 3F(3) r€Z{w] N(CT) /
c=1 (mod 3) c=1 (mod 3)
wlc = N(w)>w wlc = N(w)>w
X5/6
+ O, <—) 11.1
M\ (log X)%A—10 (L)
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Proof of Proposition 11.1. Mdbius inversion asserts that

5w\cﬁ N(w)>w = Z ,U(U) (112)
u=1 u(‘rilod 3)
wlu = N(w)<w

Using (11.2), we express the left side of (11.1) as

DIEDE DT Bru(N), (11.3)
k=0 N dyadic
where

Bro(N) = Z a,-Ge(nru) (5 w(u)_l;)gw)‘/(N(n))V<N(nu))W(N(nru)>.

wlu = N(

rau,nel[w]
u,n=1 (mod 3)

(11.4)

Case 1: N > XY?*1/20_ Consulting Remark 8.4 we see that we in the range where
Corollary 8.1 is non-trivial. Thus Corollary 8.1 and Remark 8.1 guarantee a small fixed
o > 0 such that we have (uniformly in |[¢] < X/100)

nru

l
(27’(’)2/3 O‘?“:UJ2 (n’f’U) ( [nrul )
N) = dp—¢- o
%k,é( ) 55—0 3F(%) Z N(?’L’I“U)l/ﬁ (6w|u;(>u3\7(l;)<w>

ru,nEL[w]
u,n=1 (mod 3)

v V(N](VM)V(N(gu))W(L(Z“)) +O.(XY0%), (11.5)

We can drop the condition d,—¢ since if £ # 0 then the sum over n majorised by the error
term in the above display.

Case 2: N < X220, SQuppose we are given a squarefree 1 # u € Z[w] satisfying
u=1 (mod 3), and such that all prime factors of u have norm < w. Then, given a prime
7|u, there is a unique factorisation u = brd such that all the prime factors of d (resp.
b) satisfy < 7 (resp. satisfy > 7). See Remark 6.1 for the ordering < on ideals. Since
N(r) = X/C « X'3*¢ and N(ru) = X/N » X?71/20 we are guaranteed a unique prime
7 € Z[w] such that u = brd with N(rb) < X33 and N(rbr) = X33, Hence

Bro(N) = ) arv<N](\7n)) > Qe(nru)V(N(ém)>W<N<;m))
rneL{w) ueZ[w]
n=1 (mod 3) u=1 (mod 3)
(X 3 1) (116)
TeZ[w] u=bmd
T prime w(u)=k
N(m)<w b,d=1 (mod 3)

7=1 (mod 3) N(rb)<X13/30 N(rbr)>X13/30
w|b = w=N(w)=N(n)
w|d = N(w)<N(r)
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We introduce smooth partitions of unity in the N(r), N(b) and N(d) in (11.6). Then (2.3)
and Mellin inversion imply that

Biy(N)= > Blke(N,D,R,B), (11.7)
D,R,B dyadic (kq,k2)e(Z=0)?
k1+ko=k—1

where

~

1
%(khlw) (N D, R, B 271_2 f f XV ( )W(U)

s
X Z | #( | Z Bi(m, ki s, v, O)yp(m, ke s,v,0)g (]h))dsdv,
we€Z|w],m prime J,heZ|w]
N(m)<w,mr=1 (mod 3) j,h=1 (mod 3)
(11.8)
and
2 .
NN EAS N()\y, (N -
ki £ - T rv N(b 87
et = SOT Y S ar(CE)r (W)
w(b)=k1
r,b=1 (mod 3),(j,7)=1
N(j)<X13/30,N(j7T)>X13/30
w|b = w=N(w)=N(r)
(11.9)
2
. _ () TN N(n)\,,(N(d)
(s hzi 5,0, £) = N(h)s+v<h>3<|h|> h:an V( N )V< D )
w(d)=k2
n,d=1 (mod 3),(h,m)=1
w|d = N(w)<N(r)
We write
Bi(B, R, m, ky;s,v,0) := B;i(m,ki;8,0,0) and v, (N, D, ko, m; 5,0, 0) := (7, ka3 5,0, 0),
(11.10)

when we care to emphasise the dyadic ranges B, R and N, D that are present in the
definitions of B and - respectively.
For each given 7 € Z|w] prime, the sum over j and h in (11.8) is empty unless

X130 /(1000N (7)) < RB < 1000X /%, (11.11)
and NDRB = X/N(n). Thus ND » X'/3%  Since N < XV2*1/20_ we must have

D » X/1571/20 whenever the sum over j, h in (11.8) is non-zero. We now write
Blkr ke e(N, D, R, B) = B, (N, D, R, B) + By, 1,,s(N,D, R, B), (11.12)

where ’%)(khkz)l corresponds the part of (11.8) with N(x) < (log D)%, and B 1oy ko)t COT-
responds to (log D)4 < N(m) < w

Treatment of %(k ko) ,(N,D, R, B). Since (a,) is supported only on w-rough elements of
Z|w], the factorlsatlon j = rb occurring in the definition of the sequence (; is unique.
Thus |5;(m, k15 s,v,£)| < 1 for Res, Rev = 0.

On the other hand, the sequence 7v,(N, D, 7, ko; s,v,{) is sparse when N () is on log-
power scales. We pause the proof to illustrate this in the following Lemma. We also
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make the crude observations that -, is supported on h € Z[w] with N(h) = N D, and also
satisfies |y, (7, ka; 5, v, £)] < 2°( for Res, Rev = 0.

Lemma 11.1. Let N, D, A > 10, ko € Z=o, and let m € Z|w] be a prime that satisfies
7 =1 (mod 3) and N(r) < (log D). Then
D (N, Dy ks s, 0, )] «a (ND)M - NDRA,
heZ|w]

with K > 0 a small absolute constant.

Proof of Lemma 11.1. We first refine our bound for |v|,. We have

ko N < ov® .1 27131?51\[15% 1
|’Yh(7T, 2; 5,0, )|\ “Lheq, K Zioglos *Lhew,,

where %, is the set of squarefree integers of the form nd with n,d =1 (mod 3), (nd, ) =
1, N(n) = N, N(d) = D, and such that all of the prime factors of d have norm < N ().

Observe that d has necessarily > #ﬁfﬁ) (say) prime factors. Therefore
Z Vh(N, D, 7, ka3 5,0, 0)]* « (ND)‘O%‘OQL(ND) || (11.13)

heZ|w]

Let p > 0 be chosen later. We have

2
p*(d)
%, | « (ND) >
d=1 (mod 3) N(d>
w\d=>N(l );N(TF)
() 150108 Nmy
plog D p2(d)er @
< (ND)- ez A
(ND) exp( 10010gN(7r)> 2 N(d)

d=1 (mod 3)
w|d = N(w)<N(r)

plog D ef
S(ND)-exp( ) H <1—|— )
1001og N (7 N () <N () N(w)
plog D
ND) -exp (26" loglog N(r) — -l 222 )
< (ND) - exp (2" loglog N(m) — 35570 "~y
plog D
ND)-exp (26" log N(m) — 12250
< (ND)- exp (2¢log 100 Tog N (7)
plog D
ND)-exp (24¢”loglog D - ). 11.14
< (ND)-exp cosios 100Aloglog D ( )
We choose
= loglog D — 1000 logloglog D.
Thus (11.14) implies that
|U,| « 4 ND1/(10004) (11.15)

for all D (hence X) sufficiently large. Thus (11.13) now implies the Lemma. [ |
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We now resume the proof of Proposition 11.1. We now use (2.3), the Cauchy-Schwarz
inequality, Heath-Brown’s cubic large sieve (Theorem 9.1) Lemma 11.1, and the conditions
(11.11), NDRB = X/N(7) and D » X/1571/20 to obtain

(B ¢ (N.D. R, B)|

< xem ((33)1/2(33 +ND + (RBND)2/3> 1/2N1/2D1/2‘1/(500A)>

TeZ[w]

7 prime
N(m)<(log D)4
=1 (mod 3)

« 4 X5/6-1/(10000004)
say. We include a redundant main term of size that is absorbed by the error term i.e. we
can write

,%’(k o)l (N,D,R,B)

nru

 (2n) Z ozru2(n7"U)(|mu|)ZV<N(7°)>V<N](Vn)>v<N(nu))W(N(nru)>

30(%) L N (nru)t/6 R C X
n=1 (mod 3)
_N(b) N(d) 5/6—1/(1000000A)
(2 2 V(TE V() + oax )
TeZ[w] u=bmd
T prime w(b)=k1,w(d)=ka
N (7)< (log D)4 b,d=1 (mod 3)
m=1 \(mod 3) N (rb)<X13/30
- N (rbr)=X13/30

w|b = w=N(w)=N(n)
w|d = N(w)<N(r)
(11.16)

Treatment of %y, ,(---). Recall that (log X)* < w < X*, and that (log X)* < N(7) < w.
We reassemble the integral in the v-variable in (11.8), and recover the smooth weight
W(N(jhm)/X). By Lemma 6.1 and Lemma 6.3 we have B(R, B;m;s,{) € C,(RB, N(r))
(from (11.9)) (after re-scaling by an appropriate absolute non-zero constant) for all n >
100/A. We then apply Proposition 10.1 and see that there is a p(e) € (0, t5555) such that

Bl ko (N, D, R, B)
= (27T)2/3 Z Oér,lﬁ(nru)(|Z:Z|)ZV<N(T)>V<N(n)>v<N(TLU)>W(N(nTu)>

3I(3) e Z] N (nru)t/6 R N C X
nE’l ’ (mod 3)
N(b)\ ., N(d)
(X 2, V() (=52)) + B (11.17)
meZ[w] u=bmd
7 prime w(b)=k1,w(d)=ks
(log D)A <N (r)<w b,d=1 (mod 3)
m=1 (mod 3) N (rb)<X13/30

N (rbr)=X13/30
w|b = w=N(w)=N(n)
w|ld = N(w)<N(m)
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where

5/6

X Xo/6
E = OAﬁ(loglogw( o730 +X5/67”(5)> +
w

(log X)4/2
L X83/120+0(1), 1/4 | x4T/60+0(1), 3/4 | X17/60+(13/30)(1+100/A)+o(1)w1/2>.

Note that both the error terms in (11.16) and (11.17) are uniform with respect to ¢, k;
and ks.

Conclusion. After combining (11.16) and (11.17) in (11.12), we obtain an asymptotic
expression for B, 1.).¢(N, D, R, B) for each dyadic value of N satisfying N < X1/2+1/20,
We reassemble the sum over (ki, ko) € (Zso)? (satisfying ky + ky = k — 1), as well as the
partitions of unity in N(b), N(d) and N(r) in (11.7). We then collapse the weights in

the main term back to (5 w(u)=k ), and obtain an asymptotic expression for %y, (V)
wlu = N(w)<w

for each dyadic value N satisfying N < X1/2+1/20 Recall that (11.5) gives an asymptotic
expression for %y, ,(N) for each dyadic value N satisfying N > X1V/2+1/20. We combine
these two results in (11.3), and reassemble the partition of unity over N(n). Note that
the reassembly of partitions of unity and the sums over k; do not overwhelm the error
terms (one only has losses of O((log X)!Y) say. Inserting this asymptotic expression into
(11.3), and noting that

Z(—l)"t(cS w(u)=k

k=0 wlu = N(w)<w

Vi) = () (O — o= ) (w),
as well as (11.2), we obtain the result. [

12. Combinatorial decompositions

We will use the following combinatorial decomposition.

Lemma 12.1. Let W : R — R be a smooth function compactly supported in (0,C). Let
(s(n ))nez be a sequence satisfying |s(n)| < 1 and have support on squarefree n satisfying
n= (mod 3). Then for 2 <w < CX'Y3 < z we have

Y w2y (M=)

w=1l (mod 3) 2 wi,w2=1 (mod 3)
N(w)>z N(w1),N(w2)>z
—1)* N(cw, ... @
e S stemmgw (LT L o),
k! X
k=0 w<N(w1),...,N(wwg)<z
Viizoy=1  (mod 3)
c=1 (mod 3)
k=0 = c#1

Proof. We assume that Res > 1 throughout this proof. We have

o= I (-5=)

N(w)>z
w=1 (mod 3)
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and
1 1
DTN s~ 086) = loa(l+ (Gals) ~ 1)
L>=1 N(w)>z
w=1 (mod 3)
1 -1 j+1 '
() - D= 5 G - 0P R e 1y, a2)
j=3
Furthermore,
1
Gel) = Gl ] (- )
w<N(w)<z
w=1 (mod 3)
where

1 - 1
Guls) =[] (1—N<w)s) - Y N (12.2)

N(w)>w c=1 (mod 3)
w=1l (mod 3) wlc = N(w)>w

The equation (12.2) is valid since every ¢ = 1 (mod 3) has a unique factorisation ¢ =
w; ... wg with @; =1 (mod 3) for i = 1,..., k. Expand the product

1 (—1)k 1
H <1_N(w)8>:1+Z k! Z N(wy ... wp)"

w<N(w)<z k=1 " w<N(w1),...,N(wg)<z
w=1 (mod 3) Vicw;=1 (mod 3)

Therefore

Coa(s) — 1= Z (_kll) Z N(cw:. = (12.3)

Vw;=1 (mod 3)
w; all distinct
c=1 (mod 3)
k=0 = c#1

wlc = N(w)>w

Substitution of (12.3) into (12.1) gives

1 1 —1)k 1
27 X N@E Z% 2 N{cwr ... =) (124)

L>1 N(w)>z k=0 " w<N(w@),...,N(w)<z
w=1l (mod 3) Vw;=1 (mod 3)
wo; all distinct
c=1 (mod 3)
k=0 = c#1
wlc = N(w)>w

Gal) 12+ T TP ) -1y

=3 J

1
2

The result follows from a comparison of coefficients. Observe that that the total contri-
bution from terms N(w)* < X with & > 2 on the left side of (12.4) is O(v/X). Since
z > CX'? and W is compactly supported in (0, C'), we see that the contribution from all
terms ((>.(s)—1)7 with j > 3 is zero. Notice that s(cw ... wy) is zero if cw; . . . @y, is not
squarefree by hypothesis, so we can drop the requirement that the w; are all distinct. W



BIAS IN CUBIC GAUSS SUMS 69

13. Proof of Theorems 1.1 and 1.3

We first record a useful Lemma due to Polymath that classifies the Type-I, Type-II and
Type-1II information that occurs in the proof of our main theorems.

Lemma 13.1. [Poll4, Lemma 3.1] Given an integer n > 1 and 1—10 <o < %, letty,... t,
be non-negative real numbers such thatt; +...+t, = 1. Then at least one of the following
three statement holds:

(Type-I) There is an i € [1,n] such that t; > § + o;
(Type-11) There is a partition {1,...,n} =S 0T such that

%—a<2ti<2ti<%+a;
€S €T

(Type-111) There ezists distinct i, j,v € [1,n] such that 20 < t; <t; <t, < 3 — o0 and
1
ti +tj,tj +tv,tv +ti = 5 + 0.

Furthermore, if o > 1/6, then the Type-111 alternative can’t occur.

Proof of Theorems 1.1 and 1.3. We first explain some initial manipulations.

Initial reduction. For any rational prime p =1 (mod 3) we have
Sp

2

where w € Z|w] is a prime such that w = 1 (mod 3) and p = ww@. The number of primes

w =1 (mod 3) for which N(w) is not prime is O(v/X). Such primes are those that lie
over rational primes p = 2 (mod 3). To prove Theorem 1.1 it suffices to estimate the

quantity
. N(w)
g(m)W | ———=).
w=1 Z(n:’lodi%) ( X >

Observe that (2.2) implies that

= Reg(w),

w
§l@)* = ——.
||
Thus
g(w) ifk=1 (mod 3) with ¢ =*L
+1

(w) ifk=2 (mod 3) with ¢ ==~
if k=0 (mod 3) with ¢ = %

« ‘

i@ = (1 ( ) x

||

—

In particular, Theorem 1.3 with k¥ = 0 (mod 3) follows directly from the assumption of
the Generalized Riemann Hypothesis.
To establish Theorem 1.3, it suffices to show that

w \*¢ w 5/6
2 g@)(H) W(%) - 0(122«)()’
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as X — oo and uniformly in 0 < |¢| < X'/, To prove both Theorem 1.1 and Theorem
1.3 simultaneously it is enough to estimate

_ w \¢  , (N(w)
Y =) ()
w=1 (mod 3)
to a precision better than o(X?/%/log X). For ¢ =1 (mod 3) define
. . c\*
)= 3) ()
Let £ € (0,107°%) be fixed. Let

w:i=X° and z:= XV3*e,

By Lemma 12.1 we have

Z §é(w)W(M> = —% Z §é(w1w2)W<@> (13.1)

w=1l (mod 3) wi,ww2=1 (mod 3)
N(wl),N(w2)>z

+ 3 % 3 Ge(r . .wkc)W<M) +O(VX), (13.2)

k=0 (1., 0k, C)ES (W, 2) X
where S(w, z) denotes the set of tuples (wy, ..., ™k, ¢) with £ > 0 such that
e wy,...,wy are primes congruent to 1 (mod 3) (when k > 1);

e For all 1 <i <k we have w < N(w;) < z (when k > 1);
e cis w-rough, c=1 (mod 3), and k =0 = c# L.

When £ = 0, the sum is understood just to be over the variable c.
Let £ € (0,107°) be a small fixed quantity to be decided at a later point in the proof
(it will ultimately depend on €).

Remark 13.1. Uniformity of error terms in ¢ is not an issue when deploying Type 11/II1
estimates (i.e. Proposition 7.1 and Proposition 10.1). This is because (2.3) is applied to
ge(ab), and the dependence on ¢ is absorbed into the coefficients a and 3 that satisfy
|e]|oo, B0 < 1. The dependence on £ issue emanates from the application of the average
Type-I estimate in Proposition 11.1.

Sum on the right side side of (13.1). We introduce a smooth partition of unity on
each of the N(w;) to evaluate the (Type-II) sum over N(w;), N(ws) > 2. Thus it is
sufficient to estimate

FuX, P, Pyz)i= Y gg(w1w2)W(N(7§1,w2>)V(NE__?l))V(Ngz)),

wi,wwe=1 (mod 3)
N(w1),N(w2)>z

(13.3)
for all dyadic partitions (P, P;) that satisfy z/2 < Py, P, < 2X and PP, = X. When
2/2 < min{ P}, P,} < X%?*7¢ we can apply Proposition 10.1 with 7 = 1, and > 0 arbitrar-
ily small and fixed by Lemma 6.2 (the only requirement is that n > 100 loglog X /log X).
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Thus there exists dy(&, ) > 0 such that

w12

¢
(2m)® (@) ((Z24) N(wi)\ ., N(w)
X, Py By 2) = 30(2) N(w1)§(w2)>z N (wya5) /0 V( Py )V< Py )

N(wl’ZDg)
X

X W< ) + O&e(X5/6*50(§76))7 when  z/2 < min{P}, P} < X112

(13.4)

When X2-¢ < P, P, < XY2*¢ we appeal to Proposition 7.1. In particular, the
smooth coefficients here are supported on z = X3¢ > X¢ _rough integers. We obtain

X 1 . X°/6
(elog X)3/2  /min(P;, P,) (elog X)%’
when XY27¢ < P, P, < XY/?*E,

Fi(X, Py, Py 2)

where the implied constant is absolute. We can include a redundant main term that is
majorised by the error term i.e.

TI1TI2 ¢
(2r)%/3 P (@) ((Z25) N(wi)\.,  N(ws) N(w 1)
FZ (X, P, Py 2) =
JZ( o 2’2) 3F(§) N(w1),N(w2)>z N(w1w2)1/6 v( Py >v( Py >W< X )

X 1 )+O< X5/6 )
(510gX)3/2 min(Py, ) (elog X)2/”

when XY27¢ < P P, < XV,
(13.5)

+0(

Since PP, = X there are O(£log X) choices of P, P, in the narrow range X'/27¢ <
Py, P, < X'/2*¢_ Summing (13.4) and (13.5) over all possible dyadic tuples (Py, P,) gives

Z §z(w1w2)W<@>

wi,w2=1 (mod 3)
N(w1),N(w2)>z

wi1w2

¢
. (27T)2/3 Z lu2(w1w2>(‘w1w2‘) W(N(wlw2))
= 2
3F(§) wi,w2=1 (mod 3) N(wlw2)1/6 X
N(w1),N(w2)>z
X3/4+§/2 §X5/6
AT SXT (X/0-d(ee) ,
O((elogX)3/2) +O(azlogX> + Ol ) (13.6)
for any fixed 0 < §1(&,¢) < do(&, €).
Sum in (13.2). For each 0 < k < 1/e, we analyse the sum
_ N(w; ... e

(wl 7777 wkvc)es(wvz)
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We insert a smooth partition of unity in N(c) and each N(w;) fori =1,...,kin (13.7).
Thus its suffices to estimate

Py, ..., Pegy) = > ol . . .wkC)W<N(w1k.wkc))V(J;k(ff) ﬁv(@)

(wl 7777 wkvc)es(wvz)

(13.8)
for all dyadic partitions H = (Py,..., Py1) satisfying Py ... Pyyr = X, w/2 < P, < 22
forall7 = 1,...,k, and Pyy1 = 1/2. Our goal will be to show that Y(Pl, .. Pk+1) is
asymptotically equal to (either for individual tuples (P, ..., Pyy1) or on average)
Mo(Pr, ..., Pry)
w1..oone \ £
B (2%)2/3 Z ,u2(w1 .. -wkc)(rm...w;:c\) W(N(wl .. .wkc ) < > ﬁ V<
o 2 1/6
3F(§) (@1, o pe)eS (w,2) N(wl Ce wkc) / X Pk+1 i
For a given (P, ..., Pii1), let
log P; )
t; >0 for v=1,...,k+1. 13.9
lOg(Pl . Pk+1) ( )
We necessarily have
i+ .+t = 1; (13.10)
1 1
8Y <25 for i=1.... k (13.11)

logX = ' " logX

We now apply Lemma 13.1 with choice o := 1/6 — £ to decompose the proof into cases.

Narrow Type-1II sums. In this case we necessarily have k > 2, and
3 three distinct indices 4,5, ¢ € {1,...,k + 1} such that ¢;,t;,t, € (5 — 26,1 +€). (13.12)

In particular, either
(1) 3 an index i such that t €[3,3+¢), or
(2) we have t;,t;,t0 € (3 — 26, 3).

The sum over all dyadic partitions (P, ..., Pyr1) for which there exists an index i such
that t; € [3, 5 + £) (and two additional mdlces j, € such that ¢;,t, € (5 — 26,3 +€)) is

N(ab
<+ s | Y e ( (a )>) (13.13)
xis < panvsre lalolBle <t ol Ty g X
P dyadic €Cn (Pyw) wla = N(m)>w

wlb = N(m)>w
N(a)=X/P,N(b)=P

where 1 > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 1001loglog X /(elog X)). Notice that the factor (k + 1)! = k! - (k + 1) arises from the
fact that there are k + 1 ways of choosing the first index i for which P, € [3, 3 + &) (and
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this index becomes our P) and there are k! ways of representing a as a product of the
remaining k variables. Application of Proposition 7.1 shows that (13.13) is

1 X X5/6
< (k+1)! ( : + >
X1/3<PZ<X1/3+5 (elog X)32 /P (clog X)?
P dyadic

X5/6 X5/6
< (k+ 1)!( + . >7
(elog X)32 = e2log X
where the implied constants are absolute.
We now handle the remaining case in which ¢;,¢;,t, € (% — 2¢, %) We group together

two variables coming from the indices ¢ and j say. We sum over all dyadic partitions
(Pr,. .., Pyyq) for which ¢;, ¢, € ( —2¢, 3) This sum is

N(ab
< (k+1)!- E sup Z aaﬁbgg(ab)W< g? )>), (13.14)
Haﬂoo 1Blo<1 " ; p=1"(mo
et G| aim ey

wlb = N(m)>w
N(a)=U,N((b)=X/U

where 7 > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 100loglog X /(clog X)). The factor (k+1)! = (k—1)!- 2(k+1) arises from the fact that

there are 2(]“;1) ordered choices of ¢ and j such that ti,t;e (3 —2¢, %), and (k—1)! ways

of representing a as the product of the remaining k£ — 1 Varlables Applying Proposition
7.1 and arguing in a similar way to the above shows that (13.14) is

X5/6 £X5/6
|
<k 1)'((5logX)3/2 - 52logX)’

where the implied constant is absolute.
Combining the two cases we conclude that

Z L (P, ..., Pq) = Z %(Pla--.,PkH)+O<(k+1)!X5/6>

3/2
(Pry-sPr1) (Pry- s Pr1) (elog X)¥
(13.12) holds (13.12) holds
k+ 1)1¢x0/6
L0 (%),
e?log X

Notice that the main term is absorbed by the error term in this case.

Narrow Type-II sums. In this case we necessarily have k > 1, and
3 a partition S U T = {1,...,k + 1} such that 1 — £ < Zti < th <3+& (13.15)
€S jeT

The contribution of all such (P, ..., Pyy1) is

< (k+1)! Z ol SFI?\ ) Z aaﬁbfj@(ab)W(
/ /2 1|0 Blo<1 a,b= mo
X 2U§d<ygd<1cX 7 pecy (U 7T|7Z - Z(V(n()i>313;
wlb = N(m)>w
N(a)=X/U,N(b)=<U

Ng?b))

., (13.16)
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where n > 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
n > 100loglog X /(clog X)). The term (k+1)! arises from the fact that for each 1 < i < k,
there are 7! (k jl) ordered choices for the set S containing ¢ elements, and there are (k+1—1)!
ways of representing b as a product of the remaining k + 1 — ¢ variables indicated by the

set T'. Applying Proposition 7.1, we see that (13.16) is

<( 1 X X5/6 )

k+1)! :
«(k+1) Z e log X)3/2 \/UJr(glogX)2

X1/27§<U<X1/2
U dyadic

X3/4+5/2 €X5/6
(elog X)3/2 e logX>’

< (k+ 1)!(

where the implied constants are absolute.
In particular,

3/4+¢/2
Z S (P Peya) = 2 //[(P1>...,Pk+1)+0<(k+1)!X i >

3/2
(PrysPrt1) (Pt Pry1) <€ log X) /
(13.15) holds (13.15) holds
k+ 1)€X5/6
N 0<( )'€ )
e?log X

where the main term is absorbed by the error term.

Remaining ranges. We now consider all of the remaining dyadic partitions (Py, ..., Pyy1)
one by one. For each remaining tuple (P, ..., Pyr1) we will show that
X5/6
Fi(Pr, ..o Pop) = Me(Pr, ..o Pra) + OA,g,e(T>, (13.17)
log” X

for any given A > 10 (depending on ¢ > 0). Recall that £ < 1/s. Since there are at
most (log X)* dyadic partitions (Py,..., Pyy1) satisfying P, --- P,y = X, we can sum
over the error term in (13.17) without overwhelming the main term. Notice that each of
the remaining configurations of (P, ..., Pyr1) now fall into either of two cases:

(1) Jie{l,...,k+ 1} such that t; > §—§;
1} such that

(2) Or 3 a partition SuT ={1,.... k+
1 1 1 2
= < < - —§< ¢ < t, < - —¢. 13.1
gHES s €S e <58 (13.18)
€S jeT
If 3i € {1,...,k + 1} such that t; > 2 — £, then ¢ = k 4+ 1 by (13.11). This corresponds

to the ¢ variable appearing in (P, ..., Pry1) in (13.8). After applying Proposition 11.1
(average Type-I estimate) we obtain (13.17) uniformly in [¢] < XY If the second
alternative holds, then (13.17) follows from Proposition 10.1 (broad Type-II estimate).
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Assembly. Summing over all dyadic partitions (P, ..., P.y1) we obtain

—1)k B N(w; ... wpe
0<k<l/e T (O, TRy )ES (w,2)

w1l...TWEC g
. Z (_1)k /~L2<w1“‘wkc)(|wi...w£0|) W(N(zm wkc))
o 1/6
o<heL/e k! e S N(wy ... wre)Y X
X5/6 X5/6 X3/4+§/2 X5/6
+O( 5 >+O(—>+O(—>+OA§€<77 — ),
etlog X £72(log X )?/? £72(log X )?/? S \ogh e X

(13.19)

uniformly in [¢] < XY We now drop the third error term in (13.19) because it is
majorised by the second one. Combining (13.19) and (13.6) in (13.1)—(13.2), and then
applying Lemma 12.1 (in the reverse direction, and to the symbol p?(-)(-)%) gives

~ w 7)%/3 (%)Z w
S alew (N - (:?r()g) 2 N(|w)1/6W<N§< )

w=1l (mod 3) w=1l (mod 3)

5/6

EX0 X 5/6-61(¢.2)
O<54 logX) + O<57/2(logX)3/2) + OA’g’E(logA_‘El X)’ + Oce(X )
(13.20)

uniformly in [¢] < X190, After choosing ¢ = !9 and A = £71%% (say), the error terms

n (13.20) are O(EX;;) as X — 2. We conclude by noticing that

1 N(w X5/6
W( W (z)z~Yod X — o,
. z(;md 5 N(w)l/6 f x- logX as o0

and for £ # 0,

(%)Z w 5/6
Y w5 —elix) = X

w=1 (mod 3)

uniformly in |¢| < X%, This proves Theorem 1.1 and Theorem 1.3. |

14. Proof of Theorem 1.2

Proof of Theorem 1.2. We expand f in a Fourier series

= > f(k)e(ka

keZ
For p=1 (mod 3),

= > f(k)e(kt,) = 3 f(k)g(=)*

keZ keZ
where w is a prime in Z|w] such that p = @w@. Therefore

> few(£)

p=1 (mod 3)
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is equal to
fo Y w)r ¥ dwl Y aew(NE)owx)roux
p=1 (mod 3) 0<|k|< X1/100 w=1 (mod 3)

for any given A > 10. We now appeal to Theorem 1.1 and Theorem 1.3 to see that the
sum over k # 0 is equal to

R ~ 23 o 5/6 5/6
(f(1)+f(—1))'(32r()g) ), W foe o)

as claimed. [
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Appendix A. Appendix

This table completes the computation in [Pat77, Table III] where the values k;(E) were
computed for all 1 < j < 27. We supplement [Pat77, Table III] by also computing k;(T)
and k;(P) for all 1 < j < 27. We do not require these computations in any of our proofs.
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J_ | di(p) ki(E) | k;(P) | k;(T)
1 | 7(w) 1 4 1
2 | T(p)é(wp) 19 5 2
3 | T(p)eé(—wp) 10 6 3
4 | 7(wp) 7 7 6
5 | T(wp)é(—p) 23 9 4
6 | T(wp)ée(p) 13 8 5
7 | (W) 4 1 9
8 | T(w?u)e(—pu) 14 3 7
9 | 7(wn)e(n) 22 2 8
10 | wro(wp)é(p) 3 14 11
11 | wrp(w?n) 12 17 12
12 | wn(wp) 11 11 10
13 | wra(p)é(w?p) 6 10 14
14 | wn(p)é(—wp) 8 13 15
15 | m(w?p)e(—w?pn) |24 16 13
16 | m2(1)e(—p0) 25 |18 |17
17 [ (1) 17 (12 |18
18 | 7o (p)é(p) 27 15 16
19 | Wi (W?p)é(u) |2 22 20
20 | w?ry (wp) 21 21 21
21 | w?r (w?p) 20 26 19
22 | w?r(p)é(wp) 9 23 23
23 [ w?r(wp)é(w?u) |5 19 24
24 [ w?r(W?p)é(w?u) | 15 27 22
25 | m(p)é(—mp) 16 24 26
26 | 71 (1) 26 20 27
27 | m(p)e(p) 18 25 25
We note that,
)~ Gy’

These isomorphisms are easily seen from the table by following the cycle structure. The

exponents 12 in C4? be explained by noticing that the forms j = 1,17,26 are invariant
under E and all the other elements are of order two, giving us @ = 12 generators.

Likewise the exponent 8 in C§ can be explained by noticing that the forms with j = 1,2, 3
are invariant and there are WT’?’ = 8 remaining generators all of order 3. Finally the
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exponent 9 appears in the case of k;(P) because no forms is left invariant by P and P is
of order three.
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