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BIAS IN CUBIC GAUSS SUMS: PATTERSON’S CONJECTURE

ALEXANDER DUNN AND MAKSYM RADZIWI L L

Abstract. Let W be a smooth test function with compact support in p0,8q. Con-
ditional on the Generalized Riemann Hypothesis for Hecke L-functions over QpËq, we
prove that

ÿ

p”1 pmod 3q

1

2
?
p

¨
´ ÿ

x pmod pq

e2πix
3{p

¯
W

´ p

X

¯
„ p2Ãq2{3

3�p2

3
q

} 8

0

W pxqx´1{6dx ¨ X5{6

logX
,

as X Ñ 8 and p runs over primes. This explains a well-known numerical bias in the
distribution of cubic Gauss sums ûrst observed by Kummer in 1846 and conûrms (con-
ditionally on the Generalized Riemann Hypothesis) a conjecture of Patterson [Pat78b]
from 1978.

There are two important byproducts of our proof. The ûrst is an explicit level aspect
Voronoi summation formula for cubic Gauss sums, extending computations of Patterson
and Yoshimoto. Secondly, we show that Heath-Brown9s cubic large sieve is sharp up to
factors of Xop1q under the Generalized Riemann Hypothesis. This disproves the popular
belief that the cubic large sieve can be improved.

An important ingredient in our proof is a dispersion estimate for cubic Gauss sums.
It can be interpreted as a cubic large sieve with correction by a non-trivial asymptotic
main term. This estimate relies on the Generalized Riemann Hypothesis, and is one of
the fundamental reasons why our result is conditional.
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Appendix A. Appendix 77

1. Introduction

1.1. Exponential sums over primes. Kummer [Kum75, Paper 16,17] studied the dis-
tribution of the cubic exponential sums

Sp <
pÿ

n<1

e
´n3

p

¯
, epxq :< e2Ãix,

with p = 1 pmod 3q prime. The bound |Sp| � 2
?
p is well-known, and we can consequently

write
Sp

2
?
p

< cosp2Ã»pq, »p P r0, 1s. (1.1)

This specifies the value of »p ´ 1
2
up to sign. This sign ambiguity can be resolved by

noticing that (1.1) is the real part of an explicit root of unity defined in (1.7). To probe
whether »p is equidistributed, Kummer computed the frequency with which cosp2Ã»pq
lay in the intervals I1 < r1

2
, 1s, I2 < r´1

2
, 1
2
s and I3 < r´1,´1

2
s, for p � 500. Kummer

observed that cosp2Ã»pq tended to lay more frequently in I1 than in I2 or I3 (the ratio he
observed was 3 : 2 : 1 respectively). If this bias persisted, then the angles »p would not
be uniformly distributed. Subsequent calculations by von Neumann-Goldstine [vNG53],
Lehmer [Leh56] and Cassels [Cas69] cast doubt on the persistence of this observation and
suggested that cosp2Ã»pq lay equally frequently in I1, I2 and I3, and that »p was uniformly
distributed. In light of the new numerical evidence, Patterson [Pat78b] enunciated a
corrected conjecture. This conjecture explained the bias observed by Kummer, and was
consistent with the numerical data.

Conjecture 1 (Patterson, 1978). As X Ñ 8,

ÿ

p�X
p=1 pmod 3q

Sp

2
?
p

> 2p2Ãq2{3

5Γp2
3
q ¨ X

5{6

logX
,

where p runs through primes.

Patterson obtained this conjecture by developing Kubota’s theory of metaplectic forms
[Kub69,Kub71], and by appealing to a heuristic form of the circle method [Pat78b]. Unfor-
tunately, even under the assumption of the Generalized Riemann Hypothesis, Patterson’s
heuristic fell short of a proof. This was due to insufficient bounds for the minor arcs. Sub-
sequently, in 1979, Heath-Brown and Patterson [HBP79] established that »p is uniformly
distributed in r0, 1s as p varies among primes congruent to 1 modulo 3. This decisively
disproved Kummer’s guess. A nice summary up to this point can be found in a standard
text of Davenport [Dav00, Chap. 3]. Some 20 years later, in 2000, Heath-Brown [HB00]
sharpened his earlier result with Patterson and obtained unconditionally the nearly tight
upper bound ÿ

p�X
p=1 pmod 3q

Sp

2
?
p

!· X
5{6`·, (1.2)
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for any given · � 0. Heath-Brown [HB00, pg. 99] also stated a refined form of Patterson’s
conjecture that features an error term capturing square root cancellation1.

In this paper we confirm Patterson’s conjecture, conditionally on the assumption of the
Generalized Riemann Hypothesis. This can be also viewed as a conditional sharpening
of (1.2). We will explain in a later part of the introduction why the assumption of the
Riemann Hypothesis (or similar unproven hypothesis) appears to be necessary at this
point.

Theorem 1.1. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
QpËq. Let W be a smooth function that is compactly supported in p0,8q. Then as X Ñ 8
we have

ÿ

p=1 pmod 3q

Sp

2
?
p

¨W
´ p
X

¯
> p2Ãq2{3

3Γp2
3
q

} 8

0

W pxqx´1{6dx ¨ X
5{6

logX
,

where p runs through primes.

Notice that the constant that we get is consistent with Patterson’s [Pat78b] prediction:
if W pxq Ñ 1r0,1spxq then,

p2Ãq2{3

3Γp2
3
q

} 8

0

W pxqx´1{6dx Ñ 2p2Ãq2{3

5Γp2
3
q .

Theorem 1.1 shows that the angles »p cannot be equidistributed with square-root cancel-
lation in the error term. We make this precise in Theorem 1.2.

Theorem 1.2. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
QpËq. Let f be a smooth 1-periodic function andW be a smooth function that is compactly
supported in p0,8q. Then we have

ÿ

p=1 pmod 3q

fp»pqW
´ p
X

¯
<
} 1

0

fpxqdx
ÿ

p=1 pmod 3q

W
´ p
X

¯
(1.3)

` 2

} 1

0

fpxq cosp2Ãxqdx ¨ p2Ãq2{3

3Γp2
3
q

} 8

0

W pxqx´1{6dx ¨ X
5{6

logX
` o

´ X5{6

logX

¯
,

as X Ñ 8.

It is unlikely that (1.3) can be established unconditionally given the current state of
knowledge. For instance, with the choice fpxq < ep33xq, 3 0 0, (1.3) implies a zero-free
strip for certain L-functions associated to Größencharaktern.

Before proceeding to a high level sketch of the ideas in the paper, we remark that it
is possible to slightly sharpen the rate of convergence in Theorems 1.1 and 1.2. One can
save roughly one power of logX .

1.2. Gauss sums over Eisenstein integers. Let Ë < e2Ãi{3 and let ZrËs denote the
ring of Eisenstein integers (in QpËq). It is well known that any non-zero element of ZrËs
can be uniquely written as ·»ic with · P tÚ1,ÚË,ÚË2u a unit, » <

?
´3 < 1 ` 2Ë

the unique ramified prime in ZrËs, i P Z�0, and c P ZrËs satisfying c = 1 pmod 3q.
1The constant in Patterson9s conjecture appearing in [HB00] is mistated due to a misprint
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Furthermore, we have a cubic symbol
`

a
�

Ú
3
defined for a = 1 pmod 3q and � = 1 pmod 3q

prime. This is defined by
´ a
�

¯
3

= apNp�q´1q{3 pmod �q,

and the condition that it takes values in t1, Ë, Ë2u. It is clearly multiplicative in a and
can be extended to a multiplicative function in � by setting

`a
b

Ú
3

<
{

i

` a
�i

Ú

for any b = 1 pmod 3q with b < [
i�i and �i primes. The cubic symbol obeys cubic

reciprocity: given a, b = 1 pmod 3q we have
´a
b

¯
3

<
´ b
a

¯
3
. (1.4)

We also have supplementary laws for units and the ramified prime. Given d = 1`³2»
2 `

³3»
3 pmod 9q with ³2, ³3 P t´1, 0, 1u, then

´Ë
d

¯
3

< Ë³2 and
´»
d

¯
3

< Ë´³3. (1.5)

The cubic exponential sums Sp are intimately connected to cubic Gauss sums over
Eisenstein integers. For any rational prime p = 1 pmod 3q, we can write p < �� with �
prime in ZrËs. Then

Sp

2
?
p

< Re g̃p�q, (1.6)

where the normalised Gauss sum is given by

g̃pcq < 1

|c|
ÿ

x pmod cq

´x
c

¯
3
ě
´x
c

¯
, ěpzq < e2Ãipz`zq, (1.7)

for any c P ZrËs with c = 1 pmod 3q. Here | ¨ | denotes the Euclidean distance of c from
the origin. We write gpcq for the unnormalized Gauss sum, namely gpcq :< |c|g̃pcq. We
also note that

g̃pcq3 < µpcq c|c| . (1.8)

Thus g̃pcq is a cube root of µpcqc{|c| (see [Has50, pp. 443–445]). However, given a prime
� = 1 pmod 3q, there is no known formula efficiently predicting which cube root g̃p�q
corresponds to2.

Formula (1.6) shows that Patterson’s conjecture is equivalent to the statement

ÿ

Np�q�X
� prime

�=1 pmod 3q

g̃p�q > 2p2Ãq2{3

5Γp2
3
q ¨ X

5{6

logX
.

2We note that the work of Matthews [Mat79] gives an explicit formula expressing Þgp�q as a product of
the Weierstrass 9-functions evaluated at pNpÃq ´ 1q{3 values. Despite the beauty of Matthews9 formula,
it is not computationally eûcient.
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From the point of view of Weyl’s equidistribution criterion it is also natural to ask about
the behavior of g̃p�qk with k P Z. Patterson enunciated in [Pat78b] a complementary
conjecture. It states that for all k R t0, 1,´1u we have,

ÿ

Np�q�X
� prime

�=1 pmod 3q

g̃p�qk < o
´ X5{6

logX

¯
(1.9)

as X Ñ 8. We conditionally establish a version of this conjecture with wide uniformity
in k.

Theorem 1.3. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
QpËq. Let W be a smooth function compactly supported in p0,8q. Then as X Ñ 8 we
have ÿ

�=1 pmod 3q
� prime

g̃p�qk ¨W
´Np�q

X

¯
< o

´ X5{6

logX

¯
,

uniformly in 1 � |k| � X1{100

Theorem 1.2 is a nearly immediate consequence of Theorem 1.1 and Theorem 1.3.
Notice that in the case k = 0 pmod 3q (k 0 0), Theorem 1.3 unambiguously requires a
zero-free strip for L-functions associated to Größencharaktern.

1.3. Cubic Gauss sums and automorphic forms. Developing Kubota’s theory [Kub69,
Kub71], Patterson [Pat77] established a functional equation for a Dirichlet series of the
form ÿ

c=1 pmod 3q

g̃pµ, cq
Npcqs ,

where

g̃pµ, cq :< 1

|c|
ÿ

x pmod cq

´x
c

¯
3
ě
´µx
c

¯
.

Subsequently, Yoshimoto [Yos87] followed Patterson’s approach to obtain a functional
equation for the Dirichlet series

ÿ

c=1 pmod 3q

g̃pcqËpcq
Npcqs ,

where Ë is a primitive Dirichlet character such that Ë3 is not principal. Yoshimoto
specifically excludes the case when Ë3 is principal to prevent the (Kubota) multiplier
from interfering with Ë. We develop both of these computations further, obtaining a
functional equation for the Dirichlet series

ÿ

c=1 pmod 3q

g̃pcqÇpcq
Npcqs

and Ç a periodic function modulo r with r = 1 pmod 3q. We specialise our computation
to the case when Ç is the conjugate of a cubic character to modulus r. The result for this
specific choice of Ç could have been obtained more directly by combining [Pat77, Theorem
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6.1] and [HB00, Lemma 4.1]. However, we found it advantageous to develop a more general
approach. First, we believe that the result will be useful in later works. Second, this more
general approach improved our understanding of (and confidence in) the formula. Third,
our functional equations explicate the root number. These formulas are too lengthy to be
introduced here. We refer the reader to Section 5 where they are stated in detail.

As in earlier works [HB00, HBP79], this Voronoi formula is used to understand the
so-called Type-I sums

ÿ

c,r=1 pmod 3q

g̃pcrq³rV
´Nprq

R

¯
V
´Npcq

C

¯
, CR < X, (1.10)

with ³r arbitrary coefficients bounded in absolute value by 1. A sharp bound for (1.10)
in the range C � R2 was established in [HB00]. In the proof of Theorem 1.1 we need an
asymptotic slightly past this range (with an error term ! X5{6´·). In Section 8 we use
the Generalized Riemann Hypothesis (to cancel out the contribution of cubes) to obtain
adequate pointwise (for a single value of r) Type-I information as long as C � Nprq1`·, for
any given · � 0. We also give alternative estimates in Section 11 that use the averaging
over r in a non-trivial way: we obtain adequate Type-I information on average in the
range C � R2´·, under the Generalized Riemann Hypothesis. For the interested reader
we note that there are two ways of bypassing the Riemann Hypothesis in this case. One
is to assume that the sequence ³r has a bilinear structure. The second would be to obtain
“subconvex” bounds in the r aspect for the Dirichlet series

Y
c=1 pmod 3q g̃pcrqNpcq´s. Since

a more significant bottleneck appears elsewhere we have not endeavoured to make these
results unconditional.

1.4. Cubic Gauss sums and the cubic large sieve. In order to obtain the bound
ÿ

Np�q�X
� prime

�=1 pmod 3q

g̃p�q !· X
5{6`·,

Heath-Brown develops in [HB00, Theorem 2] the so-called “cubic large sieve”. The cubic-
large sieve states that for any sequence ³b supported on squarefree b P ZrËs,

ÿ

Npaq�A
a=1 pmod 3q

µ2paq
ÇÇÇ

ÿ

Npbq�B
b=1 pmod 3q

³b

´ b
a

¯
3

ÇÇÇ
2

!· pABq·¨pA`B`pABq2{3q
ÿ

Npbq�B
b=1 pmod 3q

|³b|2. (1.11)

Immediately after stating (1.11) in [HB00], Heath-Brown writes:

“It seems possible that the term pABq2{3 could be removed with further
effort, and the bound would then be essentially best possible. However,
the above suffices for our purposes. It should be noted that if the variables
are not restricted to be squarefree, a result as sharp as Theorem 2 would
be impossible. The proof of Theorem 2 is modelled on the corresponding
argument for sums (over Z) containing the quadratic residue symbol, due
to the author [3] (local cit. [HB95]). The latter is distinctly unpleasant,
but fortunately some of the difficulties may be reduced in our situation by
the introduction of the term pABq2{3 in Theorem 2. ”
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This assertion that the term pABq2{3 can be removed is then frequently repeated in sub-
sequent literature. For example, in [BGL14] it is asserted that

“As in [12] (local cit. [HB00]), the term pABq2{3 is not optimal and can
most likely be replaced with pABq1{2.”

To our great surprise we found that the term pABq2{3 in Heath-Brown’s cubic large sieve
can’t be removed. We state our optimality result in terms of operator norms. For A,B �
10, and p³bqbPZrËs an arbitrary sequence of complex numbers with support contained in
the set of squarefree elements of ZrËs, let

ΣpA,B,βq :<
ÿ

A�Npaq�2A
a=1 pmod 3q

µ2paq
ÇÇÇ

ÿ

B�Npbq�2B
b=1 pmod 3q

³b

´ b
a

¯
3

ÇÇÇ
2

.

For A,B � 1, consider the operator norm

BpA,Bq :< sup
β

!
ΣpA,B,βq :

ÿ

b

|³b|2 < 1
)
. (1.12)

Theorem 1.4. Assume the Generalized Riemann Hypothesis for Hecke L-functions over
QpËq. Let A,B � 10, then for any · � 0 we have

#
pABq2{3 !· BpA,Bq !· pABq2{3`· for A P r

?
B,B2szrB1´·, B1`2·s,

pABq2{3´3· !· BpA,Bq !· pABq2{3`· for A P rB1´·, B1`2·s.

Remark 1.1. Only the lower bounds in Theorem 1.4 are conditional on the Generalized
Riemann Hypothesis for Hecke L-functions over QpËq. The upper bounds follow uncondi-
tionally from Heath-Brown’s cubic large sieve, and are included for the sake of comparison
with the lower bounds.

One example establishing optimality in the range A < B1´· (for any given small · � 0)

is ³b < g̃pbq. This follows from applying our Voronoi summation formula in Proposition
8.1, and then subsequently using the non-trivial main term that arises when summing
cubic Gauss sums over all elements of ZrËs (see Section 9 for details). This is far from

the only obstruction. Any sequence of the form ³bg̃pbq with ³b non-negative and not
correlated with cubic symbols would provide a counterexample.

To address this limitation of the cubic large sieve we introduce a correction term. This
allows us to beat the exponent pABq2{3, albeit only for sequences that have substantial
cancellations against all non-principal cubic characters. We show that there exists a small
fixed · � 0 such that for any sequence β on ZrËs satisfying

: |³b| � 1 for all b P ZrËs;
: ³b supported on square-free w-rough integers (i.e all prime factors of b P ZrËs have
norm � w);

: ³b supported on b = 1 pmod 3q with Npbq 4 B;
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then

ÿ

aPZrËs
a=1 pmod 3q

µ2paqV
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq<1

³b

Npbq1{6

ÇÇÇ
2

« A

B

ÿ

hPZrËs
0�|h|�B2{A

h0

ÇÇÇ
ÿ

b

³b

´ b
h

¯
3

ÇÇÇ
2

` O
´pABq2{3 ¨B

w
` pABq2{3´· ¨B

¯
, (1.13)

where denotes an integer of the form k3 with k P ZrËs. In particular, if the sequence ³b
exhibits square root cancellations against all non-trivial cubic characters and w � pABq·,
then (1.13) is ! pABqop1qpAB ` B2 ` pABq2{3´· ¨ Bq. This suggests that in order to
beat the cubic large sieve, the correction term alone is not enough; we really need to
know additional information about the sequence ³b. It is tempting to try to use Dirichlet
polynomial techniques to bound (1.13). However, the optimal term pABq2{3 in the cubic
large sieve adds substantial technical challenges preventing us from being able to use these
techniques. Precise versions of (1.13) are given in Propositions 9.1 and 9.2.

Using the above estimates we are able to show in Section 10 that for a broad class of
sequences we have

ÿ

a,b=1 pmod 3q

³a³bg̃pabq > p2Ãq2{3

3Γp2
3
q

ÿ

a,b=1 pmod 3q

³a³bµ
2pabq

Npabq1{6
. (1.14)

Note that µ2pabq can be inserted at will since b is supported on w-rough integers and
w � plogXq10 is reasonably large. It is perhaps appropriate to call (1.14) a dispersion
estimate. Compared to the usual dispersion estimates we use the assumption of the
Generalized Riemann Hypothesis instead of the usual Siegel-Walfisz assumption, and the
condition ab = 1 pmod qq is replaced by the term g̃pabq.

The estimate (1.14) will be indispensible in estimating so-called Type-II sums, which
we discuss in the next section. Our example suggests that the GL3-spectral large sieve
recently established by Young [You21] might also be optimal. In the same vein, it is also
interesting to note that Iwaniec and Li found unexpected main terms appearing in the
spectral large sieve for Γ1pqq [IL07]. Other versions of the cubic large sieve have been
established by Baier and Young [BY10] in their work on the first moment of Dirichlet
L-functions (over Q) twisted by cubic characters.

1.5. The overall strategy of the proof. Having explained above the main ingredients
in our proof we will now explain how they are combined in Sections 13 and 14. It will be
useful to compare the argument with [HB00]. In order to establish the bound

ÿ

Np�q�X

g̃p�q !· X
5{6`· (1.15)
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in [HB00], Heath-Brown needs to address two types of sums,

ÿ

a,b=1 pmod 3q

³ag̃pabqV
´Npaq

A

¯
V
´Npbq

B

¯
, AB < X ; (1.16)

ÿ

a,b=1 pmod 3q

³a³bg̃pabqV
´Npaq

A

¯
V
´Npbq

B

¯
, AB < X. (1.17)

The first sum is known as a Type-I sum and the second sum as a Type-II sum. If we are
aiming for a bound of the form X5{6`· for the sum over primes then we need to bound the
Type-II sums by ! X5{6`· in the range A � X1{3 (since we will apply Cauchy-Schwarz
on the a-sum and thus we can hope for at most a saving of

?
A in the most favourable

scenario). We also need to bound the Type-I sums by ! X5{6`· in the range A � X1{3.
The main point is that if asymptotic estimates are not sought, then proving bounds with
an X·-loss is sufficient.

If we aim to refine Heath-Brown’s bound (1.15) to an asymptotic then first we need
to refine the Type-I estimate to an asymptotic. This can be done simply by a careful
derivation of Voronoi summation. We also need to push the range slightly past A � X1{3,
but this does not present us with any significant difficulties under the Generalized Riemann
Hypothesis (other than the tedium of the computations).

Second, we need to refine Type-II estimates to an asymptotic; this is significantly more
tricky. For this it is necessary to use our version of the cubic large sieve with the correction
term. Since the error term needs to be smaller than X5{6 we now need to take A � X1{3`·

in the Type-II sums. This however creates a problem since the ranges in which we can
handle Type-I and Type-II sums are not enough to obtain primes. In fact we now need
to also bound the contribution of so-called Type-III sums of the form

ÿ

a,b,c=1 pmod 3q

g̃pabcqV
´Npaq

A

¯
V
´Npbq

B

¯
V
´Npcq

C

¯
, ABC < X.

with A,B,C < X1{3`Op·q and a, b, c supported on primes. Bounding these sums with
a power-saving presents a real challenge that we do not know how to solve. The main
problem arises when A < B < C < X1{3. In that regime, executing Voronoi summation
on any single variable produces an essentially self-dual situation. Furthermore, the only
admissible way of applying Cauchy-Schwarz is by grouping two variables together, and
this then leads to a very long off-diagonal that appears even more difficult to handle.

Instead, we use the Generalized Riemann Hypothesis in Section 7 to refine the large
sieve bound to a bound that is tight up to constant factors and holds with wider uniformity
than the Type-II bound stated above. As a consequence we can show that the overall
contribution of these Type-III sums is only · times the expected main term. This strategy
was previously used by Heath-Brown in his work on primes in short intervals [HB88]. Our
work is the first to execute this idea in the context of an oscillating sequence with a main
term of density X´·.

Finally we note that our Type-II bound (as stated) is not able to handle the narrow
range X1{2´· � A,B � X1{2`·. So instead in this range we use the same kind of ideas
that we used to handle Type-III sums. This is not necessary and we could have obtained
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a power-saving in this range with a little bit more work. However, this wouldn’t have
made a significant difference so we refrained from this additional work.

1.6. Acknowledgements. We warmly thank Samuel Patterson for his helpful corre-
spondence and encouragement, as well as Matthew Young and Scott Ahlgren for their
helpful feedback on the manuscript. We also thank the referee for their meticulous com-
ments on the manuscript. M.R. was supported on NSF grant DMS-1902063 and a Sloan
Fellowship.

2. Basic facts about QpËq
Let QpËq be the Eisenstein quadratic number field, where Ë is identified with e2Ãi{3 P C.

It has ring of integers ZrËs, discriminant ´3, and class number 1. It also has six units
tÚ1,ÚË,ÚË2u and one ramified prime » :< 1 ` 2Ë <

?
´3 dividing 3. Let Npxq :<

NQpËq{Qpxq < |x|2 denote the norm form on QpËq{Q. Each ideal 0 0 c'ZrËs is principal.
If pc, 3q < 1, then c has a unique generator c < pcq that satisfies c = 1 pmod 3q.

Whenever we write d|c with c = 1 pmod 3q, it is our convention that d = 1 pmod 3q. If
p = 1 pmod 3q is a rational prime, then p < �� in ZrËs with Np�q < p and � a prime
in ZrËs. If p = 2 pmod 3q is a rational prime, then p < � is inert in ZrËs and Np�q < p2.
Define

ěpzq :< e2ÃiTrC{Rpzq < e2Ãipz`zq, z P C.

For c P ZrËs with c = 1 pmod 3q, the cubic Gauss sum is defined by

gpcq :<
ÿ

d pmod cq

Æ
d

c

Û

3

ě

Æ
d

c

Û
. (2.1)

We have the formula [Has50, pp. 443–445]

gpcq3 < µpcqc2c, (2.2)

where µ denotes the Möbius function on ZrËs. Observe that (2.2) implies that gpcq is
supported on squarefree moduli. We write

g̃pcq :< gpcq
|c| ,

for the normalised cubic Gauss sum. Note that |g̃pcq| < µ2pcq for all c P ZrËs.
An important property of gpcq is twisted multiplicativity [Has50, pp. 443–445]. It states

that

g̃pabq <
´a
b

¯
3
g̃paqg̃pbq for a, b P ZrËs satisfying pa, bq < 1. (2.3)

Both sides of (2.3) are zero when pa, bq 0 1, and so (2.3) can be trivially extended to all
a, b P ZrËs. Recall that cubic reciprocity and a supplement to cubic reciprocity for the
units/ramified prime are is given in (1.4) and (1.5) respectively.
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3. Notational conventions and definitions

Throughout the paper, � will denote a general prime in ZrËs satisfying p�, 3q < 1, and
» :<

?
´3 is the unique ramified prime. We also denote by an element of the form b3

with b P ZrËs. For z � 3, let

Ppzq :<
{

Np�q�z
�=1 pmod 3q

� prime

�. (3.1)

For a given w � 1, we say that a P ZrËs with a = 1 pmod 3q is w-rough if and only if
pa,Ppwqq < 1.

Unless otherwise specified, it should be clear from context whether q means modular
inverse (with respect to an appropriate modulus) or complex conjugation.

Many estimates in this paper hold for a large class of sequences given in Definition 3.1
below.

Definition 3.1. Given · � 0, A � 1, and w � 1, let C·pA,wq denote the set of sequences
α :< p³aq such that

(1) |³a| � 1 for all a P ZrËs;
(2) ³a is supported on squarefree w-rough a P ZrËs with a = 1 pmod 3q;
(3) ³a < 0 unless Npaq 4 A;
(4) For any · � 0, t P R, 3 P Z and k, u P ZrËs with k, u = 1 pmod 3q, we have

ÿ

aPZrËs
a=1 pmod 3q

u|a

³a

´ a

|a|
¯3

Npaqit
´k
a

¯
3

!· p1 ` |3|q·Npkq·p1 ` |t|q·
´ A

Npuq
¯1{2`·`·

, (3.2)

provided that 3 0 0, or if 3 < 0, then provided that k 0 .

The Generalized Riemann Hypothesis is used to show that axiom (3.2) above holds
for sequences of interest to us (i.e. smoothed indicator functions on the set of w-rough
integers in ZrËs.) See Section 6 for details.

Where important, the dependence of implied constants on auxiliary parameters will be
indicated in subscripts i.e. O·,¿,A,..., !·,¿,A,... and "·,¿,A,.... It will be crucial to give the
implied constants of certain error terms in the proofs of Theorem 1.1 and Theorem 1.3
explicitly in terms of some of the auxiliary parameters. Such terms are clearly indicated.

4. Poisson summation formula

We will need a minor variant of the number field Poisson summation formula.

Lemma 4.1. Let V : R2 Ñ C be a smooth Schwartz function. By an abuse of notation,
set V px ` iyq :< V px, yq. Then we have

ÿ

mPZrËs

V pmq < 2?
3

ÿ

kPZrËs

}

R2

V px, yqě
´kpx ` iyq

»

¯
dxdy. (4.1)
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Proof. Let Λ :< ZrËs, viewed as a discrete lattice embedded in C. We identify x` iy with
px, yq P R2. Poisson summation gives

ÿ

xPΛ

V pxq < 1

covolpΛq
ÿ

xPΛ‹

pV pxq,

where Λ9 < »´1ZrËs is the dual lattice to Λ,

pV pxq :<
}

R2

V pu, vqep2pxu` vyqqdudv,

and

covolpΛq <
?
3

2
.

Observe that
Rerpx` iyqpu´ ivqs < xu ` yv.

Thus Poisson summation for ZrËs is given by
ÿ

mPZrËs

V pmq < 2?
3

ÿ

kP»´1ZrËs

}

R2

V px, yqep2Repkpx ` iyqqqdxdy. (4.2)

We can replace k by k in (4.2), since »´1ZrËs is closed under conjugation. Thus (4.1)
holds, as required. �

Lemma 4.2. Let 0 0 q P ZrËs, Ë : ZrËs Ñ C be a q-periodic function, and V : R2 Ñ C

be a smooth Schwartz function. Then
ÿ

mPZrËs

ËpmqV pmq < 2?
3Npqq

ÿ

kPZrËs

9Ëpkq 9V
´k
q

¯
,

where

9Ëpkq :<
ÿ

t pmod qq

Ëptqě
´

´ tk

q»

¯
,

and

9V puq :<
}

R2

V px, yqě
´upx` iyq

»

¯
dxdy.

Remark 4.1. For each t P ZrËs, note that the additive character

k ÞÑ ě
´

´ tk

3»q

¯

has minimal period 3q (not 3»q).

Proof. We have
ÿ

mPZrËs

ËpmqV pmq <
ÿ

t pmod qq

Ëptq
ÿ

mPZrËs

V pmq ` tq

Application of Lemma 4.1 to the summation over m gives
ÿ

mPZrËs

V pmq ` tq < 2?
3

ÿ

kPZrËs

}

R2

V ppx` iyqq ` tqě
´kpx ` iyq

»

¯
dxdy.
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A linear change of variable then shows that

ÿ

mPZrËs

V pmq ` tq < ě
´

´ kt

q»

¯ 2?
3Npqq

ÿ

kPZrËs

}

R2

V px, yqě
´kpx` iyq

q»

¯
dxdy. (4.3)

The result follows upon summing both sides of (4.3) over t pmod qq with the q-periodic
weights Ëptq. �

We will specialise to the case where the test function is radially symmetric.

Lemma 4.3. Let q P ZrËs with q = 1 pmod 3q, Ë : ZrËs Ñ C be a q-periodic function,
and V : R Ñ C be a smooth Schwartz function. Then for any M � 0 we have

ÿ

mPZrËs
m=1 pmod 3q

ËpmqV
´Npmq

M

¯
< 4ÃM

9
?
3Npqq

ÿ

kPZrËs

:Ëpkq :V
´k

?
M

q

¯
,

where

:Ëpkq :< ě
´

´ k

3»

¯ ÿ

x pmod qq

Ëp3»xqě
´

´kx

q

¯
,

and :V : C Ñ C is defined by

:V puq :<
} 8

0

rV pr2qJ0
´4Ãr|u|

3
?
3

¯
dr. (4.4)

Proof. Application of Lemma 4.2 gives

ÿ

mPZrËs
m=1 pmod 3q

ËpmqV
´Npmq

M

¯
< 1

Np3qq
2?
3

ÿ

kPZrËs

9Ëpkq
}

R2

V
´x2 ` y2

M

¯
ě
´kpx` iyq

3»q

¯
dxdy,

where

9Ëpkq <
ÿ

t pmod 3qq
t=1 pmod 3q

Ëptqě
´

´ tk

3»q

¯
. (4.5)

We first simplify the integral. A change of variable gives
}

R2

V
´x2 ` y2

M

¯
ě
´kpx ` iyq

3»q

¯
dxdy < M

}

R2

V px2 ` y2qě
´kpx` iyq

?
M

3»q

¯
dxdy. (4.6)

We change x` iy to polar coordinates via the substitution x` iy < reiÓ. Let » P r´Ã, Ãq
be a fixed angle (depending on k and q) such that

e´i» <
#

k
|k|

|»q|
»q

if k 0 0

1 if k < 0.

Then (4.6) becomes

M

} 8

0

rV pr2q
} 2Ã

0

ě
´reiÓ´i»|k|

?
M

3
?
3|q|

¯
dÓdr. (4.7)
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We eliminate the translation by » by a linear change of variable in Ó and the fact that
the integrand is periodic with period 2Ã. Therefore (4.7) becomes

M

} 8

0

rV pr2q
} 2Ã

0

exp
´4Ãir cospÓq|k|

?
M

3
?
3|q|

¯
dÓdr.

Observe that by [DLMF, (10.9.2)] and the fact that J0pxq is real-valued we obtain

J0pxq < 1

2Ã

} 2Ã

0

eix cospÓqdÓ.

Thus (4.7) is equal to

2ÃM

} 8

0

rV pr2qJ0
´4Ãr|k|

?
M

3
?
3|q|

¯
dr.

It remains to compute 9Ëpkq. The Chinese Remainder theorem guarantees that we can
write any t pmod 3qq as t < aq ` 3b with a a representative of a residue class pmod 3q
and b a representative of a residue class pmod qq. Necessarily a = q pmod 3q. Thus (4.5)
becomes

9Ëpkq :<
´ ÿ

a pmod 3q
a=q pmod 3q

ě
´

´ak

3»

¯¯´ ÿ

b pmod qq

Ëp3bqě
´

´ bk

»q

¯¯

< ě
´

´ k

3»

¯ ÿ

b pmod qq

Ëp3»bqě
´

´bk

q

¯
,

where the displays followed from the fact that q = 1 pmod 3q, Ë is periodic modulo q
with pq, 3q < 1, and Remark 4.1. �

We now state the final version of the Poisson summation formula needed for this paper.

Corollary 4.1. Let n1, n2 P ZrËs be squarefree and satisfy n1 = n2 = 1 pmod 3q. Let
d :< pn1, n2q and V : R Ñ C be a smooth Schwartz function. Then for any M � 0 we
have

ÿ

mPZrËs
m=1 pmod 3q

´m
n1

¯
3

´m
n2

¯
3
V
´Npmq

M

¯
<

4Ã
`

d
n1{d

Ú
3

`
d

n2{d

Ú
3
Mgpn1{dqgpn2{dq

9
?
3N

`
n1n2{d

Ú

Æ
ÿ

kPZrËs

rcdpkq
´ k

n1{d
¯
3

´ k

n2{d
¯
3

:V
´kd

?
M

n1n2

¯
,

where

rcdpkq :< ě
´

´ k

3»

¯ ÿ

x pmod dq
px,dq<1

ě
´

´kx

d

¯
, (4.8)

and :V : r0,8q Ñ C is given by

:V puq :<
} 8

0

rV pr2qJ0
´4Ãr|u|

3
?
3

¯
dr.
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Proof. We apply Lemma 4.3 to

Ën1,n2
pmq :<

Æ
m

n1

Û

3

Æ
m

n2

Û

3

<
Æ

m

n1{d

Û

3

Æ
m

n2{d

Û

3

1dpmq, m P ZrËs,

where 1d denotes the principal character modulo d. Observe that Ën1,n2
is n1n2{d periodic.

All that remains to do is to compute :Ën1,n2
. We have

:Ën1,n2
pkq < ě

´
´ k

3»

¯ ÿ

x pmod n1n2{dq
px,dq<1

´ 3»x

n1{d
¯
3

´ 3»x

n2{d
¯
3
ě
´

´ kx

pn1n2{dq
¯
. (4.9)

Observe that 3» < p´»q3 and pn1n2{d, 3q < 1, so (4.9) becomes

:Ën1,n2
pkq < ě

´
´ k

3»

¯ ÿ

x pmod n1n2{dq
px,dq<1

´ x

n1{d
¯
3

´ x

n2{d
¯
3
ě
´

´ kx

pn1n2{dq
¯
.

Since n1 and n2 are squarefree we have pn1n2{d2, dq < 1. We use the Chinese remainder
theorem to write x < apn1n2{d2q ` bd. We find that

:Ën1,n2
pkq < ě

´
´ k

3»

¯ ÿ

x pmod n1n2{dq
px,dq<1

´ x

n1{d
¯
3

´ x

n2{d
¯
3
ě
´

´ kx

pn1n2{dq
¯

<
´
ě
´

´ k

3»

¯ ÿ

a pmod dq
pa,dq<1

ě
´

´ak

d

¯¯´ ÿ

b pmod n1n2{d2q

´ bd

n1{d
¯
3

´ bd

n2{d
¯
3
ě
´

´ kb

pn1n2{d2q
¯¯
.

Observe that pn1{d, n2{dq < 1. To evaluate the sum over b we use the Chinese remainder
theorem again. Writing b < tpn1{dq ` upn2{dq gives

:Ën1,n2
pkq < rcdpkq

´ ÿ

t pmod n2{dq

´ tn1

n2{d
¯
3
ě
´

´ tk

n2{d
¯¯´ ÿ

u pmod n1{dq

´ un2

n1{d
¯
3
ě
´

´ uk

n1{d
¯¯

< rcdpkq
´ k

n2{d
¯
3

´ k

n1{d
¯
3

´ n2

n1{d
¯
3

´ n1

n2{d
¯
3

¨ gpn1{dqgpn2{dq,

where the last display follows from the primitivity of characters
´

¨
n1{d

¯
3
and

´
¨

n2{d

¯
3
.

Finally,

´ n2

n1{d
¯
3

´ n1

n2{d
¯
3

<
Æ
n2{d
n1{d

Û

3

Æ
d

n1{d

Û

3

Æ
n1{d
n2{d

Û

3

Æ
d

n2{d

Û

3

<
´ d

n1{d
¯
3

´ d

n2{d
¯
3
,

where the last equality follows from cubic reciprocity. This completes the proof. �

We close this section with standard estimate for :V .

Lemma 4.4. Let V : R Ñ C be a smooth compactly supported function. Then for any
integer k � 0,

| :V puq| !k,V p1 ` |u|q´k, u P C. (4.10)
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Proof. Integrating (4.4) by parts k P Z�0 times using [DLMF, (10.22.1)] gives

:V puq < p´1qk
´3

?
3

2Ã

¯k 1

|u|k
} 8

0

V pkqpr2q ¨ rk`1Jk

´4Ãr|u|
3
?
3

¯
dr. (4.11)

The claim immediately follows. �

5. Voronoi summation in the level aspect

The Fourier coefficients of the cubic theta function essentially sample cubic Gauss sums.
Naturally, automorphy of the theta function is a key input in the proof of our level aspect
Voronoi summation formula.

5.1. Geometry, groups, and the cubic theta function at cusps. Let H3 denote
the hyperbolic 3-space CÆR`. We embed H3 in the Hamilton quaternions by identifying
i <

?
´1 with î and w < pz, vq < px` iy, vq P H3 with x` yî` vk̂, where 1, î, ĵ, k̂ denote

the unit quaternions. In terms of quaternion arithmetic, the group action of SL2pCq on
H3 is given by

³w < paw ` bqpcw ` dq´1, ³ <
Æ
a b

c d

Û
P SL2pCq and w P H3.

In terms of coordinates,

³w <
Æpaz ` bqpcz ` dq ` acv2

|cz ` d|2 ` |c|2v2 ,
v

|cz ` d|2 ` |c|2v2
Û
, w < pz, vq P H3. (5.1)

Let Γ :< SL2pZrËsq. It is a standard fact that Γ is generated by the elements

P :<
Æ
Ë 0
0 Ë2

Û
, T :<

Æ
1 1
0 1

Û
, and E :<

Æ
0 ´1
1 0

Û
.

Let A P ZrËs satisfy A = 0 pmod 3q, and
Γ1pAq :< t³ P Γ : ³ = I pmod Aqu.

Observe that Γ1pAq is a normal subgroup of Γ since it is the kernel of the reduction modulo
A map. Let

Γ2 :< xSL2pZq,Γ1p3qy < SL2pZqΓ1p3q < Γ1p3q SL2pZq, (5.2)

where the last two equalities follow because Γ1p3q is normal in Γ. We also have rΓ : Γ2s <
27 (see [Pat77, §2] for the calculation). We also observe the trivial (but useful) fact that
for any g, g1 P Γ we have that

Γ1p3qg < Γ1p3qg1 ðñ g = g1 pmod 3q.
Furthermore, for any g, g1 P Γ we have that

g = g1 pmod 3q ùñ Γ2g < Γ2g
1. (5.3)

More properties of these groups can be found in [Pat77, §2].
Let

Ç : Γ1p3q Ñ t1, Ë, Ë2u
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be the famous cubic Kubota character [Kub66,Kub69], given by

Çp³q :<
#`

c
a

Ú
3

if ³ < p a b
c d q P Γ1p3q and c 0 0,

1 otherwise.
(5.4)

It was shown by Patterson [Pat77, §2] that Ç extends to a well-defined homomorphism

Ç : Γ2 Ñ t1, Ë, Ë2u,
when one defines Ç|SL2pZq= 1.

Remark 5.1. There is a useful alternative expression for Çp³q to the one given in (5.4).
For ³ < p a b

c d q P Γ1p3q, we have the determinant equation ad ´ bc < 1 with 1 ` bc = 1
pmod 9q. Given 0 0 c P ZrËs we write c < Ú»kËjc1 where k � 2, 0 � j � 2 are integers,
and c1 P ZrËs is such that c1 = 1 pmod 3q. Thus

´ c

ad

¯
3

<
´ c

1 ` bc

¯
3

<
´ »

1 ` bc

¯k

3

´ Ë

1 ` bc

¯j

3

´ c1

1 ` bc

¯
3

< 1,

where the last equality follows from 1 ` bc = 1 pmod 9q, (1.4), and (1.5). Hence
´ c
a

¯
3

<
´ c
d

¯
3

<
´ b
d

¯
3
,

and we obtain

Çp³q <
#`

b
d

Ú
3

if ³ < p a b
c d q P Γ1p3q and c 0 0,

1 otherwise.
(5.5)

Let »pwq denote the cubic metaplectic theta function of Kubota on H3. It is automor-
phic on Γ2 with multiplier Ç. It has Fourier expansion (at 8) given by

»pwq < Ãv2{3 `
ÿ

µP»´3ZrËs

ÇpµqvK 1
3
p4Ã|µ|vqěpµzq, w P H3,

where

Ã :< 35{2{2, (5.6)

and the other Fourier coefficients were computed by Patterson [Pat77, Theorem 8.1]. They
are

Çpµq <

$
99999&
99999%

gp»2, cq
ÇÇd
c

ÇÇ3n{2`2 if µ < Ú»3n´4cd3, n � 1

e´ 2Ãi
9 gpË»2, cq

ÇÇd
c

ÇÇ3n{2`2 if µ < ÚË»3n´4cd3, n � 1

e
2Ãi
9 gpË2»2, cq

ÇÇd
c

ÇÇ3n{2`2 if µ < ÚË2»3n´4cd3, n � 1

gp1, cq
ÇÇd
c

ÇÇ3n{2`5{2 if µ < Ú»3n´3cd3, n � 0

0 otherwise,

(5.7)

where

c, d P ZrËs, c, d = 1 pmod 3q, and µ2pcq < 1. (5.8)

It follows from (5.7) that Çp¨q is an even function.
Implicit in [Pat77, §7 and §8] is a careful study of »pwq at various cusps of Γ2. We

extract the information that will be of use to us. Let t³j : j < 1, . . . 27u be the complete
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set of inequivalent representatives for Γ2zΓ given in [Pat77, Table II pg. 129]. Particular
coset representatives ³j of Γ2zΓ of importance to us are

³1 < I, ³2 <
Æ
1 Ë

0 1

Û
, ³3 <

Æ
1 ´Ë
0 1

Û
, ³10 <

Æ
1 0
Ë 1

Û
, and ³19 <

Æ
1 0
Ë2 1

Û
.

For each j < 1, 2, . . . , 27, let

Fjpwq :< »p³jpwqq, w P H3. (5.9)

If g P Γ, then

³jg < gjpgq³kjpgq, for some gjpgq P Γ2 and 1 � kjpgq � 27. (5.10)

Thus

Fjpgpwqq < ÇpgjpgqqFkjpgqpwq for all w P H3. (5.11)

Each Fj is automorphic on Γ1p9q with multiplier Ç by [Pat78a, Lemma 2.1]. Following
Patterson, we define

F 9
j pwq :<

ÿ

µ

djpµqvK1{3p4Ã|µ|vqěpµzq, w P H3, (5.12)

where the djpµq have support contained in »´4ZrËszt0u, and have expressions in terms
of Çpµq, Ç1pµq [Pat77, (8.8)] and Ç2pµq [Pat77, (8.9)], see Appendix A. For the reader’s
convenience we state formulae for Ç1pµq and Ç2pµq here. They are given by

Ç1pµq <

$
999&
999%

9Ëgp»2, cq
ÇÇd
c

ÇÇ if µ < »´4cd3

9e´ 2Ãi
9 Ë2gpË»2, cq

ÇÇd
c

ÇÇ if µ < Ë»´4cd3

9e
2Ãi
9 gpË2»2, cq

ÇÇd
c

ÇÇ if µ < Ë2»´4cd3

0 otherwise,

(5.13)

and

Ç2pµq <

$
999&
999%

9Ë2gp»2, cq
ÇÇd
c

ÇÇ if µ < ´»´4cd3

9e´ 2Ãi
9 gpË»2, cq

ÇÇd
c

ÇÇ if µ < ´»´4Ëcd3

9Ëe
2Ãi
9 gpË2»2, cq

ÇÇd
c

ÇÇ if µ < ´»´4Ë2cd3

0 otherwise,

(5.14)

where c and d are as in (5.8). The formulas for the djpµq are given in [Pat77, Table III
pg. 151]. We have also included them in Appendix A. We have the Fourier expansions
(at 8) [Pat77, pg. 148],

Fjpwq <
#
Ãvpwq2{3 ` F 9

j pwq if 1 � j � 9,

F 9
j pwq if 10 � j � 27

, w P H3. (5.15)

To understand the maps j ÞÑ gjp¨q, j ÞÑ kjp¨q and j ÞÑ Çpgjp¨qq occurring in (5.10) and
(5.11), it suffices to compute them on the generators of Γ < SL2pZrËsq: P, T, and E. The
values of kjpEq appear in [Pat77, Table III]. We have included the kj values on all three
generators in Appendix A.



BIAS IN CUBIC GAUSS SUMS 19

5.2. Conjugation and coefficient sieving. It is more convenient for us to work with
the Fjpwq. It follows from (5.15) that they each have Fourier expansion (at 8) given by

Fjpwq <
#
Ãv2{3 ` Y

µ djp´µqvK 1
3
p4Ã|µ|vqěpµzq if 1 � j � 9Y

µ djp´µqvK 1
3
p4Ã|µ|vqěpµzq if 10 � j � 27

, w P H3, (5.16)

since K1{3pxq P R for x � 0.

The Fourier coefficients of F1pwq are given by

d1p´µq < Çp´µq < Çpµq,

where the last equality follows from the fact that Çp¨q is even. Let

S :< t»´3cd3 P QpËq : c, d P ZrËs, c, d = 1 pmod 3q and µ2pcq < 1u, (5.17)

and

F1pwqS :<
ÿ

µPS

ÇpµqvK 1
3
p4Ã|µ|vqěpµzq, w P H3.

Remark 5.2. We study the function F1pwqS because its Fourier coefficients are supported
on S and the µ < »´3cd3th coefficient is rgpcq|d| up to an absolute constant (cf. (5.7)).
These are the coefficients (up to twisting) we want to appear in our Voronoi formula (cf.
Proposition 5.3).

Lemma 5.1. Let F1pwqS be as above. Then

F1pwqS < 1

3

´
F1pwq ` ËF2pwq ` Ë2F3pwq

¯
,

and F1pwqS is automorphic under Γ1p9q with multiplier Ç.

Proof. Following [Pat78a, Theorem 5.2], we detect µ P S additively. From (5.7), we have

tµ P »´3ZrËs : ěpËµq < Ë2 and Çpµq 0 0u < S.

Thus

F1pwqS < 1

3
Ãv2{3p1 ` Ë ` Ë2q

` 1

3

ÿ

µP»´3ZrËs

ÇpµqvK 1
3
p4Ã|µ|vqěpµzq

`
1 ` ËěpËµq ` Ë2ěp2Ëµq

Ú

< 1

3

´
F1pwq ` ËF2pwq ` Ë2F3pwq

¯
, (5.18)

where the last term in (5.18) was obtained by writing p 1 2Ë
0 1 q < p 1 3Ë

0 1 q p 1 ´Ë
0 1 q and using

automorphy of F1pwq < »pwq on Γ2 with multiplier Ç. This proves the first claim. Each
Fj is automorphic on Γ1p9q with multiplier Ç, and so the second claim follows. �
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5.3. Twists. Let r P ZrËs with r = 1 pmod 3q, and Ë be a function on ZrËs that is
periodic modulo r. In view of (5.12), the Ë-twist of F 9

j pwq is defined by

F 9
j pw;Ëq :<

ÿ

µ

djp´µqËp»4µqvK 1
3
p4Ã|µ|vqěpµzq, w P H3. (5.19)

In view of (5.16), the Ë-twist of Fjpwq is

Fjpw;Ëq :<
#
ÃËp0qv2{3 ` F 9

j pw;Ëq 1 � j � 9

F 9
j pw;Ëq 10 � j � 27

, w P H3. (5.20)

Remark 5.3. The Fourier coefficients of all the Fj have support contained in »´4ZrËs.
This explains why we define a general twist by Ëp»4p¨qq in (5.20). In the special case
F1 < », (5.7) tells us that the Fourier coefficients have support contained in »´3ZrËs.
Thus our twisting definition produces an extraneous Ëp»q factor in this case. This will be
immaterial in our final results.

Define the Fourier transform

pËpuq :<
ÿ

x pmod rq

Ëpxqě
´ux
r

¯
, u P ZrËs. (5.21)

Fourier inversion tells us that

Ëpxq < 1

Nprq
ÿ

u pmod rq

pËpuqě
´

´ux

r

¯
, x P ZrËs.

We also define the following non-Archimedean analogue of a Bessel K1{3–transform,

rËpuq :<
ÿ

x pmod rq

ËpxqS1{3px, u; rq, u P ZrËs, (5.22)

where

S1{3px, u; rq :<
Æ
»

r

Û

3

ÿ

d pmod rq
pd,rq<1

p»4dqp»4aq=1 pmod rq

´a
r

¯
3
ě
´xd ` ua

r

¯
, (5.23)

is the cubic Kloosterman sum. Note that it is convenient for us to have the »4 < 9 factors
built into the congruence in the cubic Kloosterman sum. These factors naturally appear
when we use the automorphy of the F j (with multiplier Ç) on the group Γ1p»4q in the
proof of the following result.

To isolate twists of the cubic Gauss sums, we need to analyse

F1pw;ËqS :<
ÿ

µPS

ÇpµqËp»4µqvK 1
3
p4Ã|µ|vqěpµzq, w P H3. (5.24)

Lemma 5.2. Suppose r P ZrËs with r = 1 pmod 3q, and Ë is a sequence on ZrËs that is
periodic modulo r. Suppose that pË is supported only on residue classes coprime to r. For
w < pz, vq P H3, we have

F1pw;ËqS < 1

3Nprq
!
F1 ` ËF 9

19 ` Ë2F 9
10

)´´
´ z

r2p|z|2 ` v2q ,
v

|r|2p|z|2 ` v2q
¯
; rË

¯
. (5.25)
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Proof. Fourier inversion and Lemma 5.1 imply that

F1pw;ËqS < 1

Nprq
ÿ

d pmod rq
pd,rq<1

pËpdqF1

´
z ´ »4d

r
, v
¯
S

< 1

3Nprq
ÿ

d pmod rq
pd,rq<1

pËpdq
´
F1

´
z ´ »4d

r
, v
¯

` ËF2

´
z ´ »4d

r
, v
¯

` Ë2F3

´
z ´ »4d

r
, v
¯¯
.

(5.26)

Given our r = 1 pmod 3q, and each d in (5.26), we have pr, »4dq < 1. Thus there exists
Æ
r ´»4a
»4d b

Û
P Γ1p3q,

and hence there exists

³ :<
Æ

0 1
´1 0

ÛÆ
r ´»4a
»4d b

Û
<
Æ
»4d b

´r »4a

Û
P Γ2. (5.27)

Note that we also used (5.2) implicitly in the above display.
A direct computation shows that

³
´»4a
r

´ z

r2p|z|2 ` v2q ,
v

|r|2p|z|2 ` v2q
¯

<
´
z ´ »4d

r
, v
¯
. (5.28)

We now carefully factorise the ³ in (5.27) as a word in P , E and T so that (5.28) and
automorphy can be used in (5.26). For each » < m` nË P ZrËs, m,n P Z, let

Ap»q :< PT´mPT´m`nP <
Æ
1 »

0 1

Û
.

For each r, b P ZrËs occurring in (5.27), let

W pr, bq :< E3AprqEApbqEAprq <
Æ

b ´1 ` br

1 ´ br 2r ´ br2

Û
.

Then

W pr, bqE³ <
Æ

´9d` br ` 9bdr ´b´ 9ab ` b2r

r ` 18dr ´ br2 ´ 9bdr2 ´9a` 2br ` 9abr ´ b2r2

Û
<: r³ P Γ1p9q. (5.29)

Equivalently,

³ < E3W pr, bq´1r³. (5.30)

To obtain (5.31) immediately below we use (5.28), (5.30), (5.10), (5.11), and the fact that
each Fj is automorphic on Γ1p9q with multiplier Ç. For each j < 1, 2, 3,

Fj

´
z ´ »4d

r
, v
¯

< ÇpgjpE3W pr, bq´1qq ¨ Çpr³q

Æ FkjpE3W pr,bq´1q

´»4a
r

´ z

r2p|z|2 ` v2q ,
v

|r|2p|z|2 ` v2q
¯
. (5.31)
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We claim that

k1
`
E3W pr, bq´1

Ú
< 1; (5.32)

k2
`
E3W pr, bq´1

Ú
< 19; (5.33)

k3
`
E3W pr, bq´1

Ú
< 10. (5.34)

We will use (5.3) and the computations below to establish (5.32)–(5.34). Observe that

³1E
3W pr, bq´1³´1

1 <
Æ

´1 ` br b

´2r ` br2 ´1 ` br

Û

= E3 pmod 3q. (5.35)

Thus ³1E
3W pr, bq´1³´1

1 P Γ2, and (5.32) follows. Note that (5.33) (resp. (5.34)) follow
similarly from

³2E
3W pr, bq´1³´1

19 <
Æ

pË ` 1qb´ 2Ër ` Ëbr2 ´Ë ` b ` Ëbr

´pË ` 1q ´ 2r ` pË ` 1qbr ` br2 ´1 ` br

Û

= T´1E3 pmod 3q, (5.36)

(resp.)

³3E
3W pr, bq´1³´1

10 <
Æ
Ë ´ Ëb` 2Ër ´ Ëbr ´ Ëbr2 Ë ` b´ Ëbr

Ë ´ 2r ´ Ëbr ` br2 ´1 ` br

Û

= E3 pmod 3q. (5.37)

We now compute the automorphy factor ÇpgjpE3W pr, bq´1qq ¨ Çpr³q for each j < 1, 2, 3
in (5.31). The displays (5.35)–(5.37) prove that

g1pE3W pr, bq´1q < E3W pr, bq´1;

g2pE3W pr, bq´1q < ³2E
3W pr, bq´1³´1

19 ;

g3pE3W pr, bq´1q < ³3E
3W pr, bq´1³´1

10 ,

respectively. In order to use either (5.4) or (5.5) to compute ÇpgjpE3W pr, bq´1qq we note
that Ç|SL2pZq < 1 and Eg1pE3W pr, bq´1q, ETg2pE3W pr, bq´1q, Eg3pE3W pr, bq´1q P Γ1p3q
(cf. (5.35)–(5.37)). We also repeatedly use the determinant equation 81ad ` br < 1 from
(5.27). Now,

Çpg1pE3W pr, bq´1qq < ÇpEg1pE3W pr, bq´1qq

<
#`

1´br
b

Ú
3

if ´ 1 ` br 0 0

1 otherwise

< 1. (5.38)

Similar computations yield

Çpg3pE3W pr, bq´1qq < ÇpEg3pE3W pr, bq´1qq

<
#`

1´br
Ë`b´Ëbr

Ú
3

if Ëp1 ´ b ` 2r ´ br ´ br2q 0 0

1 otherwise

< 1, (5.39)
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and

Çpg2pE3W pr, bq´1qq
< ÇpETg2pE3W pr, bq´1qq

<

$
9&
9%

`
1´br

´Ë`b`Ëbr`br´1

Ú
3

if pË ` 1qb´ 2Ër ` Ëbr2

´pË ` 1q ´ 2r ` pË ` 1qbr ` br2 0 0

1 otherwise

< 1. (5.40)

We also have

Çpr³q <
Æ
r ` 18dr ´ br2 ´ 9bdr2

´9d` br ` 9bdr

Û

3

<
Æ
81adr ` 18dr ´ 9bdr2

´9d` br ` 9bdr

Û

3

<
Æ

9d

´9d ` br ` 9bdr

Û

3

¨
Æ

9ar ` 2r ´ br2

´9d ` br ` 9bdr

Û

3

<
Æ
9d

1

Û

3

¨
Æ´9d ` br ` 9bdr

9ar ` 2r ´ br2

Û

3

(by cubic reciprocity)

<
Æ´9d ` br ` 9bdr

r

Û
¨
Æ´9d` br ` 9bdr

9a` 2 ´ br

Û

3

<
Æ
9d

r

Û

3

¨
Æ
1 ´ 81ad ´ 729ad2

9a` 1 ` 81ad

Û

3

<
Æ
9a

r

Û

3

¨
Æ

9d ` 1

9a` 1 ` 81ad

Û

3

<
Æ
9a

r

Û

3

¨
Æ
9d` 1

1

Û

3

<
Æ
»4a

r

Û

3

. (5.41)

We combine (5.31)–(5.41) in (5.26). Note that F19 < F 9
19 and F10 < F 9

10 by (5.15). We
then use the Fourier expansions (5.16) to open F1, F 9

19 and F 9
10, and assembling the sum

over d (equivalently a) shows that

F 1pw;ËqS < 1

3Nprq
´
F1 ` ËF 9

19 ` Ë2F 9
10

¯´
´ z

r2p|z|2 ` v2q ,
v

|r|2p|z|2 ` v2q ; Ψ
¯
,

where

Ψpuq :<
ÿ

d pmod rq
pd,rq<1

p»4dqp»4aq=1 pmod rq

pËpdq
´»4a
r

¯
3
ě
´au
r

¯
, u P ZrËs. (5.42)

After opening pËpdq using the definition (5.21), and interchanging the order of summation,

we readily see that Ψpuq < rËpuq for all u P ZrËs. �

For the coming lemma it will be instructive to open the definition of ěp¨q,

ěpµzq < epµz ` µzq, z P C.
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For 3 P Zzt0u and 1 � j � 27, let

Fjpw;Ë, 3q < F 9
j pw;Ë, 3q :<

$
&
%

Y
µ djp´µqËp»4µqµ3vK1

3
p4Ã|µ|vqepµz ` µzq, if 3 � 0

Y
µ djp´µqËp»4µqµ|3|vK1

3
p4Ã|µ|vqepµz ` µzq, if 3 � 0

.

For 3 < 0, Fjpw;Ë, 0q :< Fjpw;Ëq from before. We have

Fjpw;Ë, 3q < 1

p2Ãiq|3|

#`
B

Bz

Ú3
Fjpw;Ëq, if 3 � 0`

B
Bz

Ú|3|
Fjpw;Ëq, if 3 � 0,

w < pz, vq P H3. (5.43)

We apply differential operators in the proof of the next lemma. Thus we remind the
reader that Fjpw;Ë, 3q < Gjpz, z, v;Ë, 3q is a function of z, z and v, although the Fj

notation suppresses this.
With these observations in mind we deduce the following Corollary.

Corollary 5.1. Suppose r P ZrËs with r = 1 pmod 3q, and Ë is a sequence on ZrËs that
is periodic modulo r. Suppose that pË is supported only on residue classes coprime to r.
By abuse of notation, write Fjpp0, vq;Ë, 3q as Fjpv;Ë, 3q for all v � 0, 1 � j � 27 and
3 P Z. Then we have

F1pv;Ë, 3qS < p´1q3
3Nprq1`|3|v2|3|

´r
r

¯´3´
·300F

9
1 ` ·3<0F1 ` ËF 9

19 ` Ë2F 9
10

¯´ 1

|r|2v ;
rË,´3

¯
,

or equivalently,

´
F 9
1 ·300 ` F1·3<0 ` ËF 9

19 ` Ë2F 9
10

¯
pv; rË,´3q < 3 ¨ p´1q3

Nprq|3|´1v2|3|

´r
r

¯3

F1

´ 1

|r|2v ;Ë, 3
¯
.

Proof. Setting z < 0 in (5.25) gives the claim when 3 < 0. If 3 � 0, we write |z|2 < zz and

apply the operator 1
p2Ãiq3

`
B

Bz

Ú3ÇÇ
z<0

to both sides of (5.25). A computation with the chain

rule yields

F1pp0, vq;Ë, 3qS < p´1q3
3Nprq1`3v23

´r
r

¯´3

¨
´
F 9
1 ` ËF 9

19 ` Ë2F 9
10

¯´´
0,

1

|r|2v
¯
; rË,´3

¯
.

When 3 � 0 a similar argument with the operator 1
p2Ãiq|3|

`
B

Bz

Ú|3|
ÇÇÇ
z<0

yields the analogous

result. �

5.4. Poles and Dirichlet series. Let Ë be as in Corollary 5.1. For Repsq � 1, 3 P Z

and 1 � j � 27, consider the family of Dirichlet series

Dps, F 9
j ;Ë, 3q :<

ÿ

µ

djp´µqËp»4µq
`

µ

|µ|

Ú3

Npµqs ;

Dps, F1;Ë, 3qS :<
ÿ

µPS

ÇpµqËp»4µq
`

µ

|µ|

Ú3

Npµqs . (5.44)
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For Repsq � 1, we introduce the integral transforms

Λps, F 9
j ;Ë, 3q :<

} 8

0

F 9
j pv;Ë, 3qv2s`|3|´2dv;

Λps, F1;Ë, 3qS :<
} 8

0

F 1pv;Ë, 3qSv2s`|3|´2dv,

where by abuse of notation we wrote Fipv;Ë, 3q < Fipp0, vq;Ë, 3q. In the case 3 < 0 we
will omit the index 3 from the notation.

Lemma 5.3. For Repsq � 1 we have

Λps, F 9
j ;Ë, 3q < 1

4
p2Ãq´2s´|3|Γ

´
s ` |3|

2
´ 1

6

¯
Γ
´
s ` |3|

2
` 1

6

¯
Dps, F 9

j ;Ë, 3q;

Λps, F1;Ë, 3qS < 1

4
p2Ãq´2s´|3|Γ

´
s ` |3|

2
´ 1

6

¯
Γ
´
s ` |3|

2
` 1

6

¯
Dps, F1;Ë, 3qS.

Proof. The proofs of both identities are virtually identical, so we prove the latter, with
3 � 0. For Repsq � 1 we have

Λps, F 1;Ë, 3qS <
} 8

0

ÿ

µPS

ÇpµqËp»4µqµ|3|K 1
3
p4Ã|µ|vqv2s`|3|´1dv

< 1

p4Ãq2s`|3|

ÿ

µPS

ÇpµqËp»4µq
`

µ

|µ|

Ú|3|

Npµqs
} 8

0

K 1
3
pT qT 2s`|3|´1dT

< 1

4
p2Ãq´2s´|3|Γ

´
s ` |3|

2
´ 1

6

¯
Γ
´
s ` |3|

2
` 1

6

¯ÿ

µPS

ÇpµqËp»4µq
`

µ

|µ|

Ú3

Npµqs .

(5.45)

The interchange of summation and integration above for Repsq � 1 is justified by absolute
convergence (cf. [DLMF, (10.25.3),(10.30.2)]). Furthermore, (5.45) follows from [DLMF,
(10.43.19)]. �

Proposition 5.1. The completed Dirichlet series ΛpF1, s;ËqS admits a meromorphic con-
tinuation to the whole complex plane C. It has a unique pole (that is simple) at s < 5{6,
with residue

Res
s<

5
6

Λps, F1;ËqS < Ã rËp0q
6Nprq5{3

, (5.46)

where Ã < 35{2{2 is as in (5.6). In particular,

Res
s<

5
6

Dps, F1;ËqS < 2p2Ãq5{3Ã rËp0q
3Γp2

3
qNprq5{3

. (5.47)

For 3 0 0 the Dirichlet series ΛpF1, s;Ë, 3qS is entire. Moreover, for all 3 P Z we have the
functional equation

3p´1q3Nprq2s
´r
r

¯3

Λps, F1;Ë, 3qS < Λp1 ´ s, F 9
1 ` ËF 9

19 ` Ë2F 9
10;

rË,´3q. (5.48)

This functional equation also determines the poles of Λps, F 9
1 ` ËF 9

19 ` Ë2F 9
10;

rËq.



26 ALEXANDER DUNN AND MAKSYM RADZIWI L L

Proof. For Re s � 1 we have

Λps, F1;Ë, 3qS <
} Nprq´1

0

F1pv;Ë, 3qSv2s`|3|´2dv `
} 8

Nprq´1

F1pv;Ë, 3qSv2s`|3|´2dv. (5.49)

When 3 < 0 observe that F1pv;Ë, 3qS has exponential decay at 8 by (5.17) and (5.24).
The same claim holds when 3 0 0 using (5.43) (termwise differentiation of the Fourier
series) and the same reasoning as before. Thus the second integral in (5.49) has analytic
continuation to an entire function.

Let

Gpw; rË, 3q :<
#

pF1 ` ËF 9
19 ` Ë2F 9

10qpw; Ë̃, 3q if 3 < 0

pF 9
1 ` ËF 9

19 ` Ë2F 9
10qpw; Ë̃, 3q if 3 0 0

, w P H3. (5.50)

Using (5.50) and Corollary 5.1 gives
} Nprq´1

0

F1pv;Ë, 3qSv2s`|3|´2dv

< p´1q3
3Nprq1`|3|

´r
r

¯´3
} Nprq´1

0

G
´ 1

v|r|2 ; Ë̃,´3
¯
v2s´|3|´2dv (5.51)

< Ã rËp0qNprq´2s

6
¨ ·3<0

s ´ 5
6

` p´1q3Nprq´2s

3

´r
r

¯´3
} 8

1

´
F 9
1 ` ËF 9

19 ` Ë2F 9
10

¯
pv; rË,´3qv|3|´2sdv. (5.52)

When 3 < 0 observe that pF 9
1 ` ËF 9

19 ` Ë2F 9
10qp¨, rË,´3q has exponential decay at 8 by

(5.19), Appendix A (the expressions for djpµq), (5.7), (5.13), and (5.14). The same claim
holds when 3 0 0 using (5.43) (termwise differentiation of the Fourier series) and the
same reasoning as before. Thus the integral in (5.52) has analytic continuation to an
entire function. This gives the meromorphicity and entirety claims in the Proposition, as
well as (5.46). Observe that (5.47) follows from (5.46) and Lemma 5.3.

We now prove the functional equation (5.48). From (5.49) and (5.51) we found that

Λps, F1;Ë, 3qS < p´1q3Nprq´2s

3

´r
r

¯´3
} 8

1

Gpv; rË,´3qv|3|´2sdv `
} 8

Nprq´1

F1pv;Ë, 3qSv2s`|3|´2dv.

(5.53)

We now repeat a similar argument, but instead start with

G9pw; rË, 3q < pF 9
1 ` ËF 9

19 ` Ë2F 9
10qpw; rË, 3q, for all w P H3 and 3 P Z. (5.54)

For Re s � 1 we have

Λps,G9; rË,´3q <
} 1

0

G9pv; rË,´3qv2s`|3|´2dv `
} 8

1

G9pv; rË,´3qv2s`|3|´2dv. (5.55)

For Re s � 1 we have
} 1

0

G9pv; rË,´3qv2s`|3|´2dv <
} 1

0

Gpv; rË,´3qv2s`|3|´2dv ´ ·3<0 ¨ 3Ã
rËp0q

6s ´ 1
. (5.56)
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Then (5.56) holds for all s P C by meromorphic continuation. Similarly, for Re s � ´1,
we have

} 8

1

G9pv; rË,´3qv2s`|3|´2dv <
} 8

1

Gpv; rË,´3qv2s`|3|´2dv ` ·3<0
3Ã rËp0q
6s ´ 1

. (5.57)

Then (5.57) holds for all s P C by meromorphic continuation. Insertion of (5.56) and
(5.57) into (5.55) gives

Λps,G9; rË,´3q <
} 1

0

Gpv; rË,´3qv2s`|3|´2dv `
} 8

1

Gpv; rË,´3qv2s`|3|´2dv, (5.58)

where both integrals are to be interpreted as the meromorphic continuations of the original
integrals. Using Corollary 5.1 we obtain

} 1

0

Gpv; rË,´3qv2s`|3|´2dv < 3p´1q3Nprq1´|3|
´r
r

¯3
} 1

0

F1

´ 1

|r|2v ;Ë, 3
¯
S
v2s´|3|´2dv

< 3p´1q3Nprq2´2s
´r
r

¯3
} 8

Nprq´1

F1pv;Ë, 3qSv|3|´2sdv. (5.59)

Substitution of (5.59) into (5.58) gives

Λps,G9; rË,´3q < 3p´1q3Nprq2´2s
´r
r

¯3
} 8

Nprq´1

F1pv;Ë, 3qSv|3|´2sdv`
} 8

1

Gpv; rË,´3qv2s`|3|´2dv.

Equivalently,

Λp1´s,G9; rË,´3q < 3p´1q3Nprq2s
´r
r

¯3
} 8

Nprq´1

F1pv;Ë, 3qSv2s`|3|´2dv`
} 8

1

Gpv; rË,´3qv|3|´2sdv.

(5.60)
After combining (5.53) and (5.60) we obtain

3p´1q3Nprq2s
´r
r

¯3

Λps, F1;Ë, 3qS < Λp1 ´ s,G9; rË,´3q,

as required. �

5.5. Sieving for g̃pcq. Let r P ZrËs satisfy r = 1 pmod 3q, Ë be a primitive character
to modulus r, and 3 P Z. Then let

·QpËqps;Ë, 3q :<
ÿ

d=1 pmod 3q

Ëpdq
`

d
|d|

Ú3

Npdqs , Repsq � 1.

In the case 3 < 0 we omit 3 from the notation and write ·QpËqps;Ëq. We denote the
principal character modulo r by 1r. Any J 'ZrËs with pJ, 3q < 1 has a unique generator
d = 1 pmod 3q. Thus when 3 < 0 and Ë < 1r, the above L-function coincides with the
Dedekind ·-function of QpËq, except at the local factors of primes dividing p»rq. Note
that ·QpËqps;Ë, 3q has standard meromorphic continuation to all of C; the only case when
this function is not holomorphic is when Ë < 1r is the principal character and 3 < 0, in
that case there is a unique simple pole at s < 1. Standard functional equations for these
L-functions can be found in [Miy89, §3.3].
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Lemma 5.4. Let r P ZrËs with r = 1 pmod 3q, and Ë be a primitive cubic Dirichlet
character on ZrËs to modulus r. For 3 P Z and Re s � 1 we have

p´1q3i´3
ÿ

c=1 pmod 3q

g̃pcqËp»cq
`

c
|c|

Ú3

Npcqs < 3´5{2´3s ¨ Dps, F1;Ë, 3qS
·QpËqp3s ´ 1

2
; 1r, 33q

, (5.61)

where Dps, F1;Ë, 3qS is as in (5.44).

Remark 5.4. Note that we have abused notation in the results and proofs that follow:
µ P QpËq is used to index Fourier coefficients of various automorphic forms, and µp¨q
denotes the Möbius function on ZrËs. Meanings should be clear from context.

Proof. The Dirichlet coefficients on the right side on (5.61) have support contained in
ZrËszt0u since 3´3s < Np»3q´s. The ¿th Dirichlet coefficient on the right side of (5.61)
is given by

1

35{2

´ ¿{»3
|¿{»3|

¯3 ÿ

µPS
d=1 pmod 3q

pd,rq<1
¿<»3µd3

ÇpµqËp»4µqµpdq|d|. (5.62)

Recall the definition of S in (5.17). If ¿ R »3S, then (5.62) is zero. Therefore we can
assume that ¿ P »3S. If µ P S and Çpµq 0 0, then by (5.7) we must have

Çpµq < 35{2g̃peq|f |,
where

µ < »´3ef 3 for some e, f = 1 pmod 3q and µ2peq < 1.

Thus (5.62) is equal to

p´1q3i´3
´ ¿

|¿|
¯3 ÿ

e,f,d=1 pmod 3q
pd,rq<1
¿<epdfq3

g̃peqËp»ef 3qµpdq|d||f |

< p´1q3i´3
´ ¿

|¿|
¯3 ÿ

e,f,d=1 pmod 3q
pdf,rq<1
¿<epdfq3

g̃peqËp»eqµpdq|d||f |, (5.63)

where the last display follows from the assumption that Ë is a primitive cubic character
to modulus r. Note that it is redundant to have µ2peq < 1 in (5.63) because this condition
is automatically captured by (2.2). Möbius inversion then tells us that the right side of
(5.63) is equal to

p´1q3i´3
´ ¿

|¿|
¯3 ÿ

e,u=1 pmod 3q
pu,rq<1
¿<eu3

g̃peqËp»eq|u|
´ ÿ

d|u
d=1 pmod 3q

µpdq
¯

< p´1q3i´3
´ e

|e|
¯3

g̃peqËp»eq,

as required. �
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The following lemma records the standard evaluation of Ramanujan sums over ZrËs.
The lemma follows from the evaluation

c�puq <
#
×p�q if u = 0 pmod �q
´1 otherwise

,

for � = 1 pmod 3q prime and u P ZrËs,
and the multiplicativity of Ramanujan sums i.e.

cmnpuq < cmpuqcnpuq for u,m, n P ZrËs with m,n = 1 pmod 3q
and pm,nq < 1.

Lemma 5.5. Let m P ZrËs be squarefree and satisfy m = 1 pmod 3q. Then for u P ZrËs,

cmpuq :<
ÿ

x pmod mq
px,mq<1

ě
´ux
m

¯
< µ

´ m

pm, uq
¯ ×pmq
×
`

m
pm,uq

Ú ,

where ×p¨q is the Euler phi function on ZrËs.
Let r P ZrËs be squarefree and satisfy r = 1 pmod 3q. We are now able to study the

the analytic properties of the Dirichlet series

ÿ

c=1 pmod 3q

g̃pcq
`
c
r

Ú
3

`
c

|c|

Ú3

Npcqs , Repsq � 1. (5.64)

The following result records a level aspect (i.e. in the conductor of the cubic twist in
(5.64)) functional equation for (5.64) that generalises [Pat77, Theorem 6.1]. It explicates
the root number and level, and is crucial to our paper. Yoshimoto [Yos87] established level
aspect analogues of [Pat77, Theorem 6.1] for twists of Gauss sums by arbitrary non-cubic
Dirichlet characters. Clearly, Yoshimoto’s results do not cover the case we need.

Remark 5.5. The functional equation in [Pat77, Theorem 6.1] could be potentially used
to obtain a functional equation for (5.64) similar to the one presented below in Proposition
5.2 (at least when pr, cq < 1). Patterson exploited the fact that (5.64) (and its variants)
are the Fourier coefficients of cubic metaplectic Eisenstein series attached to the essential
cusps of Γ1p3q with respect to Ç. The drawback of the functional equation in [Pat77,
Theorem 6.1] is that the dual side of is a linear combination of variants of Dirichlet series
of twisted cubic Gauss sums that involve the ramified prime, and this obscures the root
number. We found it advantageous to work directly with the automorphy of the cubic
theta function (this is a more advanced starting point since the purpose of [Pat77] was to
compute the Fourier coefficients of the cubic theta function).

Proposition 5.2. Let r P ZrËs be squarefree and satisfy r = 1 pmod 3q, and Ë :<
`

¨
r

Ú
3
.

Let 3 P Z. Then the Dirichlet series

Rps;Ë, 3q :<
ÿ

c=1 pmod 3q

g̃pcq
`
c
r

Ú
3

`
c

|c|

Ú3

Npcqs , Repsq � 1, (5.65)
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admits meromorphic continuation to all of C. If 3 < 0, the Dirichlet series

·QpËqp3s ´ 1
2
; 1r, 33qRps;Ë, 3q (5.66)

has a unique pole located at s < 5
6
, and it is simple. If 3 0 0 the Dirichlet series (5.66)

defines an entire function. We have

Ress< 5
6

`
·QpËqp3s ´ 1

2
; 1rqRps;Ëq

Ú
< p2Ãq5{3gprq×prq

Γp2
3
q37{2Nprq5{3

,

and for 3 P Z we have the functional equation

·QpËqp3s´ 1
2
; 1r, 33qRps;Ë, 3q

< gprq
´r
r

¯´3

¨ i
3p2Ãq4s´2

37{2Nprq2s
Γp5

6
` |3|

2
´ sqΓp7

6
` |3|

2
´ sq

Γps ` |3|
2

´ 1
6
qΓps ` |3|

2
` 1

6
q

Æ ·QpËqp5
2

´ 3s; 1r,´33qR:
rp1 ´ s;´3q,

where

R:
rps; 3q :< p´1q3i´3

ÿ

¿P»´1ZrËs

a:p¿qb:
rp¿q

`
¿

|¿|

Ú3

Np¿qs , Repsq � 1, 3 P Z,

for some Dirichlet coefficients a:p¿q. The coefficients a:p¿q have support contained in the
set

Q: :<
 
¿ < »L·hwh13 : L P Z�´1, · P tÚ1,ÚË,ÚË2u,

h, h1, w = 1 pmod 3q, h, h1 | r8, pw, rq < 1 and µ2phwq < 1
(
,

and for ¿ P Q:,

a:p¿q <

$
9&
9%

Çp´»L´3¿q if L � 0

Ë2Ç1p´»L´3Ë2¿qěp»L´3¿q if L < ´1, · P t´1,´Ë,´Ë2u
ËÇ2p´»L´3Ë¿qěp»L´3¿q if L < ´1, · P t1, Ë, Ë2u

, (5.67)

and

b:
rp¿q < µ

´ r

p»¿, rq
¯ ×prq
×
`

r
p»¿,rq

Ú . (5.68)

Remark 5.6. Recall that Çp¨q, Ç1p¨q and Ç2p¨q are given in (5.7), (5.13) and (5.14) respec-
tively.

Proof. Meromorphic continuation of ·QpËqp3s´ 1
2
; 1r, 33qRps;Ë, 3q to all of C follows from

Lemma 5.3, Proposition 5.1 and Lemma 5.4. If 3 0 0, then it is entire. If 3 < 0 , then it
has a unique simple pole at s < 5{6 with residue

Ress< 5
6

`
·QpËqp3s ´ 1

2
; 1rqRps;Ëq

Ú
<
Æ
»

r

Û

3

p2Ãq5{3 rËp0q
37{2Γp2

3
qNprq5{3

.
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We now evaluate rËpuq (defined in (5.22)). Recall from (5.42) and the argument following
it that we have

rËpuq <
Æ
»

r

Û

3

ÿ

d pmod rq
pd,rq<1

p»4dqp»4aq=1 pmod rq

pËpdq
´a
r

¯
3
ě
´au
r

¯
, u P ZrËs. (5.69)

Moreover, using the definition (5.21) and the fact that Ë is primitive gives us

pËpdq <
´d
r

¯
3
gprq.

We have ad = »8 pmod rq in (5.69). Therefore

rËpuq <
´»2
r

¯
3
gprqcrpuq, (5.70)

where crp¨q denotes the usual Ramanujan sum. In particular,

rËp0q <
Æ
»2

r

Û

3

gprq×prq.

Lemma 5.4 tells us that

·QpËqp3s´ 1
2
; 1r, 33qRps;Ë, 3q < p´1q3i3

Æ
»

r

Û

3

3´5{2´3sDps, F1;Ë, 3qS.

Thus Lemma 5.3 and Proposition 5.1 imply that

·QpËqp3s ´ 1
2
; 1r, 33qRps;Ë, 3q

<
´r
r

¯´3 i3p2Ãq4s´2

37{2Nprq2s
Γp5

6
` |3|

2
´ sqΓp7

6
` |3|

2
´ sq

Γps ` |3|
2

´ 1
6
qΓps ` |3|

2
` 1

6
q
·QpËq

`
5
2

´ 3s; 1r,´33
Ú

Æ
Æ
»

r

Û

3

3´3s Dp1 ´ s,G9; rË,´3q
·QpËqp5

2
´ 3s; 1r,´33q , (5.71)

where G9pw; rË, 3q is as in (5.54). Observe that (5.70) gives

Æ
»

r

Û

3

3´3s Dps,G9; rË,´3q
·QpËqp3s ´ 1

2
; 1r,´33q < gprqR:

rps,´3q,

where

R:
rps; 3q :< 3´3s Dps,G9; crp¨q, 3q

·QpËqp3s ´ 1
2
; 1r, 33q

, 3 P Z. (5.72)

We now analyse the Dirichlet coefficients of R:
rps;´3q. Let a:

´3p¿q and a9
´3p¿q be the

Fourier coefficients of R:
rps;´3q and Dps,G9;´3q respectively. Using the definition of

G9pw; rË, 3q in (5.54) and Appendix A for the closed form expressions for d1pµq, d19pµq,
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and d10pµq gives

a9
´3pµq <

´ µ

|µ|
¯´3`

d1p´µq ` Ëd19p´µq ` Ë2d10p´µq
Ú

<
´ µ

|µ|
¯´3´

Çp´µq ` Ë2Ç1p´Ë2µqěpµq ` ËÇ2p´Ëµqěpµq
¯
. (5.73)

Consultation with (5.7), (5.13) and (5.14) shows that the a9pµq have support contained
in the set

U :<
 
µ < »k·cj3 : k P Z�´4, · P tÚ1,ÚË,ÚË2u, c, j = 1 pmod 3q and µ2pcq < 1

(
.

Each of the three terms in (5.73) have disjoint support. In particular,

a9
´3pµq <

´ µ

|µ|
¯´3

¨

$
9&
9%

Çp´µq if k � ´3

Ë2Ç1p´Ë2µqěpµq if k < ´4, · P t´1,´Ë,´Ë2u
ËÇ2p´Ëµqěpµq if k < ´4, · P t1, Ë, Ë2u

<:
´ µ

|µ|
¯´3

a9pµq. (5.74)

Observe that (5.72) and (5.73) imply that the coefficients a:p¨q have support contained in
»3U � »´1ZrËszt0u. Then

a
:
´3p¿q <

´ ¿{»3
|¿{»3|

¯´3 ÿ

¿<»3µd3

µPU
pd,rq<1

d=1 pmod 3q

a9pµqcrp»4µqµpdq|d|

< p´1q3i3
´ ¿

|¿|
¯´3 ÿ

¿<»3µd3

µPU
pd,rq<1

d=1 pmod 3q

a9pµqcrp»4µqµpdq|d|.

Evaluation of the Ramanujan sum using Lemma 5.5 gives

a
:
´3p¿q < p´1q3i3

´ ¿

|¿|
¯´3 ÿ

¿<»3µd3

µPU
pd,rq<1

d=1 pmod 3q

a9pµqµ
´ r

p»4µ, rq
¯ ×prq
×
`

r
p»4µ,rq

Úµpdq|d|. (5.75)

To continue the evaluation of a:p¿q in (5.75), we write each µ P U occurring on the right
side uniquely as

»4µ < »k`4·hwph1w1q3 with · P tÚ1,ÚË,ÚË2u,
h, h1 | r8, pww1, rq < 1, h, h1, w, w1 = 1 pmod 3q and µ2phwq < 1.
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Then

a
:
´3p¿q < p´1q3i3

´ ¿

|¿|
¯´3 ÿ

¿<»k`3·hwph1w1dq3

h,h1,w,w1,d=1 pmod 3q
µ2phwq<1
h,h1|r8

pdww1,rq<1

a9
`
»k·hwph1w1q3

Ú
µ
´ r

phh13, rq
¯ ×prq
×
`

r

phh13,rq

Úµpdq|d|.

(5.76)
Furthermore, (5.74) tells us that

a9
`
»k·hwph1w1q3

Ú

<

$
9&
9%

Ç
`
´»k·hwph1w1q3

Ú
if k � ´3

Ë2Ç1
`
´»kË2·hwph1w1q3

Ú
ě
`
»k·hwph1w1q3

Ú
if k < ´4, · P t´1,´Ë,´Ë2u

ËÇ2
`
´»kË·hwph1w1q3

Ú
ě
`
»k·hwph1w1q3

Ú
if k < ´4, · P t1, Ë, Ë2u

.

Further consultation with (5.7), (5.13) and (5.14) shows that

a9
`
»k·hwph1w1q3

Ú
< b9

k,·phwq |h1w1|
|hw| , (5.77)

for some sequence of coefficients b9
k,·p¨q on squarefree elements of ZrËs that are congruent

to 1 (the sequence depends only on k and ·). Using (5.77) in (5.76), we obtain

a
:
´3p¿q < p´1q3i3

´ ¿

|¿|
¯´3 ÿ

¿<»k`3·hwph1uq3

h,h1,w,u=1 pmod 3q
µ2phwq<1
h,h1|r8

puw,rq<1

b9
k,·phwq
|hw| |h1u|µ

´ r

phh13, rq
¯ ×prq
×
`

r

phh13,rq

Ú (5.78)

Æ
´ ÿ

d|u
d=1 pmod 3q

µpdq
¯
.

Möbius inversion tells us that u < 1 in (5.78). Subsequent use of (5.77) (in reverse) gives

a
:
´3p¿q < p´1q3i3

´ ¿

|¿|
¯´3 ÿ

¿<»k`3·hwh13

h,h1,w=1 pmod 3q
µ2phwq<1
h,h1|r8

pw,rq<1

a9p»k·hwh13qµ
´ r

phh13, rq
¯ ×prq
×
`

r

phh13,rq

Ú . (5.79)

For a given ¿, there is at most one summand on the right side on (5.79). This completes
the proof. �

5.6. Voronoi formula. We are finally able to prove a variant of the Voronoi summation
formula.
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Proposition 5.3. Let W be a smooth Schwartz function, compactly supported in p0,8q.
Let 3 P Z. Then for X � 0 we have

ÿ

c,d=1 pmod 3q
pd,rq<1

|d|g̃pcq
´ cd3

|cd3|
¯3

¨
´c
r

¯
3
W

´Npcd3q
X

¯

< ·3<0 ¨X5{6�W
´5
6

¯ p2Ãq5{3×prqgprq
37{2Γp2

3
qNprq5{3

` gprq
37{2p2Ãq2

´r
r

¯´3 ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1

a:p¿qb:
rp¿q

Np¿qNpdq5{2

´ d3¿

|d3¿|
¯´3

¨ |W3

´p2Ãq4Npd3¿qX
Nprq2

¯
,

(5.80)

where the a:p¨q and b:
rp¨q are as in (5.67) and (5.68) respectively, and |W3 : R�0 Ñ C is

defined by

|W3puq :< 1

2Ãi

} ´·`i8

´·´i8

us
Γp5

6
` |3|

2
´ sqΓp7

6
` |3|

2
´ sq

Γps ` |3|
2

´ 1
6
qΓps ` |3|

2
` 1

6
q
�W psqds, (5.81)

for · P p0, 1
10000

q. For any A � 0 we have

|W3puq !W,A p1 ` |3|q2 ¨
#

pu{p1 ` 34qq5{6 if |u| � p1 ` 34q
pu{p1 ` 34qq´A if |u| � p1 ` 34q. (5.82)

Proof. We have

ÿ

d,c=1 pmod 3q
pd,rq<1

|d|g̃pcq
´c
r

¯
3

´ cd3

|cd3|
¯3

W
´Npcd3q

X

¯

< 1

2Ãi

} 2`i8

2´i8

·QpËqp3s ´ 1
2
; 1r, 33qRps;Ë, 3qXs�W psqds, (5.83)

where Rps;Ë, 3q is given in (5.65). We shift the contour to Re s < ´·. Proposition 5.2
tells us that we collect a pole at s < 5

6
when 3 < 0. Thus (5.83) is equal to

·3<0 ¨ X5{6�W
´5
6

¯ p2Ãq5{3gprq×prq
37{2Γp2

3
qNprq5{3

` 1

2Ãi

} ´·`i8

´·´i8

·QpËqp3s ´ 1
2
; 1r, 33qRps;Ë, 3qXs�W psqds.

(5.84)
We evaluate the integral in (5.84) by applying the functional equation in Proposition 5.2.
We obtain

1

2Ãi

} ´·`i8

´·´i8

·QpËqp3s´ 1
2
; 1r, 33qRps;Ë, 3qXs�W psqds

< 1

2Ãi
¨ i

3gprq
37{2

´r
r

¯´3
} ´·`i8

´·´i8

p2Ãq4s´2

Nprq2s
Γp5

6
` |3|

2
´ sqΓp7

6
` |3|

2
´ sq

Γps ` |3|
2

´ 1
6
qΓps ` |3|

2
` 1

6
q

Æ ·QpËqp5
2

´ 3s; 1r,´33qR:
rp1 ´ s,´3qXs�W psqds. (5.85)
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Expanding the absolutely convergent series we see that (5.85) is equal to

gprq
37{2p2Ãq2

´r
r

¯´3 ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1

a:p¿qb:
rp¿q

`
d3¿

|d3¿|

Ú´3

Np¿qNpdq5{2

Æ 1

2Ãi

} ´·`i8

´·´i8

´p2Ãq4Npd3¿qX
Nprq2

¯sΓp5
6

` |3|
2

´ sqΓp7
6

` |3|
2

´ sq
Γps ` |3|

2
´ 1

6
qΓps ` |3|

2
` 1

6
q

¨ �W psqds.

The above display can be expressed as

gprq
37{2p2Ãq2

´r
r

¯´3 ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1

a:p¿qb:
rp¿q

`
d3¿

|d3¿|

Ú´3

Np¿qNpdq5{2
¨ |W3

´p2Ãq4Npd3¿qX
Nprq2

¯
.

This establishes (5.80). The decay bound (5.82) follows from a direct computation with
Stirling’s asymptotic [DLMF, (5.11.1)].

�

6. Cancellations in sequences over primes

We begin with a remark about ordering integral ideals in number fields.

Remark 6.1. Let K be an algebraic number field of degree n, and let a and b denote
integral ideals of K. The order on integral ideals of K, �K , will essentially be given by
the norm NK{Q. That is, NK{Qpaq � NK{Qpbq implies a �K b. For ideals with equal norm

the ordering can be arbitrary. For instance, if NK{Qpaq < NK{Qpbq and ã and b̃ are some
fixed choice of ideal numbers of a and b respectively, then one could declare that a �K b

if and only if arg ã � arg b̃. We will abuse notation and denote �QpËq by � when the
meaning is clear from context

Lemma 6.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to QpËq twisted by Größencharaktern. Let W be a smooth test function with
compact support in p0,8q and mW :< maxt1,maxxPp0,8q |W pxq|u. Let B � 10, 10 � w �
M � N ! B, and Ã P ZrËs satisfy Ã = 1 pmod 3q be a prime or 1. If R � logB

K log logB
with

K � 1000, then the sequence

³b < 1

mW

W
´Npbq

B

¯ ÿ

b<
[R

j“1 �j

�j=1 pmod 3q
�1��2�...��R

M�Np�jq�N

pb,Ãq<1

1

belongs to C·pB,wq (given in Definition 3.1) for all · � 100
K
.

Remark 6.2. Note that scaling mW is a minor technicality introduced so that the given
β satisfies the first axiom of Definition 3.1.
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Proof. It is clear the first three properties in Definition 3.1 follow from definition of β.
After Mellin inversion of W ,

³b :<
1

2Ãi

1

mW

} 2`i8

2´i8

�W pvqBv
ÿ

b<
[R

j“1 �j

M��1��2�...��R�N
�j=1 pmod 3q

�j0Ã

R{

j<1

1

Np�jqv
dv,

it suffices to check the fourth property of Definition 3.1 for all · " 1{K. For t P R, 3 P Z

and k, u P ZrËs with k, u = 1 pmod 3q, it suffices to estimate
ÿ

bPZrËs
u|b

³b

´ b

|b|
¯3´k

b

¯
3
Npbqit, (6.1)

provided that 3 0 0, or if 3 < 0, then provided that k 0 . Without loss of generality we
can take u < 1 since the case u 0 1 reduces to this case after combinatorial manipulations.
Thus (6.1) (with u < 1) is equal to

1

2Ãi

1

mW

} 2`i8

2´i8

�W pvqBv
ÿ

M��1��2�...��R�N
�j=1 pmod 3q

�j0Ã

R{

j<1

`
k
�j

Ú
3

`
�j

|�j |

Ú3

Np�jqv´it
dv. (6.2)

The Newton-Girard identity [Mac95, p2.141q] implies that

ÿ

M��1��2�...��R�N
�j=1 pmod 3q

�j0Ã

R{

j<1

`
k
�j

Ú
3

`
�j

|�j |

Ú3

Np�jqv´it

< p´1qR
ÿ

m1,...,mR�0
m1`2m2`¨¨¨`RmR<R

R{

j<1

p´1qmj

mj !jmj

´ ÿ

M�Np�q�N
�=1 pmod 3q

�0Ã

`
k
�

Új
3

`
�

|�|

Új3

Np�qjpv´itq

¯mj

.

(6.3)

We can assume without loss of generality that M and N are half-integers. Using [Dav00,
pg. 105] each sharp cut-off can be written as

ÿ

M�Np�q�N
�=1 pmod 3q

�0Ã

`
k
�

Új
3

`
�

|�|

Új3

Np�qjpv´itq
< 1

p2Ãiq2

1{ logB`iB1003

1{ logB´iB100

D
`
jpv ´ itq ` s ´ w;

´k
¨
¯j

3
1Ã, j3

Ú
N sM´w dsdw

sw

` OpB´50q say, Repvq < 2, (6.4)

where (for Repsq � 1{2) we have

D
´
s;
´k

¨
¯j

3
1Ã, j3

¯
:< log ·QpËqps;

´k
¨
¯j

3
1Ã, j3q ´

ÿ

m�2

ÿ

�=1 pmod 3q
�0Ã

`
k
�

Úmj

3

`
�

|�|

Úmj3

mNp�qms
.
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We shift the v-contour in (6.2) to Repvq < 1{2 ` 1{ logB. From (6.4), the Riemann
hypothesis, and [IK04, Theorem 5.19], we deduce that (uniformly in j � 1)

ÿ

M�Np�q�N
�=1 pmod 3q

�0Ã

`
k
�

Új
3

`
�

|�|

Új3

Np�qjpv´itq
! plog2Bq¨log2

´
2`p1`|v|`|t|qp1`|3|qNpkqB

¯
,Re v � 1

2
` 1

logB
.

Substitution of this bound into (6.3) shows that for Repvq � 1{2 ` 1{ logB we have

ÿ

M��1��2�...��R�N
�j=1 pmod 3q

�j0Ã

R{

j<1

`
k
�j

Ú
3

`
�j

|�j |

Ú3

Np�jqv´it

! CRplog2RBq ¨ log2R
´
2 ` p1 ` |v| ` |t|qp1 ` |3|qNpkqB

¯

! pC{·4qRplog2RB·q ¨ log2R
´
2 `

`
p1 ` |v| ` |t|qp1 ` |3|qNpkqB

Ú·¯
,

for some absolute constant C � 1 and any fixed · � 0. Returning to (6.2) (and recalling
that we shifted the contour to Repvq < 1{2 ` 1{ logB) we see that (6.1) is

! pC{·4qRB1{2`1{ logBplog2RB·q ¨ log2R
`
2 `

`
p1 ` |t|qp1 ` |3|qNpkqB

Ú·Ú
. (6.5)

We use the hypothesis 1 � R � logB{pK log logBq, the inequality

plog xqL � L!x, x � 1, L � 1,

and Stirling’s asymptotic formula [DLMF, (5.11.1)] to conclude that (6.5) is

!· B
1{2`100{K`3·p1 ` |t|q·p1 ` |3|q·Npkq·,

say. This concludes the proof. �

A minor variation of the above proof gives a smoothed version of the Lemma.

Lemma 6.2. Assume the Generalized Riemann Hypothesis for the Dedekind zeta function
attached to QpËq twisted by Größencharaktern. Let V and W be a smooth test functions
with compact support in p0,8q, and let mV and mW be as in Lemma 6.1. Let R P N,
B � 10, 10 � w � M � N ! B, and P1, . . . , PR � 1 be such that P1 ¨ ¨ ¨PR 4 B. If
R � logB

K log logB
with K � 1000, then the sequence

³b < 1

mW

W
´Npbq

B

¯ ÿ

b<
[R

j“1 �j

�j=1 pmod 3q
�1��2�...��R

M�Np�jq�N

R{

j<1

´ 1

mV

V
´Np�jq

Pj

¯¯
,

belongs to C·pB,wq (given in Definition 3.1) for all · � 100
K
.

Remark 6.3. A sum over R running through any subset of r1, logB{pK log logBqs can
be introduced in the definition of β occurring in both Lemma 6.1 and Lemma 6.2 with
no change to the conclusions.
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Lemma 6.3. Suppose A,B � 10, X :< AB, 0 � ·1, ·2 � 1{4 and w1 � w2 � 10. Let
α < p³aq P C·1pA,w1q, and β < p³bq P C·2pB,w2q be such that

³b 0 0 ùñ p� | b ùñ w2 � Np�q � w1q. (6.6)

Let 10 � M � N and γ :< p³cq be given by

³c :<
ÿ

M�Npcq�N
a,bPZrËs

a,b=1 pmod 3q
ab<c

³a³b.

Then γ < p³cq P Cmaxt·1,·2upX,w2q.

Remark 6.4. It will be helpful to recall the definition of Ppzq in (3.1).

Proof. Observe that the hypotheses (6.6) and w2 � w1 imply that γ < p³cq is supported
on squarefree w2-rough integers. We also have ³c 0 0 ùñ Npcq 4 X from the supports
of α < p³aq and β < p³bq. Each c P ZrËs with c = 1 pmod 3q has a unique factorisation
c < ab with pa,Ppw1qq < 1 and b | Ppw1q. Thus hypothesis (6.6) implies that |³c| <
|³a³b| � 1.

It only remains to prove inequality (3.2) in Definition 3.1 for γ < p³cq. Without loss of
generality we can assume thatM andN are half-integers and thatM 4 X (resp. N 4 X),
otherwise ·M�Npcq (resp. ·Npcq�N) is a redundant condition. Using [Dav00, pg. 105], the
sharp cut-off can be written as

·M�Npcq�N < 1

p2Ãiq2

1{ logX`iX1003

1{ logX´iX100

N sM´w

Npcqs´w

dsdw

sw
` OpX´50q,

say. The integrals incur an acceptable loss of OpplogXq2q. Thus it suffices to show that

³̃c :<
ÿ

a,bPZrËs
a,b=1 pmod 3q

ab<c

³a³b

satisfies (3.2). In other words, for t P R, 3 P Z and k, u P ZrËs with k, u = 1 pmod 3q, we
need to estimate

ÿ

cPZrËs
u|c

³̃c

´ c

|c|
¯3´k

c

¯
3
Npcqit, (6.7)

provided that 3 0 0, or if 3 < 0, then provided that k 0 . Observe u has a unique
factorisation u < u1u2 such that pu1,Ppw1qq < 1 and u2 | Ppw1q. Hypothesis (6.6)
implies that that (6.7) is equal to

´ ÿ
a

u1|a

³a

´ a

|a|
¯3´k

a

¯
3
Npaqit

¯´ÿ

b
u2|b

³b

´ b

|b|
¯3´k

b

¯
3
Npbqit

¯
. (6.8)
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Since α < p³aq P C·1pA,w1q and β < p³bq P C·2pB,w2q, we see that (6.8) is

!· p1 ` |3|q·Npkq·p1 ` |t|q·
´ A

Npu1q
¯1{2`·1`·´ B

Npu2q
¯1{2`·2`·

!· p1 ` |3|q·Npkq·p1 ` |t|q·
´ X

Npuq
¯1{2`maxt·1,·2u`·

,

as required.
�

7. Narrow Type II/III estimates

We establish estimates for type-II/III sums that are useful in narrow ranges correspond-
ing to two or three variables of equal size respectively. In the three variable case, two
variables are clumped together to reduce to a type-II analysis. These estimates will be in
ranges where sharp bounds are required (but not asymptotics).

7.1. Sieve weights. We will need to use auxiliary sieve weights in the proof of our
narrow range bounds.

Lemma 7.1. Given w � y2 � 1, there exists coefficients p»dqdPZrËs such that

(1) »1 < 1 and |»d| !· Npdq· for all d P ZrËs and all · � 0;
(2) »d < 0 if Npdq � y2 or d 1 1 pmod 3q;
(3) For all n P ZrËs we have

·pn,Ppwqq<1 �
ÿ

d|n
d|Ppwq
Npdq�y2

»d; (7.1)

(4) They satisfy
ÿ

dPZrËs

»d

Npdq ! 1

log y
. (7.2)

Proof. Given d = 1 pmod 3q, define

»d :<
ÿ

Npeq,Npfq�y
e,f=1 pmod 3q

d<re,fs

µpeqµpfq
´
1 ´ logNpeq

log y

¯´
1 ´ logNpfq

log y

¯
.

Properties (1) and (2) are immediate from the definition. Property (3) follows from

ÿ

d|n
d|Ppwq
Npdq�y2

»d <
´ ÿ

Npeq�y
e|pn,Ppwqq

e=1 pmod 3q

µpeq
´
1 ´ logNpeq

log y

¯¯2

. (7.3)
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It remains to check property (4). Observe that

ÿ

dPZrËs

»d

Npdq <
ÿ

Npeq,Npfq�y
e,f=1 pmod 3q

µpeqµpfq
Npre, f sq

´
1 ´ logNpeq

log y

¯´
1 ´ logNpfq

log y

¯

< 1

p2Ãiq2

1{ log y`i83

1{ log y´i8

Hps, wq·QpËqp1 ` s ` wq
·QpËqp1 ` sq·QpËqp1 ` wq ¨ y

s`w

s2w2
¨ dsdw

plog yq2 , (7.4)

where Hps, wq is an analytic and absolutely convergent Euler product for Re s,Rew �
´1{4. One can conclude that the display in (7.4) is ! 1{ log y by shifting contours or by
carefully bounding the integral using a Taylor expansion around the pole. �

7.2. Narrow Type-II/III bound. We are now ready to state the main result of this
section.

Proposition 7.1. Let · P p0, 1
10000

q, A,B � 10, X :< AB, 10 � w � X·, and · � 0.
Suppose that α < p³aq is a sequence supported on squarefree w-rough a P ZrËs with a = 1
pmod 3q and Npaq P rA{10, 10As. Suppose that β < p³bq P C·pB,wq. Then

ÇÇÇ
ÿ

a,bPZrËs

³a³bg̃pabq
ÇÇÇ � K?

logw
}α}2

´
A1{2}β}2 ` A1{3

´ ÿ

bPZrËs

|³b|
Npbq1{6

¯¯
(7.5)

` O·

´
B· ¨X1`·

´ 1

A1{2
` 1

B

¯¯
` O·pX1`· ¨ pA{wq´1000q.

with K � 1 an absolute constant.

Proof. Without loss of generality we can include the condition pa, bq < 1 on the left side
(7.5) by (2.2). Application of (2.3) and Cauchy-Schwarz gives

ÇÇÇ
ÿ

a,bPZrËs

³a³bg̃pabq
ÇÇÇ � }α}2

´ ÿ

aPZrËs
pa,Ppwqq<1
a=1 pmod 3q

ÇÇÇ
ÿ

b

³bg̃pbq
´a
b

¯
3

ÇÇÇ
2¯1{2

. (7.6)

Let V : R Ñ R be a fixed smooth positive function with compact support in r1{100, 100s.
We also stipulate that it satisfies V � ·r1{10,10s. By positivity of the right side of (7.6), we
introduce both the smooth function V and the sieve weight (7.1) on the a-sum. Thus the
right side of (7.6) is

� }α}2
´ ÿ

aPZrËs
a=1 pmod 3q

V
´Npaq

A

¯ÇÇÇ
ÿ

b

³bg̃pbq
´a
b

¯
3

ÇÇÇ
2 ÿ

d|a
d|Ppwq
Npdq�y2

»d

¯1{2

, (7.7)

where y2 :< w. Expansion of the bracketed sum in (7.7) gives

ÿ

d|Ppwq
Npdq�y2

»d
ÿ

b1,b2PZrËs

³b1³b2 g̃pb1qg̃pb2q
ÿ

aPZrËs , d|a
a=1 pmod 3q

V
´Npaq

A

¯´ a
b1

¯
3

´ a
b2

¯
3
. (7.8)
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Diagonal contribution to (7.8). The diagonal contribution b1 < b2 <: b to (7.8) is

ÿ

aPZrËs
a=1 pmod 3q

V
´Npaq

A

¯ ÿ

bPZrËs
pa,bq<1

|³b|2
´ ÿ

d|a
d|Ppwq
Npdq�y2

»d

¯
. (7.9)

We can drop the condition pa, bq < 1 by non-negativity of (7.9) (the bracketed sieve weight
divisor sum is non-negative by (7.1)). Thus

(7.9) �
ÿ

d|Ppwq
Npdq�y2

»d
ÿ

bPZrËs

|³b|2
ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpdq

A

¯

< 4ÃA

9
?
3

}β}22
´ ÿ

d|Ppwq
Npdq�y2

»d

Npdq
¯ ÿ

kPZrËs

ě
´

´ k

3»

¯
:V
`
k
a
A{Npdq

Ú
<: D , (7.10)

where (7.10) follows from Poisson summation (in the form of Lemma 4.3).

Non-diagonal contribution to (7.8). The non-diagonal b1 0 b2 contribution to (7.8) is

ÿ

d|Ppwq
Npdq�y2

»d
ÿ

b1,b2PZrËs
b10b2

³b1³b2 g̃pb1qg̃pb2q
´ d
b1

¯
3

´ d
b2

¯
3

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpdq

A

¯´ a
b1

¯
3

´ a
b2

¯
3
.

(7.11)
For each fixed b1, b2 P ZrËs occurring in (7.11), let e :< pb1, b2q. Poisson summation (in
the form of Corollary 4.1) tells us that

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpdq

A

¯´ a
b1

¯
3

´ a
b2

¯
3

<
4Ã

`
e

b1{e

Ú
3

`
e

b2{e

Ú
3
Agpb1{eqgpb2{eq

9
?
3NpdqNpb1b2{eq

ÿ

kPZrËs

rcepkq
´ k

b1{e
¯
3

´ k

b2{e
¯
3

:V
´ ke

?
Aa

Npdqb1b2

¯
.

(7.12)

Remark 7.1. Since b1 0 b2, the character
`

¨
b1{e

Ú
3

`
¨

b2{e

Ú
3
in (7.12) has conductor with

norm � 1. Hence the dual frequency k < 0 contributes zero to (7.12).

Observe that (2.3) and the squarefree property of b1 and b2 imply that

g̃pb1qg̃pb2q < g̃pb1{eqg̃peq
´ e

b1{e
¯
3
g̃pb2{eq ¨ g̃peq

´ e

b2{e
¯
3

< g̃pb1{eqg̃pb2{eq
´ e

b1{e
¯
3

´ e

b2{e
¯
3
. (7.13)
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Upon insertion of (7.12) and (7.13) into (7.11), we see that (7.11) becomes

N :< 4ÃA

9
?
3

ÿ

d|Ppwq
Npdq�y2

»d

Npdq
ÿ

ePZrËs
e=1 pmod 3q

ÿ

b10b2PZrËs
pb1,b2q<e

³b1³b2a
Npb1b2q

Æ
ÿ

kPZrËs

rcepkq
´d2ek
b1{e

¯
3

´d2ek
b2{e

¯
3

:V
´ ke

?
Aa

Npdqb1b2

¯
. (7.14)

Remark 7.2. Note that Poisson summation constitutes a key step in the proof - the dual
side (7.14) has no Gauss sum weights.

Estimates for D and N . We estimate D and N displayed in (7.10) and (7.14) respec-
tively.

Consider D . Lemma 4.4 tells us that

D < 4ÃA

9
?
3

}β}22
´ ÿ

d|Ppwq
Npdq�y2

»d

Npdq
¯

:V p0q ` O·pX1`· ¨ pA{wq´2000q.

Application of (7.2) gives

D ! A

logw
}β}22 ` O·pX1`· ¨ pA{wq´2000q. (7.15)

Consider N . For a given d, e P ZrËs in (7.14), we split the k 0 0 sum into two subsums:

: 0 0 k P ZrËs such that d2ek < ;
: 0 0 k P ZrËs such that d2ek 0 .

Denote the contributions to N by each of these two cases by N1 and N2 respectively.
Thus N < N1 ` N2.

Since µ2pdq < µ2peq < 1 and pd, eq < 1, we deduce that d2ek < iff k < de2h3 for some
h P ZrËs. Notice that (4.8) and Lemma 5.5 imply that

rcepde2h3q < ě
´

´de2h3

3»

¯
×peq < ě

´
´h3

3»

¯
×peq,

where the last equality follows from the fact that d = e = 1 pmod 3q and Remark 4.1.
Thus

N1 < 4ÃA

33
?
3

ÿ

ePZrËs
e=1 pmod 3q

×peq
ÿ

b10b2PZrËs
pb1,b2q<e

³b1³b2a
Npb1b2q

Æ
ÿ

hPZrËs
ph,b1b2{e2q<1

ě
´

´h3

3»

¯
:V
´e3h3

?
A

b1b2

¯´ ÿ

d|Ppwq
Npdq�y2

»d

Npdq
¯
. (7.16)

Note that the extra factor of 1{3 in the above display for N1 accounts for the fact that
pËihq3 < h3 for i P t0, 1, 2u and 0 0 h P ZrËs. Using Lemma 4.4 and recalling (7.2), we
see that all this leads to

N1 ! 1

logw

´
A2{3

´ ÿ

bPZrËs

|³b|
Npbq1{6

¯2

` A}β}22
¯
. (7.17)
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We now focus on N2. We have

N2 :<
4ÃA

9
?
3

ÿ

d|Ppwq
Npdq�y2

»d

Npdq
ÿ

ePZrËs
e=1 pmod 3q

ÿ

b10b2PZrËs
pb1,b2q<e

³b1³b2a
Npb1b2q

Æ
ÿ

kPZrËs
d2ek0

rcepkq
´d2ek
b1{e

¯
3

´d2ek
b2{e

¯
3

:V
´ ke

?
Aa

Npdqb1b2

¯
.

The term N2 is small because the characters
`
d2ek

¨

Ú
3
and

`
d2ek

¨

Ú
3
are both non-principal.

Using Lemma 4.4 and Lemma 5.5, we re-install the diagonal b1 < b2 in N2 with acceptable
error OpX·pA`Bqq. After rescaling the variables b1 Ñ eb1 and b2 Ñ eb2 and using Lemma
4.4, we obtain

N2 < 4ÃA

9
?
3

ÿ

d|Ppwq
Npdq�y2

»d

Npdq
ÿ

ePZrËs
e=1 pmod 3q

1

Npeq
ÿ

b1,b2PZrËs
pb1,b2q<1

³eb1³eb2a
Npb1b2q

Æ
ÿ

kPZrËs
d2ek0

Npkq!X·p1`NpdqB2{pNpeqAqq

rcepkq
´d2ek
b1

¯
3

´d2ek
b2

¯
3

:V
´ k

?
Aa

Npdqeb1b2

¯

` OpX·pA` Bqq.

After combining (4.11) and the Mellin–Barnes integral representation [DLMF, (10.9.22)]
for the J-Bessel function, we obtain

:V puq < p´1qL
2Ãi

} 8

0

} ´·`8

´·´i8

V pLqpr2qr2L`1 Γp´sq
ΓpL` s ` 1q

´2Ãr|u|
3
?
3

¯2s

dsdr, (7.18)

for u 0 0, L P Z�1. For L P Z�1 sufficiently large and fixed depending on · � 0, Stirling’s
asymptotic formula [DLMF, (5.11.9)] implies that

:V puq < p´1qL
2Ãi

} 8

0

} ´·`iX·

´·´iX·

V pLqpr2qr2L`1 Γp´sq
ΓpL` s ` 1q

´2Ãr|u|
3
?
3

¯2s

dsdr ` O·pX´2000q,
(7.19)

for u 0 0.
We Möbius invert the condition pb1, b2q < 1 in the expression for N2 above, and then

separate variables using (7.19). A subsequent interchange of the absolutely convergent
finite (recall that V pLq is compactly supported) sums and integrations by Fubini’s Theorem
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gives

N2 < p´1qL ¨ 2A

9
?
3i

} 8

0

} ´·`iX·

´·´iX·

V pLqpr2qr2L`1 Γp´sq
ΓpL ` s ` 1q

´2Ãr
?
A

3
?
3

¯2s

Æ
´ ÿ

d|Ppwq
Npdq�y2

»d

Npdq1`s

ÿ

fPZrËs
f=1 pmod 3q

µpfq
Npfq1`2s

Æ
ÿ

ePZrËs
e=1 pmod 3q

ÿ

kPZrËs
d2ek0

Npkq!X·p1`NpdqB2{pNpeqAqq

rcepkqNpkqs
Npeq1`s

´d2ek
f

¯
3

´d2ek
f

¯
3

Æ
´ ÿ

b1PZrËs

³efb1a
Npb1q

´d2ek
b1

¯
3
Npb1q´s

¯´ ÿ

b2PZrËs

³efb2a
Npb2q

´d2ek
b2

¯
3
Npb2q´s

¯¯
dsdr

` OpX·pA` Bqq.

We use Axiom 4 of Definition 3.1 to estimate the sum over b1 and b2 (square root cancel-
lation), and then estimate the remaining sums trivially using Lemma 5.5. We obtain

N2 ! AB2·X·
´ ÿ

d|Ppwq
Npdq�y2

1

Npdq
ÿ

fPZrËs
1�Npfq!B

µ2pfq
Npfq

ÿ

ePZrËs
1�Npeq!B

µ2peq
Npeq

Æ
ÿ

g|e

ÿ

kPZrËs
pk,eq<g

Npkq!X·p1`NpdqB2{pNpeqAqq

×peq
×pe{gq

¯
` X·pA` Bq

! X·B2·pA` B2q. (7.20)

7.2.1. Conclusion. Combining (7.15), (7.17) and (7.20) tells us that

(7.8) � K

logw

´
A2{3

´ ÿ

bPZrËs

|³b|
Npbq1{6

¯2

`A}β}22
¯

`O·pB2·pA`B2qX·q`O·pX1`·¨pA{wq´2000q,

for some absolute constant K � 1. Chasing this bound through (7.7) and (7.6) gives the
result.

�

8. Type I estimates

We now establish Type-I estimates. In the Proposition below we use the Riemann
Hypothesis for the Dedekind zeta function attached to QpËq in order to restrict the sum
to squarefree numbers.

Proposition 8.1. Assume the Riemann Hypothesis for the family of Dedekind zeta func-
tions attached to QpËq twisted by Größencharaktern. Let r P ZrËs be squarefree and satisfy
r = 1 pmod 3q. Let · P p0, 1

10000
q, and W : R Ñ R be a smooth function with compact
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support contained in r1, 2s. Then there exists Ãp·q P p0, 1
10000

q such that

ÿ

uPZrËs
u=1 pmod 3q

g̃purq
´ u

|u|
¯3

¨W
´Npuq

U

¯
< ·3<0 ¨ �W

´5
6

¯
¨ p2Ãq5{3U5{6

37{2Γp2
3
q·QpËqp2; 1rq

×prq
Nprq7{6

` O·

´
p1 ` |3|q· ¨

´ U5{6´Ãp·q

Nprq1{6`Ãp·q
` U1{12`·Nprq7{12`· ¨ p1 ` 36q

¯¯
,

for all 3 P Z and U � 1.

Remark 8.1. The function Ãp·q is somewhat arbitrary. For instance, it follows from (8.6)
that Ãp·q < 11

12
· ´ 1

2
·2 is an acceptable choice.

Remark 8.2. Mellin inversion of the smooth function, the Class number formula [Lan94,
Chapter VIII, §2, Theorem 5], and a contour shift together imply that

p2Ãq2{3

3Γp2
3
q

ÿ

u=1 pmod 3q
pu,rq<1

µ2puq
Npuq1{6

W
´Npuq

U

¯
¨ 1

Nprq1{6
(8.1)

< �W
´5
6

¯ p2Ãq5{3U5{6

37{2Γp2
3
q·QpËqp2; 1rq

×prq
Nprq7{6

` O·

´ U1{3`·

Nprq1{6

¯
.

Thus when 3 < 0, we can use the main term in (8.1) in Proposition 8.1 at negligible cost.

Proof. Möbius inversion implies that

ÿ

uPZrËs
u=1 pmod 3q

g̃purq
´ u

|u|
¯3

W
´Npuq

U

¯

<
ÿ

u,ePZrËs
u,e=1 pmod 3q

pe,rq<1

g̃purq|e|
´ e3u

|e3u|
¯3

W
´Npeq3Npuq

X

¯´ ÿ

e<cd
c,d=1 pmod 3q

µpcq
¯
. (8.2)

Remark 8.3. Note that the factor of |e| in (8.2) reflects the periodicity property possessed
by the coefficients of the cubic theta function on cubes. See Remark 5.2.

On the right side of (8.2) we introduce a smooth partition of unity in the c variable.
Let V : R Ñ R be a fixed smooth function with compact support contained in r1, 2s such
that

ÿ

C dyadic

V
´Npcq

C

¯
< 1 for all 0 0 c P ZrËs. (8.3)

Insertion of (8.3) into (8.2) yields

ÿ

uPZrËs
u=1 pmod 3q

g̃purq
´ u

|u|
¯3

W
´Npuq

U

¯
<

ÿ

C dyadic

M pC,Uq, (8.4)
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where

M pC,Uq :<
ÿ

u,dPZrËs
u,d=1 pmod 3q

pd,rq<1

g̃purq|d|
´ u

|u|
¯3 ÿ

cPZrËs
c=1 pmod 3q

pc,rq<1

µpcq|c|

Æ
´ cd

|cd|
¯33

V
´Npcq

C

¯
W

´Npcdq3Npuq
U

¯
. (8.5)

We have suppressed the dependence of M pC,Uq on the smooth functions V and W in
the notation.

Large dyadic C. We estimate the contribution to the right side of (8.4) from all dyadic
values of C satisfying

C � pUNprqq1{12`·{2.

We Mellin invert the smooth functions V and W in (8.5). We then use the rapid decay of

their holomorphic Mellin transforms �W and rV in vertical strips to truncate the integra-
tions appropriately. A subsequent interchange of the order of absolutely convergent finite
sums and integrations by Fubini’s Theorem gives

M pC,Uq :< 1

p2Ãiq2
} ipCp1`|3|qq·{1000

´ipCp1`|3|qq·{1000

} ipCp1`|3|qq·{1000

´ipCp1`|3|qq·{1000

rV psq�W pwqCsUw

Æ
´ ÿ

u,dPZrËs
U{p100C3q�Npud3q�100U{C3

u,d=1 pmod 3q
pd,rq<1

g̃purqNpdq1{2´3w
´ ud3

|ud3|
¯3

Npuq´w

Æ
ÿ

cPZrËs
C�Npcq�2C
c=1 pmod 3q

pc,rq<1

µpcq
´ c

|c|
¯33

Npcq1{2´s´3w
¯
dsdw ` O·

`
pCp1 ` |3|qq´2000

Ú
.

To bound the sum over c we appeal to the Riemann Hypothesis for the Dedekind zeta
function attached to QpËq twisted by a Größencharakter. Estimating the other summa-
tions trivially, we obtain

ÿ

C dyadic
C�pUNprqq1{12`·{2

M pC,Uq !·

´ U
C3

¯
C1`·p1 ` |3|q· !· p1 ` |3|q· U5{6´Ãp·q

Nprq1{6`Ãp·q
, (8.6)

for some Ãp·q P p0, 1
10000

q. See also Remark 8.1.

Small dyadic C. It remains to estimate
ÿ

C dyadic
1{2�C�pUNprqq1{12`·{2

M pC,Uq.
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Rearranging the sums in (8.5), and then using (2.3), we obtain

M pC,Uq < g̃prq
ÿ

cPZrËs
c=1 pmod 3q

pc,rq<1

|c|
´ c

|c|
¯33

µpcqV
´Npcq

C

¯

Æ
ÿ

d,uPZrËs
d,u=1 pmod 3q

pd,rq<1

|d|g̃puq
´u
r

¯
3

´ ud3

|ud3|
¯3

W
´ Npud3q
U{Npcq3

¯
. (8.7)

Application of Voronoi summation (in the form of Proposition 5.3) gives

ÿ

d,uPZrËs
d,u=1 pmod 3q

pd,rq<1

|d|g̃puq
´u
r

¯
3

´ ud3

|ud3|
¯3

W
´ Npud3q
U{Npcq3

¯

< ·3<0
U5{6

Npcq5{2
�W
´5
6

¯ p2Ãq5{3×prqgprq
37{2Γp2

3
qNprq5{3

` gprq
37{2p2Ãq2

´r
r

¯´3 ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1

a:p¿qb:
rp¿q

`
¿d3

|¿d3|

Ú´3

Np¿qNpdq5{2
|W3

´p2Ãq4Npd3¿qU
Npc3r2q

¯
,

where the a:p¨q and b:
rp¨q are given by (5.67) and (5.68) respectively. Insertion of the above

display into (8.7) gives

M pC,Uq < T pC,Uq ` E pC,Uq, (8.8)

where

T pC,Uq :< ·3<0
p2Ãq5{3

37{2Γp2
3
q
�W
´5
6

¯ ×prq
Nprq7{6

U5{6
ÿ

cPZrËs
c=1 pmod 3q

pc,rq<1

µpcq
Npcq2V

´Npcq
C

¯
,

and

E pC,Uq :< Nprq1{2

37{2p2Ãq2
´r
r

¯´3 ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1

a:p¿qb:
rp¿q

Np¿qNpdq5{2

´ d3¿

|d3¿|
¯´3

Æ
ÿ

cPZrËs
c=1 pmod 3q

pc,rq<1

|c|µpcq
´ c

|c|
¯33

V
´Npcq

C

¯
|W3

´p2Ãq4Npd3¿qU
Npc3r2q

¯
.
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We now collect the main term from the various T pC,Uq. We have

ÿ

C dyadic
1{2�C�pUNprqq1{12`·

T pC,Uq <
ÿ

C dyadic

T pC,Uq ` O·

´ U3{4

Nprq1{4

¯

< ·3<0
�W
´5
6

¯ p2Ãq5{3U5{6

37{2Γp2
3
q·QpËqp2; 1rq

×prq
Nprq7{6

` O·

´ U3{4

Nprq1{4

¯
,

(8.9)

where the error term follows from a trivial estimation of the tail of ·QpËq.
The various E pC,Uq contribute the error term in the statement of the result. By the

rapid decay of |W in (5.82), we truncate the d and ¿ sums in E pC,Uq to

Npd3¿q ! pUNprqp1 ` |3|qq·{1000p1 ` 34q ¨
´
1 ` C3Nprq2

U

¯
<: Z,

with negligible error. To separate variables, we subsequently use the definition (5.81)

of |W and Mellin inversion on V . We truncate the resulting integrations appropriately

using the rapid decay of rV and �W . A subsequent interchange of the order of absolutely
convergent finite sums and integrations by Fubini’s Theorem gives

E pC,Uq < Nprq1{2

37{2p2Ãq4
´r
r

¯´3
} ipUNprqp1`|3|qq·{1000

´ipUNprqp1`|3|qq·{1000

} ipUNprqp1`|3|qq·{1000

´ipUNprqp1`|3|qq·{1000

Γp5
6

` |3|
2

´ wqΓp7
6

` |3|
2

´ wq
Γpw ` |3|

2
´ 1

6
qΓpw ` |3|

2
` 1

6
q

Æ
´p2Ãq4U
Nprq2

¯w

CsrV psq�W pwq

Æ
´ ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1
Npd3¿q!Z

a:p¿qb:
rp¿q

Np¿q1´wNpdq5{2´3w

´ d3¿

|d3¿|
¯´3 ÿ

cPZrËs
c=1 pmod 3q

pc,rq<1
C�Npcq�2C

Npcq1{2´s´3wµpcq
´ c

|c|
¯33¯

dsdw

` O·

`
pUNprqp1 ` |3|qq´1000

Ú
.

We estimate the sum over c using the Riemann hypothesis for the Dedekind zeta function
attached to QpËq, and the quotient of Gamma factors using Stirling’s asymptotic [DLMF,
(5.11.1)] The other sums are estimated trivially using (5.67), (5.68), (5.7), (5.13) and
(5.14). We obtain

E pC,Uq !· Nprq1{2`·{10 ¨ p1 ` 32q

Æ
ÿ

e|r

ÿ

¿P»´1ZrËs
d=1 pmod 3q

pd,rq<1
p»¿,rq<e

Npd3¿q!Z

|a:p¿q|
Np¿qNpdq5{2

×prq
×pr{eqC

1`·{10p1 ` |3|q·{10,

! Nprq1{2`·{4U·{4p1 ` 36qC1`·{4p1 ` |3|q·{4,
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and so ÿ

C dyadic
1{2�C�pUNprqq1{12`·{2

E pC,Uq !· U
1{12`·Nprq7{12`· ¨ p1 ` 36qp1 ` |3|q·. (8.10)

After combining (8.6), (8.9) and (8.10), we obtain the result.
�

We also record the following nearly immediate Corollary.

Corollary 8.1. Assume the Riemann Hypothesis for the family of Dedekind zeta functions
attached to QpËq twisted by Größencharaktern. Let r P ZrËs be squarefree and satisfy
r = 1 pmod 3q. Let · P p0, 1

10000
q, and V,W : R Ñ R be smooth functions with compact

support contained in r1
4
, 4s. Then there exists Ãp·q P p0, 1

10000
q such that

ÿ

uPZrËs
u=1 pmod 3q

g̃purq
´ u

|u|
¯3

¨ V
´Npuq

U

¯
W

´Npurq
X

¯

< ·3<0 ¨ p2Ãq2{3

3Γp2
3
q

ÿ

u=1 pmod 3q
pu,rq<1

µ2puq
Npuq1{6

V
´Npuq

U

¯
W

´Npurq
X

¯
¨ 1

Nprq1{6

` O·

´
p1 ` |3|q· ¨

´ U5{6´Ãp·q

Nprq1{6`Ãp·q
` U1{12`·Nprq7{12`·p1 ` 36q

¯
` U1{3`·

Nprq1{6

¯
,

for all 3 P Z and X � U � 1.

Proof. If UNprq 4 X then we simply apply the previous result with a different weight
function and use the Remark 8.2. If UNprq is not of the order of magnitude of X then
both main terms are zero. �

Remark 8.4. The main term in Corollary 8.1 is larger than the error term when U �
pNprqp1 ` 36qq1`op1q.

9. Improved cubic large sieve

The cubic large sieve of Heath–Brown is as follows.

Theorem 9.1. [HB00, Theorem 2] Let A,B � 1, · � 0, and p³bqbPZrËs be an arbitrary
sequence of complex numbers with support contained in the set of squarefree elements of
ZrËs. Then

ÿ

Npaq�A
a=1 pmod 3q

µ2paq
ÇÇÇ

ÿ

Npbq�B
b=1 pmod 3q

³b

´ b
a

¯
3

ÇÇÇ
2

!·

`
A` B ` pABq2{3

Ú
pABq·

ÿ

bPZrËs

|³b|2. (9.1)

Recall the operator norm BpA,Bq defined in (1.12). The Duality Principle [IK04, (7.9)–
(7.11)] and cubic reciprocity imply that

BpA,Bq < BpB,Aq. (9.2)

See also [HB00, Lemma 4]. We also have the following simple monotonicity property.
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Lemma 9.1. [HB00, Lemma 5] There exists an absolute constant C � 1 as follows. Let
A,B1, B2 " 1 and B2 � CB1 logp2AB1q. Then,

BpA,B1q ! BpA,B2q.

We now prove that Heath-Brown’s cubic large sieve is optimal under the Generalized
Riemann Hypothesis for Hecke L-functions over QpËq.

Proof of Theorem 1.4. The upper bounds in the given ranges follow from the cubic large
sieve Theorem 9.1, and are unconditional.

We now focus on the conditional lower bounds. Let ¿ � 0 be small and fixed, A,B � 10,
X :< AB and A P r10, X1{2´¿s. Consider the sequence

³b < g̃pbqW
´Npbq

B

¯
, (9.3)

where W is a smooth compactly supported function in p1, 2q. It is supported only on
squarefree elements by (2.2). Then

ÿ

A�Npaq�2A
a=1 pmod 3q

µ2paq
ÇÇÇ

ÿ

B�Npbq�2B
b=1 pmod 3q

g̃pbqW
´Npbq

B

¯´ b
a

¯
3

ÇÇÇ
2

<
ÿ

A�Npaq�2A
a=1 pmod 3q

µ2paq
ÇÇÇ

ÿ

b=1 pmod 3q

W
´Npbq

B

¯
g̃pabq

ÇÇÇ
2

pby (2.2) and (2.3)q

" A
´B5{6

A1{6

¯2

` O
`
Xop1qpA17{12B11{12 ` A13{6B1{6q

Ú
(9.4)

"¿,W A2{3B5{3, (9.5)

where display (9.4) follows from Voronoi summation (Proposition 8.1) and the GRH
hypothesis, and (9.5) follows from the fact that we are in the range A ! pABq1{2´¿.
Thus BpA,Bq "¿ pABq2{3 " A ` B for A ! pABq1{2´¿ and A P rX1{3, X1{2s. Combining

this result with (9.2) then gives the claim when A P r
?
B,B2szrB1´¿, B1`2¿s. The result

in the range A P rB1´¿, B1`2¿s then follows from (9.2) and Lemma 9.1, so BpA,Bq "
BpAX´3¿, Bq " pABq2{3´3¿. �

In light of the proof of Theorem 1.4, we renormalise the sequences we consider in the
cubic large sieve by setting cb :< g̃pbq³b where β :< p³bqbPZrËs is a sequence supported on
squarefree b = 1 pmod 3q. Note that |cb| < |³b| on squarefree b = 1 pmod 3q by (2.2). We
are able to refine Theorem 9.1 in a special case by:

(1) Introducing a non-trivial asymptotic main term;
(2) Assuming additional cancellations/density restrictions for the sequence β < p³bq.

Proposition 9.1. Let V : p0,8q Ñ R�0 be a smooth compactly supported function,
0 � · � 1{4, A,B,w � 10 and X :< AB. Suppose that w � plogXq10 and β < p³bq P
C·pB,wq. Let · P p0, 1

10000
q and Ã = 1 pmod 3q be a prime or 1. Then there exists
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Ãp·q P p0, 1
10000

q such that uniformly in 1 � NpÃq � w we have

ÿ

aPZrËs
a=1 pmod 3q

Ã|a

µ2paqV
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,aq<1

³bg̃pbq
´a
b

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq<1

³b

Npbq1{6

ÇÇÇ
2

!·

A2{3B5{3

NpÃq
´ 1

w9{10
` ·Ã01

NpÃq
¯

` A2{3´Ãp·qB5{3´Ãp·q

NpÃq ` A1{6`·B5{3

NpÃq1{2`·

` pNpÃqXq·
´
NpÃq1{2B29{12A´1{12 ` B2`2· ` X

NpÃq
´
1 ` pB2{Aq´1000

¯¯
.

Proposition 9.1 will follow from a modification of the proof of Proposition 9.2 using
sieve weights, and from Lemma 9.2 below. At the close of this section we sketch how
Proposition 9.1 follows.

Proposition 9.2. Let V : p0,8q Ñ R�0 be a smooth compactly supported function,
0 � · � 1{4, A,B,w � 10 and X :< AB. Suppose that w � plogXq10 and β < p³bq P
C·pB,wq. Let · P p0, 1

10000
q, ∆ � 1, Ã = 1 pmod 3q be a prime or 1, and ³ = 1 pmod 3q

be squarefree such that pÃ, ³q < 1. Then there exists Ãp·q P p0, 1
10000

q such that uniformly
in 1 � Np³q � ∆ and 1 � NpÃq � w we have

ÿ

aPZrËs
a=1 pmod 3q

Ã³2|a

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq<1

³b

Npbq1{6

ÇÇÇ
2

(9.6)

� 2
´ 1

Np³q2 ´ ·³<1

·QpËqp2; 1Ãq
¯
rV
´2
3

¯ 2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯3 A2{3

NpÃq
ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` O·

´ 1

NpÃ³2q
´A2{3B5{3

w9{10
` p∆NpÃqXq·

´
B2`2·NpÃq∆2 ` X

´
1 ` pB2{Aq´1000

¯¯¯¯

` ·³<1 ¨
´
O·

´A2{3´Ãp·qB5{3´Ãp·q

NpÃq ` A2{3B5{3

NpÃq
´ 1

w9{10
` ·Ã01

NpÃq
¯

` X·NpÃq1{2B29{12A´1{12 ` A1{6`·B5{3

NpÃq1{2`·

¯¯
.

Proof. Using (2.2) and inclusion-exclusion with the condition pa, bq < 1, we see that the
expression in (9.6) is equal to

ÿ

aPZrËs
a=1 pmod 3q

Ã³2|a

V
´Npaq

A

¯ÇÇÇ
´ ÿ

bPZrËs
pb,³aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q
·³<1g̃paq
Npaq1{6

ÿ

bPZrËs

³b

Npbq1{6

¯

`
´p2Ãq2{3

3Γp2
3
q
·³<1g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq01

³b

Npbq1{6

¯ÇÇÇ
2

. (9.7)
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Since V is non-negative we can apply the parallelogram identity

|X ` Y |2 � 2p|X|2 ` |Y |2q for all X, Y P C, (9.8)

to the display above. This shows that (9.7) is

� 2
´ ÿ

aPZrËs
a=1 pmod 3q

Ã³2|a

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,³aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q
·³<1g̃paq
Npaq1{6

ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

(9.9)

` ·³<1
p2Ãq4{3

9Γp2
3
q2

ÿ

aPZrËs
a=1 pmod 3q

Ã|a

µ2paq
Npaq1{3

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,aq01

³b

Npbq1{6

ÇÇÇ
2¯
, (9.10)

where we used (2.2) to obtain the last display. The term in (9.10) is equal to

·³<1
p2Ãq4{3

9Γp2
3
q2

ÿ

b1,b2PZrËs

³b1³b2
Npb1b2q1{6

ÿ

aPZrËs
a=1 pmod 3q

Ã|a
pa,b1q01
pa,b2q01

µ2paq
Npaq1{3

V
´Npaq

A

¯
< ·³<1O

´ A2{3B5{3

NpÃqw9{10

¯
.

(9.11)
The estimate in (9.11) follows from the triangle inequality, the fact pb1b2, Ãq < 1 (b1b2 is
w-rough and Ã is w-smooth) and

ÿ

�|b1b2
� prime

1

Np�q ! logB2

log logB2

1

w
! 1

w9{10
, for w � plogXq10 say.

We repeatedly use this w-roughness argument in the course of the proof.
It suffices to compute the term in (9.9). We make the change of variable a ÞÑ Ã³2a.

After using cubic reciprocity and (2.2), it suffices to compute

ÿ

aPZrËs
a=1 pmod 3q

V
´NpÃ³2qNpaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,Ã³aq<1

³bg̃pbq
´a
b

¯
3

´Ã2³

b

¯
3

´ p2Ãq2{3

3Γp2
3
q
·³<1g̃paÃq
NpaÃq1{6

ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

.

(9.12)

Expansion of the square in (9.12) shows that we need to evaluate the diagonal term

D :<
ÿ

aPZrËs
a=1 pmod 3q

V
´NpÃ³2qNpaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,Ã³aq<1

³bg̃pbq
´a
b

¯
3

´Ã2³

b

¯
3

ÇÇÇ
2

; (9.13)
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the cross term

C :< ´2
p2Ãq2{3

3Γp2
3
q ·³<1Re

´ ÿ

b1,b2PZrËs

³b1 g̃pb1q³b2
Npb2q1{6

Æ
ÿ

aPZrËs
a=1 pmod 3q

paÃ,b1q<1

V
´NpaqNpÃq

A

¯´ a
b1

¯
3

´Ã2

b1

¯
3

g̃paÃq
NpaÃq1{6

¯
; (9.14)

and the trivial term,

T :<
´p2Ãq2{3

3Γp2
3
q
¯2

·³<1

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpÃq

A

¯ µ2paÃq
NpaÃq1{3

ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

. (9.15)

The appearance of µ2paÃq in T is due to |rgpaÃq|2 < µ2paÃq (a consequence of (2.2)).
In the course of this proof we will establish the three asymptotic estimates:

D < 2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯2 rV

´2
3

¯ A2{3

NpÃ³2q
ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` O
´ A2{3B5{3

NpÃ³2qw9{10

¯

` O·

´
p∆NpÃqXq·

´B2`2·NpÃq∆2

NpÃ³2q ` X

NpÃ³2q
`
1 ` pB2{Aq´1000

Ú¯¯
, (9.16)

C < ´2rV
´2
3

¯
·³<1

2Ã

9
?
3·QpËqp2; 1Ãq

´p2Ãq2{3

3Γp2
3
q
¯2 A2{3

NpÃq
ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` ·³<1

´
O·

´A2{3´Ãp·qB5{3´Ãp·q

NpÃq
¯

`O·pX·NpÃq1{2B29{12A´1{12q

` O
´A2{3B5{3

NpÃq
´ 1

w9{10
` ·Ã01

NpÃq
¯¯¯

, (9.17)

and

T < ·³<1
rV
´2
3

¯ 2Ã

9
?
3·QpËqp2; 1Ãq

´p2Ãq2{3

3Γp2
3
q
¯2 A2{3

NpÃq
ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` ·³<1 ¨ ·Ã01 ¨O
´A2{3B5{3

NpÃq2
¯

` ·³<1O·

´A1{6`·B5{3

NpÃq1{2`·

¯
. (9.18)

Thus D ` C ` T using the asymptotics (9.16), (9.17) and (9.18) respectively gives an
asymptotic expression for (9.12). Substitution of this asymptotic expression into (9.9),
and subsititution of (9.11) into (9.10), will give the result.

We now turn our attention to proving (9.16)–(9.18).

The diagonal term D. After expansion of the square in (9.13), we obtain

D <
ÿ

b1,b2PZrËs
pb1b2,Ã³q<1

³b1 g̃pb1q³b2 g̃pb2q
´Ã2³

b1

¯
3

´Ã2³

b2

¯
3

ÿ

aPZrËs
a=1 pmod 3q

V
´NpÃ³2qNpaq

A

¯´ a
b1

¯
3

´ a
b2

¯
3
.
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If pb1, b2q < d, then recall that (7.13) tells us that

g̃pb1qg̃pb2q < g̃pb1{dqg̃pb2{dq
´ d

b1{d
¯
3

´ d

b2{d
¯
3
.

Thus an application of Poisson summation (in the form of Corollary 4.1) on the a sum
shows that

D < 4ÃA

9
?
3NpÃ³2q

ÿ

dPZrËs
d=1 pmod 3q

pd,Ã³q<1

ÿ

b1,b2PZrËs
pb1,b2q<d

³b1³b2a
Npb1b2q

Æ
ÿ

kPZrËs

rcdpkq
´dÃ2³k

b1{d
¯
3

´dÃ2³k

b2{d
¯
3

:V
´ kd

?
A

b1b2NpÃ³2q1{2

¯
. (9.19)

For a given d, Ã, ³ P ZrËs in (9.19), we split the k sum into two subsums:

: k P ZrËs such that dÃ2³k < ;
: k P ZrËs such that dÃ2³k 0 .

Denote the contributions to D from each of these two cases by D1 and D2 respectively.
Thus D < D1 ` D2.

Consider D1. Since µ2pdÃ³q < 1, we deduce that dÃ2³k < if and only if k <
pd³q2ÃH for some H P ZrËs with H < . Observe that (4.8) and Lemma 5.5 imply that

rcd
`
pd³q2ÃH

Ú
< ě

`
´ pd³q2ÃH

3»

Ú
×pdq. Thus

D1 < 4ÃA

9
?
3NpÃ³2q

ÿ

dPZrËs
d=1 pmod 3q

pd,Ã³q<1

×pdq
ÿ

b1,b2PZrËs
pb1,b2q<d

pb1b2{d2,Ã³q<1

³b1³b2a
Npb1b2q

Æ
ÿ

HPZrËs
H<

pH,b1b2{d2q<1

ě
´

´pd³q2ÃH
3»

¯
:V
´d3H

?
A

b1b2

¯
. (9.20)

We further write D1 < D9
1 ` DÛ

1 , where D9
1 denotes the sum in (9.20) restricted to d < 1,

and DÛ
1 denotes the sum in (9.20) restricted to d 0 1. The support of β guarantees that

d 0 1 implies that Npdq � w. Thus by Lemma 4.4 we have

D
Û
1 ! A

NpÃ³2q
ÿ

dPZrËs
pd,Ã³q<1

d=1 pmod 3q
Npdq�w

×pdq
ÿ

b1,b2PZrËs
pb1,b2q<d

pb1b2{d2,Ã³q<1

|³b1³b2 |a
Npb1qNpb2q

´Npb1b2q1{3

NpdqA1{3
` 1

¯

!·

A2{3B5{3

wNpÃ³2q ` ABX·

NpÃ³2q !·

A2{3B5{3

wNpÃ³2q ` X1`·

NpÃ³2q . (9.21)

We now consider D9
1 . We write H < h3 with 0 0 h P ZrËs (h is necessarily non-zero in

this case). We have

ě
´

´³2Ãh3

3»

¯
< ě

´
´h3

3»

¯
< 1. (9.22)
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This can be seen by writing h < ·»iu with u = 1 pmod 3q, · P tÚ1,ÚË,ÚË2u, and
i P Z�0. Then the last equality in (9.22) follows from

ě
´

´p·»iuq3
3»

¯
< ě

´
Ú »3i

3»

¯
< 1.

Thus

D
9
1 < A

NpÃ³2q
ÿ

b1,b2PZrËs
pb1,b2q<1

pb1b2,Ã³q<1

³b1³b2a
Npb1qNpb2q

¨ 4Ã

33
?
3

ÿ

hPZrËs
ph,b1b2q<1

:V
´h3

?
A

b1b2

¯
. (9.23)

Note that the extra factor of 1{3 in the above display accounts for the fact that pËihq3 < h3

for i P t0, 1, 2u and 0 0 h P ZrËs. We remove the condition ph, b1b2q < 1 at negligible cost
since β is supported on w-rough squarefree integers in ZrËs with w � plogXq10. Thus

D
9
1 < A

NpÃ³2q
ÿ

b1,b2PZrËs
pb1,b2q<1

pb1b2,Ã³q<1

³b1³b2a
Npb1qNpb2q

¨ 4Ã

33
?
3

ÿ

hPZrËs

:V
´h3

?
A

b1b2

¯

` O
´ A2{3B5{3

NpÃ³2qw9{10

¯
` O

´ AB

NpÃ³2qw9{10

¯
. (9.24)

Observe that :V puq < :V p|u|q is a Schwarz function by Lemma 4.4. Application of Poisson
summation (in the form of Lemma 4.1) to the sum over h P ZrËs yields

4Ã

33
?
3

ÿ

hPZrËs

:V
´h3

?
A

b1b2

¯
< 8Ã

34

ÿ

mPZrËs

}

R2

:V
´px` iyq3

?
A

b1b2

¯
ě
´mpx ` iyq

»

¯
dxdy. (9.25)

We simplify the right side of (9.25). Recall that :V puq < :V p|u|q is radial. After changing
x ` iy into polar coordinates reiÓ, the right side of (9.25) becomes

8Ã

34

ÿ

mPZrËs

} 2Ã

0

} 8

0

:V
´ r3

?
Aa

Npb1b2q

¯
ě
´mreiÓ

»

¯
rdrdÓ

< 8Ã

34
Npb1b2q1{3

A1{3

ÿ

mPZrËs

} 2Ã

0

} 8

0

:V pr3qě
´mreiÓ

»

Npb1b2q1{6

A1{6

¯
rdrdÓ. (9.26)

For all m P ZrËs, Lemma 4.4 implies that
} 2Ã

0

} 8

0

:V pr3qě
´mreiÓ

»

Npb1b2q1{6

A1{6

¯
rdrdÓ

<
} 2Ã

0

} 8

0

:V pr3q·r0,X·sprqě
´mreiÓ

»

Npb1b2q1{6

A1{6

¯
rdrdÓ` O·pX´2000q. (9.27)

For 0 0 m P ZrËs, repeated integration by parts on the right side of (9.27) shows that
} 2Ã

0

} 8

0

:V pr3q·r0,X·sprqě
´mreiÓ

»

Npb1b2q1{6

A1{6

¯
rdrdÓ !· X

·pB2{Aq´1000Npmq´1000. (9.28)
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We substitute (9.27) and (9.28) into (9.26), and then sum trivially over 0 0 m P ZrËs.
Chasing the result through (9.25) gives

4Ã

33
?
3

ÿ

hPZrËs

:V
´h3

?
A

b1b2

¯
< 16Ã2

34
Npb1b2q1{3

A1{3

} 8

0

:V pr3qrdr ` O·

`
X·pB2{Aq´1000

Ú
. (9.29)

We now evaluate the main term on the right side of (9.29). We open :V using the definition
(4.4), and find that the main term is

16Ã2

34
Npb1b2q1{3

A1{3

} 8

0

uV pu2q
} 8

0

J0

´4Ãr3u
3
?
3

¯
rdrdu. (9.30)

For each fixed u P p0,8q, we make the change of variable w < 4Ãr3u{p3
?
3q in the

r-integral. Thus (9.30) becomes

p4Ãq4{3

34
Npb1b2q1{3

A1{3

} 8

0

u1{3V pu2qdu
} 8

0

J0pwqw´1{3dw. (9.31)

A change of variable shows that
} 8

0

us´1V pu2qdu < 1

2
rV
´s
2

¯
, for s P C, (9.32)

and [DLMF, (10.22.43)] implies that
} 8

0

ws´1J0pwqdw < 2s´1Γp s
2
q

Γp1 ´ s
2
q , for ´ 1 � Reps ´ 1q � 1{2. (9.33)

Using (9.32), (9.33) and Euler’s reflection formula [DLMF, (5.5.3)], we see that (9.31)
becomes

2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯2rV

´2
3

¯Npb1b2q1{3

A1{3
. (9.34)

After retracing (9.29) (9.30), (9.31) and (9.34), we obtain

4Ã

33
?
3

ÿ

hPZrËs

:V
´h3

?
A

b1b2

¯
< 2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯2rV

´2
3

¯Npb1b2q1{3

A1{3
`O·

`
X·pB2{Aq´1000

Ú
. (9.35)

Substitution of (9.35) into (9.24) gives

D
9
1 < 2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯2rV

´2
3

¯ A2{3

NpÃ³2q
ÿ

b1,b2PZrËs
pb1,b2q<1

pb1b2,Ã³q<1

³b1³b2
Npb1q1{6Npb2q1{6

` O
´ A2{3B5{3

NpÃ³2qw9{10

¯
` O

´ AB

NpÃ³2qw9{10

¯
` O·

´ X1`·

NpÃ³2qpB2{Aq´1000
¯
. (9.36)

Using w-roughness of the support of β, we drop the conditions pb1, b2q < 1 and pb1b2, Ã³q <
1 at the expense of the error term of the same order of magnitude of that occurring in
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(9.36). After recalling that D1 < D9
1 ` DÛ

1 , (9.21), and (9.36), we obtain

D1 < 2Ã

9
?
3

´p2Ãq2{3

3Γp2
3
q
¯2rV

´2
3

¯ A2{3

NpÃ³2q
ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` O
´ A2{3B5{3

NpÃ³2qw9{10

¯
` O·

´ X1`·

NpÃ³2q
`
1 ` pB2{Aq´1000

Ú¯
. (9.37)

We now consider D2,

D2 < 4ÃA

9
?
3NpÃ³2q

ÿ

dPZrËs
d=1 pmod 3q

pd,Ã³q<1

ÿ

b1,b2PZrËs
pb1,b2q<d

³b1³b2a
Npb1b2q

Æ
ÿ

kPZrËs
dÃ2³k0

rcdpkq
´dÃ2³k

b1{d
¯
3

´dÃ2³k

b2{d
¯
3

:V
´ kd

?
A

b1b2NpÃ³2q1{2

¯
. (9.38)

We rescale b1 Ñ db1 and b2 Ñ db2 and use Lemma 4.4 in (9.38). We obtain

D2 < 4ÃA

9
?
3NpÃ³2q

ÿ

dPZrËs
d=1 pmod 3q

pd,Ã³q<1

1

Npdq
ÿ

b1,b2PZrËs
pb1b2,Ã³q<1

pb1,b2q<1

³db1³db2a
Npb1qNpb2q

Æ
ÿ

kPZrËs
dÃ2³k0
Npkq!Z

rcdpkq
´dÃ2³k

b1

¯
3

´dÃ2³k

b2

¯
3

:V
´ k

?
A

db1b2NpÃ³2q1{2

¯

` O·ppNpÃq∆Xq´1000q, (9.39)

where

Z :< p∆NpÃqXq·
´
1 ` B2NpÃq∆2

NpdqA
¯
.

We Möbius invert pb1, b2q < 1 and separate variables by opening :V using (7.18) and (7.19).
Rearranging the absolutely convergent finite sums and integrals by Fubini’s theorem gives

D2 < 2Ap´1qL
9i

?
3NpÃ³2q

} 8

0

} ´·`iX·

´·´iX·

V pLqpr2qr2L`1 Γp´sq
ΓpL ` s ` 1q

´ 2Ã
?
A

3
?
3NpÃq1{2Np³q

¯2s

Æ
ÿ

fPZrËs
f=1 pmod 3q

pf,Ã³q<1

µpfq
Npfq1`2s

ÿ

dPZrËs
d=1 pmod 3q

pd,Ã³q<1

1

Npdq1`s

ÿ

kPZrËs
dÃ2³k0
Npkq!Z

rcdpkq
´dÃ2³k

f

¯
3

´dÃ2³k

f

¯
3
Npkqs

Æ
´ ÿ

b1PZrËs
pb1,Ã³q<1

³fdb1a
Npb1q

´dÃ2³k

b1

¯
3
Npb1q´s

¯´ ÿ

b2PZrËs
pb2,Ã³q<1

³fdb2a
Npb2q

´dÃ2³k

b2

¯
3
Npb2q´s

¯
dsdr

` O·ppNpÃq∆Xq´1000q,
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for any fixed L P Z�1. We use Axiom 4 of Definition 3.1 to estimate the sum over b1 and
b2, and then estimate the remaining sums trivially using Lemma 5.5. We obtain

D2 !· p∆NpÃqXq·
´ AB2·

NpÃ³2q ` B2`2·NpÃq∆2

NpÃ³2q
¯
. (9.40)

Since · � 1
4
we have AB2· � X . After recalling (9.37), (9.40) and the fact that D <

D1 ` D2, we obtain (9.16).

The cross terms C . Recall that (9.14) records the cross term. Observe that (2.3) tells us
that

g̃pb1qg̃paÃq
´ a
b1

¯
3

´Ã2

b1

¯
3

< g̃paÃb1q. (9.41)

Substituting (9.41) into (9.14) gives

C :< ´2
p2Ãq2{3

3Γp2
3
q ·³<1Re

´ ÿ

b1,b2PZrËs

³b1³b2
Npb2q1{6

ÿ

aPZrËs
a=1 pmod 3q

paÃ,b1q<1

V
´NpaqNpÃq

A

¯ g̃paÃb1q
NpaÃq1{6

¯
. (9.42)

We now evaluate the sum over a P ZrËs in (9.42) using our asymptotic formula for
type-I sums in Proposition 8.1 (for level Ãb1). Thus there exists Ãp·q P p0, 1

10000
q such that

ÿ

b1PZrËs

³b1

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpÃq

A

¯ g̃paÃb1q
NpaÃq1{6

< rV
´2
3

¯ p2Ãq5{3A2{3

37{2Γp2
3
qNpÃq5{6

ÿ

b1PZrËs

³b1×pÃb1q
·QpËqp2; 1Ãb1qNpÃb1q7{6

` O·

´A2{3´Ãp·qB5{6´Ãp·q

NpÃq
¯

` O·

`
X·NpÃq1{2B19{12A´1{12

Ú
. (9.43)

We now use the fact that β is supported on w-rough squarefree elements of ZrËs that are
congruent to 1 modulo 3. We have

log
´ ×pÃb1q
NpÃb1q

¯
<

ÿ

�|Ãb1
� prime

log
`
1 ´ Np�q´1

Ú
< ´

ÿ

�|Ãb1
� prime

8ÿ

L<1

1

LNp�qL < O
´ 1

w9{10
` ·Ã01

NpÃq
¯
.

Thus

×pÃb1q
NpÃb1q < 1 ` O

´ 1

w9{10
` ·Ã01

NpÃq
¯
. (9.44)

Similarly, we also have

1

·QpËqp2; 1Ãb1q < 1

·QpËqp2; 1Ãq ` O
´ 1

w19{10

¯
. (9.45)
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Insertion of (9.44) and (9.45) into (9.43) gives

ÿ

b1PZrËs

³b1

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpÃq

A

¯ g̃paÃb1q
NpaÃq1{6

< rV
´2
3

¯ p2Ãq5{3A2{3

37{2Γp2
3
q·QpËqp2; 1ÃqNpÃq

ÿ

b1PZrËs

³b1
Npb1q1{6

` O·

´A2{3´Ãp·qB5{6´Ãp·q

NpÃq
¯

` O·pX·NpÃq1{2B19{12A´1{12q ` O
´A2{3B5{6

NpÃq
´ 1

w9{10
` ·Ã01

NpÃq
¯¯
. (9.46)

Insertion of (9.46) into (9.42) gives (9.17).

The trivial term T . Recall that (9.15) records

T <
´p2Ãq2{3

3Γp2
3
q
¯2

·³<1

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpÃq

A

¯ µ2paÃq
NpaÃq1{3

ÇÇÇ
ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

. (9.47)

Mellin inversion of the smooth function, the Class number formula [Lan94, Chapter VIII,
§2, Theorem 5] and subsequent contour shift to the right of the 1{6-line (in the s-variable)
gives

ÿ

aPZrËs
a=1 pmod 3q

V
´NpaqNpÃq

A

¯ µ2paÃq
NpaÃq1{3

< 1

2Ãi

}

p2q

rV psq ·QpËqps ` 1{3; 1Ãq
·QpËqp2s ` 2{3; 1Ãq

As

NpÃqs`1{3
ds

< rV
´2
3

¯
p1 ´ ·Ã01 ¨NpÃq´1q 2ÃA2{3

9
?
3·QpËqp2; 1ÃqNpÃq

` O·

´ A1{6`·

NpÃq1{2`·

¯

< rV
´2
3

¯ 2ÃA2{3

9
?
3·QpËqp2; 1ÃqNpÃq

` ·Ã01O
´ A2{3

NpÃq2
¯

` O·

´ A1{6`·

NpÃq1{2`·

¯
. (9.48)

Insertion of (9.48) into (9.47) gives (9.18). �

Lemma 9.2. Given y � 1, there exists coefficients p»dqdPZrËs such that

(1) »1 < 1 and |»d| !· Npdq· for all d P ZrËs and all · � 0;
(2) »d < 0 if Npdq � y2 or d 1 1 pmod 3q;
(3) For all n P ZrËs we have

µ2pnq �
ÿ

d2|n

»d; (9.49)

(4) For any · � 0 and Ã P ZrËs a prime Ã = 1 pmod 3q (or 1) we have

ÿ

dPZrËs
pd,Ãq<1

»d

Npdq2 < 1

·QpËqp2; 1Ãq ` O·py´1{2`·q. (9.50)
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Proof. Given d = 1 pmod 3q, let

»d :<
ÿ

Npeq,Npfq�y
e,f=1 pmod 3q

d<re,fs

µpeqµpfq

Properties (1) and (2) are immediate from the definition. Property (3) follows from

ÿ

d2|n

»d <
´ ÿ

Npeq�y

e2|n

µpeq
¯2

.

It remains to check property (4). We have

ÿ

dPZrËs
pd,Ãq<1

»d

Npdq2 <
ÿ

Npeq,Npfq�y
e,f=1 pmod 3q

pef,Ãq<1

µpeqµpfq
Npre, f sq2 <

ÿ

e,f=1 pmod 3q
pef,Ãq<1

µpeqµpfq
Npre, f sq2 ` Opy´1{2`·q. (9.51)

The main term in (9.51) is equal to

{

�=1 pmod 3q
�0Ã

´
1 ` 1

Np�q2 p´2 ` 1q
¯

<
{

�=1 pmod 3q
�0Ã

´
1 ´ 1

Np�q2
¯

< 1

·QpËqp2; 1Ãq ,

as required. �

Proof of Proposition 9.1. In the first display of the statement of Proposition 9.1 we use
property (3) in Lemma 9.2 with y < X· with · � 0 small and fixed, and inclusion-
exclusion on the condition pa, bq < 1. We see that the first display in Proposition 9.1
is

�
ÿ

aPZrËs
a=1 pmod 3q

Ã|a

V
´Npaq

A

¯ÇÇÇ
´ ÿ

bPZrËs
pb,³aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs

³b

Npbq1{6

¯

`
´p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq01

³b

Npbq1{6

¯ÇÇÇ
2´ ÿ

³2|a

»³

¯
. (9.52)

Since V is non-negative and
Y

³2|a »³ � 0, we can apply the parallelogram inequality (9.8)

to (9.52). We see that the right side of (9.52) is

� 2
ÿ

aPZrËs
a=1 pmod 3q

Ã|a

V
´Npaq

A

¯´ÇÇÇ
ÿ

bPZrËs
pb,³aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

` p2Ãq4{3

9Γp2
3
q2

ÿ

aPZrËs
a=1 pmod 3q

Ã|a

µ2paq
Npaq1{3

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,aq01

³b

Npbq1{6

ÇÇÇ
2¯´ ÿ

³2|a

»³

¯
. (9.53)
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We interchange the order of summation and use (2.2) in (9.53). We see that the right
side of (9.53) is equal to

2
´ ÿ

³=1 pmod 3q

»³

Æ
´ ÿ

aPZrËs
a=1 pmod 3q

Ã|a,³2|a

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,³aq<1

³bg̃pbq
´ b
a

¯
3

´ p2Ãq2{3

3Γp2
3
q
·³<1g̃paq
Npaq1{6

ÿ

bPZrËs

³b

Npbq1{6

ÇÇÇ
2

(9.54)

` ·³<1
p2Ãq4{3

9Γp2
3
q2

ÿ

aPZrËs
a=1 pmod 3q

Ã|a

µ2paq
Npaq1{3

V
´Npaq

A

¯ÇÇÇ
ÿ

bPZrËs
pb,aq01

³b

Npbq1{6

ÇÇÇ
2¯¯

. (9.55)

Observe that (9.55) matches (9.10), and is estimated by (9.11). If pÃ, ³q < 1, then the
divisibility condition in (9.54) becomes Ã³2 | a. Thus (9.54) in this case matches (9.9),
and is estimated asymptotically by by D ` C ` T , where D , C and T have asymptotic
expressions given by (9.16), (9.17), and (9.18) respectively. Summing the asymptotic
expression for D ` C ` T over ³ with p³, Ãq < 1 (with sieve weights »³) using properties
(1), (2), and (4) of Lemma 9.2 yields the bound stated in Proposition 9.1. If pÃ, ³q 0 1,
then the divisibility condition in (9.54) becomes ³2 | a with Ã | ³ and Ã 0 1. Performing
a similar computation to the previous case gives the result. �

10. Broad Type II estimates

We prove the following type-II estimates for sequences in C·p¨, wq.

Proposition 10.1. Let W be a smooth function compactly supported in r1, 2s, 0 � · �
1{4, A,B � 10 and set X :< AB. Let α be a sequence supported in Npaq P rA{10, 10As
with a = 1 pmod 3q squarefree. Suppose that w � plogXq10, β < p³bq P C·pB,wq,
· P p0, 1

10000
q and Ã = 1 pmod 3q a prime or 1 satisfying 1 � NpÃq � w. Then there exists

Ãp·q P p0, 1
10000

q such that

ÿ

a,bPZrËs
Ã|a

³a³bg̃pabqW
´Npabq

X

¯
< p2Ãq2{3

3Γp2
3
q

ÿ

a,bPZrËs
Ã|a

³a³bµ
2pabq

Npabq1{6
W

´Npabq
X

¯

` O·

´´ ÿ

aPZrËs
Ã|a

|³a|2
¯1{2

¨
´A1{3B5{6

NpÃq1{2

´ 1

w9{20
` ·Ã01

NpÃq1{2

¯
` A1{3´Ãp·q{2B5{6´Ãp·q{2

NpÃq1{2

` A1{12`·{2B5{6

NpÃq1{4`·{2
` pXNpÃqq·{2

´
NpÃq1{4B29{24A´1{24 ` B1`· ` X1{2

NpÃq1{2

´
1 ` pB2{Aq´500

¯¯¯¯
.

Remark 10.1. Suppose Ã < 1 say. Then for dense sequences α,β and given ¿ � 0, the
result is non-trivial in the range X1{3`¿ � B � X1{2´¿, for some appropriate choice of ·, ·
and w.
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Proof. Observe that (2.3) gives

ÿ

a,bPZrËs
Ã|a

³a³b

´
g̃pabq ´ p2Ãq2{3

3Γp2
3
q

µ2pabq
Npabq1{6

¯
W

´Npabq
X

¯

<
ÿ

a,bPZrËs
Ã|a

pa,bq<1

³a³b

´
g̃pabq ´ p2Ãq2{3

3Γp2
3
q

1

Npabq1{6

¯
W

´Npabq
X

¯

< 1

2Ãi

} i8

´i8

�W psqXs
ÿ

aPZrËs
Ã|a

³ag̃paq
Npaqs

´ ÿ

bPZrËs
pb,aq<1

³bg̃pbq
Npbqs

´a
b

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq<1

³b

Npbq1{6`s

¯
ds.

(10.1)

Application of triangle inequality and then Cauchy-Schwarz to the a-sum shows that

|(10.1)|2 !
´ ÿ

aPZrËs
a=1 pmod 3q

Ã|a

|³a|2
¯ } 8

´8

|�W pitq|
´ ÿ

aPZrËs
Ã|a

µ2paqV
´Npaq

A

¯

Æ
ÇÇÇ
ÿ

bPZrËs
pb,aq<1

³bg̃pbq
Npbqit

´a
b

¯
3

´ p2Ãq2{3

3Γp2
3
q

g̃paq
Npaq1{6

ÿ

bPZrËs
pb,aq<1

³b

Npbq1{6`it

ÇÇÇ
2¯
dt,

where V : R Ñ R a smooth compactly supported function such that V � 1r1{10,10s. Using
Proposition 9.1 gives the result. �

11. Average Type-I estimates

In this section we prove an average Type-I estimate. This average Type-I estimate will
be more directly useful to us than the pointwise Type-I estimate proved in Section 8.
Recall that 3 P Z, c = 1 pmod 3q, and

g3pcq :< g̃pcq
´ c

|c|
¯3

.

Proposition 11.1. Assume the Generalized Riemann Hypothesis for the Dedekind zeta
function attached to QpËq twisted by Größencharaktern. Let 3 P Z, · P p0, 1

1000000
q, A �

1000 be large and fixed, and plogXqA � w � X·. Let V,W be smooth functions, compactly
supported in r1

2
, 4s. Let 0 � · � 100{A and α < p³rq P C·pX,wq. Then uniformly for

C � X2{3´· and |3| � X1{100 we have

ÿ

rPZrËs
c=1 pmod 3q

�|c ùñ Np�q�w

³rg̃3pcrqV
´Npcq

C

¯
W

´Npcrq
X

¯
< p2Ãq2{3

3Γp2
3
q

ÿ

rPZrËs
c=1 pmod 3q

�|c ùñ Np�q�w

³rµ
2pcrq

`
cr

|cr|

Ú3

Npcrq1{6

` O·,A

´ X5{6

plogXq 9
20

A´10

¯
. (11.1)
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Proof of Proposition 11.1. Möbius inversion asserts that

·�|c ùñ Np�q�w <
ÿ

u|c
u=1 pmod 3q

�|u ùñ Np�q�w

µpuq. (11.2)

Using (11.2), we express the left side of (11.1) as
ÿ

k�0

p´1qk
ÿ

N dyadic

Bk,3pNq, (11.3)

where

Bk,3pNq :<
ÿ

r,u,nPZrËs
u,n=1 pmod 3q

³rg̃3pnruq
´
· Ëpuq<k
�|u ùñ Np�q�w

¯
V
´Npnq

N

¯
V
´Npnuq

C

¯
W

´Npnruq
X

¯
.

(11.4)

Case 1: N � X1{2`1{20. Consulting Remark 8.4 we see that we in the range where
Corollary 8.1 is non-trivial. Thus Corollary 8.1 and Remark 8.1 guarantee a small fixed
·0 � 0 such that we have (uniformly in |3| � X1{100),

Bk,3pNq :< ·3<0 ¨ p2Ãq2{3

3Γp2
3
q

ÿ

r,u,nPZrËs
u,n=1 pmod 3q

³rµ
2pnruq

`
nru

|nru|

Ú3

Npnruq1{6

´
· Ëpuq<k
�|u ùñ Np�q�w

¯

Æ V
´Npnq

N

¯
V
´Npnuq

C

¯
W

´Npnruq
X

¯
` O·pX5{6´·0q. (11.5)

We can drop the condition ·3<0 since if 3 0 0 then the sum over n majorised by the error
term in the above display.

Case 2: N � X1{2`1{20. Suppose we are given a squarefree 1 0 u P ZrËs satisfying
u = 1 pmod 3q, and such that all prime factors of u have norm � w. Then, given a prime
Ã|u, there is a unique factorisation u < bÃd such that all the prime factors of d (resp.
b) satisfy � Ã (resp. satisfy � Ãq. See Remark 6.1 for the ordering � on ideals. Since
Nprq 4 X{C ! X1{3`· and Npruq 4 X{N " X1{2´1{20, we are guaranteed a unique prime
Ã P ZrËs such that u < bÃd with Nprbq � X13{30 and NprbÃq � X13{30. Hence

Bk,3pNq :<
ÿ

r,nPZrËs
n=1 pmod 3q

³rV
´Npnq

N

¯ ÿ

uPZrËs
u=1 pmod 3q

g̃3pnruqV
´Npnuq

C

¯
W

´Npnruq
X

¯

Æ
´ ÿ

ÃPZrËs
Ã prime
NpÃq�w

Ã=1 pmod 3q

ÿ

u<bÃd
Ëpuq<k

b,d=1 pmod 3q

Nprbq�X13{30 ,NprbÃq�X13{30

�|b ùñ w�Np�q�NpÃq
�|d ùñ Np�q�NpÃq

1
¯
. (11.6)
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We introduce smooth partitions of unity in the Nprq, Npbq and Npdq in (11.6). Then (2.3)
and Mellin inversion imply that

Bk,3pNq <
ÿ

D,R,B dyadic

ÿ

pk1,k2qPpZ�0q2

k1`k2<k´1

Bpk1,k2q,3pN,D,R,Bq, (11.7)

where

Bpk1,k2q,3pN,D,R,Bq < 1

p2Ãiq2
} i8

´i8

} i8

´i8

CsXv rV psq�W pvq

Æ
ÿ

ÃPZrËs,Ã prime
NpÃq�w,Ã=1 pmod 3q

g̃3pÃq
NpÃqs`v

´ ÿ

j,hPZrËs
j,h=1 pmod 3q

³jpÃ, k1; s, v, 3q³hpÃ, k2; s, v, 3qg̃pjhq
¯
dsdv,

(11.8)

and

³jpÃ, k1; s, v, 3q :<
µ2pjq
Npjqv

´Ã
j

¯
3

´ j

|j|
¯3 ÿ

j<rb
Ëpbq<k1

r,b=1 pmod 3q,pj,Ãq<1

Npjq�X13{30,NpjÃq�X13{30

�|b ùñ w�Np�q�NpÃq

³rV
´Nprq

R

¯
V
´Npbq

B

¯
Npbq´s;

(11.9)

³hpÃ, k2; s, v, 3q :<
µ2phq
Nphqs`v

´Ã
h

¯
3

´ h

|h|
¯3 ÿ

h<nd
Ëpdq<k2

n,d=1 pmod 3q,ph,Ãq<1
�|d ùñ Np�q�NpÃq

V
´Npnq

N

¯
V
´Npdq

D

¯
.

We write

³jpB,R, Ã, k1; s, v, 3q :< ³jpÃ, k1; s, v, 3q and ³hpN,D, k2, Ã; s, v, 3q :< ³hpÃ, k2; s, v, 3q,
(11.10)

when we care to emphasise the dyadic ranges B,R and N,D that are present in the
definitions of β and γ respectively.

For each given Ã P ZrËs prime, the sum over j and h in (11.8) is empty unless

X13{30{p1000NpÃqq � RB � 1000X13{30, (11.11)

and NDRB 4 X{NpÃq. Thus ND " X17{30. Since N � X1{2`1{20, we must have
D " X1{15´1{20 whenever the sum over j, h in (11.8) is non-zero. We now write

Bpk1,k2q,3pN,D,R,Bq < B
:
pk1,k2q,3pN,D,R,Bq ` B

9
pk1,k2q,3pN,D,R,Bq, (11.12)

where B
:
pk1,k2q,3 corresponds the part of (11.8) with NpÃq � plogDqA, and B9

pk1,k2q,3 cor-

responds to plogDqA � NpÃq � w.

Treatment of B
:
pk1,k2q,3pN,D,R,Bq. Since p³rq is supported only on w-rough elements of

ZrËs, the factorisation j < rb occurring in the definition of the sequence ³j is unique.
Thus |³jpÃ, k1; s, v, 3q| � 1 for Re s,Re v < 0.

On the other hand, the sequence ³hpN,D, Ã, k2; s, v, 3q is sparse when NpÃq is on log-
power scales. We pause the proof to illustrate this in the following Lemma. We also
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make the crude observations that ³h is supported on h P ZrËs with Nphq 4 ND, and also
satisfies |³hpÃ, k2; s, v, 3q| � 2Ëphq for Re s,Re v < 0.

Lemma 11.1. Let N,D,A � 10, k2 P Z�0, and let Ã P ZrËs be a prime that satisfies
Ã = 1 pmod 3q and NpÃq � plogDqA. Then

ÿ

hPZrËs

|³hpN,D, Ã, k2; s, v, 3q|2 !A pNDqop1q ¨ND1´K{A,

with K � 0 a small absolute constant.

Proof of Lemma 11.1. We first refine our bound for }γ}8. We have

|³hpÃ, k2; s, v, 3q| � 2Ëphq ¨ 1hPUÃ ! 2
2 logNphq

log logNphq ¨ 1hPUÃ ,

where UÃ is the set of squarefree integers of the form nd with n, d = 1 pmod 3q, pnd, Ãq <
1, Npnq 4 N , Npdq 4 D, and such that all of the prime factors of d have norm � NpÃq.
Observe that d has necessarily � logD

100 logNpÃq
(say) prime factors. Therefore

ÿ

hPZrËs

|³hpN,D, Ã, k2; s, v, 3q|2 ! pNDq
4

log logpNDq ¨ |UÃ|. (11.13)

Let Ã � 0 be chosen later. We have

|UÃ| ! pNDq
ÿ

d=1 pmod 3q
�|d ùñ Np�q�NpÃq

Ëpdq� logD
100 logNpÃq

µ2pdq
Npdq

� pNDq ¨ exp
´

´ Ã logD

100 logNpÃq
¯ ÿ

d=1 pmod 3q
�|d ùñ Np�q�NpÃq

µ2pdqeÃËpdq

Npdq

� pNDq ¨ exp
´

´ Ã logD

100 logNpÃq
¯ {

Np�q�NpÃq

´
1 ` eÃ

Np�q
¯

! pNDq ¨ exp
´
2eÃ log logNpÃq ´ Ã logD

100 logNpÃq
¯

! pNDq ¨ exp
´
2eÃ logNpÃq ´ Ã logD

100 logNpÃq
¯

! pNDq ¨ exp
´
2AeÃ log logD ´ Ã logD

100A log logD

¯
. (11.14)

We choose

Ã :< log logD ´ 1000 log log logD.

Thus (11.14) implies that

|UÃ| !A ND
1´1{p1000Aq (11.15)

for all D (hence X) sufficiently large. Thus (11.13) now implies the Lemma. �
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We now resume the proof of Proposition 11.1. We now use (2.3), the Cauchy-Schwarz
inequality, Heath-Brown’s cubic large sieve (Theorem 9.1) Lemma 11.1, and the conditions
(11.11), NDRB 4 X{NpÃq and D " X1{15´1{20 to obtain

|B:
pk1,k2q,3pN,D,R,Bq|

!A X
op1q

ÿ

ÃPZrËs
Ã prime

NpÃq�plogDqA

Ã=1 pmod 3q

´
pRBq1{2

´
RB ` ND ` pRBNDq2{3

¯1{2

N1{2D1{2´1{p500Aq
¯

!A X
5{6´1{p1000000Aq,

say. We include a redundant main term of size that is absorbed by the error term i.e. we
can write

B
:
pk1,k2q,3pN,D,R,Bq

< p2Ãq2{3

3Γp2
3
q

ÿ

r,u,nPZrËs
n=1 pmod 3q

³rµ
2pnruqp nru

|nru|
q3

Npnruq1{6
V
´Nprq

R

¯
V
´Npnq

N

¯
V
´Npnuq

C

¯
W

´Npnruq
X

¯

Æ
´ ÿ

ÃPZrËs
Ã prime

NpÃq�plogDqA

Ã=1 pmod 3q

ÿ

u<bÃd
Ëpbq<k1,Ëpdq<k2
b,d=1 pmod 3q

Nprbq�X13{30

NprbÃq�X13{30

�|b ùñ w�Np�q�NpÃq
�|d ùñ Np�q�NpÃq

V
´Npbq

B

¯
V
´Npdq

D

¯¯
` OApX5{6´1{p1000000Aqq.

(11.16)

Treatment of B9
k,3p¨ ¨ ¨ q. Recall that plogXqA � w � X·, and that plogXqA � NpÃq � w.

We reassemble the integral in the v-variable in (11.8), and recover the smooth weight
W pNpjhÃq{Xq. By Lemma 6.1 and Lemma 6.3 we have βpR,B; Ã; s, 3q P C·pRB,NpÃqq
(from (11.9)) (after re-scaling by an appropriate absolute non-zero constant) for all · �
100{A. We then apply Proposition 10.1 and see that there is a Ãp·q P p0, 1

10000
q such that

B
9
pk1,k2q,3pN,D,R,Bq

< p2Ãq2{3

3Γp2
3
q

ÿ

r,u,nPZrËs
n=1 pmod 3q

³rµ
2pnruqp nru

|nru|
q3

Npnruq1{6
V
´Nprq

R

¯
V
´Npnq

N

¯
V
´Npnuq

C

¯
W

´Npnruq
X

¯

Æ
´ ÿ

ÃPZrËs
Ã prime

plogDqA�NpÃq�w
Ã=1 pmod 3q

ÿ

u<bÃd
Ëpbq<k1,Ëpdq<k2
b,d=1 pmod 3q

Nprbq�X13{30

NprbÃq�X13{30

�|b ùñ w�Np�q�NpÃq
�|d ùñ Np�q�NpÃq

V
´Npbq

B

¯
V
´Npdq

D

¯¯
` E, (11.17)
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where

E < OA,·

´
log logw

´X5{6

w9{20
` X5{6´Ãp·q

¯
` X5{6

plogXqA{2

` X83{120`op1qw1{4 ` X47{60`op1qw3{4 ` X17{60`p13{30qp1`100{Aq`op1qw1{2
¯
.

Note that both the error terms in (11.16) and (11.17) are uniform with respect to 3, k1
and k2.

Conclusion. After combining (11.16) and (11.17) in (11.12), we obtain an asymptotic
expression for Bpk1,k2q,3pN,D,R,Bq for each dyadic value of N satisfying N � X1{2`1{20.
We reassemble the sum over pk1, k2q P pZ�0q2 (satisfying k1 ` k2 < k ´ 1), as well as the
partitions of unity in Npbq, Npdq and Nprq in (11.7). We then collapse the weights in
the main term back to

`
· Ëpuq<k
�|u ùñ Np�q�w

Ú
, and obtain an asymptotic expression for Bk,3pNq

for each dyadic value N satisfying N � X1{2`1{20. Recall that (11.5) gives an asymptotic
expression for Bk,3pNq for each dyadic value N satisfying N � X1{2`1{20. We combine
these two results in (11.3), and reassemble the partition of unity over Npnq. Note that
the reassembly of partitions of unity and the sums over ki do not overwhelm the error
terms (one only has losses of OpplogXq10q say. Inserting this asymptotic expression into
(11.3), and noting that

ÿ

k�0

p´1qk
´
· Ëpuq<k
�|u ùñ Np�q�w

¯
µ2pnruq < µ2pnruq

´
·�|u ùñ Np�q�w

¯
µpuq,

as well as (11.2), we obtain the result. �

12. Combinatorial decompositions

We will use the following combinatorial decomposition.

Lemma 12.1. Let W : R Ñ R be a smooth function compactly supported in p0, Cq. Let
pspnqqnPZrËs be a sequence satisfying |spnq| � 1 and have support on squarefree n satisfying

n = 1 pmod 3q. Then for 2 � w � CX1{3 � z we have

ÿ

�=1 pmod 3q
Np�q�z

sp�qW
´Np�q

X

¯
< ´1

2

ÿ

�1,�2=1 pmod 3q
Np�1q,Np�2q�z

sp�1�2qW
´Np�1�2q

X

¯

`
ÿ

k�0

p´1qk
k!

ÿ

w�Np�1q,...,Np�kq�z
@i:�i=1 pmod 3q

c=1 pmod 3q
k<0 ùñ c01

�|c ùñ Np�q�w

spc�1 . . .�kqW
´Npc�1 . . .�kq

X

¯
` Op

?
Xq.

Proof. We assume that Re s � 1 throughout this proof. We have

·�zpsq :<
{

Np�q�z
�=1 pmod 3q

´
1 ´ 1

Np�qs
¯´1

,
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and
ÿ

L�1

1

L

ÿ

Np�q�z
�=1 pmod 3q

1

Np�qLs < log ·�zpsq < logp1 ` p·�zpsq ´ 1qq

< p·�zpsq ´ 1q ´ 1

2
¨ p·�zpsq ´ 1q2 `

ÿ

j�3

p´1qj`1

j
¨ p·�zpsq ´ 1qj. (12.1)

Furthermore,

·�zpsq < ·�wpsq
{

w�Np�q�z
�=1 pmod 3q

´
1 ´ 1

Np�qs
¯
,

where

·�wpsq :<
{

Np�q�w
�=1 pmod 3q

´
1 ´ 1

Np�qs
¯´1

<
ÿ

c=1 pmod 3q
�|c ùñ Np�q�w

1

Npcqs . (12.2)

The equation (12.2) is valid since every c = 1 pmod 3q has a unique factorisation c <
�1 . . .�k with �i = 1 pmod 3q for i < 1, . . . , k. Expand the product

{

w�Np�q�z
�=1 pmod 3q

´
1 ´ 1

Np�qs
¯

< 1 `
ÿ

k�1

p´1qk
k!

ÿ

w�Np�1q,...,Np�kq�z
@i:�i=1 pmod 3q

�i all distinct

1

Np�1 . . .�kqs .

Therefore

·�zpsq ´ 1 <
ÿ

k�0

p´1qk
k!

ÿ

w�Np�1q,...,Np�kq�z
@�i=1 pmod 3q
�i all distinct
c=1 pmod 3q
k<0 ùñ c01

�|c ùñ Np�q�w

1

Npc�1 . . .�kqs . (12.3)

Substitution of (12.3) into (12.1) gives

ÿ

L�1

1

L

ÿ

Np�q�z
�=1 pmod 3q

1

Np�qLs <
ÿ

k�0

p´1qk
k!

ÿ

w�Np�1q,...,Np�kq�z
@�i=1 pmod 3q
�i all distinct
c=1 pmod 3q
k<0 ùñ c01

�|c ùñ Np�q�w

1

Npc�1 . . .�kqs (12.4)

´ 1

2
¨ p·�zpsq ´ 1q2 `

ÿ

j�3

p´1qj`1

j
¨ p·�zpsq ´ 1qj .

The result follows from a comparison of coefficients. Observe that that the total contri-
bution from terms Np�qk � X with k � 2 on the left side of (12.4) is Op

?
Xq. Since

z � CX1{3 and W is compactly supported in p0, Cq, we see that the contribution from all
terms p·�zpsq´1qj with j � 3 is zero. Notice that spc�1 . . .�kq is zero if c�1 . . . �k is not
squarefree by hypothesis, so we can drop the requirement that the �i are all distinct. �
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13. Proof of Theorems 1.1 and 1.3

We first record a useful Lemma due to Polymath that classifies the Type-I, Type-II and
Type-III information that occurs in the proof of our main theorems.

Lemma 13.1. [Pol14, Lemma 3.1] Given an integer n � 1 and 1
10

� Ã � 1
2
, let t1, . . . , tn

be non-negative real numbers such that t1 ` . . .` tn < 1. Then at least one of the following
three statement holds:

(Type-I) There is an i P r1, ns such that ti � 1
2

` Ã;
(Type-II) There is a partition t1, . . . , nu < S Y T such that

1

2
´ Ã �

ÿ

iPS

ti �
ÿ

iPT

ti � 1

2
` Ã;

(Type-III) There exists distinct i, j, v P r1, ns such that 2Ã � ti � tj � tv � 1
2

´ Ã and

ti ` tj , tj ` tv, tv ` ti � 1

2
` Ã.

Furthermore, if Ã � 1{6, then the Type-III alternative can’t occur.

Proof of Theorems 1.1 and 1.3. We first explain some initial manipulations.

Initial reduction. For any rational prime p = 1 pmod 3q we have

Sp

2
?
p

< Re g̃p�q,

where � P ZrËs is a prime such that � = 1 pmod 3q and p < ��. The number of primes
� = 1 pmod 3q for which Np�q is not prime is Op

?
Xq. Such primes are those that lie

over rational primes p = 2 pmod 3q. To prove Theorem 1.1 it suffices to estimate the
quantity

ÿ

�=1 pmod 3q

g̃p�qW
´Np�q

X

¯
.

Observe that (2.2) implies that

g̃p�q3 < ´ �

|�| .

Thus

g̃p�qk < p´1q3
´ �

|�|
¯3

Æ

$
9&
9%

g̃p�q if k = 1 pmod 3q with 3 < k´1
3

g̃p�q if k = 2 pmod 3q with 3 < k`1
3

1 if k = 0 pmod 3q with 3 < k
3

.

In particular, Theorem 1.3 with k = 0 pmod 3q follows directly from the assumption of
the Generalized Riemann Hypothesis.

To establish Theorem 1.3, it suffices to show that

ÿ

�=1 pmod 3q

g̃p�q
´ �

|�|
¯3

W
´Np�q

X

¯
< o

´ X5{6

logX

¯
,
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as X Ñ 8 and uniformly in 0 � |3| � X1{100. To prove both Theorem 1.1 and Theorem
1.3 simultaneously it is enough to estimate

ÿ

�=1 pmod 3q

g̃p�q
´ �

|�|
¯3

W
´Np�q

X

¯
,

to a precision better than opX5{6{ logXq. For c = 1 pmod 3q define

g̃3pcq :< g̃pcq
´ c

|c|
¯3

.

Let · P p0, 10´6q be fixed. Let

w :< X· and z :< X1{3`·.

By Lemma 12.1 we have

ÿ

�=1 pmod 3q

g̃3p�qW
´Np�q

X

¯
< ´1

2

ÿ

�1,�2=1 pmod 3q
Np�1q,Np�2q�z

g̃3p�1�2qW
´Np�1�2q

X

¯
(13.1)

`
ÿ

k�0

p´1qk
k!

ÿ

p�1,...,�k,cqPSpw,zq

g̃3p�1 . . .�kcqW
´Np�1 . . .�kcq

X

¯
` Op

?
Xq, (13.2)

where Spw, zq denotes the set of tuples p�1, . . . , �k, cq with k � 0 such that

: �1, . . . , �k are primes congruent to 1 pmod 3q (when k � 1);
: For all 1 � i � k we have w � Np�iq � z (when k � 1);
: c is w-rough, c = 1 pmod 3q, and k < 0 ùñ c 0 1.

When k < 0, the sum is understood just to be over the variable c.
Let ¿ P p0, 10´6q be a small fixed quantity to be decided at a later point in the proof

(it will ultimately depend on ·).

Remark 13.1. Uniformity of error terms in 3 is not an issue when deploying Type II/III
estimates (i.e. Proposition 7.1 and Proposition 10.1). This is because (2.3) is applied to
g̃3pabq, and the dependence on 3 is absorbed into the coefficients α and β that satisfy
}α}8, }β}8 � 1. The dependence on 3 issue emanates from the application of the average
Type-I estimate in Proposition 11.1.

Sum on the right side side of (13.1). We introduce a smooth partition of unity on
each of the Np�iq to evaluate the (Type-II) sum over Np�1q, Np�2q � z. Thus it is
sufficient to estimate

F3pX,P1, P2; zq :<
ÿ

�1,�2=1 pmod 3q
Np�1q,Np�2q�z

g̃3p�1�2qW
´Np�1�2q

X

¯
V
´Np�1q

P1

¯
V
´Np�2q

P2

¯
,

(13.3)
for all dyadic partitions pP1, P2q that satisfy z{2 � P1, P2 � 2X and P1P2 4 X . When
z{2 � mintP1, P2u � X1{2´¿ we can apply Proposition 10.1 with Ã < 1, and · � 0 arbitrar-
ily small and fixed by Lemma 6.2 (the only requirement is that · � 100 log logX{ logX).
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Thus there exists ·0p¿, ·q � 0 such that

T3pX,P1, P2, zq < p2Ãq2{3

3Γp2
3
q

ÿ

Np�1q,Np�2q�z

µ2p�1�2q
`

�1�2

|�1�2|

Ú3

Np�1�2q1{6
V
´Np�1q

P1

¯
V
´Np�2q

P2

¯

Æ W
´Np�1�2q

X

¯
` O¿,·pX5{6´·0p¿,·qq, when z{2 � mintP1, P2u � X1{2´¿.

(13.4)

When X1{2´¿ � P1, P2 � X1{2`¿, we appeal to Proposition 7.1. In particular, the
smooth coefficients here are supported on z < X1{3`· � X· -rough integers. We obtain

F3pX,P1, P2; zq ! X

p· logXq3{2

1a
minpP1, P2q

` X5{6

p· logXq2 ,

when X1{2´¿ � P1, P2 � X1{2`¿,

where the implied constant is absolute. We can include a redundant main term that is
majorised by the error term i.e.

F3pX,P1, P2; zq < p2Ãq2{3

3Γp2
3
q

ÿ

Np�1q,Np�2q�z

µ2p�1�2q
`

�1�2

|�1�2|

Ú3

Np�1�2q1{6
V
´Np�1q

P1

¯
V
´Np�2q

P2

¯
W

´Np�1�2q
X

¯

` O
´ X

p· logXq3{2
¨ 1a

minpP1, P2q

¯
` O

´ X5{6

p· logXq2
¯
,

when X1{2´¿ � P1, P2 � X1{2`¿.

(13.5)

Since P1P2 4 X there are Op¿ logXq choices of P1, P2 in the narrow range X1{2´¿ �
P1, P2 � X1{2`¿. Summing (13.4) and (13.5) over all possible dyadic tuples pP1, P2q gives

ÿ

�1,�2=1 pmod 3q
Np�1q,Np�2q�z

g̃3p�1�2qW
´Np�1�2q

X

¯

< p2Ãq2{3

3Γp2
3
q

ÿ

�1,�2=1 pmod 3q
Np�1q,Np�2q�z

µ2p�1�2q
`

�1�2

|�1�2|

Ú3

Np�1�2q1{6
W

´Np�1�2q
X

¯

` O
´ X3{4`¿{2

p· logXq3{2

¯
` O

´ ¿X5{6

·2 logX

¯
` O¿,·pX5{6´·1p¿,·qq, (13.6)

for any fixed 0 � ·1p¿, ·q � ·0p¿, ·q.

Sum in (13.2). For each 0 � k � 1{·, we analyse the sum

ÿ

p�1,...,�k,cqPSpw,zq

g̃3p�1 . . .�kcqW
´Np�1 . . .�kcq

X

¯
. (13.7)
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We insert a smooth partition of unity in Npcq and each Np�iq for i < 1, . . . , k in (13.7).
Thus its suffices to estimate

S3pP1, . . . , Pk`1q :<
ÿ

p�1,...,�k,cqPSpw,zq

g̃3p�1 . . .�kcqW
´Np�1 . . .�kcq

X

¯
V
´Npcq
Pk`1

¯ k{

i<1

V
´NpÃiq

Pi

¯
,

(13.8)

for all dyadic partitions H < pP1, . . . , Pk`1q satisfying P1 . . . Pk`1 4 X , w{2 � Pi � 2z
for all i < 1, . . . , k, and Pk`1 � 1{2. Our goal will be to show that S pP1, . . . , Pk`1q is
asymptotically equal to (either for individual tuples pP1, . . . , Pk`1q or on average)

M3pP1, . . . , Pk`1q

< p2Ãq2{3

3Γp2
3
q

ÿ

p�1,...,�k,cqPSpw,zq

µ2p�1 . . .�kcq
`

�1...�kc
|�1...�kc|

Ú3

Np�1 . . .�kcq1{6
W

´Np�1 . . .�kcq
X

¯
V
´Npcq
Pk`1

¯ k{

i<1

V
´Np�iq

Pi

¯
.

For a given pP1, . . . , Pk`1q, let

ti :<
logPi

logpP1 . . . Pk`1q
� 0 for i < 1, . . . , k ` 1. (13.9)

We necessarily have

t1 ` . . .` tk`1 < 1; (13.10)

logw

logX
� ti � log z

logX
for i < 1, . . . , k. (13.11)

We now apply Lemma 13.1 with choice Ã :< 1{6 ´ ¿ to decompose the proof into cases.

Narrow Type-III sums. In this case we necessarily have k � 2, and

D three distinct indices i, j, 3 P t1, . . . , k ` 1u such that ti, tj , t3 P p1
3

´ 2¿, 1
3

` ¿q. (13.12)

In particular, either

(1) D an index i such that ti P r1
3
, 1
3

` ¿q, or
(2) we have ti, tj , t3 P p1

3
´ 2¿, 1

3
q.

The sum over all dyadic partitions pP1, . . . , Pk`1q for which there exists an index i such
that ti P r1

3
, 1
3

` ¿q (and two additional indices j, 3 such that tj , t3 P p1
3

´ 2¿, 1
3

` ¿q) is

� pk ` 1q! ¨
ÿ

X1{3�P�X1{3`¿

P dyadic

sup
}α}8,}β}8�1
βPC·pP,wq

ÇÇÇ
ÿ

a,b=1 pmod 3q
Ã|a ùñ NpÃq�w
Ã|b ùñ NpÃq�w

Npaq4X{P,Npbq4P

³a³bg̃3pabqW
´Npabq

X

¯ÇÇÇ, (13.13)

where · � 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
· � 100 log logX{p· logXq). Notice that the factor pk ` 1q! < k! ¨ pk ` 1q arises from the
fact that there are k ` 1 ways of choosing the first index i for which Pi P r1

3
, 1
3

` ¿q (and
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this index becomes our P ) and there are k! ways of representing a as a product of the
remaining k variables. Application of Proposition 7.1 shows that (13.13) is

! pk ` 1q!
ÿ

X1{3�P�X1{3`¿

P dyadic

´ 1

p· logXq3{2
¨ X?

P
` X5{6

p· logXq2
¯

! pk ` 1q!
´ X5{6

p· logXq3{2
` ¿X5{6

·2 logX

¯
,

where the implied constants are absolute.
We now handle the remaining case in which ti, tj, t3 P p1

3
´ 2¿, 1

3
q. We group together

two variables coming from the indices i and j say. We sum over all dyadic partitions
pP1, . . . , Pk`1q for which ti, tj , t3 P p1

3
´ 2¿, 1

3
q. This sum is

� pk ` 1q! ¨
ÿ

X2{3´4¿�U�X2{3

U dyadic

sup
}α}8,}β}8�1
βPC·pX{U,wq

ÇÇÇ
ÿ

a,b=1 pmod 3q
Ã|a ùñ NpÃq�w
Ã|b ùñ NpÃq�w

Npaq4U,Npbq4X{U

³a³bg̃3pabqW
´Npabq

X

¯ÇÇÇ, (13.14)

where · � 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
· � 100 log logX{p· logXq). The factor pk`1q! < pk´1q!¨2

`
k`1
2

Ú
arises from the fact that

there are 2
`
k`1
2

Ú
ordered choices of i and j such that ti, tj P p1

3
´ 2¿, 1

3
q, and pk ´ 1q! ways

of representing a as the product of the remaining k ´ 1 variables. Applying Proposition
7.1 and arguing in a similar way to the above shows that (13.14) is

! pk ` 1q!
´ X5{6

p· logXq3{2
` ¿X5{6

·2 logX

¯
,

where the implied constant is absolute.
Combining the two cases we conclude that

ÿ

pP1,...,Pk`1q
(13.12) holds

S pP1, . . . , Pk`1q <
ÿ

pP1,...,Pk`1q
(13.12) holds

M pP1, . . . , Pk`1q ` O
´pk ` 1q!X5{6

p· logXq3{2

¯

` O
´pk ` 1q!¿X5{6

·2 logX

¯
.

Notice that the main term is absorbed by the error term in this case.

Narrow Type-II sums. In this case we necessarily have k � 1, and

D a partition S Y T < t1, . . . , k ` 1u such that 1
2

´ ¿ �
ÿ

iPS

ti �
ÿ

jPT

tj � 1
2

` ¿. (13.15)

The contribution of all such pP1, . . . , Pk`1q is

� pk ` 1q!
ÿ

X1{2´¿�U�X1{2

U dyadic

sup
}α}8,}β}8�1
βPC·pU,wq

ÇÇÇ
ÿ

a,b=1 pmod 3q
Ã|a ùñ NpÃq�w
Ã|b ùñ NpÃq�w

Npaq4X{U,Npbq4U

³a³bg̃3pabqW
´Npabq

X

¯ÇÇÇ, (13.16)
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where · � 0 is arbitrarily small and fixed by Lemma 6.2 (the only requirement is that
· � 100 log logX{p· logXq). The term pk`1q! arises from the fact that for each 1 � i � k,
there are i!

`
k`1
i

Ú
ordered choices for the set S containing i elements, and there are pk`1´iq!

ways of representing b as a product of the remaining k ` 1 ´ i variables indicated by the
set T . Applying Proposition 7.1, we see that (13.16) is

! pk ` 1q!
ÿ

X1{2´¿�U�X1{2

U dyadic

´ 1

p· logXq3{2
¨ X?

U
` X5{6

p· logXq2
¯

! pk ` 1q!
´ X3{4`¿{2

p· logXq3{2
` ¿X5{6

·2 logX

¯
,

where the implied constants are absolute.
In particular,

ÿ

pP1,...,Pk`1q
(13.15) holds

S pP1, . . . , Pk`1q <
ÿ

pP1,...,Pk`1q
(13.15) holds

M pP1, . . . , Pk`1q ` O
´pk ` 1q!X3{4`¿{2

p· logXq3{2

¯

` O
´pk ` 1q!¿X5{6

·2 logX

¯
,

where the main term is absorbed by the error term.

Remaining ranges. We now consider all of the remaining dyadic partitions pP1, . . . , Pk`1q
one by one. For each remaining tuple pP1, . . . , Pk`1q we will show that

S3pP1, . . . , Pk`1q < M3pP1, . . . , Pk`1q ` OA,¿,·

´ X5{6

logAX

¯
, (13.17)

for any given A � 10 (depending on · � 0). Recall that k � 1{·. Since there are at
most plogXqk dyadic partitions pP1, . . . , Pk`1q satisfying P1 ¨ ¨ ¨Pk`1 4 X , we can sum
over the error term in (13.17) without overwhelming the main term. Notice that each of
the remaining configurations of pP1, . . . , Pk`1q now fall into either of two cases:

(1) Di P t1, . . . , k ` 1u such that ti � 2
3

´ ¿;
(2) Or D a partition S Y T < t1, . . . , k ` 1u such that

1

3
` ¿ �

ÿ

iPS

ti � 1

2
´ ¿ � 1

2
` ¿ �

ÿ

jPT

tj � 2

3
´ ¿. (13.18)

If Di P t1, . . . , k ` 1u such that ti � 2
3

´ ¿, then i < k ` 1 by (13.11). This corresponds
to the c variable appearing in S3pP1, . . . , Pk`1q in (13.8). After applying Proposition 11.1
(average Type-I estimate) we obtain (13.17) uniformly in |3| � X1{100. If the second
alternative holds, then (13.17) follows from Proposition 10.1 (broad Type-II estimate).
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Assembly. Summing over all dyadic partitions pP1, . . . , Pk`1q we obtain

ÿ

0�k�1{·

p´1qk
k!

ÿ

p�1,...,�k,cqPSpw,zq

g̃3p�1 . . .�kcqW
´Np�1 . . . �kcq

X

¯

<
ÿ

0�k�1{·

p´1qk
k!

ÿ

p�1,...,�k,cqPSpw,zq

µ2p�1 . . . �kcq
`

�1...�kc
|�1...�kc|

Ú3

Np�1 . . .�kcq1{6
W

´Np�1 . . . �kcq
X

¯

` O
´ ¿X5{6

·4 logX

¯
` O

´ X5{6

·7{2plogXq3{2

¯
` O

´ X3{4`¿{2

·7{2plogXq3{2

¯
` OA,¿,·

´ X5{6

logA´·´1

X

¯
,

(13.19)

uniformly in |3| � X1{100. We now drop the third error term in (13.19) because it is
majorised by the second one. Combining (13.19) and (13.6) in (13.1)–(13.2), and then
applying Lemma 12.1 (in the reverse direction, and to the symbol µ2p¨qp¨¨q3) gives

ÿ

�=1 pmod 3q

g̃3p�qW
´Np�q

X

¯
< p2Ãq2{3

3Γp2
3
q

ÿ

�=1 pmod 3q

`
�

|�|

Ú3

Np�q1{6
W

´Np�q
X

¯

` O
´ ¿X5{6

·4 logX

¯
` O

´ X5{6

·7{2plogXq3{2

¯
` OA,¿,·

´ X5{6

logA´·´1

X

¯
.` O¿,·pX5{6´·1p¿,·qq,

(13.20)

uniformly in |3| � X1{100. After choosing ¿ < ·1000 and A < ·´1000 (say), the error terms

in (13.20) are O
`
·X5{6

logX

Ú
as X Ñ 8. We conclude by noticing that

ÿ

�=1 pmod 3q

1

Np�q1{6
W

´Np�q
X

¯
>
} 8

0

W pxqx´1{6dx ¨ X
5{6

logX
as X Ñ 8,

and for 3 0 0,

ÿ

�=1 pmod 3q

`
�

|�|

Ú3

Np�q1{6
W

´Np�q
X

¯
< o

´ X5{6

logX

¯
as X Ñ 8,

uniformly in |3| � X1{100. This proves Theorem 1.1 and Theorem 1.3. �

14. Proof of Theorem 1.2

Proof of Theorem 1.2. We expand f in a Fourier series

fpxq <
ÿ

kPZ

pfpkqepkxq.

For p = 1 pmod 3q,
fp»pq <

ÿ

kPZ

pfpkqepk»pq <
ÿ

kPZ

pfpkqg̃p�qk,

where � is a prime in ZrËs such that p < ��. Therefore
ÿ

p=1 pmod 3q

fp»pqW
´ p
X

¯
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is equal to

pfp0q
ÿ

p=1 pmod 3q

W
´ p
X

¯
`

ÿ

0�|k|�X1{100

pfpkq
´ ÿ

�=1 pmod 3q

g̃p�qkW
´Np�q

X

¯
`Op

?
Xq

¯
`OApX´Aq

for any given A � 10. We now appeal to Theorem 1.1 and Theorem 1.3 to see that the
sum over k 0 0 is equal to

p pfp1q ` pfp´1qq ¨ p2Ãq2{3

3Γp2
3
q ¨

} 8

0

W pxqx´1{6dx ¨ X
5{6

logX
` o

´ X5{6

logX

¯
,

as claimed. �
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Appendix A. Appendix

This table completes the computation in [Pat77, Table III] where the values kjpEq were
computed for all 1 � j � 27. We supplement [Pat77, Table III] by also computing kjpT q
and kjpP q for all 1 � j � 27. We do not require these computations in any of our proofs.
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j djpµq kjpEq kjpP q kjpT q
1 Çpµq 1 4 1
2 ÇpµqěpËµq 19 5 2
3 Çpµqěp´Ëµq 10 6 3
4 ÇpËµq 7 7 6
5 ÇpËµqěp´µq 23 9 4
6 ÇpËµqěpµq 13 8 5
7 ÇpË2µq 4 1 9
8 ÇpË2µqěp´µq 14 3 7
9 ÇpË2µqěpµq 22 2 8
10 ËÇ2pËµqěpµq 3 14 11
11 ËÇ2pË2µq 12 17 12
12 ËÇ2pËµq 11 11 10
13 ËÇ2pµqěpË2µq 6 10 14
14 ËÇ2pµqěp´Ëµq 8 13 15
15 Ç2pË2µqěp´Ë2µq 24 16 13
16 Ç2pµqěp´µq 25 18 17
17 Ç2pµq 17 12 18
18 Ç2pµqěpµq 27 15 16
19 Ë2Ç1pË2µqěpµq 2 22 20
20 Ë2Ç1pËµq 21 21 21
21 Ë2Ç1pË2µq 20 26 19
22 Ë2Ç1pµqěpËµq 9 23 23
23 Ë2Ç1pËµqěpË2µq 5 19 24
24 Ë2Ç1pË2µqěpË2µq 15 27 22
25 Ç1pµqěp´µq 16 24 26
26 Ç1pµq 26 20 27
27 Ç1pµqěpµq 18 25 25

We note that,

xtpj, kjpEqq : 1 � j � 27uy » C12
2

xtpj, kjpP qq : 1 � j � 27uy » C9
3

xtpj, kjpT qq : 1 � j � 27uy » C8
3 .

These isomorphisms are easily seen from the table by following the cycle structure. The
exponents 12 in C12

2 be explained by noticing that the forms j < 1, 17, 26 are invariant
under E and all the other elements are of order two, giving us 27´3

2
< 12 generators.

Likewise the exponent 8 in C8
3 can be explained by noticing that the forms with j < 1, 2, 3

are invariant and there are 27´3
3

< 8 remaining generators all of order 3. Finally the
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exponent 9 appears in the case of kjpP q because no forms is left invariant by P and P is
of order three.
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