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The transition to turbulence in a plane Poiseuille flow of dilute polymer solutions is
studied by direct numerical simulations of a finitely extensible nonlinear elastic fluid
with the Peterlin closure. The range of Reynolds number (Re) 2000 < Re < 5000 is
studied but with the same level of elasticity in viscoelastic flows. The evolution of a
finite-amplitude perturbation and its effects on the transition dynamics are investigated.
A viscoelastic flow begins transition at an earlier time than its Newtonian counterparts,
but the transition time appears to be insensitive to polymer concentration in the dilute
and semi-dilute regimes studied. Increasing polymer concentration, however, decreases
the maximum attainable energy growth during the transition process. The critical or
minimum perturbation amplitude required to trigger transition is computed. Interestingly,
both Newtonian and viscoelastic flows follow almost the same power-law scaling of
Re? with the critical exponent y = —1.25, which is in close agreement with previous
studies. However, a shift downward is observed for viscoelastic flow, suggesting that
smaller perturbation amplitudes are required for the transition. A mechanism of the
early transition is investigated by the evolution of wall-normal and spanwise velocity
fluctuations and flow structure. The early growth of these fluctuations and the formation
of quasi-streamwise vortices around low-speed streaks are promoted by polymers, hence
causing an early transition. These vortical structures are found to support the critical
exponent y ~ —1.25. Once the transition process is completed, polymers play a role in
dampening the wall-normal and spanwise velocity fluctuations and vortices to attain a
drag-reduced state in viscoelastic turbulent flows.
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1. Introduction

Transition to turbulence has been studied extensively in wall-bounded shear flows for
Newtonian fluids since the pioneering work of Reynolds (1883a,b). However, despite many
experimental and theoretical contributions (Eckhardt et al. 2007; Schmid 2007; Mullin
2011; Avila, Barkley & Hof 2023), its nature remains unclear even for simple geometries.
Reynolds (1883a,b) noted in his experimental pipe flow studies that a strong perturbation
can trigger transition at a Reynolds number (Re) of 2260. Subsequent studies have placed
this critical Reynolds number in the range of 1760 < Re < 2300 (Kerswell 2005). Through
more controlled conditions, it was also shown that the laminar state could be maintained
until a higher Reynolds number of Re = 12,000 (extended to 10° by Pfenniger 1961).
The upper critical Re is in closer agreement with theoretical studies, showing that plane
Couette flows (PCF) and pipe flows are linearly stable to infinitesimal perturbations for all
Reynolds numbers (Drazin & Reid 1981). For plane Poiseuille flows (PPF), experiments
have shown a lower critical Reynolds number of Re &~ 1000 (Davies & White 1928; Orszag
& Kells 1980; Carlson, Widnall & Peeters 1982), whereas linear stability theory has
found that PPF becomes unstable at Re ~ 5772 (Orszag 1971). Experimental observations
naturally point out the susceptibility of the flow to disturbances in the environment and
explain why in practice most pipe and channel flows become turbulent at subcritical Re.
In theory, this is further supported by analysis performed on the non-normality of the
linearized Navier—Stokes equations, where the efficient amplification of finite-amplitude
disturbances at a short time has been identified (Boberg & Brosa 1988; Trefethen et al.
1993; Schmid & Henningson 2001). In contrast to Newtonian flows, the onset of turbulence
for non-Newtonian flows or viscoelastic flows of polymer solutions has been relatively less
studied. In the remainder of this section, we provide a summary of the relevant literature
concerning both Newtonian and viscoelastic flows and present the contributions addressed
in the present study.

1.1. Finite-amplitude thresholds in Newtonian flows

Given the strong sensitivity of Newtonian flows to external disturbances, controlled
perturbations have been widely utilized in the study of transitional flows. Of particular
interest are the disturbances that cause the maximum energy growth in a specified time
interval, known as linear optimal perturbations (Farrell 1988; Butler & Farrell 1992). For
laminar pipe flow, the linear optimal disturbance is that of a counter-rotating streamwise
vortex pair, which evolves into streamwise streaks due to the lift-up mechanism (Landahl
1980; Schmid & Henningson 1994). These optimal perturbations are in agreement with
the coherent structures that characterize transitional and turbulent shear flows. However,
the transition is often triggered by other structures. Reddy et al. (1998) and Peixinho
& Mullin (2007) showed that oblique disturbances are more successful at triggering
turbulence. Hence, nonlinear optimization approaches have been proposed to compute
optimal perturbations (Monokrousos et al. 2011; Luchini & Bottaro 2014; Kerswell 2018),
proving the existence and efficiency of nonlinear optimal perturbations over the linear ones
(Pringle & Kerswell 2010; Cherubini & Palma 2013; Farano et al. 2015).

Of greater relevance to the current study is the study of the minimal perturbation
amplitude € required to trigger transition. The scaling law describing the relationship
between € and Re is also of relevance. Early experimental work used continuous
perturbations via a continuous injection of fluid through slits or holes (Rotta 1956;
Wygnanski & Champagne 1973). Impulsive perturbations, such as a single-pulse injection
of fluid, were also used, showing that these perturbations produced more consistent
results by initiating controlled turbulent structures that could be used to determine
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turbulence far downstream (Wygnanski, Sokolov & Friedman 1975; Rubin, Wygnanski
& Haritonidis 1979; Darbyshire & Mullin 1995). Darbyshire & Mullin (1995) introduced
various single-pulse disturbance configurations into a fully developed pipe flow. The
critical perturbation amplitude decreased very rapidly with increasing Reynolds number,
eventually following an asymptotic behaviour for high Re, regardless of the perturbation
type. Hence, this behaviour can be described as € = O(Re”) with the critical exponent
y < 0, where a large |y| value corresponds to a rapid growth of the disturbances
due to nonlinear effects (Trefethen et al. 1993). The current estimate for the critical
exponent y is in the range of —7/4 < y < —1 derived from numerical and experimental
studies for different geometries. For PPF, Lundbladh, Henningson & Reddy (1994) and
Reddy et al. (1998) performed numerical experiments and suggested y = —7/4 for both
streamwise and oblique perturbations. Chapman (2002) used a formal asymptotic analysis
of the Navier-Stokes equations and found y = —3/2 and y = —5/4 for oblique and
streamwise initial perturbations. Experimentally, Philip, Svizher & Cohen (2007) achieved
an agreeable scaling factor of y = —3/2 for PPF with a shorter channel length. For PCF,
Dauchot & Daviaud (1995) experimentally suggested the power exponent of y = —1.
Instead of using the perturbation amplitude, the kinetic energy of the perturbation E.
has also been examined to suggest a similar scaling law for PCF, where E. = O(Re”),
with —2 <y < —2.7 (Kreiss, Lundbladh & Henningson 1994; Duguet et al. 2013). For
pipe flow, Meseguer (2003) numerically studied the formation and breakdown process
of streaks due to streamwise vortices, suggesting a critical exponent of y = —3/2, in
agreement with the formal asymptotic analysis performed by Chapman (2002) for PPF.
Through novel experimental set-ups, Hof, Juel & Mullin (2003) and Lemoult, Aider &
Wesfreid (2012) uncovered a scaling factor of y = —1 for Re > 2000, as proposed by
Waleffe & Wang (2005). Lemoult et al. (2012) also showed an exponent close toy = —3/2
for the restricted range of 1000 < Re < 2000. Interestingly, Mullin & Peixinho (2006) and
Peixinho & Mullin (2006) showed that for Re < 1760 turbulent flows cannot be sustained
and all disturbances will eventually decay as t — oo.

1.2. Transitional behaviour of drag-reducing flows

Since the discovery of Toms (1948), the addition of small amounts of flexible long-chain
polymers into a turbulent flow has been known to cause significant drag reduction (DR)
in pipe and channel flows. This discovery attracted the interest of several applications
that benefited directly from its drag-reducing effects. The most popular application of this
phenomenon is in the fossil fuel industry (e.g. Alaska pipeline and fracking fluid). More
recently, polymer additives were utilized in a large-scale open-channel watercourse, which
showed beneficial reduction in the water depth downstream from the polymer injection
point and an increase in the discharge capacity of the channel (Bouchenafa et al. 2021).

For viscoelastic effects, one of the most relevant non-dimensional numbers that
characterizes polymer solutions is the Weissenberg number (Wi), which is the product
of the longest relaxation time of the polymer solution and the characteristic shear rate of
the flow. The other most relevant parameter is the elasticity number (El = Wi/Re), which
is independent of the velocity, meaning that it is constant for a particular fluid and flow
geometry. Hence, the DR phenomenon of polymer solutions in shear flows is typically
described in terms of Wi or El (Graham 2014).

The study of viscoelastic fluids has focused mainly on the drag-reducing phenomenon
in a turbulent flow (Min ef al. 2003; White & Mungal 2008; Graham 2014; Xi 2019),
whereas the role of polymers on the onset of transition has been relatively less studied.
Earlier pipe experiments reported a lower transitional Reynolds number than one required

976 A28-3



https://doi.org/10.1017/jfm.2023.930 Published online by Cambridge University Press

A. Martinez Ibarra and J.S. Park

for Newtonian transition, referred to as early turbulence (Ram & Tamir 1964; Forame,
Hansen & Little 1972; Hansen, Little & Forame 1973; Zakin et al. 1977; Draad, Kuiken
& Nieuwstadt 1998). Recent experiments showed further possibilities of early transition
in pipes and channels at sufficiently high polymer concentrations (Samanta et al. 2013;
Srinivas & Kumaran 2017), pointing to the influence of strong elastic effects on the onset
of turbulence of polymer solutions. This turbulent state, that results from early turbulence
at high polymer concentrations, is referred to as elasto-inertial turbulence (EIT) (Dubief,
Terrapon & Soria 2013; Samanta et al. 2013; Terrapon, Dubief & Soria 2015; Sid, Terrapon
& Dubief 2018). Chandra, Shankar & Das (2018) expanded the work of Samanta et al.
(2013) for higher values of the elasticity number and with various polymer types. For high
polymer concentrations, they also found that transition occurred at Re < 2000. This is in
agreement with recent results of the linear stability theory of pipe flows by Garg et al.
(2018) and Chaudhary et al. (2021), who showed that pipe flows of an Oldroyd-B fluid
are linearly unstable. However, it should be noted that Chandra et al. (2018) also observed
the delayed transition, in other words, the transitional Reynolds number is increased. The
study of EIT has also provided an alternative explanation to the upper limit of turbulent
DR, also known as the maximum drag reduction state (Samanta et al. 2013; Choueiri,
Lopez & Hof 2018; Lopez, Choueiri & Hof 2019). Interestingly, there are recent studies
that have found the nonlinear elasto-inertial exact coherent structures in the EIT regime,
named arrowhead structures (Page, Dubief & Kerswell 2020; Buza ef al. 2022; Dubief
et al. 2022), which link the EIT and elasto-inertial linear instability. An extensive review
of these instabilities can be found on Castillo-Sanchez et al. (2022) and Datta et al. (2022).

Similar to subcritical transition in Newtonian flows, a finite-amplitude perturbation is
required to trigger the transition of polymer solutions. Hoda, Jovanovi¢ & Kumar (2008)
studied the energy amplification of perturbations in the form of spatio-temporal body
forces in PPF for an Oldroyd-B fluid. They found streamwise-elongated disturbances to
be the most amplified. Zhang et al. (2013) expanded this study to a finitely extensible
nonlinear elastic fluid with the Peterlin closure (FENE-P) for inertia-dominated PPF. They
observed the modal and non-modal types of perturbations, showing either stabilization
or destabilization effects of polymer solutions depending on the polymer relaxation time.
Agarwal, Brandt & Zaki (2014, 2015) complemented these findings by spanning the bypass
transition process for a FENE-P fluid in PPF. They observed the linear and nonlinear
growth of an initially located disturbance and found a weakening of the disturbance
amplification by polymers. A delay in the onset of transition and a prolonged transition
period were also reported. For the natural or orderly transition of polymer solutions, Lee &
Zaki (2017) applied an infinitesimally small Tollmien—Schlichting wave to a FENE-P fluid
in PPF. They found that the transition scenarios are affected by the level of the elasticity,
where a destabilizing effect is observed at the lowest elasticity and a stabilization effect
manifests as the elasticity is further increased. Biancofiore, Brandt & Zaki (2017) and Sun,
Wan & Zhang (2021) investigated the nonlinear evolution of disturbed streaky structures
in viscoelastic Couette and pipe flows, respectively, where viscoelasticity is found to delay
the transition to turbulence in time for high Wi.

A power-law scaling of the critical perturbation amplitude, which is analogous to the
Newtonian flow that relates € and Re, has not been well explored for polymer solutions
even at dilute concentrations and will be studied here. The transition of viscoelastic
flows of a dilute FENP-P fluid is triggered by a finite-amplitude perturbation, and the
effects of polymers on the transition dynamics and mechanisms are reported. The problem
formulation is reported in §2. The simulation results are presented in §3. We then
conclude in § 4.
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2. Problem formulation

We consider an incompressible fluid flow in the plane Poiseuille (channel) geometry
driven by a constant mass flux. The x, y and z coordinates correspond to the streamwise,
wall-normal and spanwise directions, respectively. Periodic boundary conditions are
imposed in the streamwise and spanwise directions with fundamental periods L, and L,
respectively. No-slip boundary conditions are applied at the solid walls at y = A, where
h is the half-channel height. Using the half-channel height 4 and the Newtonian laminar
centreline velocity U,; at the given mass flux as the characteristic length and velocity,
respectively, the time ¢ is non-dimensionalized with 4/ U; and pressure p with p ULZ,I, where
p is the density of the fluid. Utilizing these characteristic scales, the non-dimensional
momentum and continuity equations for a fluid velocity u are

du B <2 (-5
— Vu=-V —V V.1,
8t+u u p—|—R€ u-+ Re T)

V.u=0. (2.2)

(2.1)

Here, the Reynolds number for the given laminar centreline velocity is defined
as Re = pUch/(ns +np), where (ns+ 1) is the total zero-shear-rate viscosity. The
subscripts ‘s’ and ‘p’ represent the solvent and polymer contributions to the viscosity,
respectively. The viscosity ratio B = n;/(ny + n,) (for a Newtonian fluid, 8 = 1). For
dilute polymer solutions, (1 — ) is proportional to polymer concentration; hereinafter, the
polymer concentration is represented as ¢ = 1 — B. The concentration is assumed constant
in time and homogeneous in space. Although the viscosity of polymer solutions displays
shear thinning, the total shear viscosity is hardly affected by the presence of the polymers
for dilute solutions of polymers make a small contribution to the shear viscosity in the first
place (Graham 2014). The polymer stress tensor 7, is modelled by the FENE-P constitutive
relation (Bird ef al. 1987) as

N P 23
T"_W[l—tr(a)/b_]’ 23)

where the Weissenberg number is defined as Wi = AU /h, where A is the polymer
relaxation time. The parameter b defines the maximum extensibility of the polymers (i.e.
max (tr(ec)) < b), which is proportional to the number of monomer units. The polymer
conformation tensor & = (gq) quantifies the second moment of the probability distribution
for the polymer end-to-end vector ¢, satisfying the evolution equation

oo T

5+u-Vc¢—a-Vu—(oc-Vu) = —1Tp, 2.4)
which includes the upper convective derivative of o and stress relaxation due to the elastic
nature of the polymer.

Simulations are performed using the open-source code Channelflow written and
maintained by Gibson (2012) from which a modified version was made and verified for
viscoelastic flows used in the current study (Xi & Graham 2010; Rogge & Park 2022).
This study focuses on results for the range of 2000 < Re < 5000. This Reynolds number
range for Newtonian flows is found to be subcritical and below the linear stability limit
for two-dimensional flows but slightly beyond the transition for three-dimensional flows
(Schmid & Henningson 2001). For the viscoelastic cases, the polymer concentration
ranges from dilute to semi-dilute regimes: 0.01 < ¢ < 0.09. The Weissenberg number is in
the range 32 < Wi < 65. Note that the current study holds the elasticity number constant
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at El ~ 0.017. The parameter b = 5000, which corresponds to a moderately flexible,
high-molecular-weight polymer (Xi & Graham 2010, 2012). The extensibility parameter
Ex is defined as the polymer contribution to the steady-state stress in uniaxial extensional
flow. For the FENE-P model, Ex = 2b(1 — 8)/38. Significant effects of polymers on
turbulence are only expected when Ex > 1 for a dilute solution (I — 8 <« 1), which
is the case of this study. For the sets of 8 and b studied, the values of Ex are in the
range of 34-330, which is sufficient to observe the effects of polymer solutions (Xi &
Graham 2010). This parameter space for the viscoelastic flow is found to be linearly stable
(Castillo-Sanchez et al. 2022; Datta et al. 2022).

The equation system above is coupled and integrated in time with a third-order
semi-implicit backward differentiation and Adams—Bashforth method for the linear and
nonlinear terms, respectively (Peyret 2002). As an effective approach to identifying
the self-sustaining process in both Newtonian and viscoelastic flows (Jimenez & Moin
1991; Webber, Handler & Sirovich 1997), the so-called minimal flow unit (MFU) is
employed. We use a domain of Ly x Ly x L; = 21 x 2 X wand 47 x 2 x 27 to simulate
Newtonian and viscoelastic flows, respectively. It is worth noting that viscoelastic MFUs
are larger than Newtonian ones to attain sustained turbulence (Wang et al. 2014). A
numerical grid system is generated on (Ny, Ny, N;) (in x, y and z) meshes, where a
Fourier—Chebyshev—Fourier spectral spatial discretization is applied to all variables and
nonlinear terms are calculated with the collocation method, for which the standard 2/3’
dealiasing is used. The numerical grid systems used are (N, Ny, N;) = (64, 81, 76) for the
Newtonian simulations and (Ny, Ny, N;) = (126, 81, 126) for the viscoelastic simulations,
unless specified otherwise. The numerical grid spacings in the streamwise and spanwise
directions are uniform with Ax*t A~ 12 and Az" ~ 7, respectively, for all cases. In the
wall-normal direction, the non-uniform Chebyshev spacing is Ay;;m < 0.1 at the wall and
Ay &5 at the channel centre.

An artificial diffusivity term 1/ (ScRe)V2a, with the Schmidt number Sc = 0.5, is
added to the right-hand side of (2.4) to improve its numerical stability, as is common
practice for spectral simulations of viscoelastic flows (Sureshkumar, Beris & Handler
1997; Dimitropoulos, Sureshkumar & Beris 1998; Xi & Graham 2010, 2012; Rogge &
Park 2022). For the range of Re given above, an artificial diffusivity 1/(ScRe) is of
the order of 1073-10~%, which is much lower than often used in other studies with
1/(ScRe) = O(10~2) (Sureshkumar ez al. 1997; Ptasinski et al. 2003; Li, Sureshkumar
& Khomami 2006, 2015). In the low-to-moderate Wi and dilute-to-semi-dilute regimes of
the present study, these very small magnitudes of artificial diffusivity should not have
a significant impact on the numerical solutions, while still contributing to numerical
stability, which has also been confirmed by previous studies (Sureshkumar et al. 1997,
Housiadas, Beris & Handler 2005; Li et al. 2006; Kim et al. 2007; Zhu & Xi 2020).
Since introducing such an artificial term, an additional treatment for a boundary condition
on (2.4) is needed. We update o at the walls using the solution without the artificial
diffusivity. These results are then used as the boundary condition to solve (2.4) with the
artificial diffusivity term and we then update o for the rest of the channel. The numerical
details used in the present study can be found in Xi (2009). The numerical code used here
has been extensively validated in the previous studies (Xi & Graham 2010, 2012; Wang
et al. 2014; Wang, Shekar & Graham 2017; Rogge & Park 2022).

The initial velocity field is a superposition of the parabolic laminar base flow u;,,, and
a three-dimensional perturbation flow: u = u;, + au,, where a is the magnitude of the
perturbation flow field, which is adjustable in the current study. Different laminar base
flows wuy,,, are used for Newtonian and viscoelastic flows. The Newtonian laminar flow
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is a typical parabolic velocity profile of a plane Poiseuille flow (White 2006), while a
viscoelastic laminar flow is obtained from the plane Poiseuille flow solution of a FENE-P
fluid (Cruz, Pinho & Oliveira 2005). The viscoelastic laminar flow is a modified version of
the Newtonian laminar flow to which contributions due to polymers (i.e. Wi, 8 and b) are
added. In addition, the laminar base state for the polymer stress tensor is also considered
(Lee & Zaki 2017). The perturbation field u), is generated using the subroutine randomfield
through Channelflow (Gibson 2012), where its spectral coefficients of the three velocity
components are set to decay exponentially with respect to the wavenumber to ensure the
smoothness of the flow, similar to turbulent fields. The perturbation field also satisfies
no-slip and divergence-free conditions (see Appendix C in Pershin et al. (2022) for details
of the subroutine randomfield). This perturbation field is similar to that commonly used for
the optimal disturbance to control a transition to turbulence (Farano et al. 2015; Pershin
et al. 2022). However, it should be emphasized that the particular form of u;, does not
matter as long as it leads to an instability that triggers a transition to turbulence (Faisst &
Eckhardt 2004). Owing to the extensional flow nature of transitional and turbulent flows,
there are always positive Lyapunov exponents in Newtonian channel flows (Keefe, Moin
& Kim 1992; Nikitin 2018) and even viscoelastic channel flows (Stone & Graham 2003),
resulting in a quick memory loss of the initial conditions. Darbyshire & Mullin (1995)
also experimentally confirmed that different kinds of perturbations result in a very similar
stability curve. Nonetheless, the choices of the different forms of the perturbation field
were tested, showing similar behaviours such as scaling laws (Mullin 2011). In addition, for
optimal perturbations, where the maximum energy growth is efficiently reached during the
transition process, similar scaling behaviour was observed (Farano et al. 2015). Therefore,
it can be safely assumed that the effect of the perturbation field on the transition to
turbulence can be focused only on its magnitude.

Throughout the paper, the perturbation amplitude A is defined as the ratio of the L,-norm
of the perturbation velocity field u,, to that of the base laminar velocity field w4,

uplla / , / /
= dv w, dV, (2.5
|ulam||2 fam

where V = 2L,L, is the volume of the computational domain. The amplitude squared

A? can also be referred to the ratio of the kinetic energy of u, to that of wuy.
The perturbation amplitude studied is in the range of 0.014 <A < 0.14 to ensure
small-amplitude perturbations for promoting a linear instability during the transition to
turbulence (Schmid & Henningson 2001). It is also important to note that, due to the
addition of a global artificial diffusion and use of spectral method, it is almost unachievable
to trigger transition to turbulence for Re < 2000, even with a sufficiently large perturbation
amplitude A > 0.14.

Prior to proceeding to the results, it is worth emphasizing the flow regime of the current
study. For El < 0.02 and 2000 < Re < 5000, the flow regime of interest can be referred to
as inertia-driven transition for both Newtonian and dilute viscoelastic flows (Datta et al.
2022). The EIT flow regime, which is typically E/ >> 0.02 (Dubief et al. 2013; Samanta
et al. 2013), is distinctly different from the current flow regime. Thus, a quantitative or even
qualitative comparison between the current inertia-driven transition and EIT transition
should not necessarily be expected in the following results.
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3. Results and discussion

We perform direct numerical simulations starting from a laminar base flow disturbed
with a small finite-amplitude perturbation for both Newtonian and viscoelastic flows. The
amplitude of the perturbation was set to be in the range of 0.014 < A < 0.14 relative to the
total energy of the laminar base flow.

3.1. Transition dynamics

To examine the temporal behaviour of the transition dynamics, figure 1(a) illustrates the
evolution of the disturbance energy per unit volume E(¢), which is given as

1 L, pl pLy
E@®) = / / / ? 4+ v? +w?)dxdydz, (3.1)
2LL; Jo  J-1Jo

where the streamwise velocity fluctuation v’ = u — uyy,,, while v’ = v and w' = w since
Vigm = 0 and wy,,, = 0. Profiles are normalized by the initial disturbance energy Ey. At
t = 0, the same amplitude of perturbation A = 0.07 was applied to both Newtonian and
viscoelastic (¢ = 0.03 or B = 0.97) flows at Re = 2500. As has been typically observed
in transition to turbulence (Schmid & Henningson 2001), both flows exhibit a similar
early-time behaviour of the energy growth: (i) an initial stable period, (ii) a sharp increase
up to the maximum value, or namely a strong burst, and (iii) transition to a fully turbulent
flow. However, the first notable distinction between both flows is the duration of the
initial stable period. As clearly seen in figure 1(a), the viscoelastic flow experiences a
shorter stable duration than the Newtonian counterpart. In other words, polymers appear
to destabilize the flow earlier than the Newtonian flow, triggering an earlier transition.
Another distinction lies in the strong burst whose magnitude is significantly reduced by
polymers. This strong burst has also been referred to as the escaping process out of the
so-called exact coherent solution along its most unstable manifold (Itano & Toh 2001;
Park, Shekar & Graham 2018), comprising the linearly unstable stage followed by the
nonlinear evolution stage. A log—linear representation of the evolution of the disturbance
energy per unit volume E(¢) is shown in figure 1(b). The exponential amplification of the
perturbations in both Newtonian and viscoelastic flows is marked by dotted lines with o
values equal to 0.06 and 0.05 for Newtonian and viscoelastic flows, respectively. After the
strong burst, both flows enter a fully turbulent regime at t & 150, where turbulent DR via
polymers is manifested.

To further characterize the transition to turbulence, we utilize the mean wall shear
stress 7,, as a means to estimate the transitional trajectory of Newtonian and viscoelastic
flows, as it has been widely utilized to characterize the intermittent dynamics of both
flows (Xi & Graham 2012). The top panels in figure 2 show the temporal evolution of the
wall shear stress for Newtonian and viscoelastic flows of various polymer concentrations
perturbed with A = 0.07 at Re = 2000, 2500 and 3000 along with the base laminar state
whose wall shear stress 1y, j;m = 2. The response of the flow to the perturbation can be
divided in two distinct cases: (a) the flow remains undisturbed or (b) the flow departs
from the base laminar state and begins its path to turbulence shortly after the introduction
of the perturbation. For Re = 2000 (figure 2a), the Newtonian flow remains undisturbed
(case a), whereas the viscoelastic flows of all polymer concentrations begin transition at
a few time instants after the introduction of the perturbation (case b). For Re > 2500,
both Newtonian and viscoelastic flows follow a transition trajectory (case b). As clearly
seen in figure 2(b), the transition begins at an earlier time for viscoelastic flows than
for their Newtonian counterpart, indicating an earlier transition. At a higher Reynolds
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Figure 1. Temporal evolution of the disturbance energy E(f) normalized by the initial disturbance energy Eyp
on (a) a linear—linear scale and () a log—linear scale for Newtonian (black dashed line/squares) and viscoelastic
flows (¢ = 0.03 or 8 = 0.97; blue solid line/circles). Both flows are disturbed by the perturbation amplitude
A = 0.07 at Re = 2500. The amplification of the perturbation (straight lines in b) behaves like ¢”!, where
o = 0.06 and 0.05 for Newtonian and viscoelastic flows, respectively.

—— Newtonian —— ¢=0.02 ——¢=0.04 ——¢=0.06 —— ¢c=0.08
——¢=0.01 ¢c=0.03 —¢=0.05 ——¢c=0.07 —¢=0.09
(a) (b) ()
8+ E 8t . Sk -

Figure 2. Temporal evolution of the (top panel) wall shear stress t,, and (bottom panel) bulk polymer stretching
normalized by the maximum extensibility of polymers #r(«),/b for the perturbation amplitude A = 0.07 at
(a) Re = 2000 (b) Re = 2500 and (c¢) Re = 3000: laminar state (black dashed line), Newtonian flow (black
solid line) and viscoelastic flows of various polymer concentrations (coloured solid lines).

number of Re = 3000 (figure 2c), however, the transition appears to begin at almost the
same time for Newtonian and viscoelastic flows. Similar to the perturbation energy in
figure 1(a), the maximum wall shear stress of the strong burst in viscoelastic flows is
smaller than the one in Newtonian flow. Furthermore, the maximum wall shear stress
is reduced with increasing polymer concentration, implying that the magnitude of the
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Figure 3. Temporal evolution of the mean velocity profile U, normalized by the laminar centreline velocity
U, for the perturbation amplitude A = 0.07 at Re = 2500 with the time instants r = 55, 90, 125 and 300:
laminar state (black dotted line), Newtonian flow (black dashed line) and viscoelastic flow (¢ = 0.03; blue
solid line).

strong burst decreases with polymer concentration. The reduction of the aforementioned
maximum wall shear stress of the polymer solutions is also an important indicator of
DR in sustained turbulent flow regimes. Hence, turbulent DR is expected for viscoelastic
flows compared with Newtonian counterparts, as can be seen in the wall shear stress in
figure 2(b,c). The bottom panels in figure 2 show the temporal evolution of the bulk
polymer stretching tr(o), normalized by the maximum extensibility of polymers b for
various polymer concentrations. Interestingly, the bulk polymer stretching of all polymer
concentrations is almost identical and increases very slowly until a sharp increase begins
at almost the same time as the wall shear stress starts to increase sharply.

As an alternative to characterize the transition to turbulence, the distortion of the
mean velocity profile has also been utilized for Newtonian flows, as its relationship to
the formation of vortical structures during transition has been well established (Lemoult
et al. 2012). Figure 3 shows snapshots of the mean velocity profile U, normalized by
the Newtonian laminar centreline velocity U, at Re = 2500 at four different time instants
for Newtonian and viscoelastic (¢ = 0.03) flows along with the base laminar profile as a
reference. At t = 55, the velocity profile of both flows appears to be close to the base
laminar profile. At the peak of the strong burst for the viscoelastic flow (t = 90), the
deformation of the mean velocity profile is evident, while its Newtonian counterpart
remains almost unchanged up to = 100. At the peak of the strong burst for the Newtonian
flow (z = 125), however, a severe deviation from the laminar profile is observed for
both flows. Once the fully turbulent state is reached (¢ = 300), the viscoelastic profile
is closer to the laminar profile, suggesting drag reduction by polymers. For a further
investigation, figure 4 shows the temporal evolution of the peak velocity Upeqr normalized
by the centreline velocity U.; for Newtonian and viscoelastic flows of various polymer
concentrations at Re = 2000, 2500 and 3000 perturbed with A = 0.07. The base laminar
state is also included, for which Upear /U = 1. Similarly, the response of the flow can
be equally distinguished by cases (a) and (b) when utilizing Upear /Ui For Re = 2000
(figure 4a), the Newtonian flow departs slightly from the laminar state; however, the
transition is not achieved and the flow remains laminar (case a), whereas the viscoelastic
flows of all polymer concentrations deviate from the laminar state and continue the
transitional path to turbulence (case b). Once the transition to turbulence is established,
the velocity ratio quickly decreases until a fully turbulent state is reached. For Re > 2500,
both Newtonian and viscoelastic flows respond following the path of case (b). The earlier
departure from the laminar state ratio of 1 is clearly observed for viscoelastic flows in
figure 4(b), as in the wall shear stress (figure 2b). The similarity in the start of transition
in Newtonian and viscoelastic flows at Re = 3000 can also be confirmed by figure 4(c).

976 A28-10



https://doi.org/10.1017/jfm.2023.930 Published online by Cambridge University Press

Transition to turbulence in viscoelastic flow

=Newtonian -¢c=0.02 -:¢c=0.04 -c=0.06 c=0.08
.c=0.01 ¢c=0.03 -¢=0.05 -¢c=007 -c=0.09

(a) (b) (©
1.0 ws -------------------- 1.0 g = === === == === === = o
09r
0.8F
0 100 300 500 0 100 300 500
t t t

Figure 4. Temporal evolution of the peak velocity normalized by the laminar centreline velocity for the
perturbation amplitude A = 0.07 at (@) Re = 2000, (b) Re = 2500 and (¢) Re = 3000: laminar state (black
dashed line), Newtonian flow (black squares) and viscoelastic flow of various polymer concentrations (coloured
symbols).

3.2. Transition time: onset of transition

Now, we proceed to investigate the time for the onset of transition. The transition time 7
is defined as the time at which the wall shear stress reaches 105 % of the base laminar
value (t,, = 2.1). The sensitivity to the chosen threshold value was examined by utilizing
different threshold values, such as 110 % and 115 %, showing almost identical trends with
an upward shift in the time it takes for each case to reach the threshold criteria. In addition,
the sensitivity to the chosen parameter was also examined by utilizing the peak velocity,
such as figure 4, with the threshold of 95 % of the base laminar value, showing an almost
identical trend. It should be noted that the aforementioned criteria for the onset of transition
can only be detected in cases where the perturbation amplitude is strong enough to trigger
transition for both Newtonian and viscoelastic flows.

Figure 5 shows the transition time for Newtonian and viscoelastic flows of various
polymer concentrations at Reynolds numbers up to 5000 as a function of perturbation
amplitude. As expected, the overall trend appears to be similar for both Newtonian
and viscoelastic flows, where the transition time decreases with increasing perturbation
amplitude and Reynolds number. The earlier transition for viscoelastic flows is also
confirmed by a smaller 7, regardless of polymer concentration (i.e. transition is initiated at
an earlier time than Newtonian flow). Interestingly, it seems that the polymer concentration
has a negligible effect on the transition time for all Re. Yet, as clearly observed in all
Reynolds numbers studied, the main difference is that the viscoelastic flow requires a
lower perturbation amplitude to trigger the transition in comparison with its Newtonian
counterpart. For example, figure 5(a) shows that, at Re = 2000, the lowest or critical
perturbation amplitudes to trigger transition are A ~ 0.08 and A & 0.05 for the Newtonian
and viscoelastic flows, respectively. Increasing the Reynolds number lowers the critical
perturbation amplitude for both Newtonian and viscoelastic flows. In addition, the
difference between the Newtonian and viscoelastic transition times A7; gets smaller with
increasing Re. In order to better explore the effect of Reynolds number, we replot the
transition time as a function of Reynolds number at a given perturbation amplitude, as
shown in figure 6. For viscoelastic flows, the polymer concentration ¢ = 0.03 is only
used as the polymer concentration appears to have no impact on the transition time. At
three perturbation amplitudes considered, the transition time decreases monotonically for
both flows with increasing Reynolds number. For a relatively weak perturbation amplitude
A = 0.07 (figure 6a), AT; ~ 6 and this value remains almost constant with increasing
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Figure 5. Transition time as a function of perturbation amplitude A at (a) Re = 2000, (b) Re = 3000,
(¢) Re =4000 and (d) Re = 5000: Newtonian flow (black open squares) and viscoelastic flow of various
polymer concentrations (coloured solid circles). Refer to the legend in figure 2 for colours for polymer
concentration.

Reynolds number. However, for relatively strong perturbation amplitudes of A > 0.07
(figure 6b,c), AT; becomes more significant for lower Reynolds numbers but gets much
smaller with increasing Reynolds number. For A = 0.12 (figure 6¢), the transition time of
the viscoelastic flow barely decreases with Reynolds number, and AT} is almost negligible
at Re = 5000. It is worth noting that, at the given Reynolds number, the transition time
decreases with the perturbation amplitude. However, the level of DR achieved by the same
polymer parameters during sustained turbulence would be very similar and insensitive to
the transition time.

3.3. Stability curve: critical perturbation amplitude

Next, we present the finite-amplitude thresholds for the perturbation to start triggering
the transition or the critical perturbation amplitude A, below which no transition occurs.
Figure 7 shows A, for Newtonian and viscoelastic (¢ = 0.03) flows on a log—log scale.
As expected from the previous studies for Newtonian flows (e.g. Hof et al. 2003; Lemoult
et al. 2012), our Newtonian flow (black open squares) clearly follows a power-law scaling
of Re¥ for Re > 2500. As was observed by Lemoult ef al. (2012), it is also observed that
the asymptotic regime is not reached at lower Reynolds numbers for Re < 2500. The
critical exponent y for the Newtonian flow is very close to —1.25, which has also been
reported for transition in PPF triggered by a perturbation leading to streamwise vortices
(Chapman 2002). Most interestingly, the viscoelastic flow also follows almost the same
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Figure 6. Transition time as a function of Reynolds number Re for the perturbation amplitude (@) A = 0.07,
(b) A =0.10 and (c¢) A = 0.12 for Newtonian flow (black open squares) and viscoelastic flow (¢ = 0.03; blue
solid circles).
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Figure 7. Log—log plot of the stability curve for the onset of transition to turbulence in the range of 2000 <
Re < 5000. Newtonian flow (black open squares) and viscoelastic flow (¢ = 0.03) (blue solid circles). For
Re > 2500, the minimum or critical perturbation amplitude A, follows a power-law scaling of A, = O(Re"),
where y &~ —1.25 for both Newtonian and viscoelastic flows.

power-law scaling as the Newtonian flow with y &~ —1.25 for Re > 2500. It can also be
observed that the viscoelastic A, is smaller than the Newtonian A, which suggests that
smaller finite perturbation amplitudes are sufficient to trigger transition for viscoelastic
flows compared with their Newtonian counterparts. It should be noted that the same
scaling law with a constant exponent is found for different perturbation fields generated
by Channelflow, while the asymptotic lines are shifted upward or downward depending on
the characteristics of the perturbation structure (see the Appendix).

For a comprehensive understanding of transition to turbulence and a direct comparison
between Newtonian and viscoelastic flows, figure 8(a,b) presents the state diagram of the
transition time 7} in a space of the perturbation amplitude A and Reynolds number Re
for Newtonian and viscoelastic (¢ = 0.03) flows, respectively. As can be seen, there are
two distinct regions, laminar and turbulent, separated by the laminar—turbulent boundary
(thick black line) separating the basins of attraction of laminar and turbulent flows
(Schneider, Eckhardt & Yorke 2007; Duguet, Willis & Kerswell 2008). This boundary
indeed represents the critical perturbation amplitude A, in figure 7. Since there are
theoretical arguments that the so-called exact coherent states (ECSs) form a part of the
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number Re for (a) Newtonian flow and (b) viscoelastic (¢ = 0.03) flow. The thick black line separates the basins
of attraction of laminar and turbulent flows.

basin boundary (Kawahara 2005; Wang, Gibson & Waleffe 2007), the dynamics on or
near this boundary could play an important role in finding new ECSs in viscoelastic flows
or EIT (Page et al. 2020; Buza et al. 2022; Dubief et al. 2022), which will be a subject of
interesting future work.

Clearly, this boundary is shifted down for the viscoelastic flow, suggesting that the
laminar region is shrunk by polymers. It also suggests the reduction in the perturbation
magnitude required to trigger transition for viscoelastic flows. A shorter transition time of
the viscoelastic flow can be readily identified in comparison with the Newtonian flow at
the given Reynolds number and perturbation amplitude. Interestingly, the decay rate of the
transition time with respect to the Reynolds number shows distinct trends. As can be seen
in lines of constant 7; values from 60 to 10, the slope of these lines gets steeper for the
Newtonian flow, while the lines level off for the viscoelastic flow. This could suggest that,
at very high perturbation amplitudes, the effect of polymers on the transition time or the
early stage of transition is almost the same, regardless of Reynolds number, which can also
be confirmed by figure 6(c).

3.4. Mechanism: velocity fluctuations, flow structures and polymer dynamics

We now attempt to elucidate the mechanisms behind the earlier transition triggered by
polymers in viscoelastic flows. Figure 9(a) shows the evolution of the wall shear stress
at Re = 2500 for Newtonian and viscoelastic (¢ = 0.03) flows at four different time
instants. Figure 9(b—d) shows snapshots of the velocity fluctuations in the streamwise
Urms, wall-normal vy, and spanwise w,,,s directions at each time instant for both flows.
An observation to draw from figure 9(c,d) at t = 55 is that changes in the wall-normal
velocity fluctuation v,y and spanwise velocity fluctuation w,,, in the viscoelastic flow,
with respect to its Newtonian counterparts, are somewhat more significant compared with
the streamwise velocity fluctuation u,,s. For the Newtonian case, v, is significantly
lower near the wall and w,,,s is barely observed compared with ones for the viscoelastic
flow. This suggests that the wall-normal and spanwise directions are destabilized earlier
by polymers, eventually promoting an earlier transition. In other words, an early transition
observed in the viscoelastic flow is attributed to the early destabilization of the wall-normal
and spanwise directions due to polymers. As the transition process proceeds, v,s and
Wyms Of the Newtonian flow take over and continue to be larger than those of the
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Figure 9. (a) Temporal evolution of the wall shear stress t,, at Re = 2500 for the perturbation amplitude
A = 0.07 for Newtonian flow (black dashed line) and viscoelastic flow (¢ = 0.03; blue solid line) with the time
instants £ = 55, 90, 125 and 300. Snapshots of the (b) streamwise, (¢) wall-normal and (d) spanwise velocity
fluctuations at each time instant shown in (a). Also see the accompanying supplementary movie available at
https://doi.org/10.1017/jfm.2023.930.

viscoelastic flow. Once the transitional period of both flows has passed (+ = 300), a fully
sustained turbulent regime begins, where the expected characteristics of the drag-reduced
flow are observed such that v,,,; and w,,,s of the viscoelastic flow are lower than those of
the Newtonian flow (Li et al. 2006). This whole process can be seen in the accompanying
supplementary movie.

This destabilization mechanism is further studied by estimating the effect of
viscoelasticity on flow structures. Vortex identification is performed by utilizing the
so-called Q-criterion (Jeong & Fazle 1995) for which O = %(HSZ 1> — IS11%) is computed,

where S = %(Vu+ Vu®) is the rate of strain tensor and 2 = %(Vu —Vu') is the
vorticity tensor. Regions of Q > 0 correspond to the areas of strong vortical motions.
Figure 10 shows snapshots of these vortical structures for the lower half of the channel for
Newtonian flow (a—d) and viscoelastic flows of ¢ = 0.03 (e—h) at different time instants
that can also be seen in the evolution of wall shear stress in figure 9(a). The red tubes
represent isosurfaces of Q = 0.216, which is approximately half of the maximum of the
sustained viscoelastic turbulent flow for this particular case. For comparison, the half of
the maximum of the sustained Newtonian turbulent flow is Q = 2.21. The blue contours
correspond to isosurfaces of constant streamwise velocity, which could represent a spatial
structure for the streak.

Figure 10(a,e) shows the flow structures at the beginning stage of the transition process
(t = 55) for Newtonian and viscoelastic flows, respectively. As polymers destabilize the
flow earlier which results in rapid energy growth, the streamwise-elongated red tubes or
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Figure 10. Temporal evolution of vortical structures for the bottom half-channel: (a—d) for Newtonian and
(e—h) viscoelastic (¢ = 0.03) flows at Re = 2500 triggered by the perturbation amplitude A = 0.07. The red
tubes are isosurfaces at constant vortex strength Q = 0.216, and the blue contours are isosurfaces of constant
streamwise velocity. The maximum strengths are (a) 0.018, (b) 1.29, (c¢) 14.64, (d) 4.25, (e) 4.49, (f) 2.39,
(g) 0.25 and (h) 0.63. For reference, the maximum vortex strengths for sustained turbulence are Q = 4.42
and Q = 0.48 for Newtonian and viscoelastic flows, respectively. Also see the accompanying supplementary
movies. (a,e) t =55, (b,f) t=90, (c,g) t =125 and (d,h) t =300.

quasi-streamwise vortices start to form around wavy, uplifted blue isosurfaces, whereas
its Newtonian counterpart remains undisturbed. This wavy, uplifted structure indeed
signifies the form of low-speed streaks, which is one of the key ingredients for the
self-sustaining process (Waleffe 1997). It should be noted that, given the flow regime
of the current study, the spanwise-oriented structures that are predominantly observed in
the EIT regime are unlikely to be observed. As the viscoelastic flow reaches its bursting
peak at r = 90, figure 10(f) shows a relatively larger population of vortex cores formed
around more enhanced low-speed streaks. After the bursting peak, the vortices are then
quickly dampened as polymers work against them, entering a drag-reduced turbulent
regime (figure 104 at ¢ = 300). In comparison, when its Newtonian counterpart reaches
its bursting peak at r = 125 (figure 10c), more heavily populated vortex cores are formed
across almost the entire domain, where the characteristics of the vortical structures are
hard to identify. After the strong bursting peak, however, some of the quasi-streamwise
vortices are observed as seen in figure 10(d).

In addition to the velocity fluctuations and flow structures, the polymer dynamics
can also provide the underlying mechanism behind the early transition. As the more
stretched polymer state ties into the more unstable flow state (Xi & Graham 2010; Graham
2014), we can refer to the bulk polymer stretching in figure 2. In the early transition
stage, the polymers start to stretch slowly as they interact with the flow. As they keep
stretching, polymers continue to destabilize the flow to enhance the velocity fluctuations.
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The transition eventually occurs when the bulk polymer stretching reaches a certain value,
depending on the Reynolds number and perturbation amplitude, after which the bulk
polymer stretching starts to increase sharply, as seen in figure 2.

In short, the destabilization mechanism of polymers during transition is attributed
to the early amplification of the wall-normal and spanwise velocity fluctuations and
the formation of the quasi-streamwise vortices around a low-speed streak, all of which
facilitate an early transition. Interestingly, the vortical structures observed in both
Newtonian and viscoelastic flows also support the power exponent y = —1.25 in the
power-law scaling of the critical perturbation amplitude in figure 7, as also observed in the
previous study (Chapman 2002). It should be noted, however, that a perturbation leading
to different flow structures could provide a power-law scaling with a different exponent.
In addition, this study focuses on a dilute polymer solution (¢ < 0.1) and low elasticity
(El < 0.02), where only an early transition is observed. Thus, it could suggest a subject
of future work for the transition to turbulence in polymer solutions at semi-concentrated
or highly concentrated regimes above the overlap concentration and at high elasticity
(El > 0.02) such as within the EIT regime, where different transition scenarios or flow
structures could arise (Datta et al. 2022).

4. Conclusion

Direct numerical simulations of dilute polymer solutions with a FENE-P model were
performed to investigate the effect of polymers on the laminar—turbulent transition in
plane Poiseuille (channel) flow. Starting from a base laminar state, which is disturbed
with a small finite-amplitude perturbation, the short stable period was observed for both
Newtonian and viscoelastic flows at the beginning followed by the linear and nonlinear
evolution of the disturbance energy. However, the viscoelastic flow experiences a shorter
duration of the stable period, hinting at a destabilizing effect of the polymers during
the early stages of transition. Also, we observed that the viscoelastic flow requires a
smaller amplitude of perturbation to trigger transition, whereas the Newtonian counterpart
remains undisturbed until a larger amplitude is utilized to trigger transition. We show that
the transition time 73, defined as the onset time of transition, decreases with increasing
perturbation amplitude. As polymers promote an early transition, the Newtonian flow
exhibits a higher 7; than the viscoelastic flow, but this difference becomes less pronounced
as Re is increased. Interestingly, the polymer concentration studied (0.01 < ¢ < 0.09)
barely has an effect on the transition time. However, the higher the polymer concentration,
the lower the magnitude of the strong burst, suggesting that higher polymer concentrations
exhibit enhanced drag-reducing behaviour after the onset of transition.

We then investigated the critical perturbation amplitude A., which is the minimum
amplitude to trigger the transition. The viscoelastic flow shows a smaller A, than its
Newtonian counterpart, suggesting that polymers kick in the destabilizing effect early.
Similar to previous studies for Newtonian transition, the critical amplitude of our
Newtonian flow follows a power-law scaling of Re? for Re > 2500, where y ~ —1.25.
More interestingly, a viscoelastic flow also follows almost the identical power-law scaling
as the Newtonian flow. Both flows display almost the same critical exponent of y ~ —1.25
for Re > 2500. This critical exponent implies that the perturbation of the current study
leads to the formation of quasi-streamwise vortices (Chapman 2002).

The early transition or destabilization effect triggered by polymers is further
investigated. During the stable period at the beginning stage of transition, the wall-normal
and spanwise velocity fluctuations start to grow early in the viscoelastic flow, compared
with those of the Newtonian flow. Hence, the polymers appear to destabilize these
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Figure 11. Log-log plot of the stability curve for the onset of transition to turbulence in the range of 2000 <
Re < 5000 of the different perturbations: (a) form I (current study), (b) form II, (¢) form III and (d) form IV.
Each form is meant to display different vortical structures in terms of the strength and shape. Newtonian flow
(black open squares); viscoelastic flow (¢ = 0.03) (blue solid circles). For Re > 2500, the minimum or critical
perturbation amplitude A, follows a power-law scaling of A. = O(Re"), where y ~ —1.25 for all the cases,
except for a Newtonian case in form IV of y ~ —1.50.

components of the velocity fluctuation quickly, promoting an earlier transition. Once the
fully turbulent stage is reached after the strong burst, however, the drag-reducing behaviour
of polymers is observed, where the wall-normal and spanwise velocity fluctuations for
the viscoelastic flow are reduced and become smaller than those of the Newtonian flow.
This destabilizing effect of polymers was also confirmed by considering the bulk polymer
stretching and visualizing the flow structure, where the vortical motions are shown up
earlier around low-speed streaks for a viscoelastic flow. Interestingly, it is possible to
see the formation of quasi-streamwise vortices for both flows, which supports the critical
exponent of y &~ —1.25 for the power-law scaling of the critical amplitude.

This study further complements the previous studies on the laminar—turbulent transition
by providing the power-law scaling of the critical perturbation amplitude for both
Newtonian and viscoelastic flows, which has been mostly unexplored. The destabilizing
effect of polymers during the early stage of transition is consistent with the effects of a low
elasticity number and polymer concentration, as is the case of our study. Moving forward,
the robustness of the power-law scaling on different perturbation structures should be
further investigated. Additionally, higher elasticity numbers and polymer concentrations
may lead to different transition dynamics and mechanisms, which will be a subject of
interesting future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.930.
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Appendix. Different perturbation forms

Figure 11 shows the critical perturbation amplitude A, for Newtonian and viscoelastic
(c =0.03) flows on a log—log scale for various perturbation forms, where form I
is the perturbation used in the current study. These perturbations were generated by
Channelflow, which allows us to create different forms of the perturbation field in terms of
different vortical structures and strengths. It is observed that the same power-law scaling
of A, = O(Re”) with y &~ —1.25 is found for both Newtonian and viscoelastic flows with
all perturbation forms studied for Re > 2500, while asymptotic lines are shifted upward or
downward depending on different perturbation forms. It should be noted, however, that a
Newtonian flow of form IV exhibits a slightly higher exponent of y &~ —1.50. Although
the different forms of the perturbation lead to the same stability scaling, a detailed analysis
of the transition dynamics due to each different perturbation form is necessary but beyond
the scope of the current study, and will be a subject of future work.
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