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This work is a unified study of stable and unstable steady states of 2D active nematic

channel flow using the framework of Exact Coherent Structures (ECSs). ECSs are station-

ary, periodic, quasiperiodic, or traveling wave solutions of the governing equations that,

together with their invariant manifolds, organize the dynamics of nonlinear continuum

systems. We extend our earlier work on ECSs in the preturbulent regime by performing

a comprehensive study of stable and unstable ECSs for a wide range of activity values

spanning the preturbulent and turbulent regimes. In the weakly turbulent regime, we com-

pute more than 200 unstable ECSs that coexist at a single set of parameters, and uncover

the role of symmetries in organizing the phase space geometry. We provide conclusive

numerical evidence that in the preturbulent regime, generic trajectories shadow a series of

unstable ECSs before settling onto an attractor. Finally, our studies hint at shadowing of

quasiperiodic-type ECSs in the turbulent regime.

DOI: 10.1103/PhysRevFluids.8.124401

I. INTRODUCTION

Active fluids are viscous suspensions of constituents that consume chemical energy and convert it

into mechanical work by generating stresses on the microscale, resulting in induced flows [1]. They

are governed by fully nonequilibrium dynamics [2], and their emergent spatiotemporal structures

span multiple scales. In recent years, model active fluids have forged an unprecedented link between

physics and biology [3]. Given their unique nature, there are several outstanding challenges in

characterizing and controlling active fluids. Among various types of active fluids, active nematics

[4,5]—suspensions of active, rodlike, and apolar components—are of particular contemporary

interest. This interest is in part motivated by the potential of exploiting the rich phenomenology

of active nematics, including spontaneous coherent flows, dynamical vortex patterns, and chaotic

hydrodynamics (i.e., low Reynolds number “active or mesoscale turbulence”) [6–9], for design of

smart materials.

Extensile active nematics are inherently unstable to bend fluctuations [10]. In the absence of

boundaries or other influences, active nematic systems exhibit chaotic flows driven by topological

defects [11–14]. While the details vary from model to model, the general picture is that small

distortions to a uniformly aligned active nematic system grow through hydrodynamic feedback,

fueled by active stresses [15]. When these distortions saturate, they create pairs of ± 1
2

defects,

named according to their winding number. At steady state, these defects nucleate, self-propel, and

annihilate, all while creating vortices with a correlation length Lα . As the activity is increased, defect

density increases and the minimum size of vortices concomitantly decreases as Lα ∼
√

K/α, where
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K is the elastic constant and α is the strength of the active stress such that Ãα ∝ αQ [4], with Q

being the nematic alignment tensor.

Experimental efforts to modify the chaotic flows of active nematic system have utilized “soft”

anisotropic substrate friction [16,17], light-activated activity patterning [18–20], or confinement

[21,22]. Given the importance of confined geometries in living active systems, the role of geo-

metric confinement on dynamics has been explored computationally under a variety of geometries

[4,22–26]. In 2D confinement, steady flows are observed for small activity, while chaotic flows or

mesoscale turbulence appear at large activity [27,28]. In between, the interplay between activity and

geometric confinement results in system-sized flows that are steady or spatiotemporally periodic.

For example, in the channel geometry, the so-called “dancing” state exists in this regime and is

characterized by braiding orbits of + 1
2

defects and stationary − 1
2

defects that decorate the walls of

the channel [24,26,29].

From an engineering perspective, there is substantial interest in understanding how to navigate

the large space of spatiotemporal structures in confined active nematics [30–34], by spatial or

spatiotemporal modulation of activity. There are also fundamental unanswered questions related to

active turbulence in confinement [28,35]: how confined active fluids become turbulent, how to char-

acterize them, and how to promote or inhibit turbulence. Some recent theoretical and computational

studies have derived coarse-grained statistical descriptions [8,36–39] of active turbulence, focusing

on energy spectra and spatial organization of statistically steady states, rather than deterministic

dynamics. These studies have revealed that in contrast with inertial turbulence, energy transfer

across scales is absent in active nematic turbulence. Furthermore, there exist universal scaling

regimes in active nematic turbulence. While providing valuable information about the energetics

and scaling properties of fully developed active turbulence, such studies do not provide much

insight into developing capabilities for prediction or control of active turbulence, especially in

confinement.

An alternative approach to the problem of turbulence is based on dynamical systems theory. The

core premise, as originally applied to inertial turbulence, goes back to [40,41]. In this approach, one

considers the fluid to be a deterministic dynamical system evolving in an infinite dimensional phase

space [42]. The governing equations of a given hydrodynamic system can be written as an abstract

first-order ODE

Ẋ = F (X ), (1)

where X denotes the N-dimensional state of the system. In computations, N is a large but finite

number corresponding to the degrees of freedom of the discretized system. The associated flow

map is f t (X0) = X0 +
∫ t

0
F (X (Ä )) dÄ , where X0 is the initial condition.

The dominant flow patterns of this system are understood in terms of Exact Coherent Structures

(ECSs) [43,44] and the dynamical pathways connecting them. An ECS is a (stable or unstable)

equilibrium, (time-) periodic, relative (time-) periodic, quasiperiodic, or traveling wave solution of

Eq. (1). Each type of ECS can be defined as a solution to a corresponding fixed point equation (FPE).

In phase space, equilibria are 0D manifolds (points), periodic orbits and traveling waves are

1D manifolds (curves), and relative periodic orbits are 2D manifolds (surfaces). The FPE for

an equilibrium solution Xeq is F (Xeq) = 0, while any point XP on a periodic orbit (PO) satisfies

f T (XP) = XP, where T is the time period. Similarly, a point XRP on a relative periodic orbit (RPO)

satisfies f T (XRP) = Äx(�)XRP, where Äx(�) is an operator that shifts the solution in the streamwise

direction by a distance �. While stable ECSs can be computed by time-dependent simulations of

Eq. (1), the computation of unstable ECSs requires the solution of the above mentioned FPEs.

Away from bifurcation points, and in the absence of continuous symmetries, the stability of

each ECS can be determined by linearization about its trajectory in the phase space. In general,

if a point on the d-dimensional ECS in an N-dimensional phase space has nu linearly unstable

directions forming the local unstable subspace, and ns linearly stable directions forming the local

stable subspace, then nu + ns + d = N . The remaining d directions are the neutral directions along

the ECS. Hence, each unstable ECS behaves like a d-dimensional saddle. Associated to such
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an ECS are (nu + d )-dimensional unstable manifolds and (ns + d )-dimensional stable manifolds.

Mathematically, the stable and unstable manifolds are sets of initial conditions that converge to the

ECS in forward and backward time, respectively. These invariant manifolds are dynamical pathways

connecting distant regions of phase space. The presence of continuous symmetries gives rise to

additional neutral (center) directions, as discussed later.

The steady states that are directly observed in experiments or time-dependent numerical sim-

ulations correspond to various types of stable ECSs. It has been conjectured that turbulent flows

correspond to chaotic trajectories meandering through the phase space and visiting the neighbor-

hoods of different ECSs (all of which are unstable) in a recurring fashion [45–47]. Therefore, the

ECSs and their invariant manifolds act as an organizing template for the complicated spatiotemporal

motion of the fluid. This minimal description of complicated flows is well suited for devising

near-optimal control inputs using activity patterning. Such an approach has been successfully

applied in several low-dimensional nonlinear dynamical systems [48–50], where (near-) optimal

control trajectories have been computed solely based on the knowledge of various equilibria or

periodic orbits, and their stable and unstable manifolds, without solving any formal optimization

problem.

In our earlier work [51], we reported the coexistence of a chaotic attractor, multiple regular

attractors (i.e., stable ECSs), and a large number of unstable ECSs in the phase space, at a single

value of activity below the turbulent transition. This paper extends this previous analysis in several

directions. In Sec. III A, we present a phase diagram constructed via a comprehensive study of

attractors for a wide range of activity values. We find that above a critical activity value, there are

no regular (i.e., nonchaotic) attractors in the system, and all trajectories are chaotic, signifying the

transition to turbulence. Moving beyond attactors, we discuss the computation and classification

of various stable and unstable ECSs in preturbulent and turbulent activity regimes in Sec. III B.

We show that the explicit use of system symmetries enables the computation and classification of

system states. The symmetry viewpoint [52,53] also aids in visualization and understanding of the

phase space geometry.

The conjecture [42] that turbulent trajectories shadow various ECSs, guided by the associated

invariant manifolds and heteroclinic connections, has been confirmed in recent numerical [54]

and experimental [47,55] studies in certain inertial turbulent systems. In Sec. III C we review the

tools introduced in these prior studies [54,55] and employ them to provide numerical evidence of

shadowing of ECSs and their invariant manifolds in the active nematic system in the preturbulent

regime. Finally, we also discuss our efforts to confirm shadowing of ECSs in the turbulent regime

in the same section.

II. MODEL, SYMMETRIES, AND COMPUTATIONAL FRAMEWORK

Following earlier work [24,56–58], we model the active nematic system in terms of the velocity

u(r, t ) =(u, v), and nematic alignment tensor Q(r, t ). The symmetric and traceless Q tensor can be

parameterized as Qi j = q(nin j − 0.5δi j ), where the scalar q and unit vector n̂ describe the degree

and direction of nematic ordering. The governing equations are

ρ(∂t + u · ∇)u = −∇p + 2η(∇ · E) − α(∇ · Q),

(∂t + u · ∇)Q + W · Q − Q · W = λE + γ −1 H,

∇ · u = 0, (2)

where

Ei j = 1
2
(∂iu j + ∂ jui ), Wi j = 1

2
(∂iu j − ∂ jui ), (3)

H = A[Q − bTr(Q2)Q] + K'2Q. (4)

The response of the material to activity is captured in the Navier-Stokes equation as the active stress

−αQ, which models an active particle as a force dipole [59]. We do not include passive elastic
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stresses in this equation, since they are subdominant [25,51,60]. In the Q equation, the left-hand side

is the convective derivative of Q with respect to u. In addition to the usual (u · ∇) contribution, there

is also the commutator product W · Q − Q · W, which accounts for rotations of Q in the convected

coordinates. On the right-hand side, λE is the flow-alignment term, and H derives from a free energy

functional that penalizes distortions and drives the creation of nematic order. In the present study,

we neglect flow alignment to focus on essential aspects of the system [14,61]. Other aspects of the

nematohydrodynamic model, including generalizations and detailed physical interpretation, can be

found in [59]. The domain is a periodic 2D channel, parameterized as (x, y) ( [0, L] × [0, h], with

x the periodic coordinate. The channel walls impose a no-slip boundary condition on u and strong

perpendicular anchoring on Q.

For our simulations, we adopt the nondimensionalization used by Ref. [60], where the funda-

mental length and time scales �, Ä are defined as

� =
K1/2

A1/2
, Ä =

γ

A
. (5)

The corresponding velocity scale v0 is

v0 =
�

Ä
=

K1/2

A1/2

A

γ
=

K1/2A1/2

γ
. (6)

In these units, Eqs. (2) become

Ren(∂t + u · ∇)u = −∇p + 2(∇ · E) −
Ra

Er
(∇ · Q),

(∂t + u · ∇)Q + W · Q − Q · W = λE + H, (7)

∇ · u = 0, H = Q − bTr(Q2)Q + '2Q, (8)

where

Ren =
ρv0�

η
, (9)

Er =
ηv0�

K
=

η

K
·

K

γ
=

η

γ
, (10)

Ra =
K

A

α

K
=

α

A
. (11)

Ra is the dimensionless activity, Er is the Ericksen number, and Ren was identified in Ref. [60]

as the microscopic Reynolds number. Consistent with prior work [24,62], we fix the parameters

Er = 1 and Ren = 0.0136. The channel dimensions are L = 80 and h = 20 in the dimensionless

units.

A. Symmetries

A dynamical system of the form given by Eq. (1) is said be equivariant under a group action

Ã if the time evolution and the group operation commute, i.e., for every state X and time T , the

relationship Ã ( f T (X )) = f T (Ã (X )) is satisfied. The system of Eqs. (2) in a periodic channel is

equivariant under the continuous one-parameter group of x translations, Äx(�), as well as the x and

y reflections, denoted Ãx and Ãy, where

Ãx[u, v, Q11, Q12](x, y) = [u,−v, Q11,−Q12](x, h − y),

Ãy[u, v, Q11, Q12](x, y) = [−u, v, Q11,−Q12](L − x, y),

Äx(�)[u, v, Q11, Q12](x, y) = [u, v, Q11, Q12](x + �, y), (12)

and � is any real number. We will use the notation Tk to denote the discrete k-fold translation group

with operation Äx( L
k

). We use the following convention while naming various ECSs: “Tk/m” refers
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to an ECS with Tk symmetry, and the integer m is an identifier used to differentiate between different

ECSs with the same symmetry. Suppose an initial condition X0 is symmetric with respect to any

of the above group operations or their compositions, e.g., let X0 = Ãx(X0). Then the future states

f T (X0) of the system will retain the same symmetries [44], and hence, f T (X0) = Ãx( f T (X0)) for

all T > 0. In that case, the state X0 and all its future iterates are said to belong to the Äx symmetry

subspace Fix(Ãx ) ⊂ R
N , where Fix(Ãx ) = {X ( R

n|Ãx(X ) = X }. Our discussions in the following

sections will reveal that these symmetries are a powerful tool for finding and categorizing various

ECSs, and analyzing the phase space geometry.

B. Computational framework

We have developed an open-source computational toolbox titled “Exact Coherent Strucures in

Active Matter” (ECSAct) [63] using the open-source pseudospectral code Dedalus [64]. Dedalus

is a Python-based, MPI-parallelized general purpose solver for initial-value, boundary-value, and

eigenvalue problems on spectrally representable domains. Nearly arbitrary equations can be effi-

ciently solved via state-of-the-art algorithms that exploit sparsity, arithmetic trees, and transforms.

Pseudospectral methods are well suited for solving nonlinear PDEs in simple geometries [65]. For

channel geometries, Dedalus implements a Fourier basis for the periodic directions and Chebyshev

polynomials for the wall-normal direction.

While Dedalus can natively solve time-dependent problems, it currently lacks sophisticated

solvers that can handle highly nonlinear multidimensional FPEs such as the ones that need to be

solved to compute unstable ECSs. To solve such FPEs, ECSAct uses modified Newton-Raphson

algorithms [66]. Two key ingredients are adaptive “hookstep” step-size selection to improve global

convergence [67] and a matrix-free GMRES [68,69] algorithm for solving the linear BVP at each

iteration. The matrix-free methods are essential because they scale efficiently to the large problem

dimensions encountered in hydrodynamic simulations. ECSAct also contains routines for linear

stability analysis of the various types of ECSs, as well as for performing symmetry operations such

as projections into a symmetric subspace, etc. More details on these algorithms and implementation

of ECSAct can be found in the ECSAct documentation available on the GitHub repository [63].

All ECS and heteroclinic connections reported here were computed using 128 Fourier modes and

32 Chebyshev modes, corresponding to a phase space dimension of ∼4 × 128 × 32 = 16 384.

III. RESULTS

A. Attractors

1. Search strategy

Nonlinear dynamical systems can have multiple attracting states. To discover an attractor by

forward time integration, the initial conditions must be within the corresponding basin of attraction.

However, for multiple attractors, there is no general method for ensuring that all basins of attraction

have been sampled. Thus, heuristic methods are usually required. In this section we explain the

heuristics we have used for mapping out attractors in AN channel flow.

As a starting point, we refer to our previous work [51] on AN channel flow at a single value

of activity. There we found three coexisting attractors: three- and fourfold vortex lattice (“dancing

disclinations”) PO states and a localized chaotic attractor. Because all three were well separated

from each other in phase space, a cursory search by forward time integration could easily have

overlooked one by failing to provide initial conditions in each basin of attraction. Finding all three

required a more principled approach, in which initial conditions were chosen in a set of discrete

symmetry subspaces. The idea is as follows. Because large-scale flows are constrained by the

smallest channel dimension, it is natural to look for flows with the latter as their characteristic

length. For fixed channel aspect ratio, these flows would tend to adopt a discrete translational

symmetry. For example, in a channel with aspect ratio width/height ≈4, it is plausible that the

nonchaotic attractors have three- or fourfold translational symmetry, such as a row of three or
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FIG. 1. The three equilibria with zero or 1D flow for Ra = 3.4.

four identical (or nearly so) vortices. Indeed, this configuration coincides with the stable vortex

lattice PO consistently observed in previous studies. This physical reasoning concurs with the

more general dynamical systems context, where the role of symmetry subspaces in organizing

the phase space geometry is well-established. Our strategy, therefore, is to search for attractors

on or near symmetry subspaces that match the channel dimensions. One method is to choose

initial conditions in a symmetry subspace and explicitly enforce that symmetry under forward time

integration. However, doing so would overlook key features that are only represented in the full

phase space. These include dynamical connections between ECSs in different symmetry subspaces,

as well as any attractors that are small perturbations from a symmetric state, e.g., a vortex lattice

with one of the vortices slightly distorted. Therefore, we perform our searches for attractors in

the full phase space. In practice, the set of equilibria with 1D flow, henceforth referred to as

“1D equilibria,” shown in Fig. 1 serve as convenient “entry points” to the symmetry subspaces.

These three equilibria [51,70,71] have continuous translational symmetry, so they belong to every

discrete translational symmetry subspace. For the same reason, the unstable eigenvectors of the

system linearized about these equilibria are of the form e±2πnx/Lg(y) and therefore possess discrete

translational symmetry. These symmetries also tend to be the most dynamically relevant ones, as

they are precisely those that grow and persist as a trajectory leaves the equilibrium. By contrast, the

dynamically unfavorable symmetries tend to be represented by the stable eigenvectors, which are

damped out in the neighborhood of the equilibrium. Table I illustrates this idea for UNI at Ra = 3.4.

In this case, the unstable eigenvectors have wavelengths ranging from one-third to one-twelfth of

the channel width L, corresponding to discrete symmetries T3, T4, . . . , T12. As demonstrated in the

following sections, these symmetries are indeed important for characterizing typical time-dependent

trajectories, while higher order symmetries, Tn>12, are inconsequential.

In the end, our search consisted of the following steps:

(1) For each Ra ( {0.1 n, n = 1, . . . , 50}, compute the unstable eigenvectors of UNI, LAN,

and ZF.

TABLE I. Features of the leading eigenvectors of the dynamics linearized about UNI at Ra = 3.4. The

eigenvectors are pure Fourier modes in x, of the form e±2πnx/Lg(y), where L = 80 is the channel width. λ is the

eigenvalue, so positive (negative) Re(λ) means the eigenvector represents an unstable (stable) direction.

nx Re(λ) nx Re(λ) nx Re(λ)

6 0.623 10 0.372 9 0.207

7 0.603 3 0.296 10 0.137

5 0.595 11 0.254 12 0.12

8 0.55 7 0.249 5 0.115

4 0.497 8 0.246 11 0.042

9 0.471 6 0.208 2 −0.021
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FIG. 2. Snapshots of some of the attractors. For each of the four attractors shown, the top plot shows the

velocity superimposed on the (scalar) vorticity, and the bottom plot shows the director field superimposed on

the nematic order parameter. The “vortical” flows (top row) and chaotic flow (bottom left) are at Ra = 3.0 and

are shown with the same colorbar scales. The modulated wave (bottom right) is at Ra = 1.1; due to the smaller

activity, it is shown with different colorbar scales. The alternating vortex lattice RPO and the modulated wave

RPO both have shift-reflect symmetry ÃxT2, the rolling vortex lattice RPO has threefold translation symmetry

T3, while the chaotic flow does not have any symmetry.

(2) For each unstable eigenvector v construct the initial condition X0 + ε(v/||v||), where X0 is

one of UNI, LAN, or ZF; and ε is suitably small. From this initial condition, run a time-dependent

simulation for 104Ä time units. Denote the final state X∞.

(3) Run the Newton-Raphson solver with X∞ as the initial guess. If the solver converges,

compute the stability and see if it is an attractor.

We also performed branch continuation for several ECSs, checking whether an unstable solution

branch became stable at higher or lower activity. However, most attractors were found using the

time-dependent method described above.

2. Description and classification

The nonchaotic attractors can be categorized by the symmetries of Eqs. (2). For 0 < Ra < 0.7,

one or more of the 1D equilibria (ZF, UNI, LAN) is stable. The equilibria or POs borne as a result

of bifurcations from these attractors break the continuous translational symmetry, while picking

a discrete translational symmetry. The stable ECSs (i.e., the attractors) will be the ones that pick

up symmetries with dynamically favorable length scales, which in turn depend on the system’s

intrinsic length scales. For Ra ≈ 0.7, where UNI becomes unstable, an RPO with T4 symmetry is

born through a homoclinic bifurcation. This RPO cycles between the neighborhoods of the UNI

equilibrium and the PO corresponding to a fourfold vortex lattice state. The next attractor to appear

(near Ra ≈ 1.1) is an RPO invariant with respect to ÃxT2, which describes a shift-reflect symmetry

[72]. Though this particular attractor [labeled “modulated wave” (MW)] occupies a narrow range of

activity (fifth row in Fig. 3), the ÃxT2 symmetry appears repeatedly in other attractors all the way to

Ra ≈ 4.1. A snapshot of a MW RPO is shown in Fig. 2 (bottom right).
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FIG. 3. Attractors as a function of activity Ra ≡ α/A [Eq. (11)]. The channel dimensions are 80� × 20�,

where � is defined from the material constants of the nematic [Eq. (5)]. The flow alignment λ is 0. The

horizontal bars group the attractors by symmetries and other qualitative flow characteristics. A blue color

indicates an equilibrium, orange an RPO, and green a PO. Some of the bars are composed of more than

one ECS; for example, there are two qualitatively similar threefold rolling vortices between Ra = 3.34 and

Ra = 3.86. Real-space flow snapshots are shown in Fig. 2, and the full data set of ECSs is given in the

Supplemental Material [73].

For the channel dimensions and material constants considered here, the most robust attractors

have a T3 symmetry. Although there is a stable PO with T4 symmetry (green bar in Fig. 3), it is

stable over a relatively small range of activity, and even then only weakly so.

The symmetries loosely correlate with additional flow characteristics. In particular, the Tn

symmetries are associated with one of the following: (a) cycling between a nearly unidirectional

flow and a vortex lattice PO (fourth row in Fig. 3), (b) left- or right-drifting vortex lattice RPOs

(labeled “rolling” vortex lattice, row 7), or (c) vortex lattice PO (row 8). In cases (b) and (c), the

vortices are corotating. A snapshot of a rolling vortex lattice RPO is shown in Fig. 2 (top right).

In contrast, because Ãx switches the sign on the vorticity, the shift-reflect symmetry (ÃxT2) tends to

produce a pair of counter-rotating vortices (row 6). A snapshot of this RPO, labeled “alternating”

vortex lattice, is shown in Fig. 2 (top left).

We did not find any nonchaotic attractors in the activity range 1.1 � Ra � 1.4 for the zero flow

alignment case considered in this work. By repeating similar calculations for several nonzero values

of flow alignment, we verified that generically, at least one nonchaotic attractor can be found for all

values of activities below the turbulent transition.

3. Chaotic attractors

Surprisingly, there is evidence of chaotic attractors for activity as low as Ra ≈ 1.1. By contrast,

stable ECSs exist all the way up to Ra ≈ 4.3. In between, the phase space can be partitioned into

basins of attraction for the stable ECSs and any chaotic attractors. The former consists of all points

in phase space that converge to a stable ECS as t → +∞, and the latter consists of all points that

converge to a chaotic attractor as t → +∞. For visualization purposes, we project trajectories on

to a reduced 3D phase space (〈u〉, 〈v2〉, 〈Q11〉) [51], where 〈·〉 denotes the instantaneous channel

average. Visual inspection suggests that chaotic trajectories in this phase space projection are

localized to a region separate from the stable ECSs; see Fig. 4 for the case of Ra = 3.4. The

symmetry-reduced distance [Eq. (14)] between a chaotic trajectory and the attractors at Ra = 3.4

was found to be O(1), providing further proof of our assertion.

Interestingly, the unstable manifold of the unidirectional equilibrium appears to play a role in

dividing these two regions. In our previous work [51], we found robust heteroclinic connections

between UNI and certain stable ECSs, as well as trajectories connecting UNI to the chaotic attractor.
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FIG. 4. A chaotic trajectory and the three attractors projected on the (〈U 〉, 〈V 2〉) (left) and (〈V 2〉, 〈Qxx〉)

(right) planes, for Ra = 3.4.

Overall, this phase space partitioning is reminiscent of the subcritical transition to turbulence in pipe

flow [45,74,75]. These studies posit that a codimension-1 manifold separates the basins of attraction

of the laminar and the chaotic states. Such a manifold corresponds to the stable manifold of an

unstable equilibria (or traveling wave) with one unstable direction. The question of existence and

characterization of a similar edge manifold in the phase space of active nematic channel flow is left

for future work.

B. Unstable ECSs

In addition to the regular (stable ECSs) and chaotic attractors, the phase space is populated by

several unstable ECSs. The unstable ECSs are coherent steady states that are not directly observed in

experiments or time-dependent numerical simulations. Our interest in computing and characterizing

these states is motivated by their crucial role organizing the global dynamics in both the nonturbulent

and turbulent regime.

In several classes of dynamical systems, the natural dynamical pathways between a pair of stable

steady states are often found to be mediated by unstable steady states. Consider the recent experi-

mental study of the dynamics of a ball rolling on a 2D multiwell surface [76]. This conservative two

degree-of-freedom system has a 3D phase space for each fixed value of total energy. A trajectory can

transition between a pair of two wells (potential energy minima) via a bottleneck that opens up at an

energy level above that of the intermediate saddle point of the energy surface; see Fig. 5. In addition

to this energetic requirement however, the desired transition can happen only if the trajectory lies

inside the 2D cylindrical stable manifold of the unstable periodic orbit that exists around the saddle

point of the energy surface. If this latter condition is met, the trajectory approaches the saddle point

region while traveling inside the stable manifold, and is eventually transferred to the second well via

the unstable manifold of the same periodic orbit. If the condition is not met, the trajectory is reflected

back to first the well, even if it satisfies the energetic requirement. The above mentioned example

highlights the role of invariant manifolds of saddle type (unstable) steady states in determining

global phase space transport. Similar results have been obtained in orbital mechanics [48,77], ship

dynamics [78], beam buckling [79], and solitary wave propagation [80], etc. This body of work

suggests that the unstable ECSs are expected to play a similarly important role in energy efficient

dynamical pathways that transfer the system between various attractors in the preturbulent regime.

The geometry of phase space can also assist in the discovery of new flow states that may become

stable at different parameter values.

1. Search strategy

We design our search for unstable ECSs keeping in mind two groups of objects in phase space:

(1) the unstable manifolds of the 1D equilibria and (2) any chaotic attractors. By computing ECSs
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FIG. 5. Left: (Top) Potential energy surface of a two degrees-of-freedom conservative dynamical system

with two minima and three saddles highlighted. (Bottom) The phase space near the energy surface saddle can

be locally described as a direct product of a saddle fixed point and a center fixed point on orthogonal planes.

Right: Periodic orbit around the saddle in yellow has 2D stable and unstable manifolds. A trajectory transiting

from the left potential well to the right potential well travels inside the stable manifold towards the PO, and

inside the unstable manifold while moving away from the PO. Hence, the PO here acts like an extended saddle

point.

on or near these manifolds, we hope to gain information on nearby time-dependent trajectories.

In particular, group 1 is relevant for trajectories that begin near one of the 1D equilibria; such

trajectories, at least initially, will approximately follow the equilibrium’s unstable manifold.

The Newton-Raphson solver used for solving the FPEs requires good initial guesses to converge

to an unstable ECS. Given our goal of using the ECSs to characterize time-dependent trajectories,

it is natural to take initial guesses from the latter. For ECSs on or near the unstable manifold of

an equilibrium, we take guesses from trajectories that begin near the equilibrium and are perturbed

along one of its unstable directions. These are actually the same trajectories defined in Sec. III A,

which we used to find attractors. The only difference is that now, we are taking guesses from near

the beginning of the trajectory (roughly the first 0 < t < 1000Ä ) rather than the end. For ECSs on or

near chaotic attractors, we use the same set of trajectories, but exclude those that end on an attracting

ECS. Our initial guesses are then taken from the asymptotic part of the remaining trajectories.

Depending on the trajectory used to provide initial guesses, the fraction of solver instances that

converge can vary from 0 to 1. Among those that converge, not all give unique ECSs, so it is

essential to detect and remove duplicates. For our case, this is complicated by the fact that, due to

invariance with respect to space and time translations, POs and RPOs are 2D manifolds in the full

phase space. In particular, two separate solver instances generally converge to different points on

the surfaces, and we need a criterion to detect when two points are on the same surface. To account

for this situation, we use the distance measure described in Sec. III C 2, which is 0 if and only if

the two ECSs are equivalent up to space and time translations. Thus, if the distance between two

ECSs is 0, they reside on the same “ECS surface,” and we remove one of them from our data set

as a duplicate. For a few values of activity, we also ran the Newton-Raphson solver in one or more

symmetry subspaces, which helped to identity some of the more unstable ECSs. Finally, for many

of the ECSs, we performed branch continuation in Ra, which sometimes uncovered ECSs that had

been missed by other searches.

However, none of these searches should be considered exhaustive. In the presence of chaos,

there will generally be an infinite number of ECSs with arbitrarily large periods. Due to the
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FIG. 6. Left: An unstable defectless vortex lattice steady state (equilibrium) with threefold translational

symmetry T3. Right: An unstable traveling wave with fourfold translational symmetry T4. For both cases, the

top plot shows the velocity superimposed on the (scalar) vorticity, and the bottom plot shows the director field

superimposed on the nematic order parameter.

unpredictable convergence behavior of the Newton-Raphson solver, there is also no guarantee that

a given number of searches will uncover all ECS with a given property, such as periods less than

some value. A more realistic goal is to design a search strategy that is at least biased toward the

most dynamically relevant ECSs, and our method of searching along time-dependent trajectories

indeed serves this purpose. Nevertheless, there are other biases that may skew our ECS data set in

different directions. In particular, the Newton-Raphson solver cannot look for ECSs with arbitrarily

large periods because it must integrate over at least one period. Such ECSs could be important in

some settings, such as near a homoclinic bifurcation. More generally, the dynamical relevance of an

ECS is more closely related to its Floquet exponents than its Floquet multipliers [54]. The former

describe the local divergence of trajectories near a point on an ECS, whereas the latter quantifies

growth or decay of perturbations over an entire period. By contrast, the Newton-Raphson solver is

more likely to converge to ECSs with small Floquet multipliers. In future work, we will explore the

use of optimization-based methods [81,82] for finding ECS with larger periods.

2. Description and classification

ECS data for Ra = {0.1 n, n = 1, . . . , 50} can be found in the Supplemental Material [73]. For

Ra < 0.9, we documented six equilibria, including the three 1D equilibria in Fig. 1. This number

is much smaller than the number of ECS in our data sets at higher activity. While one does indeed

expect fewer ECS at small activity, this result may also be influenced by the smaller number of

searches performed in this regime.

Our focus instead was on Ra > 0.9, where RPOs and higher-dimensional invariant objects begin

to dominate the phase space geometry. For each value of Ra above this threshold, we identified at

least 10 ECS. Most of these are RPOs, though POs, TWs, and EQ are also present, as discussed

below. For the analysis in Sec. III C, more thorough searches were conducted at a few values

of Ra. For example, the Ra = 3.4 data set (used in Figs. 8–10) contains 56 ECS, and Ra = 4.0

and Ra = 4.5 have 66 and 210, respectively. The unstable ECSs embody a much larger variety

of spatiotemporal patterns compared with the attractors. The discrete translational symmetry Tn is

present for n up to 12 and includes two new types of ECSs not found among the attractors. The first

are defectless, vortex lattice equilibria found by the Newton solver only for relatively small activity

(<1.5). As a shorthand, we call these states “static vortex equilibrium” (SVE). These equilibria

are not to be confused with stationary vortex (SV) periodic orbits with motile defects discussed

earlier. The second are traveling waves; these occur over a wider range of activity, but were found

to be unstable in every case. The snapshots of both these types of ECSs are shown in Fig. 6. The

figure “mosaic_R45.png” in the Supplemental Material [73] visually expresses the phase space

diversity with a mosaic of all 210 ECSs found at Ra = 4.5, all of which are unstable.
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FIG. 7. Trajectory “densities” at Ra = 4.5 for the 201 unstable ECS (left) and turbulent attractor (right),

projected on the (〈V 2〉, 〈Qxx〉) plane. Each figure is generated from evenly spaced time series of the corre-

sponding trajectories, which are binned and normalized as a 2D probability density function in 〈V 2〉 and 〈Qxx〉.
Trajectories tend to spend more time in the yellow regions versus the violet regions.

3. Distribution in phase space

Finally, it is instructive to see the phase space distribution of various ECSs in the turbulent

regime. In Fig. 7 we compare the probability density of a long-lived turbulent trajectory with that

of trajectories on all the computed ECSs. The trajectory for each ECS has duration equal to its

respective period. In this 2D phase space projection, these ECSs tend to be distributed near the

unstable manifolds of the 1D equilibria. In Sec. III C, we provide evidence that this conclusion

holds in the full phase space as well, i.e., it is not just an accidental feature of the low-dimensional

projection in Fig. 7.

C. Transient flows

Our interest in unstable flow patterns is driven by their potential to give a reduced-order descrip-

tion of trajectories that are transient or chaotic. By reduced order, we mean theoretical descriptions

containing substantially fewer degrees of freedom than the full, time-dependent hydrodynamic

equations. Such a description is, by necessity, usually incomplete or approximate, but will at

least capture some key features of the dynamics. By transient trajectories, we mean finite-time

trajectories connecting the neighborhood of an unstable ECS to one of the attractors. For example,

one might be interested in the behavior of a system initialized near an unstable equilibrium and

subsequently allowed to evolve toward one of the attractors in Fig. 3. As we demonstrate below,

there is substantial variety in the pathways a system might take, so there is no single representative

trajectory. Similarly, there is no finite representative trajectory for a turbulent flow; in both cases,

the complicated nonlinear dynamics makes it difficult to develop a reduced-order description.

As mentioned in the introduction, the dynamical systems framework [43] postulates that such a

reduced-order description can be built out of unstable ECSs. A recurring motif is a typical turbulent

trajectory approaching an unstable, saddle-like ECSs along the latter’s stable manifold, before

departing along the corresponding unstable manifold towards another ECS. There is mounting

experimental [55] and numerical [54,83–85] in support of this idea for the case of weak inertial tur-

bulence in classical Newtonian fluids. References [54,55] refined the definition of “close approach”

to an ECS, taking into account continuous symmetries and the local geometry in the neighborhood

of the ECS. In this way, they defined “shadowing events” as finite time intervals during which

a turbulent trajectory and an ECS have quantitatively similar time evolution. By applying this

formulation to inertial turbulence, they were able to experimentally detect shadowing events in

turbulent Taylor-Couette flow [55]. These shadowing events could be used, for instance, as nodes in

a network-based model of trajectory statistics. In a complementary work, Ref. [83] employed tools

from computational topology to construct a Markov chain where the nodes represent neighborhoods
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of various ECSs, and the transition rates between a pair of nodes are governed by the heteroclinic

dynamics between those ECSs. The invariant distribution of the Markov Chain is a coarse grained

representation of the probability density function of a generic turbulent trajectory.

Although ECSs have been found numerically in non-Newtonian fluid turbulence [86,87], the

usefulness of unstable ECSs in such physical settings is still a hypothesis, potentially requiring

simplifications such as confinement to small domains and precise experimental control. For active

matter systems, these issues have not yet been explored in detail. Here we provide two pieces of

evidence that certain unstable ECSs from Sec. III B form a scaffolding of the unstable manifold of

UNI, guiding trajectories en route from UNI to one of the attractors. Specifically, a typical trajectory

from UNI to one of the attractors experiences one or more shadowing events, which could be used

as basis elements of a reduced-order model, or as access points for control inputs. Finally, we also

report on our attempts to find shadowing in the turbulent regime.

1. Trajectory densities in the preturbulent regime

A simple way to study the unstable manifold of an equilibrium like UNI is to sample it with

representative trajectories. These can be generated by perturbing the equilibrium with a linear

combination of unstable eigenvectors, which span the tangent space of the unstable manifold in

the neighborhood of the equilibrium. Here we focus on activity Ra = 3.4, where UNI has 34 un-

stable eigenvectors, and therefore 34 − 1 = 33 coefficients in a general (infinitesimal) perturbation.

However, sampling these coefficients uniformly will produce trajectories dominated by the most

unstable mode. Hence, to also sample the subdominant directions along the unstable manifold, we

construct perturbations from pairs of eigenvectors {en, em}n �=m only. The initial conditions Xinit then

take the form

Xinit = XUNI + ε(en + α em), (13)

where n �= m. Here α is a random real number between −1 and 1 representing the relative

contribution of en vs em. The magnitude of the perturbation, ε, was sampled uniformly from

the interval [10−5, 10−5 + 10−4]. As with α, this additional “noise” was intended to increase the

probability that each trajectory will explore a new part of the unstable manifold.

In our case we ran several hundred simulations with these initial conditions and let them evolve

from t = 0 to t = 104Ä . To synthesize the large amount of data that was generated, we constructed

time-averaged trajectory densities in the 2D phase space projection (〈Qxx〉, 〈v2〉). Specifically, we

computed a 2D density map by binning the (〈Qxx〉, 〈v2〉) time series over a given time interval.

Figure 8 shows the results for the time intervals 0 < t < 100Ä and 100Ä < t < 104Ä . For com-

parison, the ECSs we tabulated at Ra = 3.4 have periods between about 2.6Ä and 22Ä . Note that

the top panel of Fig. 8 has two rectangular regions cut out from the upper and lower left corners.

These regions contain the UNI and ZF equilibria, respectively, and for early times t < 100Ä are

characterized by especially high trajectory density. Hence, to focus on behavior in other regions of

phase space, we exclude these areas from the overall density map.

The trajectory density plot for 0 < t < 100Ä captures the transient statistics, and regions of high

density in that plot are where trajectories spend the most time within the initial transient period.

Many of such high-density regions are visible in the top panel of Fig. 8, several of which coincide

with unstable (saddle-type) and stable ECSs. Nevertheless, other high-density contours (particularly

in the top panel corresponding to transients) could not be correlated with ECSs, despite running

the Newton-Raphson solver at points along the underlying trajectories. We conjecture that these are

unstable 2-tori (quasiperiodic orbits), which are a type of ECS that our current solver is not equipped

to compute. The density plot for 100Ä < t < 104Ä shown in the bottom panel of Fig. 8 captures the

long-term statistics. As expected, the trajectory density is higher on attracting ECSs (zoomed-in

view in the lower right panel), though strong shadowing of three unstable ECSs is also apparent.
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FIG. 8. Trajectory “densities” along the unstable manifold of UNI in the preturbulent regime projected on

the (〈V 2〉, 〈Qxx〉) plane. The dimensionless activity is Ra = 3.4. The full unstable manifold is 34-dimensional

and impractical to compute directly. Following the method described in Sec. III C 1, we instead define an en-

semble of trajectories that maps out a low-dimensional subspace. The density map (color gradient) is generated

from this ensemble by binning evenly spaced time series over the corresponding interval: 0 < t < 100 (top) or

100 < t < 104 (bottom). The apparent overlap of high-density regions (yellow) with unstable ECSs suggests

the occurrence of shadowing, which we have confirmed for selected cases (see Sec. III C 2). Note that there are

three stable ECSs (or attractors): T1/9, T3/1, and T3/2, while the rest of the ECSs shown are unstable.

2. Shadowing along unstable manifolds in the preturbulent regime

The second pieces of evidence, Figs. 9 and 10, focus on two of the trajectories used to generate

Fig. 8. Our aim is to confirm that the apparent shadowing of unstable ECSs (as suggested by

the trajectory densities in the reduced phase space) indeed describes a feature of the full phase

space dynamics, and not just an artifact of the low-dimensional projection in Fig. 8. To do so, it is

necessary to define a measure of distance between two trajectories in phase space. The natural metric

is simply the L2 norm of the fields. However, due to the continuous translational symmetry in the

streamwise direction (x coordinate), this metric is inadequate for identifying dynamical similarity

between trajectories. For example, the L2 norm may assign a large distance between two trajectories

that evolve nearly identically, but only up to a constant streamwise translation. To account for this

situation, we use the following time-dependent continuous-symmetry-reduced distance between a

trajectory X1(t ) and an ECS XE (t ):

d1E (t ) = min
0�l�L
0�Ä�T

‖Äx(l )(X1(t )) − XE (Ä )‖2, (14)
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FIG. 9. Example of shadowing along the unstable manifold of the unidirectional equilibrium in the pre-

turbulent regime at Ra = 3.4. The color gradient plot shows the distances [as defined by Eq. (14)] between a

time-dependent trajectory and a selection of ECSs at the same value of activity. The figures illustrate shadowing

of the unstable ECSs T1/5 from approximately 200Ä to 250Ä . The simulation eventually approaches T1/9,

which is an attractor.

where T is the time period of the ECS (T = 0 if it is an equilibria or a traveling wave). The top

panels in Figs. 9 and 10 show the results of applying this measure to two trajectories initialized

from Eq. (13). The symmetry-reduced distance (color gradient) is computed at a set of fixed time

points (horizontal axis) and with respect to several ECSs (vertical axis). Several shadowing events

are clearly visible as horizontal red and black segments, where the symmetry-reduced distance is

small. The corresponding reduced phase space trajectories are shown on the bottom. The full time

series data of distances of both trajectories from all the ECSs are provided in the Supplemental

Material [73].

3. Testing for shadowing in the turbulent regime

To test whether the turbulent state shadows any ECS, we consider typical trajectories in the

turbulent regime at Ra = 4.5. As discussed in Sec. III B 2, we computed 210 distinct unstable ECSs

at this parameter value. Each ECS XE (t ) has three discrete-symmetry-related counterparts, i.e.,

Ãx(XE (t )), Ãy(XE (t )) and ÃyÃx(XE (t )). We computed continuous-symmetry-reduced distances using

Eq. (14) between each of the 840 ECSs, and the 22 trajectories starting on the unstable manifold
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FIG. 10. Another example of shadowing along the unstable manifold of the unidirectional equilibrium in

the preturbulent regime at Ra = 3.4. The color gradient plot shows the distances between a time-dependent

trajectory and a selection of ECSs at the same value of activity. The figures show two shadowing events: first,

the unstable ECS T6/1 from about 30Ä to 70Ä , followed by the unstable ECS ÃxÃy(T3/3) from 250Ä to 600Ä .

This simulation also eventually approaches the attractor T1/9.

of UNI. These trajectories are obtained by picking initial conditions that are small perturbations of

UNI along each of its 22 unstable directions.

Unlike the preturbulent regime, we found no instances of shadowing of any of the ECSs by the

turbulent trajectories. Although there are some instances of close approaches to certain ECSs, the

evolution of the chaotic trajectory does not resemble any of the ECSs even for times much smaller

than the typical time period of the corresponding ECSs [54]. By visual inspection of the 3D phase

space plot, we found that some segments of the chaotic trajectories appear to be quasiperiodic; see

the right panel of Fig. 11 for one example. This leads us to conjecture that these trajectories might
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FIG. 11. Top: A subset of the distance plot chosen to highlight one of the closest encounters between a

chaotic trajectory and an ECS in the turbulent regime at Ra = 4.5. The trajectory visits the neighborhood of

an ECS (labeled T4/1) at t/Ä ≈ 1500. Bottom: The trajectory from t/Ä = 0 to t/Ä ≈ 1800 in black along

with the ECS T4/1. There is clearly no shadowing of the ECS, and the trajectory appears to be quasiperiodic.

The full time series data of distances of this trajectory from all the ECSs is provided in the Supplemental

Material [73].

be shadowing quasiperiodic ECSs of the system. Recall that the trajectory density plot shown Fig. 7

of the preturbulent regime was also suggestive of shadowing of quasiperiodic ECSs.

Most prior work on ECSs in turbulent fluids has been limited to computing equilibria, POs and

RPOs [88]. Two recent works [89,90] have highlighted the importance of quasiperiodic (QPO)

ECSs in determining the statistics of chaotic dynamical systems. A quasiperiodic trajectory with

n incommensurate frequencies densely covers an n-tori in the phase space. The authors argue

that since n-tori are structurally unstable for n > 2, equilibria, POs, RPOs and 2-tori form the

complete set of invariant objects for understanding the phase space transport in chaotic systems.

These two works have proposed efficient algorithms for computing 2-tori and demonstrated that

approximate statistics of the chaotic forced Kuramoto-Sivashinsky PDE can be captured using a

modified periodic orbit theory adapted to QPOs.

Our set of ECSs could also be missing some POs/RPOs that lie in the region where the

local curvature of the chaotic attractor is too high for the Newton-Rhapson hookstep algorithm
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to converge. The computation of QPO ECS in the AN channel flow as well as further work on

shadowing of ECSs in turbulent active nematics will be taken up in a future publication.

IV. DISCUSSION AND CONCLUDING REMARKS

We have used the ECS framework to provide a comprehensive study of the stable and unstable

steady states of the active nematic system in a 2D periodic channel. We found that in the preturbulent

regime, multiple regular attractors coexist with a chaotic attractor. This implies that a subcritical

transition to chaotic flow is possible in such systems. This also hints at the presence of an edge

manifold in the phase space, separating the regular states from the chaotic ones.

Our attractor computations confirm that as activity is increased, the general sequence of stable

states i.e., zero flow, 1D flow, vortex lattice, followed by transition to turbulence, identified in

previous studies [24,28,91], is correct. However, visual inspection is not enough to identify dynamic

similarity of various flow states, and phase space analysis aided by symmetry considerations

provides additional insight. In addition to the above mentioned attractors, our computations re-

vealed the existence of counter-rotating lattice vortex lattice, traveling wave, and modulated wave

attractors.

We demonstrated that unstable ECSs organize the short-term dynamics of perturbations around

the unstable unidirectional steady state in the preturbulent regime. Typical trajectories lying on the

unstable manifold of the unidirectional equilibrium were found to shadow a subset of the unstable

ECSs in the transient phase, and eventually converge onto one of the attractors in steady state.

In the turbulent regime, which is characterized by the lack of any attractors, we found over 200

unstable ECSs at a single set of parameters. Low-dimensional projections suggest that these ECSs

exist in the same region of phase space as the typical turbulent trajectories of the system. However,

unlike the preturbulent regime, there was no evidence of shadowing of the PO/RPO/TW-type

ECSs by the turbulent trajectories, and we conjecture that these trajectories are instead shadowing

quasiperiodic ECSs.

Future work will focus on computing quasiperiodic ECSs as well as PO/RPOs of larger periods

using extensions of our existing Newton-Rhapson solver or optimization-based methods. It would

also be interesting to compare the ECSs discovered in the current work to dynamic modes obtained

in active turbulence using data-driven dynamical systems approaches such as Proper Orthogonal

Decomposition and Dynamic Mode Decomposition [35]. The detection of stable and unstable ECSs

in an experimentally realizable active nematic system such as the 2D annulus [26,29,92] will be

considered.

Finally, while the PDEs considered in this study have no explicit time-dependence, many

biological systems as well as bioinspired materials involve time-dependent activity [20,93]. The

dynamical systems arising from explicitly time-dependent PDEs are nonautonomous. It would be

an interesting extension of the current work to study the persistence [94,95] of the computed ECSs

and their invariant manifolds, upon the addition of time-dependent terms to Eqs. (2).
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