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Abstract—The efficiency and performance of neural network
(NN) controllers present a significant challenge in the rapidly
evolving landscape of real-time closed-loop control systems,
such as those used in solar inverters. This paper introduces a
novel approach that enhances training efficiency by combining
adaptive dropout with parallel computing techniques, utilizing
the Levenberg-Marquardt (LM) algorithm and Forward Ac-
cumulation Through Time (FATT). Unlike traditional dropout
methods that apply a fixed dropout rate uniformly across all
neurons, Adaptive Dropout dynamically adjusts the dropout rate
based on each neuron’s calculated importance and its stage in
the training process. This allows for the protection of more
critical neurons while regularizing less significant ones, thereby
improving convergence speed and enhancing generalization in
the neural network controller. To further accelerate the training
process, the Adaptive Dropout method is seamlessly integrated
into a parallel computing architecture. This architecture employs
multiple cores to compute Dynamic Programming (DP) costs
and Jacobian matrices for various trajectories simultaneously.
This approach not only harnesses the computational power of
modern multi-core systems but also ensures efficient processing
across all trajectories. The experimental results demonstrate that
adaptive dropout with parallel computing provides improvements
in training efficiency and overall performance than both no
dropout and weight dropout control schemes.

Index Terms—Neural Network Controller, Solar Inverter,
Adaptive Dropout, Parallel Computing, Levenberg-Marquardt
(LM) Algorithm, Forward Accumulation Through Time (FATT)

I. INTRODUCTION

The growing demand for efficient energy systems, partic-
ularly in the context of renewable energy sources like solar
power, has driven the advancement of technologies such as so-
lar inverters. These inverters play a critical role by converting
the direct current (DC) generated by solar panels into alter-
nating current (AC) suitable for grid integration. Traditionally,
control methods like the d-q vector control mechanism have
been employed to manage these inverters. However, these
approaches involve complex algorithms and computations, as
highlighted in [1], which limit their effectiveness in dynamic
and resource-constrained environments [2].
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Recent studies have explored various control strategies for
DC-DC and DC-AC converters. The Archimedes Optimization
Algorithm (AOA) has been used to fine-tune Proportional-
Integral-Derivative (PID) controllers for DC-DC buck con-
verters, achieving superior voltage regulation and response
times [3]. A robust nonlinear control strategy for DC-AC
converters in grid-connected fuel cell systems was presented in
[4], using partial feedback linearization to improve dynamic
grid performance. For AC-DC-AC converters, [5] proposed
a virtual-impedance approach to reduce current stress and
enhanced efficiency. Transient modeling for faulty DC micro-
grids, considering converter control effects, was discussed in
[6], emphasizing the importance of accurate transient analysis
for reliability. Data-driven PID control for DC-DC buck-
boost converters, as shown in [7], further improved controller
performance and trajectory tracking accuracy.

Neural network controllers have emerged as a promis-
ing alternative, offering greater adaptability and efficiency
in managing the nonlinearities inherent in power electronic
systems [8]. Recurrent Neural Networks (RNNSs), in particular,
are well-suited for this task due to their ability to process
sequential data and retain memory of past inputs, making
them ideal for real-time closed-loop control systems. However,
deploying RNN controllers in embedded systems, such as
digital signal processors (DSPs) and field-programmable gate
arrays (FPGAs), presents significant challenges. The training
process for these networks is often computationally intensive,
necessitating innovative approaches to ensure their effective
implementation in real-world systems.

Dropout is a widely used technique in neural networks to
mitigate overfitting, effectively applied across various architec-
tures, including Convolutional Neural Networks (CNNs) [9]
and Recurrent Neural Networks (RNNs) [10]. By randomly
deactivating neurons during training, dropout helps prevent
overfitting and enhances the generalization of the model
[11][12]. However, traditional dropout methods use a fixed
dropout rate uniformly across all neurons, regardless of their
importance within the network. This approach can limit the
efficiency and effectiveness of the training process, especially
in resource-constrained environments.

Previous works on dropout techniques, such as those by
Gal and Ghahramani [13], introduced variational dropout for
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RNNSs, which used a Bayesian framework to maintain dropout
masks over time, providing a more structured way to handle
the temporal nature of RNNs. Although this method improved
generalization, it still applied dropout uniformly throughout
the network, which lead to suboptimal training when neurons
of varying importance are treated equally. This uniformity in
dropout rate application has been a recurring limitation in
several studies. For example, Srivastava et al. [14] applied a
static dropout rate throughout training, and Pham et al. [10]
also did not account for the dynamic importance of neurons
during the training process.

To accelerate the neural network controller, this paper intro-
duces an Adaptive Dropout technique that dynamically adjusts
the dropout rate for each neuron based on its importance
and the stage of training. By protecting more critical neurons
and regularizing less significant ones, this method not only
enhances the network’s convergence speed but also improves
its generalization capabilities [14]. This adaptive approach
is further integrated into a parallel computing framework,
leveraging the computational power of modern multi-core
systems. By distributing the Dynamic Programming (DP) costs
and Jacobian matrix computations across multiple cores, the
training process is further accelerated [12].

This paper focuses on the integration of adaptive dropout
with the Levenberg-Marquardt (LM) algorithm and Forward
Accumulation Through Time (FATT) techniques within a
parallel computing architecture [12]. This combination not
only enhances training efficiency, but also ensures that neural
network (NN) controller can be effectively deployed in real-
time systems, such as those required for managing solar
inverters in grid-connected environments.

The contributions of this research are threefold: First, an
adaptive dropout mechanism is developed to improve the
training efficiency of RNN controllers by selectively regular-
izing neurons during training. Second, this adaptive dropout
mechanism is incorporated into a parallel computing frame-
work, demonstrating its effectiveness in handling large-scale
trajectory datasets on platforms such as GPU clusters. Third,
a comprehensive evaluation of the method shows significant
improvements in both training speed and model performance.

The remainder of this paper is structured as follows: Section
2 introduces the NN controller used in closed-loop control sys-
tems for solar inverters. Section 3 details the adaptive dropout
approach and its integration with parallel computing. Section 4
discusses the training of the NN controller using the adaptive
dropout technique. Section 5 presents the implementation of
these methods in C++ on a GPU platform together with
experimental results. Finally, Section 6 concludes the paper
with a summary of the key findings and contributions.

II. NN CONTROLLER IN CLOSED-LOOP CONTROL SYSTEMS
FOR SOLAR INVERTERS
A. Solar Microinverter

A neural network (NN) controller is implemented within
the Piccolo real-time digital controller, as illustrated in Fig.
1 [15]. The photovoltaic (PV) panel generates direct current

(DC) electricity from sunlight, which is then optimized using
a converter that incorporates Maximum Power Point Tracking
(MPPT) to maximize energy extraction. The high-voltage DC
Bus transfers this optimized DC power to the next stage
of the system. The inverter then converts the DC power
into alternating current (AC), making it suitable for use in
the electrical grid. The final stage outputs AC electricity,
which can be either fed into the grid or used locally. The
Neural Network Controller, integrated with the Piccolo Digital
Controller, manages the operation of the DC-AC inverter by
receiving control signals and adjusting the system in real-time.
It utilizes feedback from the AC output to make continuous
adjustments, thereby improving the system’s efficiency and
stability.

—
PV Panel Active tlamp HV DC
Output Fly-backiDC-DC Bus DC-AC Inverter
—
b J
Isolation
Boundary

Piccolo —
Digital Inverter —

Isolated MPPT Solar
Micro Inverter

Fig. 1: Microinverter Block Diagram [16]

B. NN Controller with Special Tracking Error Integrals

The structure of the NN Controller, as shown in Fig. 2,
consists of an input layer with four neurons, two hidden layers
with six neurons each, and an output layer with two neurons to
control the system outputs. The optimal number of neurons in
each hidden layer was determined through extensive trial and
error. After numerous iterations, it was found that using six
neurons in each hidden layer consistently provided satisfactory
real-time control performance. This configuration effectively
captures the complexity of the control tasks while maintaining
a balance between model complexity and performance in real-
time applications. Additionally, the dropout technique has
proven valuable in reducing the number of active neurons
or weights, enhancing the NN Controller’s compatibility with
embedded real-time computing systems [11].

The NN Controller receives tracking error input signals e_dq>
and their corresponding integral values s—dq> in the input block.
To prevent input saturation, e_glq> and s_d,; are normalized using
the hyperbolic tangent function, which restricts the values to
the interval [—1, 1]. These normalized values are then further
scaled by constant gains, Gain and Gain2, respectively.

For step references [17], the special error integral terms Efq
ensure that there is no steady-state error. The NN controller
can be formally expressed as shown in equation (1) [11],
where the weights from the input layer to the first hidden
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layer, second hidden layer, and output layer are represented
by wi, w5, and w3, respectively. Biases for each layer are
incorporated within these weights.

Adaptive Dropout

/ Hidden Layer \

Output

Fig. 2: The NN Controller with special tracking error integrals
[11]

In addition, to further enhance the performance and ef-
ficiency of the NN controller, particularly in resource-
constrained environments, an adaptive dropout technique is
employed. This method dynamically adjusts the dropout rate
based on the importance of each neuron and the progress of
training, ensuring that the NN controller remains both robust
and computationally efficient.
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III. TRAINING CONTROLLER WITH ADAPTIVE DROPOUT
TECHNIQUE AND INTEGRATION OF PARALLEL
COMPUTING

The training of neural network controllers is optimized by
incorporating adaptive dropout and parallel computing within
the combined Forward Accumulation Through Time (FATT)
and Levenberg-Marquardt (LM) algorithm.

The cost function for training the RNN using Dynamic
Programming (DP) is defined as in equations (2)(3):

Cap = Y A" TU(Eug(k)) )
k=j

=Y AV (k) = idees())? + (ig(k) — igrer(k))?
h=j

3)

where 5 > 0 denotes the starting point, 0 < ~v < 1
represents the discount factor, and U is the local cost or
utility function. The function Clg,, given the initial time j and
the initial state qu( 7). represents the cost-to-go for the state
idg(j) in the Dynamic Programming (DP) problem.

A. LM Algorithm

The Levenberg-Marquardt (LM) algorithm is a widely used
optimization technique for minimizing nonlinear least-squares
problems [12]. It integrates the gradient descent method with
the Gauss-Newton algorithm, dynamically adjusting the step
size to balance local and global search strategies and achieve
faster convergence.

In the adaptive dropout approach, the LM algorithm is
modified to incorporate a dynamic dropout rate that adjusts
based on each neuron’s importance during training. This
adaptation ensures that the most significant neurons contribute
more consistently to gradient calculations, thereby enhancing
the learning process.

The cost function Cyg, is rewritten in a Sum-Of-Squares
form as follows (4):

N N
Cap =Y _UlCaq(k)) = > V3(k) )
k=1 k=1
The gradient of the cost function is given by (5):
60(1]; T
ﬁ =2J,
5 Jo(W)TV ©)

where Jv(ﬁ) is computed with adaptive dropout applied,
ensuring that only the neurons not dropped contribute to the
calculation. The LM weight update equation (6) with adaptive
dropout is:

AT = =[J, (W) T (@) + pI) 7 T, (B) 'V (6)

B. FATT (Forward Accumulation Through Time)

The FATT algorithm is a method used in recurrent neural
networks (RNNs) to compute gradients efficiently during
backpropagation through time. It involves accumulating the
contributions of each time step forward, which helps in man-
aging memory and computational resources while handling
long sequences in RNNs[12].

The Forward Accumulation Through Time (FATT) algo-
rithm incorporates adaptive dropout by dynamically adjusting
the dropout rates during the unrolling of the system in the
forward path. This change ensures a more robust and efficient
training process. Parallel computing is integrated to speed up
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the calculation of the Dynamic Programming (DP) cost and
the Jacobian matrix for multiple trajectories.

The process begins by initializing the weights and dropout
parameters, followed by calculating the Jacobian matrix
J, (W) and accumulating the DP cost as in equation (7):

N
C=> Uleag(n+1)) ()
n=1

Adaptive dropout is applied at each iteration, where the
dropout rate is dynamically adjusted based on the importance
of each neuron, calculated as in equation (8):

importance_factor =

®)

where a; represents the activation of the neuron, a is
the mean activation, and N is the number of observations.
Neurons with a higher standard deviation (importance factor)
are considered more crucial for learning and are thus less likely
to be dropped.

C. Adaptive dropout approach

The adaptive dropout methodology is an enhanced technique
of the standard dropout method whereby constantly modifying
the dropout rate according to the training progress and the
relative relevance of each neuron [19]. Conventional dropout
prevents overfitting by randomly deactivating a subset of
neurons during training; however, it has a constant dropout rate
for all neurons, which may not be suitable for complex models
like Recurrent Neural Networks (RNNs). To address this
limitation, adaptive dropout dynamically adjusts the dropout
rate, allowing the network to prioritize critical neurons during
training. This approach enhances generalization and acceler-
ates convergence.

1) Neuron Importance Calculation

The importance of each neuron is determined by calculating
the standard deviation of its activations. The neurons with
higher activation variance are likely contributing more to the
learning process. The importance factor for each neuron is
calculated using equation (8).

2) Adaptive Dropout Rate

The dropout rate for each neuron is not static; it adapts based
on the calculated importance factor and the current stage of
training. The formula for the adaptive dropout rate is as in
equation (9):

adaptive_rate = base_dropout_rate X

(1.0 — importance_factor) X training_progress
€))
where, base_dropout_rate = 0.4 and the training_progress
is m%pochs. k is the current epoch.

In this equation, the base dropout rate serves as the initial
dropout probability, while the importance factor adjusts this
probability according to the neuron’s significance. The training
progress, representing the fraction of the training process

completed, further refines the dropout rate, allowing it to

decrease as training nears completion, ensuring that critical
neurons are preserved more often as the network approaches
convergence.

3) Application of Dropout

During each iteration of training, the adaptive dropout
rate is used to determine whether each neuron should be
dropped. This decision is made using a Bernoulli distribution,
where the probability of dropping a neuron is guided by the
adaptive dropout rate. This ensures that each iteration might
drop a different set of neurons, preventing the network from
becoming overly dependent on specific neurons and further
enhancing generalization.

4) Temporary and Random Dropout

The deactivation of neurons is temporary, occurring only
during the current iteration of training. This random and
iterative dropout process ensures that different neurons are
dropped at different times, based on their adaptive dropout
rates, which vary with the neuron’s importance and training
progress.

5) Tracking Dropped Neurons

To monitor the dropout dynamics, the number of neurons
dropped in each layer is tracked and logged during every itera-
tion. This tracking allows for a detailed assessment of how the
dropout strategy is affecting the network and provides insights
into the effectiveness of the adaptive dropout technique.

IV. TRAINING CONTROLLER WITH ADAPTIVE DROPOUT
TECHNIQUE

The flowchart in Fig. 3 illustrates the training process of
a neural network (NN) controller using the Forward Accu-
mulation Through Time (FATT) algorithm combined with the
Levenberg-Marquardt (LM) optimization technique and adap-
tive dropout within a parallel computing framework. Unlike
traditional dropout, where a fixed dropout rate is applied
uniformly across all neurons, adaptive dropout adjusts the
dropout rate dynamically based on each neuron’s importance.
The neuron importance is calculated using the variance of
neuron activations, which reflects how crucial each neuron is
to the learning process at different stages of training. During
each forward pass in the training loop, the adaptive dropout is
applied to the neurons in the hidden layers. This means that
less important neurons are more likely to be deactivated, while
more important neurons are preserved, allowing the model to
focus on the most significant features during learning.

The training process starts with initializing the training
parameters which are crucial for regulating the learning rate,
defining stopping criteria, and ensuring convergence. The MPI
framework is initialized with the necessary parameters, which
prepare the parallel computing environment by determining the
number of available CPU cores and assigning ranks to different
workers. Weights 0 are initialized with small random values
to begin the optimization.

The adaptive dropout is applied in a parallel computing
environment where multiple trajectories are processed simul-
taneously. Each worker node represented as CPU cores, com-
putes the DP cost and Jacobian matrices for specific groups
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of trajectories. FATT is applied in each worker node, leverag-
ing the Armadillo library, which performs the linear algebra
operations using OpenBLAS and LAPACK. The master node
aggregates the results of the DP cost and Jacobian matrices
from each worker node after each computation round.

This parallelization helps speed up the computation of
the DP cost and the Jacobian matrix while maintaining the
benefits of the adaptive dropout mechanism as in algorithm 1.
After aggregating the results, the adaptive dropout algorithm
computes the importance factor for each neuron, using eq (8).
This factor helps adjust the dropout rate dynamically using
the equation (9). Neurons with higher importance factors are
preserved, while those with lower values have higher dropout
rates.

Once the importance factor is computed, the algorithm
proceeds with parallel computing for each CPU core (Worker 1
to N). The DP cost for each group of trajectories is calculated,
and the aggregated DP cost is updated. The training loop
continues until a termination condition is met, based on the
comparison of the cost values.

When the training loop is complete, the weights are updated,
and the process moves to the next epoch, repeating the adaptive
dropout and parallelization steps. Finally, the training process
stops when the maximum number of epochs is reached or
when the DP cost converges to a predefined threshold.

By dynamically adjusting the dropout rate, the adaptive
dropout mechanism helps in better convergence of the training
process, preventing overfitting, and ensuring that the model
generalizes well to unseen data.

V. RESULTS AND DISCUSSION

The training program was developed using C++17, utilizing
the Armadillo C++ library for efficient linear algebra compu-
tations, supported by OpenBLAS and LAPACK. The Open-
MPI implementation of the Message Passing Interface (MPI)
was employed to distribute workloads across multiple nodes,
ensuring scalability and efficiency in parallel processing. The
experiments were conducted on an AMD Ryzen Threadripper
Pro 5975WX system with a Linux operating system. For
parallelization, the number of processes was set to 48 to
effectively utilize the computational resources. The dataset
used for testing consisted of synthetic control data based on
established dynamic models of solar inverter systems, designed
to emulate real-world power electronic systems. By dividing
the training trajectories into groups and assigning each group
to individual CPU cores or workers, the program achieves
efficient parallelization. For 10-trajectory, 20-trajectory, or
up to 100-trajectory, each core independently computes its
subset of trajectories in parallel, allowing for faster processing
and aggregation of results. This parallelization is crucial for
reducing computational time when processing larger numbers
of trajectories, as the workload is distributed across available
processing units.

By incorporating adaptive dropout into the neural network
architecture, the model’s complexity is effectively reduced
and prevented overfitting, leading to faster convergence and

improved generalization. This approach significantly reduced
runtime per trajectory, resulting in quicker training times
and enhanced overall efficiency. The adaptive dropout rate is
dynamically adjusted during training based on the importance
of each neuron. Neurons with higher activation significance are
retained, while less important neurons are regularly dropped,
minimizing the risk of overfitting while optimizing compu-
tational resources. Figures 5, 6, and 7 present the average
run time plots with adaptive dropout, weight dropout, and
without dropout with parallelization is applied. Similarly,
Figures 8, 9, and 10 present the speedup comparisons across
different numbers of workers and trajectories with adaptive
dropout, weight dropout and without dropout on GPU with
parallelization applied. The results indicate better average
runtimes and speedup performance when utilizing the adaptive
dropout with parallel computing compared to both weight
dropout with parallel computing and running without dropout
with parallel computing. The results, summarized in Table
I, provide a numerical comparison of the average running
times and speedup achieved with adaptive dropout, weight
dropout, and no dropout. As in the figures 14 and 15, adaptive
dropout consistently provides lower average running times and
higher speedups across all trajectory sizes when compared to
both weight dropout and no dropout. This trend is consistent
across different trajectory sizes, as shown in Figure 15, where
adaptive dropout with parallelization consistently delivers the
highest speedup compared to parallelization with no dropout,
achieving a 6x speedup compared to 5x for weight dropout
and 1x for no dropout at 100 trajectories.

Average running time across workers on GPU
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Fig. 5: Average running time across workers on GPU with
adaptive dropout

The comparative analysis of weight dropout with adaptive
dropout shows that adaptive dropout provides a precise but
important advantage in performance, particularly noticeable in
scenarios involving a higher number of trajectories and CPU
cores. When comparing convergence plots without adaptive
dropout from Fig. 11 with adaptive dropout Fig. 12, and with
adaptive dropout combined with parallel computing Fig. 13,
the combination of adaptive dropout and parallel computing
results in significantly reduced oscillations.
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Fig. 11: Convergence without adaptive dropout
Fig. 8: Speedup across workers with adaptive dropout

Performance comparisons demonstrate that the implemen- no dropout, showcasing the efficiency and scalability of the
tation of adaptive dropout not only reduces computational proposed method in handling large numbers of trajectories
complexity but also provides a noticeable speedup in perfor- with high sampling frequencies. The code we developed
mance. The parallelized C++ version with adaptive dropout is available on https://github.com/Kushal-1234/Parallelization-
integration outperformed the version with weight dropout and  with-adaptive-dropout.
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Fig. 13: convergence with adaptive dropout with parallel
computing

TABLE I: Numerical Performance Index Results for Adaptive
Dropout, Weight Dropout, and No Dropout on GPU with
Parallelization

Metric Adaptive Dropout | Weight Dropout | No Dropout
A:ﬁ') lfr‘r‘;‘;‘c':ﬁrfe';‘e 99.8s 112.7s 615.8s
Azsg(‘, ﬁ‘r‘:]‘;‘c‘:ﬁ:;s‘;‘e 100.0s 112.65 624.2s
"‘(VI%'ORT‘;‘;?:C’EO;E:S‘;" 103.4s 113.0s 625.5s

10 '?‘f:;eilzgries) 6.16x 5.46x 1.00x

0 %:;i‘:})’ries) 6.14x 5.48x 1.00x

(100 STI;:(:;I:) ries) 6.02x 5.48x 1.00x
Overall 83.0% 81.9% -
Improvement (%)

VI. CONCLUSION

Neural network controllers for real-time closed-loop control
systems, such as solar inverters, have demonstrated significant
improvements in training efficiency and performance when
adaptive dropout is integrated with parallel computing and
supported by GPU acceleration. This research shows that adap-
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Fig. 14: Average Running Time Across Dropout Methods

Speedup Across Dropout Methods
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Fig. 15: Speedup Across Dropout Methods

tive dropout not only accelerates convergence when combined
with parallel computing strategies but also enhances the neural
network’s generalization capacity by dynamically adjusting
dropout rates based on the significance of individual neurons.
These benefits are further amplified by GPU acceleration,
which significantly reduces the time required to compute
multiple trajectories simultaneously. Large-scale neural net-
work models particularly benefit from GPU-based training
due to its superior scalability and efficiency, as evidenced by
the examination of speedup performance. Overall, this study
provides a robust foundation for optimizing neural network
training, paving the way for more efficient and scalable real-
time control applications.
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