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Abstract—By the end of 2021, the United States had installed a
92.5 gigawatts of solar systems. Simultaneously, the rise of inverter-
based resources (IBRs) has resulted in a noticeable decline in power
grid inertia, which poses a risk to frequency stability in power
systems. With the increasing prevalence of wildfires worldwide, it
is crucial to examine the impact of wildfire smoke on solar systems
and its implications for power grid operations. This study explores
the oscillatory power output of PV systems named as “Wiggle
Effect,” a phenomenon observed in PV systems during days af-
fected by wildfire smoke. Distinctive from impact of cloud cover
on PV systems, wildfire smoke covers much more landmass and
can cause regional impacts on power grids. Additionally, wildfire
smoke lasts for a longer time. Therefore, this study investigates the
oscillatory patterns of PV power output, which have the potential
to jeopardize the frequency stability of the power grid due to
sudden fluctuations in power generation. The study investigates this
effect and its impact on power system stability, focusing on power
systems characterized by low inertia trends. Understanding the
influence of wildfire smoke on power grid operations is essential for
system operators to develop effective frequency control practices.
By gaining insights into the Wiggle Effect, operators can enhance
the stability and reliability of power grid operations, mitigating
the risks associated with wildfire smoke episodes. The study’s
findings contribute to a comprehensive understanding of this issue,
facilitating informed decision-making in managing power systems
in the presence of wildfire smoke.

Index Terms—Frequency response, frequency stability, low
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I. INTRODUCTION

N RECENT years, there has been a significant increase in
I the frequency and severity of wildfires globally, primarily
attributable to extreme drought and high temperatures. Notable
records of burned acreage have been reported in various coun-
tries worldwide. For instance, in 2020, more than 60 hectares of
land were burned in Australia [1], while within the European
Union countries, between 1.2 million acres and 1.6 million
acres were burned, as reported by the European Forest Fire
Information System (EFFIS) in October 2021 [2]. Similarly, the
Canadian Interagency Forest Fire Centre (CIFFC) documented
6317 wildfires that burned approximately 10.34 million acres
in Canada as of September 15, 2021 [3]. In the United States,
an annual average of 70600 wildfires burned an average of 7.0
million acres since 2000 [4]. The U.S. National Interagency
Coordination Center reported 58985 and 58950 wildfires in 2021
and 2020, respectively [5]. In 2022, the state of Alaska declared
a state of emergency due to wildfires, with over 2 million acres
burned by July 2nd [6], [7].

To address the crisis of global warming, a significant solution
lies in renewable energy generation. In 2020, renewable energy
set a new record in terms of new power capacity and was the sole
source of electricity generation that experienced net expansion
[8]. The International Energy Agency (IEA) reported that nearly
290 gigawatts (GW) of new renewable power capacity were
commissioned in 2021, with solar photovoltaic (PV) systems ac-
counting for over half of this expansion [9]. The global installed
capacity of PV systems has been growing exponentially each
year, facilitated by declining prices and maturing technology
[10],[11]. Between 2010 and 2021, global PV capacity additions
increased from 17 GWdc to 172 GWdc, reaching a cumulative
installed capacity of 939 GWdc by the end of 2021 [11]. Fur-
thermore, governmental policies are supporting this transition,
as exemplified by the approval of the Federal Energy Regulatory
Commission (FERC) Order 2222, enabling distributed energy
resources (DERS) to participate in wholesale electricity markets
through aggregation [12]. Moreover, the U.S. government aims
to achieve 100 percent carbon pollution-free electricity by 2035
[13] and establish a net-zero economy no later than 2050 [14].

The proliferation of renewable energy sources (RESs), specif-
ically inverter-based resources (IBRs), poses challenges to the
stability of power grids. Unlike conventional power plants
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(CPPs), IBRs lack sufficient inertia, which is the capacity of a
power system to resist frequency changes. Inertia is determined
by the kinetic energy stored in rotating masses of synchronous
machines. Therefore, the increasing integration of IBRs such as
photovoltaic (PV) generation in the grid introduces difficulties
in maintaining power system stability due to the higher rate
of change of frequency (ROCOF) associated with high IBR
penetration.

Numerous studies have investigated the stability of low-inertia
power grids. One study [17] examines the challenges posed
by inertia in power systems with a high penetration of RESs
and explores the feasibility of implementing new technologies
in low-inertia systems. Another study [18] presents a method
for dynamic event data-based stability risk assessment, while a
different approach to analyzing small-signal stability for large-
scale power systems is introduced in another study [19]. The
impact of societal events on frequency stability, considering the
increasing use of LED TVs and the trend towards low-inertia
power grids, is investigated in yet another study [20]. Frequency
regulation challenges arising from the integration of renewable
energy units into power systems are discussed in a study that
proposes a strategy to mitigate their impact on frequency stabil-
ity [21]. Microgrid frequency regulation is addressed in several
studies. One study [22] presents a novel frequency regulation
method utilizing ultracapacitors and batteries in microgrids,
demonstrating the effectiveness of the proposed frequency con-
troller for primary frequency regulation. Another study [23]
addresses voltage and frequency fluctuations associated with
renewable energy integration and introduces various control
technologies to overcome these challenges. Additionally, a study
[24] focuses on wind and PV power plants’ frequency control,
including inertia control and governor control, within the U.S.
Eastern and Texas Interconnections, revealing that synthetic
inertia and governor control can mitigate the adverse effects
of increasing RESs in both interconnections. Lastly, a study
[25] develops a controller for inverters to enhance the frequency
response of microgrids under disturbances.

Increasing the use of IBRs results in a low inertia trend and
poses challenges for power grids with a high penetration of
PV systems. These challenges are further compounded by the
rising frequency of wildfires [27]. Wildfire emissions consist
of various chemically reactive substances, including short-lived
trace gases, particulate matter, and aerosols [28], [29], [30]. The
smoke generated by wildfires travels long distances, covering
extensive geographical areas. When this smoke reaches the
atmosphere, it obstructs solar radiation, leading to a significant
reduction in PV power generation. Numerous studies and reports
have examined the impact of wildfire smoke on solar generation
from different perspectives. For example, in September 2020,
California experienced a decline of nearly 30% in average solar-
powered electricity generation due to the widespread presence
of wildfire smoke [31]. Despite a 5.3% increase in installed solar
generating capacity since September 2019, solar generation in
California during September 2020 was 13.4% lower compared
to the previous year [31]. Researchers in [32] demonstrated
that PV productivity reduction due to wildfire smoke ranged
from 7% to 27%. In another study [33], a new index parameter
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was developed to quantify the impact of wildfire smoke on PV
systems. The researchers investigated the PV power output in
the Black Hills area of South Dakota during two wildfire events,
and their findings revealed a significant reduction in PV power
output caused by the smoke. Similarly, studies [34], [35], [36],
[37] have explored the decrease in power generation of PV
systems resulting from wildfire smoke. Several models have
been developed to estimate this reduction in solar generation.
In the latest report from NREL [38], the impact of wildfire
smoke on grid stability is emphasized. The report underscores
the importance of swiftly activating operating reserves when
there’s an abrupt drop in available solar radiation. These re-
serves are vital for preserving the balance between system
supply and demand and for reestablishing stability following
disruptions.

This paper investigates the impact of regional wildfire smoke
on a 3-kW rooftop grid-tied PV system during smoky days
in September 2022. A distinct power generation phenomenon,
referred to as the “Wiggle Effect,” is identified and thoroughly
examined. The primary contributions of this study can be out-
lined as follows:

e Observation and Introduction of the “Wiggle Effect”: The
study identifies a unique phenomenon called the “Wiggle
Effect” that occurs because of wildfire smoke on PV power
output. This effect is thoroughly described and introduced
in the paper.

¢ Differentiation of Wildfire Smoke and Cloud Impacts:
The paper discusses and differentiates the impacts of both
wildfire smoke and cloud cover on PV power output.
By distinguishing between these two factors, a clearer
understanding of their individual contributions to power
generation variability is achieved.

¢ Investigation of Frequency Stability Considering the Wig-
gle Effect: The study explores the implications of the
Wiggle Effect on frequency stability in power systems,
particularly in the context of the United States. By con-
sidering this phenomenon, the paper contributes to the
understanding of how PV power output variations induced
by wildfire smoke can impact the stability of the grid’s
frequency.

® Predictive Assessment of the Wiggle Effect’s Risk: Fur-
thermore, this paper provides a predictive assessment of
the potential risk posed by the Wiggle Effect on frequency
stability. Considering the increasing capacity of PV in-
stallations and the low-inertia trend observed in power
grids, the study offers insights into the future challenges
associated with this phenomenon and its potential impact
on the stability of power systems.

The remainder of the paper is organized as follows: Section II
provides a detailed observation and analysis of the Wiggle
Effect on PV power output. Section III presents an analysis of
frequency stability taking into account the impact of the Wiggle
Effect. In Section IV, a predictive analysis of frequency stability
is conducted, considering the potential risks associated with the
Wiggle Effect, the increasing capacity of PV installations, and
the low-inertia trend observed in power grids. Finally, Section V
summarizes the conclusions drawn from this study.

Authorized licensed use limited to: UAA/APU Consortium Library. Downloaded on November 29,2024 at 03:20:47 UTC from IEEE Xplore. Restrictions apply.



2718

Fig. 1.

3-kW grid-tied PV system on campus.

II. WIGGLE EFFECT OBSERVATION AND ANALYSIS
A. Research Facilities and Wildfire Events

In this study, a 3-kW rooftop grid-tied solar system compris-
ing eight monocrystalline PV panels is installed at the South
Dakota Mines Campus, as depicted in Fig. 1. The campus
is geographically located at latitude 44.073922 and longitude
—103.204919, with an elevation of 976 meters above sea level.
The PV system is positioned with an azimuth of 215° and a tilt
angle of 16°.

To gather data for analysis, a comprehensive monitoring
system is implemented. This system records the PV power
output at a resolution of 5 minutes and uploads the data to a
cloud server at 15-minute intervals. Additionally, a scientific
weather station is installed near the solar system. This weather
station continuously provides real-time meteorological data at
15-minute intervals, including temperature, wind speed, humid-
ity percentage, parametric pressure, global horizontal irradiance
(GHI) at the horizontal plane, and barometric pressure. These
measurements offer valuable insights into the environmental
conditions surrounding the PV system and enable a thorough
investigation of the system’s performance.

During the period from September 4, 2022, to September 12,
2022, a widespread regional wildfire occurred across multiple
states. The National Interagency Fire Center (NIFC) reported
that, as of September 9, a total of 96 large fires were active,
encompassing an area of 690000 acres (equivalent to approxi-
mately 2800 square kilometers) in eight states [39]. The majority
of these fires were concentrated in the Northern Rockies, the
Great Basin, and the Pacific Northwest regions, with 37 fires
burning in Idaho, 22 in Montana, 12 in Oregon, 12 in Wash-
ington, and 10 in California. Fig. 2 displays an image captured
by NASA’s Terra satellite, which depicts the smoke emanating
from the western fires and spreading over the Black Hills and
northern plains on September 7, 2022 [39]. These figures clearly
demonstrate that the South Dakota Mines campus remained
under the influence of the wildfire smoke for several days.
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Fig. 2. NASA satellite image on September 7, 2022 [39].
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Fig. 3. 3-kW PV power output with 5-minute data.

B. Wiggle Effect Observation

This study utilizes the 5-minute power output data of a 3-
kW rooftop grid-tied solar system. To mitigate the influence
of clouds on PV generation, days characterized by cloudy and
partially cloudy conditions during the period from September 4
to September 12 are excluded from the analysis.

During the periods affected by wildfire smoke, in addition
to the overall reduction in power generation, a distinct power
generation deviation, referred to as the “Wiggle Effect” in this
study, is observed in the PV generation profiles, as depicted in
Fig. 3. A comparison of the 5-minute PV generation curve on a
non-smoky cloudless day (September 4th) with those on smoky
days (September 5th, 6th, and 12th) reveals a much smoother
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Fig. 4.  Solar radiation curves with 15-minute data.
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Fig. 5. 3-kW PV generation curve of a smoky and partial cloudy day.

pattern in the former. An example of the Wiggle Effect, char-
acterized by a section of ‘“Zigzag” power output on September
12th, is highlighted to illustrate the impact of wildfire smoke on
solar power output. Additionally, Fig. 4 presents the 15-minute
solar radiation data collected by the weather station for each
day, demonstrating that the Wiggle Effect can still be observed
based on solar radiation data during smoky days. However, due
to the lower resolution of solar radiation data, the wiggle effect
is not as pronounced as in the 5-minute power output data of
the PV generation curves. This observation highlights the rapid
nature of the Wiggle Effect, which can lead to swift deviations
in power generation for power grids with a high penetration of
PV systems.

To differentiate the Wiggle Effect from cloud impacts on
PV systems, Fig. 5 illustrates the power generation curve of
a smoky day (September 7th) that includes a short period of
cloud cover from 2:00 PM to 3:15 PM. The cloud impact period
on power generation is delineated. Furthermore, Fig. 6 depicts
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Fig. 6.  3-kW PV generation curves of cloudy and partial cloudy days.

the PV power output on cloudy days in early September. Both
figures clearly demonstrate that cloud cover results in a sharp
reduction in PV power output, which can be easily distinguished
from the Wiggle Effect caused by wildfire smoke. Besides the
significant difference in PV power output reduction between
clouds and wildfire smoke, wildfire smoke can last for days
or even weeks and covers large-scale landmass. As mentioned
previously, few studies have developed different approaches to
quantify the power output reduction caused by wildfire smoke,
but none of them considers the rapid power output variation of
PV systems due to the Wiggle Effect. Although previous studies
have explored diverse methodologies to quantify the reduction
in power output caused by wildfire smoke, none of them have
taken into account the rapid fluctuations in power output of PV
systems resulting from the Wiggle Effect.

There has been extensive research and discourse on solar gen-
eration forecasting considering the influence of clouds [40], [41],
[42], [43], [44], [45], [46]. A review conducted by the authors
in [40] encompassed various solar forecasting techniques with
differing time horizons, incorporating the movement of clouds.
The paper [41] proposed a method for tracking and predicting
cloud motion using ground-based sky images, which can be
applied to short-term PV generation forecasting. Another review
in [42] evaluated current solar forecasting techniques, including
time-series prediction, sky imagers, satellite imaging, numeri-
cal weather prediction, and ensemble forecasting. In [43], the
authors examined the transient impact of clouds on distribution
networks featuring large-scale PV systems. Paper [44] analyzed
the impact of clouds on PV systems based on measurements
from cloud speed sensors. Additionally, papers [45] and [46]
developed short-term solar forecasting methods that considered
cloud movement using Artificial Intelligence (AI) and sky im-
ages. Furthermore, paper [47] employed statistical numerical
models to develop an ultra-short-term cloud forecasting method
for solar generation. However, due to the distinct characteristics
between cloud and smoke impacts on PV power output, the
existing literature on cloud impact cannot be directly applied
to analyze the Wiggle Effect in power systems.
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Fig. 7. Wiggle effect on the 3-kW PV system.

This research gap poses a potential risk to the stability of
power grids with high levels of solar generation and the es-
calating occurrence of wildfires. Therefore, it is imperative to
investigate the Wiggle Effect and comprehensively understand
its implications on power system operations.

C. Wiggle Effect Analysis

To understand the Wiggle Effect of wildfire smoke on PV
power output, the solar generation deviations during smoky days
are extracted using (1)

PD(t) = PGactual(t) - PGsmooth(t) ey

where PD is the PV power output deviation, PG ,ctyq; 1S ac-
tual power generation during smoky period, and PGgo0th 1S
smoothed power generation after using smooth filter. To elim-
inate the possible power output deviation caused by the panel
itself, the power deviation on September 4th (non-smoky and
cloudless day) is utilized as the baseline. The wiggle effect for
each smoky day is calculated using (2)

WE(t) = PDsmoky (t) — PDRes(t) 2)

where WE is the Wiggle Effect in Watt, PD 1, represents the
power output deviation on a smoky day, and PD,. is the power
output deviation on a cloudless and non-smoky day. Fig. 7 shows
the Wiggle Effect on the 3-kW PV system power output for each
smoky day.

In order to assess the impact of the Wiggle Effect on frequency
stability, the derivative of the Wiggle Effect is calculated and
presented in Fig. 8. The average power derivative of a 3-kW
solar system, based on 5-minute data, is approximately 9W. The
maximum power derivative observed is 65W, which corresponds
to approximately 2.17% of the capacity of the PV system. Thus,
in this study, we consider the sudden power generation change
of a PV system to be 2.17%, representing the Wiggle Effect
induced by wildfire smoke.
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Fig. 8. Derivatives of wiggle effect on the 3-kW PV system.

III. WIGGLE EFFECT ON FREQUENCY STABILITY

The contemporary power system confronts noteworthy fre-
quency stability challenges arising from decreased system in-
ertia, primarily attributed to the escalating adoption of IBRs
[17]. In addition, the proliferation in both the frequency and
intensity of wildfires has the potential to further exacerbate the
frequency stability predicament encountered by power grids
characterized by a substantial integration of PV systems. The
existing literature primarily focuses on studying the reduction
in PV power generation due to wildfire smoke, overlooking the
fluctuations in PV power output caused by the Wiggle Effect,
which can impact the frequency stability of the power grid.
Therefore, in this section, we calculate the generation deviation
resulting from the Wiggle Effect in three major power systems
across the United States. Furthermore, we analyze the frequency
stability, considering various levels of PV capacities.

A. Power Deviation Analysis

To ensure the frequency stability of power systems, it is crucial
to maintain a balance between load and available resources.
However, during power system disturbances or outages, this
balance is disrupted, resulting in frequency changes that can
compromise the stability and reliability of power grids. To
assess the frequency deviation induced by the Wiggle Effect,
we evaluate power generation deviations at different levels of
PV generation. In this study, we focus on two major power
systems in the United States: the California Independent System
Operator (CAISO) and the Electric Reliability Council of Texas
(ERCOT) systems. The total PV capacities in these systems, as
reported by the National Renewable Energy Laboratory (NREL)
by the end of 2021, are 26.6 GW for CAISO and 10.329 GW
for ERCOT [11].

Considering that wildfire smoke can cover a large geographi-
cal area, as depicted in Fig. 2, we determine the potential power
deviations for CAISO and ERCOT based on the maximum Wig-
gle Effect observed in the previous section, which corresponds
to 2.17% of the total capacity of the PV systems. We calculate
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TABLE I TABLE III
ESTIMATED POWER DEVIATION CAUSED BY THE WIGGLE EFFECCT FREQUENCY DEVIATION DUE TO THE WIGGLE EFFECT
ISOs PV Capacity PV Power Supply Power Power Demand Frequency
(GW) Deviation (MW) System Deviation (MW) Deviation (Hz)
CAISO 26.6 577 CAISO 577 0.1676
ERCOT 10.329 224 ERCOT 224 0.0284
TABLE II TABLE IV
FREQUENCY STABILITY CONTROL MECHANISMS CAPACITY FOR REGULATION SERVICE
Control Ancillary Service Timeframe Power Frequency Required Reserve
Frequency System Deviation (Hz) Capacity (MW)
Primary Control Response 10-60 Seconds CAISO 0.1676 453
ERCOT 0.0284 90
Secondary Frequeqcy 1-10 Minutes
Control Regulation
Tertiary Control | Imbalance/Reserve 10 Minutes- system operator. When ACE is less than 0, regulation down (Reg
. Hours Down) is applied. NERC defines frequency bias as balancing
Time Control Elme Etljror Hours authorities’ obligation to provide or absorb energy to stabilize
orrection

the estimated power generation deviations resulting from the
Wiggle Effect and present them in Table I.

B. Frequency Stability Analysis

The balance between power supply and demand is crucial
to maintain the frequency stability of the power grid. Once the
mismatch between supply and demand is significant, power sys-
tem frequency stability could be jeopardized. Currently, various
frequency control strategies are applied to maintain the system
frequency stability. Based on North America Electric Reliability
Cooperation (NERC), the frequency control mainly occurred
over a continuum of time using four different types of controls
which are primary control, secondary control, tertiary control,
and time control shown in Table II [48].

Primary Control, which is interchangeably referred to as Fre-
quency Response, is a mechanism that takes action in the initial
seconds after a disturbance in frequency occurs. It’s essential to
note that Primary Control doesn’t restore the frequency to its
normal range; instead, it serves the crucial role of stabilizing
it. Secondary Control, on the other hand, operates within a
timeframe of minutes and is tasked with the function of bringing
the frequency back to its nominal value. A widely used form
of Secondary Control is Automatic Generation Control (AGC).
AGC is active during the steady state, once the transient effects
have subsided. AGC’s primary role is to maintain the frequency
that has been pre-set by employing Area Control Error (ACE)
as a tool for balancing authorities. ACE is crucial as it serves
as the chief input to AGC. It is quantified as the megawatt
(MW) equivalent adjustment required to align the actual system
frequency with the predetermined system frequency value. The
mathematical representation to calculate ACE is as follows:

ACE = —108 (Fs — Fj) 3)

where F is scheduled frequency, F 4 is the actual frequency
of the system, and [ is system frequency bias. When ACE is
greater than 0, regulation up (Reg Up) will be applied by the

the system frequency, and it is stated in MW/0.1 Hz [48].

f=-3X 7
where Af = F; — Fy, and AP is the power deviation caused
by the Wiggle Effect the wildfire smoke. According to the data
from NERC, the frequency biases for CAISO and ERCOT are
—344.5 MW/0.1 Hz and —789.3 MW/0.1 Hz, respectively [49].
Therefore, the frequency deviation in these two systems can be
estimated using A f = —A P/ and shown in Table IIL

Table III displays the frequency variations as influenced by
each system’s present frequency bias, along with the estimated
deviations in PV power output. The term “deadband frequency”
refers to the least amount of deviation from the 60 Hz benchmark
that must be met before eliciting a response from the governor.
At present, the governor frequency deadbands for CAISO and
ERCOT are set at 0.036 Hz and 0.017 Hz, respectively, as cited
in the reference [50], [51].

It is noteworthy that the frequency deviations caused by the
phenomenon known as the “Wiggle Effect’ surpass the deadband
thresholds in each of the systems. This implies that the fluc-
tuations induced by the Wiggle Effect are significant enough
to prompt a response from the governors in both CAISO and
ERCOT systems.

In order to uphold frequency stability while taking into ac-
count the impact of the Wiggle Effect on PV power output,
each system must allocate sufficient capacity for regulation
services. The calculation for determining the necessary capacity
for regulation service can be performed using (3). This ensures
that the system can effectively counterbalance the fluctuations
caused by the Wiggle Effect and maintain stability in frequency.

Capacity = (Af — deadband)x 10 x — 5)

The minimum capacity in each system for regulation service
are determined using (3) and shown in Table I'V.

Table IV presents the capacity that each system needs to
sustain a frequency of 60 Hz. To exemplify these findings,
consider CAISO, which has 26.6 GW of installed PV capacity
and a frequency bias of —344.5 MW/0.1 Hz. In order to maintain

“
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TABLE V
PV CAPACITY ASSUMPTION
PV Capacity Assumption (GW)
Year " "
California Texas
2024 33 19
2026 39 28
2028 45 36
2030 50 45
2032 56 54
TABLE VI
FREQUENCY BIAS ASSUMPTION
Year S (MW/0.1 Hz) Assumption
CAISO ERCOT
2024 -310 -710
2026 -279 -639
2028 -251 -575
2030 -226 -518
2032 -203 -466

stability in system frequency, factoring in the Wiggle Effect
induced by wildfire smoke, CAISO should have a minimum
reserve capacity of 491.6 MW.

As the integration of PV systems continues to rise, there is a
growing need for reserve capacity with rapid-response capabili-
ties to uphold frequency stability. Consequently, having precise
knowledge of the total installed PV capacity and the system’s
inertia is crucial for the effective operation of the power system
in the future.

IV. PREDICTIVE ANALYSIS FOR THE LOW INERTIA TREND

According to the solar industry update from NREL, in the
year 2021, CAISO and ERCOT systems saw the addition of
2.984 GW and 4.344 GW in PV capacities, respectively [11].
Theoretically speaking, as the integration of Inverter-Based Re-
sources (IBRs) continues to grow, there will be a corresponding
decline in the inertia of power grids. As a result, the settings
for frequency bias in power systems are expected to decrease.
This section delves into a forward-looking analysis of frequency
stability, considering the trend of diminishing inertia coupled
with the escalation in PV capacities in the power grids of the
future.

To show the possible frequency stability issue with the in-
creasing solar PV capacity and low inertia trending in power
grids caused by the Wiggle Effect, CAISO and ERCOT systems
are utilized in this study as an example. This study assumes the
total PV capacities for each system from 2024 to 2032 shown in
Table V. The predicted power deviation and frequency deviation
from 2024 to 2032 are derived from this assumption. Addition-
ally, assumptions are made for the frequency bias settings in
each system, where a rate of decline by 10% every 2 years is
anticipated. This data is presented in Table VI.

To calculate the frequency deviations induced by the Wiggle
Effect, considering the assumed parameters for CAISO and
ERCOT as displayed in Tables V and VI, the power deviation
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TABLE VII
FUTURE POWER DEVIATION
Year Power Deviation Estimation (MW)
CAISO ERCOT

2024 707 412
2026 846 607
2028 977 781
2030 1085 977
2032 1215 1172

TABLE VIII

ESTIMATED FREQUENCY DEVIATION
Year Frequency Deviation Af Forecast (Hz)
CAISO ERCOT

2024 0.2281 0.058
2026 0.3032 0.095
2028 0.3892 0.1358
2023 0.4801 0.1886
2032 0.5985 0.2515

is ascertained by utilizing 2.17% of the PV capacity, as estab-
lished in Section II. The results of this calculation are presented
in Table VII. This estimation process helps in understanding
the potential frequency deviations due to the Wiggle Effect in
relation to the parameters and conditions within the CAISO and
ERCOT systems.

Table VIII reveals that the CAISO and ERCOT systems
may be susceptible to vulnerabilities as PV capacities increase
and system inertias decrease. It is evident from the data that
the Wiggle Effect has the potential to impact system stability
significantly. This highlights the importance of carefully man-
aging and monitoring the integration of PV capacities and the
corresponding changes in system inertia to mitigate the risks
posed by the Wiggle Effect on the overall stability of the CAISO
and ERCOT systems.

To provide a clearer depiction of the potential issues related
to frequency stability that may arise due to the Wiggle Effect
of wildfire smoke, particularly in the context of increasing PV
integration and declining inertia in future power grids, a trend
analysis of frequency deviation is conducted. This analysis is
based on 2.17% of the total PV capacity and the resulting
trends are graphically represented in Fig. 9. Through this vi-
sual representation, it is easier to understand and analyze the
interplay between the Wiggle Effect, PV penetration, and sys-
tem inertia, and how these factors can collectively impact the
frequency stability in the power grids of the future. As depicted
in Fig. 9, as the PV capacity in the power grid increases, it
becomes imperative for the power system to have appropriate
frequency bias settings in place to maintain frequency stability.
Consequently, safeguarding the inertia of power grids becomes
a critical factor in ensuring the stability of these grids, especially
considering the escalating deployment of IBRs. This highlights
the necessity for careful management and monitoring of grid
inertia and frequency bias settings to adapt to the changing
dynamics brought about by the increasing integration of PV
systems.
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Fig. 9. Frequency stability prediction considering the wiggle effect.

V. CONCLUSION AND FUTURE WORKS

In this research paper, the “Wiggle Effect” on PV systems
caused by wildfire smoke is introduced and analyzed. A predic-
tive analysis for frequency stability is conducted using parame-
ters derived from the CAISO and ERCOT systems. The Wiggle
Effect has the potential to jeopardize the stability of power grids
without appropriate stability control strategies. This becomes
increasingly significant with the rise in PV capacities and the
trend towards lower inertia in power systems. This paper repre-
sents the first study discussing the impact of the Wiggle Effect
on PV systems due to wildfire smoke. By presenting this unique
perspective, the paper serves as a valuable resource for power
system operators, providing deeper insights into how wildfire
smoke can regionally impact the stability of power systems.
These insights are essential for informed decision-making and
the development of strategies to ensure grid stability.

Future research in this area should explore specific solutions,
including advanced control mechanisms, adaptable reserve ca-
pacities, and innovative solar cell types, to mitigate the influence
of the wiggle effect on power grid frequency stability.
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