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Abstract—Quantum Cramér-Rao bound is the ultimate limit of
the mean squared error for unbiased estimation of an unknown
parameter embedded in a quantum state. While it can be
achieved asymptotically for large number of quantum state
copies, the measurement required often depends on the true value
of the parameter of interest. This paradox was addressed by
Hayashi and Matsumoto using a two-stage approach in 2005.
Unfortunately, their analysis imposes conditions that severely
restrict the class of classical estimators applied to the quantum
measurement outcomes, hindering applications of this method.
We relax these conditions to substantially broaden the class of
usable estimators at the cost of slightly weakening the asymptotic
properties of the two-stage method. We apply our results to obtain
the asymptotics of quantum-enhanced transmittance sensing.

I. INTRODUCTION

Consider estimating a scalar parameter ¢ embedded in a
quantum state 6(6) of a physical system. Quantum mechanics
allows achieving the fundamental limit for precision by opti-
mizing the measurement apparatus [2]. The minimum mean
square error (MSE) of an unbiased estimator applied to the
outcomes of this optimal measurement, called the quantum
Cramér-Rao bound (QCRB), is the ultimate limit for parameter
estimation precision. Unfortunately, the optimal measurement
structure may depend on the true value of 6. Given n — oo
copies of 6(#), this paradox can be resolved by a sequential
method that first randomly guesses 6 to construct the mea-
surement for the first copy of (). A measurement for each
subsequent copy of 5(6) is built from the previous estimate
of 0, refining the estimate by evolving it towards the optimal
[31, [4]. Under certain regularity conditions, this technique can
yield strongly consistent and asymptotically normal estimators
of 6 [4]. However, repeated adjustments of the quantum
measurement device can be impractical. This motivates the
two-stage method [5], [6], [7, Ch. 6.4]: in the preliminary
stage, a suboptimal measurement that is independent of 6
is used on a fraction of states that diminishes with n. This
estimate is used to construct the optimal measurement and
refine the estimate in the second, refinement stage.

The authors of [6], [7, Ch. 6.4] were the first to present a
comprehensive asymptotic analysis of the two-stage method
in the context of quantum sensing. They show that, under
certain regularity conditions, the normalized MSE of the two-
stage estimator approaches the QCRB as n — oo. Arguably,
this is the strongest result one can expect for any estimator.
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Unfortunately, its applicability is limited due to the stringency
of the regularity conditions imposed on the classical estimators
that process the outcomes of quantum measurements.

Therefore, the first of our two contributions in this paper is
the relaxation of the regularity conditions to allow asymptotic
analysis of a substantially larger class of estimators, which in-
cludes many maximum likelihood estimators (MLEs). The cost
is a slight weakening of the asymptotic properties: we show
that, like MLE [8]-[10], the two-stage estimator under our
conditions is consistent and asymptotically normal, with the
variance of the limiting Gaussian matching QCRB. However,
these weakened properties are sufficient for practical tasks,
such as estimating the confidence intervals [11, Sec. 1]. We
present conditions for both weak and strong consistency.

Our relaxed regularity conditions enable asymptotic analysis
of quantum estimators for many problems of operational
importance. This includes quantum-enhanced power transmit-
tance sensing in the bosonic channel, which models many
practical channels, including optical, radio-frequency, and mi-
crowave. Previously we derived the QCRB in [12] and the op-
timal quantum measurement structure that achieves it in [13].
The optimal measurement depends on the true transmittance,
hence necessitating a two-stage approach. Although in [13] we
had to resort to numerical analysis of its asymptotic behavior,
our relaxed conditions presented here allow us to show strong
consistency and asymptotic normality of estimating power
transmittance using the optimal quantum measurement. This
constitutes our second contribution.

This paper is organized as follows: following a brief review
of quantum estimation theory in Section II-A, we formally
introduce the two-stage method in Section II-B. We then
summarize the results on its asymptotics from [6], [7, Ch. 6.4],
adapting them to single-parameter quantum estimation of
interest to us in Section II-C. Our main results are in Sections
III and IV. We state our relaxed regularity conditions and prove
consistency and asymptotic normality of two-stage estimation
as Theorem 1 in Section III. We then show in Section IV that
the strong form of the conditions for Theorem 1 holds for
quantum-enhanced transmittance sensor derived in [13]. We
conclude with a discussion of future work in Section V.

II. TWO-STAGE QUANTUM ESTIMATION

A. Quantum Estimation Prerequisites

Here we review the principles and fundamental limits of
quantum estimation. We encourage the reader to consult [2]



for details and proofs. Denoting by I' the parameter space,
we are interested in estimating an unknown parameter 6 € I"
that is physically encoded in a quantum state 5(6). A positive
operator-valued measure (POVM) {flr} describes a physical
device that extracts information about 6 from &(f). POVM
is non-negative and complete: Vz : A, > 0 and dow A, =
I, where I is the identity. A random variable X (#) with
probability mass function (p.m.f.) px ) (2;0) = Tr{A,5(0)}
describes the classical statistics of an output of a device
characterized by POVM {A,} [2, Ch. I1I].

Given an observed output x from POVM, we desire an
unbiased estimator 0(z), i.e., Ex(gy [0(X(60))] = 0o,

that minimizes the mean square error (MSE) Vj, (9) =
Ex (09 [(9 (X (6p)) — 90)2}, where 6 is the true value of
and Ex g,)[f (X (00))] is the expected value of f (X (6y)).

The lower bound on the MSE is the classical Cramér-Rao
bound (CCRB) [8], [9]:

Voo (0) > Ty (X (60)) ", (1)

where the classical Fisher information (FI) associated with 6
for random variable X (6y) is

) (X(60) = Exay | @rlogpxo (X(@0:0))°],_, | @
and 0,f(x) = %f) denotes a partial derivative. Classi-
cal FI is additive: for a sequence of n independent and
identically distributed (i.i.d.) random variables {X(6o)};_;,
Zo ({Xk(00) } =) = nZo (X1(60)).

Quantum estimation theory allows optimization of POVM
{A,} that is implicitly fixed in the classical analysis [2,
Ch. VIII], yielding the quantum Cramér-Rao bound (QCRB):

Vao (0) > Ty (X(00)) ™" > To (6(60)) ", 3)

where Jy (6(0p)) = Tr{(A(60)>2&(90)} is the quantum

FI associated with @ for state 6(6y) and A(0) is the sym-
metric logarithm derivative (SLD) operator. SLD is Hermitian
but not necessarily positive and is defined implicitly by [2,
Ch. VIIL4(b)]:

a6(0) = (MO)5(0) + 5(0)A0) ) /2. )

Analogous to classical FI, quantum FI is additive: for a tensor
product of n states 7™ (6y), Jo (6%"(6p)) = nTy (6(00)).
Consider a POVM M(0) = {|X(0)) (A\.(0)|} that is
constructed from an eigendecomposition of SLD Ay =
Do Az (0) A2 (0)) (Az(8)], where {|A;(0))} is a set of or-
thonormal pure eigen-states of Ay and {\.(6)} are the cor-
responding eigenvalues. Note that M () depends structurally
on the parameter of interest 8, however, it is distinct from the
quantum state & (¢) that carries information about 6. Since 0
in M(0) can be set differently than 6 in 6(0), we describe
the outcome statistics of measuring 5(f) using M (') by
a random variable X (0,0") with p.m.f. px(g¢)(2;0,0") =
Tr {|A:(0")) (A2 (0")| 5(0)}. In the rest of the paper, we denote

TJo, = Jo(6(00)) and Zp, o0 = Iy (X (6p,0")) for brevity.
Measurement M (#) is optimal in the sense that the classical
FI equals the quantum FI when it is parameterized by the
true value 0y of the parameter 0: Iy, o, = Jp,- An efficient
estimator extracts the value of 6 from the classical outcomes
of this measurement with minimal MSE. However, knowledge
of the true value 0y of the parameter 6 is needed to construct
the optimal measurement M (6,).

B. Two-stage Quantum Estimator

Adaptive approaches [3]-[6], [7, Ch. 6.4] resolve the para-
dox outlined above. Methods that update the measurement
after measuring each state are analyzed in [3], [4]. Here we
focus on the asymptotics of the simpler two-stage approach
[5], [6], [7, Ch. 6.4]. First, we pre-estimate 9p from the first
f(n) € w(l) No(n) available states using a sub-optimal
measurement that does not depend on 6, where w(1) and
o(n) denote the respective sets of functions that are asymp-
totically larger than a constant and smaller than n. That
is, lim, o0 f(n) = oo and lim, o £ = 0. Then, we
refine our estimate using M(6;,) on the remaining n — f(n)
states. The estimator 6, (9 ) employed in the refinement stage
depends on the outcome of the preliminary estimator 910.
The outcome of 6, conditioned on ép is described by the
random variable ©, (f,) with conditional density function
Po,j6, (0r | 0,). Define MSE Vj, (6) as

Vo (6) = / Voo (6 (6,)) po, (6) dby,

where the MSE conditioned on the outcome of the preliminary
estimator is:

Voo (0: 0,)) = [ (0= o0)°

Finally, define a ball around 6y: T's = {0 € T" : |0—6y| < §}.

&)

(6)

P

C. Prior Work

To our knowledge, the convergence properties of the MSE
Vo, (ér) of the quantum two-stage estimator were first studied
in detail by Hayashi and Matsumoto in [6]. We now restate
their main result as a lemma. We adapt it to single-parameter
estimation, since this is the primary focus of our work. We
also make other changes, as discussed below.

Lemma 1 ([6, Th. 2]) The MSE of the two-stage estimator 0,
satisfies:

11120 nVa, (6;) (7)

n—
if the following conditions hold:
HM1 Preliminary estimator satisfies lim,,_ s nPr{\(;)p —
90|>60}—0 Veg > 0.
HM2 MSE is bounded by a constant: Vy, (ér) < Cl,Vér erl.
HM3 Conditional MSE Vj, (Gr (Qp)) is uniformvly bounded:
there exists ng > 0 s.t., for all 61,1 >0, 6, € I's,,

(n— f(n)) Va, (6: (6)) —

_ 71
= "790

- | < €1,Yn > ng.
00,0,



HM4 7, ; is continuous over 0.
00,0, p

Before proving Lemma 1, we contrast it with [6, Th. 2].
First, [6] studies convergence of MSE to a multi-parameter
quasi-Cramér-Rao bound [14], [15]. For a single parameter,
this bound coincides with the standard results in (3). Thus, the
right hand side (r.h.s.) of (7) is J9;1 and we omit the regularity
condition B.5 in [6]. Instead, we add condition HM4, which
is not onerous. Our condition HM1 is the condition B.1 in [6]
with factor n included in front of probability (this is a typo in
[6], as the proof of [6, Th. 2] in [6, Sec. 3.4] does not hold
without it). Condition HM2 relaxes condition B.2 in [6]; the
proof of [6, Th. 2] holds with this relaxation. Condition B.3
in [6] is omitted since it is not used in the proof of [6, Th. 2].
Our condition HM3 is condition B.4 in [6] generalized to allow
f(n) € w(l)No(n) states to be used in the preliminary stage.
The authors of [6] set f(n) = y/n, although the proof of [6,
Th. 2] holds for any f(n) € w(1) No(n).

Proof. We begin with achievability. By the definition in (5),

®)

where I'§ is the complement of the ball I'; defined in Section
II-B. Consider the first limit in (8):

lim 7 / Voo (6: (6,)) po, (6,)d0,

n—00 c
51

< lim nCl/ pe (0,)d0, )
n— o0 Fgl P
= lim nCy Pr{|©, — fo| > 61} =0, (10)

where (9) and (10) are due to conditions HM2 and HMI1,
respectively. Consider the second limit in (8):

hmn/ Vi, (6 (65)) pe, (6)d6
s,

n— oo

. n 1 o« o«
S nh_{l;lo m /1—‘51 (Ieg,ép + Gl)pép (9p)d9p (1 ])
. n _ =
= nh_{l'olo m(zgo:}eo + €1 + 62) Pr{@p S F§1} (12)
=Zoo0 = Ja - (13)

where (11) and (12) are due to conditions HM3 and HM4, with
€2 > 0 arbitrarily small. Substitution of (10) and (13) into (8)
yields the achievability limy, o nVg, (6;) < J,.'. The QCRB
in (3) yields the converse and the theorem. O

III. ASYMPTOTIC CONSISTENCY AND NORMALITY OF
TWO-STAGE QUANTUM ESTIMATOR

Numerical evidence suggests that Lemma 1 holds for certain
quantum estimation problems (e.g., transmittance sensing,

see [13, Fig. 10]). However, its stringent conditions pose
significant barriers for its use. First, condition HM1 is stricter
than the standard asymptotic consistency. More importantly,
uniform integrability of the estimator 6, used in the refine-
ment stage is necessary for condition HM3 to hold. Indeed,
although the authors of [6] suggest using maximum likelihood
estimation (MLE) in [6, Sec. 3.2], they recognize that their
condition B.4 (our condition HM3) is difficult to verify. It is
well-known that, although MLE is asymptotically consistent,
typically it does not satisfy condition HM3 (for instance, see
remarks following [10, Prop. IV.D.2]).

At the same time, asymptotic consistency and normality of
an estimator are sufficient in many practical settings (e.g., to
approximate confidence intervals [11, Sec. 1]). Focusing on
these allows us to relax the conditions of Lemma 1. In fact,
under certain regularity conditions, MLEs are asymptotically
consistent and normal. Thus, when used on the outcomes of the
SLD-eigendecomposition quantum measurement from Section
II-A, the following allows us to claim quantum optimality with
a suitable preliminary estimator. We denote by X,, =25 X,
X, % X, and X, 4 x convergence of a sequence of random
variables (X,,) to X almost surely (a.s.), in probability, and in
distribution, respectively. We also denote a Gaussian (normal)
distribution with mean g and variance o2 by N (p, 0?).

Theorem 1 The outcome of the refinement stage in the two-
stage quantum estimator is weakly (strongly) consistent and
asymptotically normal:

o, 21 g, (14)
Vi f(n) (6r — 65) % N (0,7, ) (15)

for f(n) € w(1) No(n), if the following conditions hold:
1) The preliminary estimator is weakly (strongly) consis-
tent: O, LACEON fo.
2) There exists do > 0 such that, when the preliminary
estimator is clgse to 0y, i.e., 0, € T's,, the refinement
estimator O, (Gp) has the following properties:

a) Weak (strong) consistency: O, (ép) M 0.
b) Asymptotic normality:
> 5 d —
n— ) (6, (6,) —0) 5 N go,z%fép),
where 1y 5 is the CFI associated with 6 for a ran-
dom variable describing the outcome of Mr(ép).

3) Iy, g, is continuous over By

Note: we prove the strong consistency O, -2 f using the
a.s. versions of conditions 1 and 2a.

Proof. First, we show the weak consistency of (:)r:
Pr{|ér — 90| > 63}
= [ po, ) Pr {16 () ~ 00| > e}

= /F Do, (0,) Pr{|©: (6,) — 00| > €3} db,,

52



+/ po, (0p) Pr{|€: (0,) — bo| > es} db,,  (16)
T's,

where the ball I's is defined in Section II-B, I'§ is its
complement, and 65 is from condition 2. The limit of the first
term in (16) is:

(6 Pr {16, (By) 0] > e} ad

< lim po, (05) db,

= lim Pr{|0, —fo| > 6} =0, (17)

where (17) is due to condition 1. The limit of the second term
in (16) is:

lim

. Do, (ép) Pr {‘ér (ép) — 90‘ > 63} dép
52
< lim Pr{[©, — fo| < 2}
X max Pr{‘@r (ép) — 90‘ > 63}
9p€F52
< lim max Pr{’@r (ép) —90‘ > 63} =0,

n—00 §.els,

(18)

where the equality in (18) is by condition 2a. Combining
(17) and (18) results in lim, .o Pr{|@r — 90’ > 63} =0,
showing the weak consistency of ©,.

Next, we establish the strong consistency using the a.s. ver-
sions of conditions 1 and 2a. Note that ér and ép are
functions of n. Let A = {lim SUD,, o0 |®r(®p) — o] < es}
and B = {limsup, _, |®p — 90| < 82}, where €3,85 > 0.
We need Pr{A} = 1 for strong consistency. By the law of
total probability,

Pr{A} =Pr{A|B} Pr{B}+Pr{A|B°}Pr{B°}, (19)

where B¢ is the complement of B. Strong consistency follows
as Pr {A|B} = 1 by condition 2a since B is the event that ©,,
is in the neighborhood of 6, for infinitely many n, Pr{B} =
1, Pr{B¢} = 0 by condition 1, and Pr {A|B°} < 1.

Finally, we prove the asymptotic normality of ©, using
weak consistency. Let

Zy (B) = v/n = f(n) (6x (6,) — 60) (20)
Zo = Eo, |20 (6))] @1
= Vn=F) (Be, [6:(0:)] ~60). (22

Since the random variable ©, describing the outcome of the
refinement estimator is the expectation over the outcome of
preliminary estimator Eg_ [©: (©p)], we need to show that

Jm [P, ) = @ (/)

where ®(z) = \/% I e~¥"/2dt is the cumulative distribu-
tion function (c.d.f.) of N (0, 1),

=0, (23)

Fz, (2) = /Fp@p (05) Fz,(5,) (2) do,

= Ee, | Fy,(6,) (9] 4)

and Fy () is the cdf. of Z, (fp). Using the triangle
inequality, we have

‘an (2)— @ (z jgo)

< \an (2) — B, [@ (Z Ieoaépﬂ ‘

e [ )]s

Consider the first term in (25),

70, () = o, [0 (2T, )|

=|Pe, [Fru(en) ()= ® (2 Tnne, )| @9

< Bo, [|Fz.(60) @) =@ (5\/Tnv0, )| @)
‘ )

where (26) is by the definition of Fy, (z) and (27) is
from moving the absolute value inside the expectation. Since
‘an(ép) (z) —® (z1 /Ieo,é)p) ’ < 2, we can upper bound the
first term in (28) by 2 Pr {|ép — 6| > 52}. Taking the limit
as n — oo yields zero by condition 1. The second term in (28)

W) B = @\ 2y Too; )|

argmaxg ep, an(ép) (2) — Z Ieo,ép

@ .
Py ()= 2 (2/Tous; )| =

can be upper bounded by |F),
where 07 =

By condition 2b , lim,_,
0. Thus, (28) yields

lim. ’an () - Be, {cb (z Ieo)” =0 (29
For the second term in (25),
o o) ()
_ ‘Eép @ (z\/ﬂ) — 9 (ZJJTO)”
<5 [+ (fBner) 5 ()] 00

where (30) is from moving the absolute value inside the ex-
pectation of ®(x). Recall that Zy, g, = Jp,. Conditions 1 and
3 with continuous mapping theorem [16, Th. 25.7] imply that

@ (51/To0,) B @ (31/Tac)- Sinee [0 (2,/T5,6. )] < 1.

P (z Ieo,(l)p is uniformly integrable. By Vitali convergence
theorem [16, Corr. to Th. 16.14], the limit of (30) yields:

lim Fe, Hcp (5\/Tone, ) = @ (:v/T0, ) || =0. 6D
Combining (25), (29), and 31 yields
limy, o0 |Fz, (#) — ® (24/Js,)] = 0 and asymptotic
normality in (15). [

Next we employ Theorem 1 to study the asymptotic perfor-
mance of quantum-enhanced transmittance sensing.



IV. ASYMPTOTICS OF QUANTUM-ENHANCED
TRANSMITTANCE SENSING

Input prngn Transmitted probe (S systems)
Reference nr thermal
photons per mode
(I systems)

Returned ‘
Output &7n gn < PrObe

(R systems)

N Channel

< 0= on, 0
¢ i

U

Fig. 1. Sensing of unknown transmittance 6; reprint of [13, Fig. 2]. Sensor
transmits n-mode probes (systems S of bipartite state pyn g» ) into a thermal
noise lossy bosonic channel £ (7r.8) modeled by a beamsplitter with unknown
transmittance 6 mixing signal and a thermal state with mean thermal photon
number R = 1"%9. Reference idler systems [ are used in the measurement
of output state &7n gn (0), with outcomes passed to estimator 6.

Measurement,

In [13] we explored quantum-enhanced sensing of un-
known power transmittance 6, a problem of great practical
importance. Fig. 1 depicts our system model, which uses
thermal noise lossy bosonic channel £(77:%) a quantum-
mechanical description of many practical channels including
optical, microwave, and radio-frequency. To prevent the noise
from carrying useful information about 6 to the sensor (so-
called “shadow effect” [17]), we set the thermal environment
mean photon number nt = %, as in the literature [18]-[23].

The sensor employs a bipartite quantum state prngn con-
taining n signal and idler systems S and /. Signal systems
S interrogate the target using n available modes of chan-
nel 533;%, while the idler systems I are retained losslessly
and noiselessly as a reference. A spatio-temporal-polarization
mode is a fundamental transmission unit (akin to a channel
use) in quantum optics. We showed that the optimal quan-
tum state for transmittance sensing with small mean probe
photon number per mode ng — 0 is the two-mode squeezed
vacuum (TMSV) state (subsequently, it was proved [17] to
be an optimal Gaussian quantum state). We also derived the
corresponding optimal POVM from the eigen-states of the
SLD, per Section II-A: a two-mode squeezer with squeezing
parameter w followed by the photon-number-resolving (PNR)
measurements of each output mode. The diagram of the sensor
is in [1, App. A, Fig. 2].

Our measurement consists of well-known optical compo-
nents. Although this tremendous advantage allows possible
use in practice, there are two caveats. First, whether this
measurement exists (i.e., whether a solution for w can be
found) depends on the values of 0, ng and 7, as illustrated in
[13, Fig. 4]. Thus, the parameter space that this measurement
covers is I' = [0”,1], where #” > 0 is a function of fig
and np. Different, possibly suboptimal, measurement must be
used outside of this parameter space. Second, the measure-
ment structure determined by w depends on the parameter of
interest §. However, this can addressed by a two-stage method
introduced in Section II-B.

In the preliminary stage, shown on [1, App. A, Fig. 3],
we employ a laser-light (coherent state) probe with mean
photon number per mode ng. We prove that MLE applied
to homodyne measurement outcomes is strongly consistent in
[1, App. B], thus satisfying the strong condition 1 in Theorem
1. We use our optimal measurement in the refinement stage.
The statistics of its output are described by an i.i.d. sequence
of data pairs corresponding to the photon counts in each PNR
detector ~{(K¢,M,;)};L:f(n)4r1 (although K; and M, in each

pair are correlated). The p.m.f. is [13, eq. (35)]:
prear(k,m; 0, 6;)

oo

- ¥

s=max(k—m,0)

2(s—k)

Ts.s—k+mT) sl(s — k+m)lk!im!

min(k,m) ( o\, —(k+m—2u+t1) 2

_TO)uVO
" u_magk_s) (Sik“i’u)'U'(k'fu)'(miu)] ’ (32)

NsNt,
where 7y (1+N1)5+11(12+N2)t+1, Ni,Na,vg > 1, and

To € (0,1). We defer the details to [13]. Note that our two
stages differ not only in the measurement structure but also
in the quantum state being measured. However, the results of
Section III apply in such scenarios. Although the MLE of 6 for
the optimal receiver has no closed form, we prove its strong
consistency and asymptotic normality in [1, App. C and D],
meeting condition 2 of Theorem 1. Furthermore, the squeezing
parameter w is continuous in the preliminary estimate ép,
and the FI associated with 6 in (K, M) is continuous in w,
satisfying condition 3 of Theorem 1.

V. CONCLUSION

Quantum estimation theory yields optimal measurements
of a scalar parameter embedded in a quantum state [2].
However, often, these measurements depend on the parameter
of interest. This necessitates a two-stage approach [5], [6],
[7, Ch. 6.4], where a preliminary estimate is derived from a
sub-optimal measurement, and is then used to construct an
optimal measurement that yields a refined estimate. Here, we
establish the conditions for the strong and weak consistency as
well as the asymptotic normality of this two-stage approach,
with QCRB being the variance of the limiting Gaussian in
the latter claim. This matches the usual asymptotic properties
for the MLEs. We then apply our methodology to show that
the quantum-enhanced transmittance estimator from [13] is
strongly consistent and asymptotically normal.

Although out of scope in this paper, extending our results
to multiple parameters is an intriguing area for future work.
Attaining multi-parameter QCRB [2, Ch. VIIL.4(a)] is compli-
cated by the non-commutativity of quantum measurements for
each parameter. A potential direction of research would focus
on investigating the asymptotics of quantum estimators in
the context of Holevo-Cramér-Rao [24] and quasi-Cramér-Rao
[14], [15] bounds. In the immediate term, our results will allow
establishing optimality claims for various single-parameter
quantum estimation problems. Indeed, we will apply them to
robust quantum-inspired super-resolution imaging [25].
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