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Realizing finite groups as automizers
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Abstract. It is shown that any finite groupA is realizable as the automizer in a finite perfect
group G of an abelian subgroup whose conjugates generate G. The construction uses
techniques from fusion systems on arbitrary finite groups, most notably certain realization
results for fusion systems of the type studied originally by Park.

1 Introduction

Not every finite group is realizable as Aut.U / for some finite group U . For exam-
ple, no nontrivial cyclic group of odd order is the automorphism group of a group.
We study here the realization of finite groups by automizers of subgroups of finite
groups. That is, given a finite group A, we study when it is possible to find a fi-
nite groupG and a subgroup U � G such thatA Š AutG.U / D NG.U /=CG.U /.
As it stands, the answer to this question is “always possible” for trivial reasons:
choose a faithful action of A on an elementary abelian p-group U (for some prime
p), and take for G the semidirect product of U by A. In this case, U is normal
in G. Our main result shows that it is possible to realize A as AutG.U /, where U
is very far from being normal.

Theorem 1.1. For each finite group A, there exist a finite perfect group G and

a homocyclic abelian subgroup U of G such that hUGi D G and AutG.U / Š A.

Here, we write hUGi for the normal closure of U in G, the subgroup of G
generated by the G-conjugates of U . A group G is perfect if it coincides with its
commutator subgroup. A homocyclic abelian group is a direct product of isomor-
phic cyclic groups.

We do not know whether more restrictions can be placed on G, up to and
including whether G can be taken to be simple. Likewise, we do not know if
whether more restrictions can be placed on U , such as requiring U to be an
elementary abelian p-group for some prime p. Ultimately, the group G is con-
structed fairly explicitly as the commutator subgroup of a wreath product of the
form .U Ì A/ o†n, but the embedding of U in G is not an obvious one.
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The method for constructing G and the embedding of U relies on certain con-
structions in fusion systems on arbitrary finite groups. A fusion system on a fi-
nite group S (not necessarily a p-group) is a category with objects the subgroups
of S , and with morphism sets consisting of injective homomorphisms between
subgroups, subject to two weak axioms which we recall in Section 2. The standard
example is the fusion system FS .G/ of the group G on the finite subgroup S in
which the morphisms are the G-conjugation homomorphisms between subgroups
of S . The most important ingredient in our construction is a theorem of Warraich
[8, Section 4] to the effect that every fusion system F on a finite group S is in
fact of this form (see Theorem 2.14). Given such an F , the groupG is constructed
as the group of automorphisms, as a right S -set, of a certain S -S biset associ-
ated with F . Warraich’s result and proof generalized the strategy of Park [6], who
considered the case where S is finite p-group. We mention that Ünlü and Yalçin
have also considered fusion systems on finite groups in the context of Park’s result
[7, Section 5].

In order to use the Park–Warraich theorem to prove Theorem 1.1, we need to
be able to construct a suitable finite group S and fusion system F on S . One
consequence of the way this fusion system is built is the following result.

Theorem 1.2. For each finite group A, there exist a finite group S , a homocyclic

abelian subgroup U of S , and a fusion system F on S such that foc.F / D S ,

Q.F / D 1, and AutF .U / Š A.

The definition of the focal subgroup foc.F / of a fusion system is given in
Section 2 and is the same as the definition for fusion systems on p-groups. The
subgroupQ.F / of S , which is a sort of replacement forOp.F / in a fusion system
on an arbitrary finite group when compared with a fusion system on a p-group, is
also introduced there.

When A is a p-group for some prime p, S is also a p-group in the construc-
tion of the fusion system F that we present. But we do not know whether it is
possible to choose F to be a fusion system on a p-group independently of A in
Theorem 1.2, much less whether F can be taken to be a saturated fusion system
on a p-group.

A MathOverflow question of Peter Mueller asks [4]: is every finite group of
the form N†n

.U /=U for a subgroup U of some finite symmetric group †n? This
work arose out of an attempt to say something about that question.

Here is a brief outline of the paper and some remarks on notation. In Section 2,
we give some background on fusion systems and semicharacteristic bisets and give
a definition of Q.F /. There we provide some discussion of the Park–Warraich
theorem in order to set notation and prepare for the proof of the two theorems.
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In Section 3, we prove a slightly more detailed version of Theorem 1.2 and com-
bine it with the Park–Warraich theorem to prove Theorem 1.1. We use left-handed
notation for conjugation x 7! gx D gxg�1. Our iterated commutators are right-
associated: ŒX; Y;Z� D ŒX; ŒY;Z��, etc. The notation ˆ.G/ stands for the Frattini
subgroup of a group G, and we sometimes write G0 for the commutator subgroup.

2 Fusion systems on finite groups, semicharacteristic bisets,

and the Park embedding

2.1 Fusion systems

Definition 2.1. Let S be a finite group. A fusion system on S is a category F with
objects the set of subgroups of S , subject to the following two axioms: for all
P;Q � S ,

(1) HomF .P;Q/ consists of a set of injective homomorphisms from P to Q,
including all such morphisms induced by S -conjugation.

(2) Each ' 2 HomF .P;Q/ is the composite of an F -isomorphism from P to
'.P / and the inclusion from '.P / to Q.

Axiom (1) implies that any inclusion �QP of subgroups P � Q is a morphism
in F from P to Q (being conjugation by 1 2 S ). Therefore, a morphism can be
restricted to any subgroup of the source. Axiom (2) then implies for example that
the target of any morphism can be restricted to a subgroup containing the image.

IfG is a group and S is a finite subgroup ofG, there is a fusion system FS .G/ of
G on S with morphism sets HomG.P;Q/ D ¹cg W t 7! g t j gP � Qº consisting
of the G-conjugation homomorphisms mapping P into Q. This is the standard
example of a fusion system. The Park–Warraich Theorem 2.14 shows that indeed
every fusion system on S is of this form, and G can be taken to be finite.

The notation AutF .P / is short for HomF .P; P / in a fusion system F on S .
When F D FS .G/ for some group G and P � S , then AutF .P / D AutG.P /
from the definitions.

We introduce now several properties of subgroups and morphisms in a fusion
system that we will need, many of which are identical to their counterparts for
fusion systems on p-groups [1, 2].

Definition 2.2 (Generation of fusion systems). Let S be a finite group and let X

be a set of injective homomorphisms between subgroups of S . The fusion system

on S generated by X, denoted hXiS , is the intersection of the fusion systems on S
containing X.
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If F1 and F2 are two fusion systems on the finite group S , then the category
F1 \ F2 with objects the subgroups of S and with morphism sets

HomF1\F2
.P;Q/ WD HomF1

.P;Q/ \ HomF2
.P;Q/

is again a fusion system on S . Thus, the definition makes sense. As in the case of
fusion systems on finite p-groups, it is easy to see that an injective group homo-
morphism is in hXiS if and only if it can be written as a composition of restric-
tions of homomorphisms in Inn.S/ [ X. One consequence of this is the following
lemma.

Lemma 2.3. Let F be a fusion system on the finite group S , and X a collection

of subgroups of S such that F D hAutF .X/ j X 2 XiS . If P is a subgroup of S

which is not F -conjugate to a subgroup of any X 2 X, then each morphism in F

defined on P is the restriction of an inner automorphism of S .

We next define what is meant by the direct product of two fusion systems.

Definition 2.4 (Direct products). Let S1 and S2 be finite groups, and let Fi be a fu-
sion system on Si , i D 1; 2. The direct product F1 � F2 is the fusion system over
S1 � S2 generated by the homomorphisms .'1; '2/WP1 � P2 ! S1 � S2, where
'i 2 HomFi

.Pi ; Si /.

We also need the definition of the focal subgroup of a fusion system.

Definition 2.5 (Focal subgroup). Let F be a fusion system on the finite group S .
The focal subgroup of F is the subgroup of S generated by elements of the form
Œ'; s� WD '.s/s�1, where s 2 S and 'W hsi ! S is a morphism in F .

Remark 2.6. By the Focal Subgroup Theorem [3, Theorem 7.3.4], if G is a finite
group and S is a Sylow p-subgroup of G, then foc.FS .G// D S \ ŒG;G�. When
S is an arbitrary subgroup of G, there is the obvious inclusion

foc.FS .G// � S \ ŒG;G�

since each generating element '.s/s�1 2 S is a commutator gsg�1s�1 D Œg; s�

for some g 2 G, but in general, the reverse inclusion need not hold.

2.2 Nonextendable morphisms and the subgroup Q.F /

Definition 2.7 (Nonextendable morphisms). Let F be a fusion system on the finite
group S , and let P;Q � S . A morphism ' 2 HomF .P;Q/ is said to be nonex-

tendable if it does not extend to a morphism defined on any subgroup of S properly
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containing P . That is, whenever P � R � S and Q' 2 HomF .R; S/ is such that
�SQ ı ' D Q' ı �RP , then R D P .

Definition 2.8. For a fusion system F on a finite group S , define Q.F / to be
the set of all subgroups Q of S for which there is a nonextendable morphism
'WQ ! S in F , and let Q.F / be the intersection of the family Q.F /.

The relevance of the subgroup Q.F / will be seen later in Lemma 2.15. By the
same proof as for fusion systems on p-groups [2, Proposition 5.27 (c)], if F is
a fusion system on a finite group S , there is a unique largest normal subgroup N
of S having the property that each morphism 'WP ! Q in F extends to a mor-
phism Q'WPN ! QN with Q'jN .N / D N , which we might denote by OS .F /. (If
S is a p-group, then this is the largest normal p-subgroupOp.F / of F .) It follows
from the two definitions that OS .F / is a subgroup of each member of Q.F /, and
so OS .F / � Q.F /. Thus, the property Q.F / D 1 of F that appears in Theo-
rem 1.2 is at least as restrictive as the property OS .F / D 1.

Remark 2.9. The direct product AutF .S/ � AutF .S/ acts on the left of the set
of pairs .Q; '/ consisting of a subgroup Q 2 Q.F / and a nonextendable mor-
phism 'WQ ! S via .˛; ˇ/ � .Q; '/ D .˛.Q/; ˇ'˛�1/. In particular, Q.F / is
AutF .S/-invariant.

2.3 Semicharacteristic bisets

For a finite group S , an S -S -biset X is a set with left and right S -actions such
that .sx/t D s.xt/ for all s; t 2 S , x 2 X . An S -S -biset can be viewed as a left
.S � S/-set via .s; t/ � x D sxt�1.

Let X be an S -S biset. Fix a subgroup Q of S and a group homomorphism
'WQ ! S . In this situation, the notation 'X refers to the Q-S biset obtained by
having Q act on the left of X via the homomorphism ', that is, u � x � t D '.u/xt

for u 2 Q, t 2 S , and x 2 X . The notation QX is short for theQ-S biset 'X with
' the inclusion map of Q into S .

Such a pair .Q; '/ consisting of a subgroup Q � S and a homomorphism
'WQ ! S gives rise to a left Q-action on S � S via u � .x; y/ D .xu�1; '.u/y/

for u 2 Q and x; y 2 S . We write

S �.Q;'/ S D .S � S/=�

for the set of orbits under this action, and hx; yi 2 S �.Q;'/ S for the Q-orbit of
the point .x; y/. Then S �.Q;'/ S becomes an S -S biset where the left and right
S -actions are given by thx; yi D htx; yi and hx; yit = hx; yti, respectively, for
each t; x; y 2 S .
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The S -S biset S �.Q;'/ S is transitive, namely it has a single orbit when viewed
as a left S � S -set. The stabilizer in S � S of the point h1; 1i is the subgroup
�.Q; '/ WD ¹.u; '.u// j u 2 Qº, and hence the map

.S � S/=�.Q; '/ ! S �.Q;'/ S;

.x; y/�.Q; '/ 7! hx; y�1i

is an isomorphism of left S � S -sets. We refer to a subgroup of S � S of the
form �.Q; '/ as a twisted diagonal subgroup. If .R; / is another pair con-
sisting of a subgroup R � S and a homomorphism  WR ! S , then of course
S �.R; / S Š S �.Q;'/ S if and only if the associated twisted diagonal subgroups
are S � S -conjugate, thus if and only if there are s; t 2 S such that

�.R; / D .s;t/�.Q; '/ D �.sQ; ct'c
�1
s /:

In particular, S �.Q;'/ S Š S �.Q;ct'/ S for any ct 2 Inn.S/.
The biset S �.Q;'/ S is free as a right S -set, and it is also free as a left S -set if

' is injective. For example, assume ' is injective, and s 2 S fixes the point hx; yi

from the left. Then there is some u 2 Q such that .sx; y/ D .xu�1; '.u/y/. This
forces '.u/ D 1, and so u D 1 by injectivity. Thus, sx D x, and hence s D 1.

Definition 2.10 (cf. [6, Definition 1.2]). Let F be a fusion system on a finite
group S . A left semicharacteristic biset for F is a finite S -S -biset X satisfying
the following properties.

� X is F -generated, i.e., every transitive subbiset of X is of the form S �.Q;'/ S

for some Q � S and some ' 2 HomF .Q; S/

� X is left F -stable, i.e., QX Š 'X as Q-S -bisets for every Q � S and every
' 2 HomF .Q; S/.

Here and later, when we use the language “of the form” S �.Q;'/ S , we mean
an S -S biset which is isomorphic to S �.Q;'/ S as a left S � S -set.

In [6], Park showed that each fusion system on a finite p-group has a left
semicharacteristic biset. Then Warraich [8] extended this to fusion systems on
arbitrary finite groups.

Theorem 2.11. Let F be a fusion system on the finite group S . Then there exists

a left semicharacteristic biset X for F , and X can be chosen to include at least

one S -S orbit of the form S �.S;˛/ S for each Œ˛� 2 OutF .S/.
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The basic idea of the proof of Theorem 2.11 is to start with the F -generated
biset

X

˛2ŒAutF .S/= Inn.S/�

S �.S;˛/ S;

where ŒAutF .S/= Inn.S/� denotes a set of representatives for the cosets of Inn.S/
in AutF .S/, and then inductively add orbits of the form S �.Q;'/ S with 'WQ!S

a morphism in F in order to build a biset which is left F -stable. The inductive na-
ture of the proof sometimes makes it difficult to understand precisely which orbits
S �.Q;'/ S occur in a semicharacteristic biset. The following lemma gives a suf-
ficient condition on a pair .Q; '/ which forces the inclusion of the corresponding
orbit.

Lemma 2.12. Let X be a left semicharacteristic biset for F containing an orbit

of the form S �.S;id/ S . If ' 2 HomF .P; S/ is nonextendable, then X contains an

orbit isomorphic to S �.P;'/ S .

Proof. Since X has an orbit of the form S �.S;id/ S , the subgroup �.S; id/ fixes
a point in S , and hence so does �.P; id/. It follows that �.P; '/ fixes a point,
say x 2 X , because X is left F -stable. Since X is F -generated, there is a mor-
phism 
 WQ ! S in F such that �.Q; 
/ is the full stabilizer in S � S of x, i.e.,
the S � S orbit of x is of the form S �.Q;
/ S . But then �.P; '/ � �.Q; 
/, so
P � Q and 
 jP D '. Since ' is nonextendable, we have Q D P and ' D 
 .

Lemma 2.13. Let X D
Pk
iD1 S �.Qi ;'i / S be a left semicharacteristic biset for

a fusion system F on a finite group S . Then

k
\

iD1

\

s2S

sQi � Q.F /:

Proof. Let Q.X/ D ¹sQi j 1 � i � k; s 2 Sº and Q.X/ D
T

Q.X/ for short.
Thus, we must show Q.X/ � Q.F /. By Lemma 2.12, for each nonextendable
morphism 'WQ ! S in F , there is some point of X with stabilizer �.Q; '/ in
S � S . So, for each s 2 S , there is some point inX with stabilizer�.sQ; cs'c�1

s /

and cs'c�1
s is nonextendable by Remark 2.9. This shows Q.F / � Q.X/, so

Q.X/ � Q.F /.

The reverse inclusion in Lemma 2.13 need not hold. IfX is a left semicharacter-
istic biset for F , then the disjoint union of X with a number of free S � S -orbits
(i.e., orbits of the form S �.1;id/ S ) is again left semicharacteristic. So there is
always a semicharacteristic biset with some Qi D 1.
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2.4 The Park embedding

Let F be a fusion system on the finite group S , and letX be a left semicharacteris-
tic biset for F which contains an orbit of the form S �.S;id/ S . Consider the group
G D Aut.1X/ of automorphisms of X as a right S -set. We explain briefly Park’s
embedding of S into G with respect to which conjugation in G on the subgroups
of S realizes the fusion system F .

Fix a decomposition

X D

k
X

iD1

S �.Qi ;'i / S

such thatQi � S and 'i 2 HomF .Qi ; S/ for all 1 � i � k and such thatQ1 D S

and '1 D idS . Following [5], define � as

S
�

! Aut.1X/ D G;

u 7! .x 7! ux/:

This is indeed an injection because each orbit S �.Qi ;'/ S is free as a left S -set.

Theorem 2.14 ([5], [8, Chapter 4]). Let F be a fusion system on the finite group S ,

and let X be any left semicharacteristic biset for F which contains an orbit of the

form S �.S;id/ S . Let G D Aut.1X/, the group of automorphisms of X as a right

S -set. Then G Š S o†n for some natural number n, and there is an injection

�WS ! G such that F Š F�.S/.G/.

We next set up notation that will be needed later, looking more closely at the
structure of G and the embedding �. For each i , fix a collection ¹tij ºj2Ji

of rep-
resentatives of the left cosets of Qi , and set ni D jS W Qi j D jJi j. The action of
u 2 S on the coset representatives is given by

utijQi D ti�i .u/.j /Qi ;

where �i .u/WJi ! Ji is the induced permutation on Ji . As a right S -set, the biset
S �.Qi ;'i / S decomposes as

S �.Qi ;'i / S D
X

j2Ji

htij ; Si;

where htij ; Si WD ¹htij ; yi j y 2 Sº is the set of ordered pairs with free and tran-
sitive right S -action given by htij ; yi � s = htij ; ysi. Hence, also

X D

k
X

iD1

X

j2Ji

htij ; Si

as a right S -set.
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Since the right action of S on htij ; Si is regular, each automorphism of htij ; Si

as a right S -set is left multiplication by an element of S , i.e., of the form

htij ; yi 7! htij ; syi:

Thus, Aut.1htij ; Si/ Š S . It therefore follows from the above decompositions that

Gi WD Aut.1.S �.Qi ;'i / S// Š S o†ni
;

and

G D Aut.1X/ Š S o†n;

where n D
Pk
iD1 ni .

We examine more closely the map �. Now, the group S acts from the left on
each S �.Qi ;'i / S , so �.S/ �

Q

Gi � G. Let u 2 S . Since utij 2 ti�i .u/.j /Qi , we
have .ti�i .u/.j //

�1utij 2 Qi , and

uhtij ; yi D hutij ; yi D hti�i .u/.j / � .ti�i .u/.j //
�1utij ; yi

D hti�i .u/.j /; 'i ..ti�i .u/.j //
�1utij /yi:

Thus, writing �i for the projection …Gi ! Gi , we have

�i .�.u// D
�

.'i ..ti�i .u/.j //
�1utij //j2Ji

I �i .u/
�

2 S o†ni
:

The following lemma gives some information on the intersection of �.S/ with the
base subgroup of G.

Lemma 2.15. Let F be a fusion system on the finite group S with left semichar-

acteristic biset X containing S �.S;id/ S and embedding

�WS ! G D Aut.1X/ Š S o†n:

Let B D Sn be the base subgroup of G. Then

B \ �.S/ � �.Q.F //:

Proof. WriteX D
Pk
iD1 S �.Qi ;'i / S . For each u 2 S , the image �.u/ 2 B if and

only if �i .u/ D 1 for all 1 � i � k in the notation above. That is, �.u/ 2 B if and
only if u fixes all cosets tQi , that is, if and only if u 2

T

i

T

t2S
tQi . The result

now follows from Lemma 2.13.
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3 Proof of Theorems 1.2 and 1.1

We now state and prove a slightly more detailed version of Theorem 1.2. Note that,
in a homocyclic group V D .Ce/

r of exponent e and rank r , the minimal generat-
ing sets for V are the bases for V when considered as a free Z=eZ-module (and
all have size r). The automorphism group Aut.V / of V is transitive on such bases
by the universal property for free modules. With respect to the primary decompo-
sition of V , the automorphism group of V decomposes as a direct product of the
factors, and since Aut.V / is transitive on bases, Nakayama’s Lemma then shows
that the restriction map Aut.Vp/ ! Aut.Vp=ˆ.Vp// is surjective for the Sylow p-
subgroup Vp of V . This implies ŒAut.Vp/; Vp� D Vp and hence ŒAut.V /; V � D V ,
which is the last thing we will need.

Theorem 3.1. Let A be a finite group. Then there are a finite group S , a fusion

system on S , and a homocyclic abelian subgroup U of S such that Q.F / D 1,

foc.F / D S , and AutF .U / D A. Moreover, S , U , and F can be chosen so as to

satisfy the following additional properties:

(i) S is the semidirect product of U by A with respect to a faithful action of A

on U ,

(ii) the exponent of U is the exponent of A, and

(iii) if A > 1, then there is Q 2 Q.F / such that jS W Qj > 2jAj.

Proof. In case A D 1, we take G D S D U D 1 and F D FS .G/. So we may
assume A ¤ 1. Let e be the exponent of A. Consider the homocyclic group

U D U1 � U2 D C jAj
e � C jAj

e

of rank 2jAj, where A acts freely on U1 and U2. Let S WD UA be the semidirect
product with respect to this action. Thus, AutS .U / Š A and (i) and (ii) are satis-
fied. Let V be the collection of all rank 2 homocyclic subgroups of S of order e2,
and define F D hAut.V / j V 2 ViS .

We draw two consequences from Lemma 2.3 and the definition of F . The first
one is that AutF .U / D AutS .U / Š A. Indeed, AutS .U / � AutF .U / by defini-
tion of a fusion system, whereas U has strictly larger order than any member of V

(since jAj � 2), so AutF .U / � AutS .U / by the lemma. A second consequence
is that if V 2 V and ˛ 2 AutF .V / extends to a proper overgroup of V in S , then
˛ 2 AutS .V /. This follows from the lemma because each V 2 V is maximal un-
der inclusion among the members of V .

Let

V1 D ¹V 2 V j V supports a nonextendable automorphismº:
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We next want to show that hV1i D S and
T

V1 D 1. Observe that we then have
Q.F / D 1 by definition of the collection V1. Since the focal subgroup of F con-
tains V D ŒAut.V /; V � for each V 2 V , this will also show foc.F / D S .

SinceU is a freeA-module of rank two,CU .A/ D Z1 �Z2 withZi D CUi
.A/

is cyclic of order e. Since jAj � 2, U has rank at least 4. There is a choice of a pair
of cyclic subgroupsW1 � U1,W2 � U2 of order e such thatWi \ CU .A/ D 1 and
W1Z1 \W2Z2 D 1. (For example, takeWi spanned by a coordinate inUi DC

jAj
e .)

For any such choice, and as Aut.WiZi / is transitive on minimal generating sets,
there is an automorphism of WiZi which interchanges Wi and Zi and thus which
does not extend to an S -automorphism of WiZi (because Zi � Z.S/). So, by the
above, we see that WiZi 2 V1 for i D 1; 2. In particular, this shows

T

V1 D 1,
and also that U � hV1i (coordinates generate). Since Z1Z2 2 Q.F / for the same
reasons and jS W Z1Z2j � jU W Z1Z2j � e2jAj > 2jAj, point (iii) is satisfied.

Let p be a prime dividing jAj, let pa be the p-part of the exponent of A, and
let C be any cyclic subgroup of A with generator c of order pb . We claim that
there is V 2 V1 with UC=U � UV=U . Let u 2 U � ŒC; U � be any element of
order pa�b . Then uc has order pa. Fix an element w 2 CU .C / of order e=pa

and set W D hwuci. Since e=pa is prime to p, W is cyclic of order e. Since the
rank of CU .A/ is 2, we can again find a cyclic subgroup Z � CU .A/ of order
e with W \Z D 1, and then V D WZ is homocyclic of order e2. As before,
there is an automorphism of V interchanging W and Z, which therefore does not
extend to an S -automorphism of V . This shows that V 2 V1. By construction,
UC=U � UV=U , and we saw above that U � hV1i. Since C was an arbitrary
cyclic subgroup of p-power order, and the set of such subgroups generates A as p
ranges over the primes dividing A, it follows that hV1i D S .

Before giving the proof of Theorem 1.1, we prove a specialized lemma about
the commutator subgroup of a wreath product.

Lemma 3.2. Let S be a group, let K be a subgroup of †n with n > 1, and let

� D S oK with base subgroupB andG D � 0 D Œ�; ��. Assume thatK 0 is perfect

and transitive. Then ŒB;B� � ŒK;B�D ŒK 0;B�D ŒK 0;K 0;B� andG D ŒK 0;B�K 0

is perfect.

Proof. Although n > 1 was assumed initially, the further assumptions give im-
plicitly that n � 5. Write ei .s/ for the element

.1; : : : ; 1; s; 1; : : : ; 1/ 2 B D S1 � � � � � Sn

(with s in the i -th place), and cij .s/ D ej .s/ei .s/
�1. Let J be any transitive sub-

group of†n. Then cij .s/ D Œg; ei .s/� 2 ŒJ; B� for each element g 2 J which sends
i to j , so cij .S/ 2 ŒJ; B� for each i and j . For i an index taken modulo n and
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for s; t 2 S ,
Œci�1i .s/; ciiC1.t

�1/� D ei .Œs; t �/:

This shows that ŒSi ; Si � � ŒJ; B� for each i , and hence ŒB; B� D ŒS; S�n � ŒJ; B�.
Under the same assumptions on J , we just saw that ŒJ; B� contains all cij .s/ with
s 2 S and 1 � i; j � n. These generate ker.�/, where � WB ! S=S 0 is the homo-
morphism sending an element of B to the product of its components. Since each
generating element of ŒJ; B� is clearly in this kernel, we have ŒJ; B� D ker.�/. In
particular, ŒB; B� � ŒK 0; B� D ŒK;B�.

Next, for any subgroup J , we have ŒJ; B; J � D ŒJ; J; B�. So if J 0 D J , then
ŒJ; B� D ŒB; J � D ŒB; J 0� D ŒB; J; J � � ŒJ; J; B� � ŒJ; B�, the first inclusion by
the Three Subgroups Lemma [3, Theorem 2.3 (ii)]. So ŒJ; J; B� D ŒJ; B�. In par-
ticular, ŒK 0; K 0; B� D ŒK 0; B� since K 0 was assumed perfect.

Applying [3, Theorem 2.1] for example to � D KB , we see that

G D � 0 D K 0ŒK;B�ŒB;B�;

and then
G D K 0ŒK 0; B�

as ŒB; B� � ŒK;B� D ŒK 0; B�. Keeping in mind that ŒŒK 0; B�; ŒK 0; B�� � ŒB; B�

since B=ŒB;B� is abelian, a similar argument gives

G0 D ŒK 0; K 0�ŒK 0; K 0; B� D K 0ŒK 0B� D G;

so G is perfect.

Proof of Theorem 1.1. LetA be any finite group. IfAD1, then we takeGDU D1,
so we may assume A > 1. Fix a fusion system F on a finite group S D U Ì A

with U homocyclic andA faithful on U , satisfying the conclusion of Theorem 3.1.
Let X D

Pk
iD1 S �.Qi ;'i / S be any left semicharacteristic biset for F as in The-

orem 2.11, and write �WS ! � D Aut.1X/ Š S o†n for the Park embedding so
that F Š F�.S/.�/ via �. Set G D � 0. To ease notation, we identify S with its
image in � , and so we identify F and FS .�/. By choice of F , we know

S \ B � Q.F / D 1

by Lemma 2.15, where B is the base subgroup of � as usual, while also

S D foc.F / � S \G

by Remark 2.6. Thus, U � S � G. Since F D FS .�/, we have

Aut�.U / D AutF .U / Š A
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again by choice of F , and AutS .U / Š A by construction. Since S � G, this
shows AutG.U / Š A. We want to verify that G satisfies the conclusion of the
theorem.

Let H be the alternating subgroup of †n, and let N D hUGi be the normal
closure of U in G. We will see below that n � 5, so H is simple. By Lemma 3.2,
G is perfect and G D HŒH;B�. Thus, it remains to show that N D G.

Recall from the discussion of the Park embedding that n D
Pk
iD1jS W Qi j, so

by Theorem 3.1 (iii) and Lemma 2.12, there is i such that n � jS W Qi j > 2jAj.
So, indeed, n � 5 and H is simple. Use Bertrand’s postulate to get a prime p
with jAj < p < 2jAj, and so a prime p that divides jH j but not jAj. By Theo-
rem 3.1 (ii), p divides jH j but not jS j, so jH j2 does not divide jGj. On the other
hand, U \ B � S \ B � Q.F / D 1, so as H is simple, N projects modulo B
onto H . Thus, jH j divides jN j. Since N \H is normal in H , we have H � N

or H \N D 1. In the latter case, G contains the subgroup HN of order divisible
by jH j2, a contradiction, and hence H � N . As H � N , N contains the normal
closure of H in G, which is HŒH;B� D G, and this completes the proof of the
theorem.
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