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Abstract: Several reservoirs across the United States are filling with sediment, which jeopardizes their functionality and increases main-
tenance costs. USACE developed the Reservoir Sedimentation Information (RSI) system to assess reservoir aggradation and track dam
operation suitability for water resource management and dam safety. The RSI data set contains historical elevation-capacity data for ap-
proximately 400 dams (excluding navigation structures), which correspond to less than 1% of dams across the United States. Thus, there
is a critical need to develop methods for estimating reservoir sedimentation for unmonitored sites. The goal of this project was to create a
generalized method for estimating reservoir sedimentation rates using reservoir design information and watershed data. To meet this ob-
jective, geospatial tools were used to build a refined composite data set to complement the RSI system’s data with precipitation and watershed
characteristics. Nine deep learning models were then used on the benchmark data set to determine its accuracy at predicting capacity loss for
the RSI reservoirs: four supervised machine learning models, four deep neural network (DNN) models, and a multilinear power regression
model. A DNN model, containing a progressively increasing node and layer construction, was deemed the most accurate, with R> values from
its calibration and validation data sets being 0.83 and 0.70, respectively. The best model was recalibrated over the entire data set, which
showed greater accuracy on the prediction of the RSI reservoir’s capacity loss, with an R? of 0.81. This predictive model could be used to
evaluate the capacity loss of unmonitored reservoirs, forecast sedimentation rates under future climate conditions, and identify reservoirs with
the highest risk of losing functionality. DOI: 10.1061/JHYEFF.HEENG-6135. © 2024 American Society of Civil Engineers.

Practical Applications: Many communities depend on reservoirs for a variety of socioeconomic benefits, such as providing reliable water
sources and flood mitigation. Rivers entering reservoirs are a constant source of silt, sand, and gravel particles (i.e., sediments) that deposit
slowly, filling the reservoirs over time, thus reducing their volume capacity and effectiveness. Surveys to measure reservoir capacities are
labor intensive and expensive and many sites go unmonitored. This study provides prediction tools to estimate capacity loss over time using
data derived from publicly available data sources (e.g., digital elevation models, monthly precipitation data, and the National Inventory of
Dams). A key role of this tool is to forecast reservoir capacity loss over time under varying climate change conditions and relate the associated
sedimentation processes to local and regional conditions. The tool can also be applied broadly to hindcast capacity loss for reservoirs with or
without prior surveys for identifying high-risk sites that should be investigated further. USACE plans to use these prediction tools with the
RSI database to conduct a national assessment of reservoir impacts, which will inform distributions of federal resources to address water
security concerns related to reservoir sedimentation.

Author keywords: Reservoir sedimentation; Reservoir capacity; Machine learning.

Introduction

Dams and their associated reservoirs enable water storage, flood
control, and hydroelectric power generation, and supply reliable
water resources for various societal needs. However, reservoirs
throughout the nation are slowly filling with sediment, diminishing

their life cycle and reducing their effectiveness, while increasing their
cost of maintenance (Sholtes et al. 2018). The immediate consequen-
ces of sediment retention in reservoirs are diminishing reservoir
capacity, creation of backwater flooding upstream, as well as impair-
ing turbines of the structure (Morris and Fan 1998). The costs of
remediating accumulated sediment in these structures may be
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exceedingly expensive, with dam removal providing the greatest ex-
pense in dam decommissioning options (USBR 2006).

Existing reservoir sedimentation models have been unable to
analyze the intricate large-scale temporal or spatial patterns of
sedimentation due to a lack of available data required for model
calibration and validation. The typical data required for model con-
struction include daily to yearly hydrologic records, bathymetric
reservoir details, and grain-size distribution of sediment (Ackers
1988; Lajczak 1996; Tarela and Menéndez 1999; Sundborg 1992;
Rowan et al. 2001). The most valuable support for reservoir sed-
imentation model development in recent times has been provided
by geographic information system (GIS) tools that enable the
addition of land use over large scales to the hydrologic data
(Verstraeten et al. 2003; Vorosmarty et al. 2003, Lehner et al.
2011). However, GIS tools are relatively new, hence their historical
records are too short to refine sedimentation modeling (Xu et al.
2019). This lack of temporal data in sedimentation modeling dimin-
ishes the ability for proper model calibration, which has shown
in sediment yield estimated values to deviate considerably from
measured sediment yield rates (Trimble 1999).

USACE oversees several dams and reservoirs across the United
States, with many being under operation for more than 50 years
(Pinson et al. 2016). The aging of these USACE reservoirs puts
them at greater risk for complications related to sedimentation.
Reservoir capacity surveys focused on US reservoir sedimentation
trends indicate that they could deplete by as much as 10%—-35% of
absolute water storage capacity (Randle et al. 2021). These histori-
cal surveys are invaluable tools for identifying past and present
regional sedimentation trends, allowing for the evaluation of sedi-
ment aggradation and life expectancy of individual reservoirs.
These data are also relevant for developing effective reservoir man-
agement strategies. Ensuing from the preceding, USACE initiated
the Enhancing Reservoir Sedimentation Information for Climate
Preparedness and Resilience Program, which includes the Reser-
voir Sedimentation Information (RSI) system, to assess reservoir
aggradation and track dam operation suitability for water resource
management. However, because the RSI data set contains less
than 1% of US dams, developing methods for estimating reservoir
sedimentation at unmonitored sites is needed.

Machine learning as a tool for prediction and anomaly detection
has developed rapidly over the past couple of decades. Idrees et al.
(2021) developed six machine learning models to predict sediment
load inflow into a reservoir located in South Korea using stream-
flow, water temperature, and reservoir outflow. Aytek and Kisi
(2008) proposed a genetic programming model to relate streamflow
and suspended sediment values at Tongue River in Montana. Malik
et al. (2019) proposed a genetic programming model to predict
daily suspended sediments at Godavari River basin, India, using
the discharge and the suspended sediment concentration of pre-
vious days. Hassan et al. (2022) applied an artificial neural network
to estimate the amount of sediment deposited at the Tarbela dam in
Pakistan based on yearly rainfall, water inflow, water level at the
reservoirs, and storage capacity.

Through several research studies, machine learning has been
proven to be successful at predicting streamflow, sediment trans-
port, sediment deposition, and water quality characteristics as well
as identifying data anomalies (Xiang and Demir 2020; Azamathulla
et al. 2010; Choubin et al. 2018; Peterson et al. 2019, 2020;
Xu et al. 2019; Bhadra et al. 2020; Hazarika et al. 2020). Due to
the nonlinear behavior of sedimentation processes influenced by
various hydraulic flow factors, the use of machine learning has
great potential for constructing accurate reservoir capacity loss at
unmonitored sites compared with alternative methods (Adnan et al.
2019; Baniya et al. 2019). Machine learning utilizes the process of
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iteration and probabilistic pattern detection to determine the rela-
tionship between input parameters and a dependent variable (Geron
2022). Prior to utilization of machine learning applications, the
sediment yield and sediment load as well as estimated water pol-
lutants were obtained through various process-based models (Ayele
et al. 2017; Zounemat-Kermani et al. 2019, 2020).

Machine learning modeling applied to reservoir sedimentation
is not, however, infallible as shown by the back-propagation net-
works used to assess sediment transfer occurring under differing
land use and agricultural practices (Abrahart and White 2001). The
valuable insights provided by an artificial neural network model
trained on 32 years of reservoir sedimentation data for one reservoir
(Jothiprakash and Garg 2009) indicate that the availability of long-
term data is critical for a trustful modeling outcome. It is, however,
obvious that training machine learning requires not only long-term
data but also a great variety of reservoirs in order to be more reliable
and generalizable.

Although several studies have applied machine learning models
to investigate reservoir sedimentation and sediment transport, none,
to our knowledge, have implemented these techniques with a
data set containing information from multiple reservoirs located
within a wide latitude—longitude span. Moreover, these models
have primarily used discharge—sediment relationships and have not
included other associated watershed variables, such as soil charac-
teristics, land use, or geographical location. Finally, reviewed stud-
ies were focused on the estimation of daily suspended sediment
loads in streams or reservoir inflow and outflow, and a limited
number of studies have been focused on estimating site-specific
long-term trends of reservoir capacity losses (Hassan et al. 2022).

The RSI system provides a good baseline resource for training
data-driven models that could be utilized for improved reservoir
sedimentation estimation modeling through its combination of tem-
poral and spatial data spanning the contiguous United States. The
objective of this research was to create a generalized deep learning
(DL) method for estimating long-term reservoir sedimentation
trends using reservoir design data, historical elevation-capacity
records, and supplemental watershed information for reservoirs lo-
cated across the contiguous United States. To achieve this objec-
tive, the following tasks were completed: (1) the RSI data set was
analyzed to determine capacity loss between consecutive surveys,
(2) supplemental hydrologic data were derived for each reservoir
and set of consecutive surveys (e.g., basin area and cumulative
precipitation), (3) multiple deep learning algorithms were applied
using the composite data set to create models to predict reservoir
sedimentation, and (4) model performances were analyzed and
compared to identify a recommended model for industry use. This
prediction tool will allow the estimation of current conditions of
unmonitored reservoirs and forecast future sedimentation rates
for reservoirs in the United States.

Composite RSI Data Set Development

RSI information for reservoirs with three or more surveys (184
reservoirs shown in Fig. 1) was combined with supplementary
watershed information related to hydrologic and sedimentation
processes to form the composite RSI data set utilized in this study.
Each record of this data set corresponded to two consecutive sur-
veys conducted by USACE at that particular reservoir, and the
capacity loss for each record was the difference in the reservoir’s
capacity at the maximum pool elevation that was not characterized
as a surcharge pool. These computed capacity losses have inherent
uncertainty stemming from a wide range of sources that can be
broadly grouped by varying factors including (1) field data
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Fig. 1. Map of the 184 reservoirs used in the study. (Base map © Esri, TomTom, Garmin, FAO, NOAA, USGS, EPA, USFWS, Esri, USGS.)

collection instruments, (2) measurement methods, (3) data reduction
protocols, (4) operator skills, and (5) measurement environments. A
comprehensive analysis of uncertainty was not included in this study
due to the limited information available related to these uncertainty
sources.

The RSI composite data set incorporated data remotely com-
piled through publicly available sources to ensure comprehensive
watershed characteristics were associated with each recorded
reservoir’s capacity loss. Utilization of raster data sets enabled
the extraction of relevant hydrologic data, which were identified
and applied to their respective basins in the composite database.
These public databases provided data related to climatologic, topo-
graphic, and erosion processes occurring across the associated
watersheds for each record in the composite data set. Fig. 2 shows
the features collected per each reservoir record, including the origi-
nally provided USACE RSI system data, and the accessed public

database. Reservoir features and basin characteristics in the data
set were assumed constant over time for each reservoir. Thirty-
two variables compose the composite RSI data set, including
numerical variables (27), identifier variables (two), categorical var-
iables (two), and a date variable. Missing data records were re-
placed with the mean for that specific variable.

The watershed centroid latitude and longitude values for each
reservoir were extracted from each basin’s shapefile. The curve
number (CN) and the erodibility values were computed for each
reservoir as the area-weighted average for its associated basin.
The CN is the empirical hydrologic parameter indicative of a catch-
ment’s runoff potential based on soil and land use characteristics
(USDA SCS 1986), while the erodibility index is an empirical mea-
sure of the inherent resistance of geologic materials (soils and
rocks) to erosion. The CN maps were based on national soil
and national land cover raster files (Viger and Bock 2014;

Reservoir - Latitude « Construction year -+ Period between surveys
Sedimentation « Longitude « Capacity change « Time since construction
[0 a1l ML = o = ° Original capacity *Sedimentation rate
« Initial trap
< Basin area + Mean elevation *Mean slope efficiency
Digital Elevation «Elevation relief ~ * Median elevation . Hydraulic length
Model + Max. elevation + Elevation standard . Channel slope
deviation

* Min. elevation

National Landcover
Database * Percent forested area
USGS Soil Maps « Soil type > Erodibility

Monthly Precipitation BIVEENRTHIGIANESET
TS * Max. monthly precipitation

NELTNEINIIE1Ie]aXe Il - Cumulative upstream
Dams dam height
A Classification + U.S. ecoregions
IECC Classification + U.S. climate zones

* Curve number

+ Median monthly precipitation +C lative precip
* Normalized max. precipitation

« Total upstream normal « Total upstream
storage maximum storage

Fig. 2. Data sources and derived variables (numerical and categorical) of the composite RSI data set.
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USGS 2017). Utilizing USGS characteristics for soil hydrologic
groupings and land use categorization, the CN values were defined
based on guidelines found in the Revised Universal Soil Loss Equa-
tion (RUSLE) for each soil type (Renard 1997). The average erod-
ibility indexes for sand (0.125), loam (0.325), and clay (0.1) were
used to create erodibility maps for each reservoir’s basin based on
the national soils map (Viger and Bock 2014). Additionally, the
NLCD was used to compute the percent of forested area within
a reservoir’s basin, with deciduous, evergreen, and mixed forest
types consolidated into one category for this study.

The Google Earth Engine facilitated the extraction and compu-
tation of variables from US digital elevation models (DEMs) and
monthly precipitation maps (USGS 2017; Gorelick et al. 2017). For
this analysis, a 1/3 arcsecond DEM was utilized for calculating
features reliant on topographic information for the 184 reservoir
basins in the composite data set. These features include hydraulic
length, basin elevation, average slope, area, and relief, which was
defined as the difference between the maximum and minimum
elevation. Based on these calculations, the channel slope was esti-
mated as the relationship of the relief divided by the hydraulic
length. A reservoir’s initial trap efficiency (E) was calculated as
a reservoir’s initial capacity in cubic meters (C), and a reservoir’s
drainage area in square kilometers (A) as shown in Eq. (1) (Brown
1943)

1
E= e 0% /A M

Further, precipitation data for each reservoir were found by an-
alyzing 30 arcsecond monthly precipitation raster files (Daly et al.
2015) that aligned with the database’s time periods per each set of
consecutive surveys. Additionally, cumulative, maximum, mean,
and median monthly precipitations for each record were calculated.
Further, the computation of normalized maximum precipitation
equaled the maximum precipitation divided by the mean monthly
precipitation.

Because many dams were built upstream of RSI reservoirs, a
batch analysis was employed to include upstream dam heights, as
well as the maximum and normal storage of each reservoir in the
RSI composite data set. This computation was conducted in two
steps: (1) Utilize the National Inventory of Dams (NID) data set,
composed of more than 90,000 US dams, to create an annual time
series of cumulative upstream dam height, and normal and maxi-
mum storage for each RSI reservoir; and (2) time average the up-
stream dam’s variables for the period of time comprising two
subsequent surveys for each RSI data set record.

Data Set Preprocessing

Due to natural processes, sustained or increases in reservoir capac-
ity are not possible, unless dredging or free-flow sediment flushing
has been employed (Wang and Hu 2009). Thus, a reservoir’s
capacity will decrease over time. With this knowledge, the RSI
composite data set records containing identical capacities or an
increased trend in capacity between a set of consecutive surveys
were removed. Additionally, sets of consecutive surveys containing
identical survey data or dates were filtered out. Applying the
preprocessing methods resulted in a composite data set containing
467 records (sets of consecutive surveys) from 174 reservoirs lo-
cated across the United States. Each record represents a unique pair
of subsequent surveys performed at a specific reservoir.

A log transformation (Brakstad 1992; Emmerson et al. 1997)
was applied to the numerical variables of the RSI composite data
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set to remove the impact of the difference in orders of magnitude.
The following provides the equation for the log transformation:

x;, = sgn(In(|x;| + 1)] (2)

where x; = original data value; X, = log-transformed value; i =
number of observations; and the sgn function multiplies the value
by either a value of 1 if x; is a positive value or a value of —1 if x; is
a negative value. Additionally, a minimum-maximum (min-max)
normalization (Goyal et al. 2014; Patro and Sahu 2015) of the
numerical variables was conducted using the following equation:

Xy, = 0.7 <&) 1 0.15 (3)

XI_max — X/_min

where x;,,, = log-transformed and min-max normalized value; x; =
original data value; x; = log-transformed value; x;_;, = minimum
value of the x; data set; and x; ,,, = maximum value of the x; data
set. This results in a linear scaling with values ranging from 0.15
to 0.85. The min-max normalization of data fits the data in a
predefined range keeping the relationships from the original data
unchanged (Patro and Sahu 2015).

Depending on the performance of models, standard scaling was
applied in lieu of the min-max normalization. This normalization
method minimizes the number of parameters that appear constant
across the data set, which can affect model performance. Standard
scaling centers the data set values around the mean with a unit of
standard deviation (Cao et al. 2016). The following equation details
the standard scaling calculations:

X, =
Xis;, = ! (4)

g

where x;,, = log-transformed scaled value; p = mean of the x; data
set; and o = standard deviation of the x; data set.

Methods

The data set compiled for the RSI reservoir sites consisted of var-
iables relevant to sedimentation and hydrologic processes. Trans-
formation and scaling of the data set were performed to diminish
bias and skew of the variables’ distribution. A feature importance
analysis was conducted to analyze the sensitivity of variables det-
rimental to model performance, which resulted in the creation of a
data set with decreased variable size. The original and the feature-
importance-derived data sets were used to develop and evaluate
capacity loss prediction models. Both sets of data were examined
in each iteration of the statistical or machine learning method. For
all models analyzed, a 70/30 split of the data set was applied for the
training and testing of the models, respectively.

The first statistical model used was the ordinary least squares
(OLS) multilinear regression model. The second analysis consisted
of four supervised machine learning regression models: support
vector machine (SVM), random forest (RFR), decision tree (DTR),
and partial least squares (PLS). The third analysis used deep neural
network (DNN) models. In the DNN model survey, four base DNN
architectures were analyzed.

A data anomaly detection was performed to reduce erroneous
data in the composite data set. This included anomaly removals
utilizing autonomous anomaly detection (AAD) (Angelov et al.
2016; Gu and Angelov 2017), which flagged 18 records corre-
sponding to 15 reservoirs, and the Kolmogorov-Smirnov and Efron
(KSE) outlier detection method (Jirachan and Priomsopa 2015),
which flagged 15 records corresponding to 10 reservoirs. Removal
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of anomalous data from data used in model development varied by
model based on performance.

Last, seven metrics were used to compare all created models.
The following performance parameters were quantified for evalu-
ation and goodness-of-fit analysis of the statistical models: coeffi-
cient of determination (R?), mean absolute percent error (MAPE),
root-mean-square error (RMSE), and relative root-mean-square
error (RRMSE). The remaining three parameters included the
percent bias (PBias), the ratio of root-mean-squared error to stan-
dard deviation of measured data (RSR), and the Pearson correlation
coefficient (r) to help analyze the models’ overall accuracy outside
the limitations of correlation-based measures (Legates and McCabe
1999). Respectively, these three metrics were used to quantify each
model’s overestimation or underestimation and normalization to
error index evaluation in model performance (Moriasi et al. 2007),
and uncover the degree of linear association between calibrated and
observed values of the model (Taylor 1990; Adler and Parmryd
2010). Collectively, watershed model performance metrics can be
considered satisfactory if R* > 0.5, PBias < +55%, RSR < 0.7,
and r > 0.7 (Moriasi et al. 2007; Ayele et al. 2017).

Feature Correlation and Recursive Feature Elimination

A Spearman’s rank correlation calculation was performed to mea-
sure the monotonic relationship across predictor variables. Ranging
from —1 to 1, the Spearman’s calculated coefficient gauges whether
two features are correlated, with —1 being negatively correlated and
1 being positively correlated (Bon-Gang 2018). Determining these
relationships between the predictor variables was necessary to
investigate potential collinearity shared across the composite data
set, and if removal of features could improve ensuing model per-
formance. The general criterion for modeling a regression analysis
is a minimum of 10 to 20 samples per predictor variable (Austin
and Steyerberg 2015).

To observe if reducing the number of predictor variables in the
composite data set improved results, a recursive feature elimination
(RFE) algorithm was performed from which an alternative data set
was developed. Utilizing optimized random forest model parame-
ters, the RFE was used to establish the optimal amount of predictor
variables for this new RFE-determined data set. The RFE algorithm
assigns weights to features based on model performance. The
significance of this algorithm is its allowance to choose the number
of features desired in the reduced data set, and its theoretical im-
provement in statistical modeling through its removal of collinear
features. The presence of numerous collinear features can lead to

Table 1. RFE ranked data set variables

overfitting when analyzing the prediction of dependent variables
through machine learning models (Harrell 2001).

Ordinary Least Squares Multilinear Regression

The OLS multilinear regression model is used for relational analy-
sis between one or more variables. The method corresponds to the
minimization of the sum of the square error difference between the
observed and predicted values of the target variable because it fits
an assumed linear relationship between the explanatory variables
(Zdaniuk 2014). The OLS regression formula to compute capacity
loss, y;, is

yi = Bo+ Bixy, + Baxy, + - +Bpx,, € (5)

where i = number of observations; y; = dependent variable; x; =
explanatory variables; 3, = y-intercept or constant term of the equa-
tion; 3, = slope coefficients for each explanatory variable; and
e = residuals of the model (Alexopoulos 2010). Standard scaling
was used to evaluate the magnitude of influence each predictor
variable had on the target variable. Imperial system units were used
for the OLS analysis and, due to regression model complexity, all
International System of Units (SI) values must be converted to
imperial units for application. When using the OLS method with
metric units, the SI value of each input parameter should be multi-
plied by the corresponding metric unit conversion factor listed in
Table 1 prior to the log transformation in Eq. (2). Similarly, the
capacity loss term, y;, computed from Eq. (5) is in acre-feet and
needs to be multiplied by 1,233 for conversion to cubic meters.

Supervised Machine Learning

Supervised machine learning is the application of algorithms
capable of producing generalities in patterns via the use of exter-
nally supplied data to predict future patterns and instances (Singh
et al. 2016). Several types of supervised machine learning algo-
rithms exist, but for this analysis SVM (Noble 2006), RFR
(Breiman 2001), DTR (Bashar et al. 2019), and PLS (Manikanta
and Mamatha Jadav 2015) regression algorithms were utilized.
Each algorithm has advantages and disadvantages when applied
to a unique data set; thus, implementation of these four enabled
comprehensive analysis of supervised learners on the composite
and RFE data sets. Additionally, each supervised learner used a
pipeline of several intermediary steps that chained a sequence of
estimators for optimization and cross-validation of model perfor-
mance. These steps included a principal component analysis and

Calibrated standard Calibrated

Metric unit scaled data, unscaled data,
Index Variable Imperial units (SI) conversion factor OLS coefficients OLS coefficients
1 Basin area mi? (km?) 0.386 1.42 0.553
2 Initial capacity acre-ft (m?) 8.11x 107* 1.03 0.476
3 Cumulative precipitation in. (mm) 3.93 x 1072 0.323 0.383
4 Hydraulic length ft (m) 3.28 —0.259 —0.181
5 Max monthly precipitation in. (mm) 3.93 x 1072 0.234 0.561
6 Curve number N/A — 0.144 1.63
7 Total upstream dam height ft (m) 3.28 —0.119 —0.0494
8 Total upstream normal storage acre-ft (m?) 8.11x 107* 0.100 0.0250
9 Basin relief ft (m) 3.28 —0.0369 —0.0267
10 Channel slope ft/ft (m/m) 1.00 0.0226 1.91
11 Average basin latitude Degrees — 0.0197 0.192
12 Mean monthly precipitation in./month (mm/month) 3.93x 1072 0.0158 0.0589
© ASCE 04024016-5 J. Hydrol. Eng.
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Fig. 3. Hidden-layer architectures of (a) DNNpy;; and (b) DNNpp; with the respective nodes present in each of their layers.

standard scaling. These optimizing components were refined by
automated selection of each model’s hyperparameters resulting in
the highest performing variation of the supervised model.

Deep Neural Network

A DNN is an organized collection of neurons sequenced into
multiple layers for determining modeled predictions. The neurons
receive input from the initial data set if they reside in the first layer
of the DNN, or from input from activated neurons from previous
layers if residing in a subsequent layer. The activations of the neu-
rons occur based on a calculation of the weighted sums from that
input followed by a nonlinear activation (Montavon et al. 2018).
In the case of this analysis, the rectified linear (ReL) activation func-
tion was used. All nodes that consist of this activation function
are considered rectified linear activation units (ReLUs), whose
development was a milestone in the evolution of deep learning
(Goodfellow et al. 2016). DL studies have gained significant mo-
mentum with the availability of computational resources, benchmark
data sets (Demiray et al. 2021; Sit et al. 2021b), and the popularity of
DL algorithms in many data analysis tasks in water resources and
hydrology including streamflow forecasting (Sit et al. 2021a), culvert
sedimentation (Xu et al. 2019), data augmentation (Demiray et al.
2021), and image synthesis (Gautam et al. 2022).

For this analysis, four DNN architectures were utilized, and the
models were optimized to minimize the mean absolute error
(MAE). The basis of the first DNN architecture was used in the
research of Maimaitijiang et al. (2020), which contained a GIS and
remotely sensed data set. Named DNN-F1, it incorporated a DNN
node structure that continually increased in complexity per each
layer. The minimum number of nodes residing in the initial layer
was 64, and the maximum number of nodes retained in the final
layering was 1,024. For the purposes of this study, this first pro-
gressively increasing DNN (termed DNNpy; ) will be the base DNN
used to compare further DNN architectures. The second DNN
architecture was aimed at analyzing if information bottlenecking
could improve the initial DNN. The bottlenecking method aims
to balance improved accuracy through decreasing complexity
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(Tishby et al. 2000; Hecht and Tishby 2005). This version of the
DNN reverses the initial architecture to become a progressively de-
creasing DNN (termed DNNpp, ), which results in its initial layer
containing a node network of 1,024, and its final layer containing
a node network of 64. Schematics of the DNNp;; and DNNpp;
architectures are shown in Fig. 3.

Two simplified DNN structures were also evaluated to deter-
mine their performance compared with the complex DNNpp
and DNNpp,; structures: a second progressively increasing DNN
(termed DNNpp,) and a second progressively decreasing DNN
(termed DNNpp,). Detailed node architectures for these simpler
DNNs are shown in Fig. 4. The DNNpj, and DNNpp, structures
have half the number of layers as the DNNp;; and DNNpp,, and
fewer nodes associated with each of their layers. The DNNpy, struc-
ture contains an initial neural structure that starts with eight nodes
and increases to 32 in its final layer. The DNNpp, structure is the
reversed iteration of DNNpp,.

Results and Discussion

Feature Importance Analysis

To identify collinearity or monotonic relationships between fea-
tures, a Spearman’s rank coefficient matrix analysis was performed.
Values closest to 1 or —1 were respectively deemed highly posi-
tively or negatively correlated. The DEM parameters showed a
significant positive correlation, as well as basin relief with values
ranging from 0.57 to 0.92. Alternatively, the DEM parameters
appear negatively correlated with the monthly precipitation param-
eters with values of —0.54 to —0.66. This analysis signifies that the
compiled features in the data set contain redundancies.

Recursive Feature Elimination

The RFE algorithm was applied to reduce potentially redundant
features and further optimize the performance of the predictive
models. The composite data set consisted of 467 samples with
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Fig. 4. Hidden-layer architectures of (a) DNNpyp,; and (b) DNNpp, with the respective nodes present in each of their layers.

27 predictor variables. Thus, the data set had a ratio of approxi-
mately 17 samples per predictor variable in the data set. When
reducing composite data set features, the RFE conducts its model
accuracy performance based on R? values, with 1.00 being the
highest accuracy score possible. The RFE results showed that
12 predictor variables retained an R? value of between 0.78 and
0.80. With less than 12 variables, the accuracy scored less than
or equal to 0.77. Thus, the 12 predictor variables listed in Table 1
were optimal in minimizing the composite data set to a sample-to-
feature ratio of approximately 38. This new RFE data set was used
in subsequent models and the results were compared with the entire
composite data set. Standard scaling was used to help further ana-
lyze the magnitude of influence each predictor variable had on the
target variable in the OLS equation.

The inclusion of basin relief, hydraulic length, and the channel
slope features in the RFE data set may be seen as still maintaining
excessive collinear features. However, due to the logarithmic trans-
formation and normalizations performed on the data, the feature of
channel slope, which is derived from hydraulic length and basin
relief, is mathematically unique in terms of providing a predictive
value in the model’s equation.

Three features are indicators of drainage basin size: basin area,
hydraulic length, and basin relief. The basin area model coefficient
of 0.548 indicates that area is the dominant feature related to basin
size. Based on the Spearman correlation analysis, both basin length
and relief are positively correlated with capacity loss. However,
both the length and relief coefficients are inversely related to the
predictive variable (i.e., capacity loss), suggesting their model con-
tribution is an adjustment on the basin area influence.

All models developed using the RFE data set resulted in improved
performance compared with models from the entire composite data
set. Due to the large number of models generated, only the RFE re-
sults are reported.

OLS Regression Model

The log-transformed RFE data set with standard scaling and no
anomalies removed was found to produce the best OLS model
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performance. The observed versus predicted training and testing
results for the OLS model are shown in Fig. 5. Following the train-
ing and testing analysis, the OLS model was calibrated using the
full data set to provide the overall best-fit equation. Fig. 6 shows the
observed versus predicted values for the calibrated OLS model that
had an R? value of 0.40 and a MAPE of 195%. Eq. (6) provides the
OLS prediction equation based on the coefficient values and con-
stant terms derived from the calibrated OLS model results

Yois, = =9.71 + 0.548x, U, + 0.476x, U, + 0.383x,Us
—0.169x,, U4 + 0.561x,,Us + 1.59x;, Us—0.0460x,, U5
+0.0250x,, Us — 010249x;, Us+1.87x;, U
+0.188x, Uy +0.0588x, U, (6)

where yors, = log-transformed predicted capacity; x; = log-
transformed predictor variables; U, = metric unit conversion fac-
tor; and the numeric subscript p on the x; and U terms denotes the
variable index (Table 1). To obtain the predicted capacity loss
value, the model-predicted value (yq; g) needs to be untransformed
using Eq. (7)

Yous = (e’ —1) x 1,233 (7)

Supervised Machine Learning

The best performing supervised machine learning model was
identified based on the satisfactory statistical metrics defined by
Moriasi et al. (2007). Nearly all the supervised machine learning
models had optimal performance when using the log-transformed
min-max normalized RFE data set with the KSE anomalies re-
moved. The supervised machine learning results presented in this
paper were all developed using this data set. A comparison between
the supervised machine learning methods showed that RFR had the
most accuracy, in terms of predictive performance, when trained
and tested on the respective data. With a training set R of 0.61
and a testing set R? of 0.57, the model shows precision in model
fitness when comparing the predicted versus observed values of
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Fig. 5. Comparison of supervised machine learning and OLS models.

capacity loss. Figs. 7 and 8 show the performance metrics of the
training and testing results, respectively, for the RFE model.
Notably, there is a significant increase in MAPE on the testing data
set’s forecasting accuracy. This signifies that the model training
results are overestimating the model’s performance, regardless of
the relatively high R? value present on the testing data set.

DNN Analysis

All the DNN models had optimal performance when using the
log-transformed min-max normalized RFE data set with the KSE
anomalies removed. The DNN results presented for this study were

developed using this data set. The complex DNNs had significantly
better accuracy based on the MAPE and R? values. The DNNp,
was identified as the best DNN model variation based on maximiz-
ing the R? and minimizing the RRMSE. Training and testing results
for this DNN model are shown in Figs. 7 and 8, respectively. The
DNNpy; had training and testing R* values of 0.83 and 0.70, respec-
tively. This makes the DNNpy; the best fitting model in terms of
performance. The RRMSE values of the DNNp;; were the lowest
RRMSE values across all analyzed machine learning models.
However, the MAPE and RRMSE values showed a relatively large
percentage increase between training and testing, meaning there
may be underlying forecasting inaccuracies.
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Fig. 6. Comparison of DNN models and calibrated DNN and OLS models.

Comparison of Models

Comparisons of the supervised machine learning, DNN, and OLS
models are shown in Figs. 5 and 6; model summary statistics for the
untransformed model data are provided in Figs. 7 and 8. All models
were developed using the transformed data, but the prediction
variable of interest is the capacity loss (i.e., not the log-transformed
capacity loss). Thus, untransformed statistics were used to assess
model performance and their values are reported on all observed
versus predicted plots. Further, results shown are for the RFE data
set (feature variables listed in Table 1) because the RFE data set
performed better than the original composite data set for all models
analyzed. Except for RFR, the supervised machine learning
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methods resulted in abnormal predictive performance. Notably,
DTR showed extreme overfitting characteristics, where the model
appeared to learn perfectly in terms of its performance metrics on
the training data set, but failed to accurately replicate this perfor-
mance on the testing data set. However, RFR, and the more com-
plex DNNs, showed promising results in terms of learning and
predicting capacity loss. Overall, the best tested model perfor-
mance, based on R> and RRMSE, was the DNNp;; with an untrans-
formed R? value of 0.70 and an untransformed RRMSE of 135%.

The RRMSE values measured across all models as they relate to
the OLS RRMSE value are shown in Fig. 9. The OLS method of
prediction compared respectably when set side by side with more
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Untransformed Training Statistics

MODEL

MAE MAPE ~ RRMSE  RMSE R? PBIAS(%) RSR r

oLs 1.3x107 220 155 3.6 x 107 0.54 29.45 0.67 0.75
SVM 2.5x 107 165 323 1.2x 108 0.24 59.57 0.87 0.68
RFR 1.4 x 107 40 232 8.2x107 0.61 34.35 0.62 0.92
DTR 0 0 0 0 1.00 0 0 1.00
PLS 2.1x107 211 294 1.1x 108 0.38 41.87 0.79 0.71
DNNpi1 1.4 x 107 87 155 5.5x 107 0.83 14.77 0.42 0.94
DNNpp1 2.3x107 106 198 7.0x 107 0.72 -32.77 0.53 0.88
DNNpi2 2.5x 107 187 339 1.2x 108 0.17 64.41 0.91 0.64
DNNpp2 2.1x107 189 287 1.0x 108 0.41 52.15 0.77 0.84
gi'gb' 1.9x 107 195 280 8.9x 107 0.40 39.03 0.78 0.71
Calib.

ONN 8.0x 103 38 156  4.1x10* 0.81 16.57 0.44 0.95

PI1

Fig. 7. Untransformed training metrics summary for capacity loss models; highlighted cells indicate satisfactory metrics as determined by criteria
from Moriasi et al. (2007), the Calib. OLS and Calib. DNNp; models were calibrated with the entire data set.

Untransformed Testing Statistics

MODEL

MAE MAPE ~ RRMSE  RMSE R? PBIAS(%)  RSR r
oLsS 3.2x 107 74 298 1.5x 108 0.36 57.79 0.80 0.80
SVM 1.7x107 109 194  5.1x107 0.38 54.20 0.79 0.78
RFR 1.4x107 254 162 4.2x107 0.57 40.47 0.66 0.85
DTR 2.2x107 1268 231 6.0x107 0.12 9.15 0.94 0.50
PLS 1.4x107 145 169 4.4 x 107 0.53 35.87 0.69 0.79
DNNpi1 13x107 295 135 3.5x107 0.70 12.49 0.55 0.84
DNNpp1 20x107 327 182 4.8x107 0.45 -37.95 0.74 0.85
DNNpi2 1.7x107 282 199  5.2x107 0.35 56.84 0.81 0.82
DNNpp2 1.6x107 333 192  5.0x107 0.39 46.36 0.78 0.76

Fig. 8. Untransformed testing metrics summary for capacity loss models; highlighted cells indicate satisfactory metrics as determined by criteria from
Moriasi et al. (2007).
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Fig. 9. Comparison of R?, MAPE, and RRMSE values across all models, related to the respective OLS method values.
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Fig. 10. Cumulative capacity loss, observed versus simulated capacity loss, and capacity loss data series corresponding to the untransformed metrics

for the DNNp;; machine learning model.

computationally complex machine learning models in terms of R?
and MAPE. However, the more complex models did result in con-
siderably lower RRMSE values compared with the OLS method.

As shown in Fig. 7 (training) and Fig. 8 (testing), the DNNp,
model was further proved as the best model because it exhibited
satisfactory performance for all training and testing metrics
(i.e., R?, PBias, RSR, and r). Fig. 10 shows the cumulative capacity
loss, observed versus simulated capacity loss, and capacity loss
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data series for the DNNp;; model. Across the entire testing data
set records, the DNNp;; model estimated 12.5% less than the
observed cumulative measured quantities. However, despite this
error margin, the model successfully learned from the training data
set to produce satisfactory performance metrics based on criteria
defined by Moriasi et al. (2007).

Consequently, the model recommended for capacity loss predic-
tion is a calibrated DNNp;; model. The calibrated DNNp; was
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established through training the original best-performing DNNpy
model on the entire RFE data set. This was conducted to overcome
potential inaccuracies associated with the limited records available,
which is the case with the current RSI data set. For this calibrated
model, the R? increased to 0.81 and the MAPE value decreased to
38%, as shown in Fig. 7. This shows significant improvement in
terms of forecasting accuracy compared with all models. Fig. 6
illustrates the observed versus predicted capacity loss values for
the calibrated DNNpy;. Thus, the model successfully learned on
the training data set, producing satisfactory performance metrics.
However, high-accuracy determinations for larger amounts of
capacity loss still appear limited.

Conclusions

A composite data set was developed that included capacity loss data
obtained from RSI system records and 29 supplemental parameters
derived from publicly available databases. The composite data set
included 184 reservoirs, 799 surveys, and 615 sets of consecutive
surveys for evaluating capacity loss. The study demonstrated that
prediction models containing supplemental data inputs estimate
reservoir capacity loss (acre-ft) with satisfactory R?, PBias, RSR,
and r values as defined in Moriasi et al. (2007). Of the nine predictive
models, the progressively increasing deep neural network (DNNpy;)
had the best predictive performance with model training and testing
R? values of 0.83 and 0.70, respectively; and training and testing
MAPE of 87% and 295%, respectively. The MAPE performance
measured the average magnitude of error produced by the model
(87%) on the test data set as larger than the training data set (295%).
The DNNp;; model was recalibrated over the entire data set with
resulting R? and MAPE values of 0.81 and 48%, respectively. Ac-
cordingly, the DNNpy; is the most promising model for estimating
reservoir capacity losses using watershed and historical precipitation
data, which enables the identification of vulnerable reservoirs in the
United States. Further, the DNNp;; model can be used to forecast
reservoir sedimentation rates under possible future climate scenarios,
which allows for the development of proactive management plans.

Data Availability Statement

The fully calibrated DNNp;; model code is available on GitHub
(https://github.com/uihilab/RSI-DNNModel). The RSI data set
used to develop the models is not currently publicly available. All
other data used in the study were derived from publicly available
data sets.
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