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Abstract—Deep learning with its unique ability to mine pat-
terns in complex data has the ability to transform smart health.
However, large Deep Neural Networks (DNNs) are often data
hungry and need high-quality labeled data in copious amounts
for learning to converge. This is a challenge in the field of
medicine since high quality labeled data is often scarce. Data
programming has been the ray of hope in this regard, since it
allows us to label unlabeled data using multiple weak labeling
functions. Such functions are often supplied by a domain expert.
Data-programming can combine multiple weak labeling functions
and suggest labels better than simple majority voting over the
different functions. However, it is not straightforward to express
such weak labeling functions, especially in high-dimensional
settings such as images and time-series data. What we propose in
this paper is a way to bypass this issue, using distance functions.
In high dimensional spaces, it is easier to find meaningful distance
metrics which can generalize across different labeling tasks. We
propose an algorithm that queries an expert for labels of a few
representative samples of the dataset. These samples are carefully
chosen by the algorithm to capture the distribution of the dataset.
The labels assigned by the expert on the representative subset
induce a labeling on the full dataset, thereby generating weak
labels to be used in the data programming pipeline. In our
medical time series case study, labeling a subset of 50 to 130 out of
3,265 samples showed 17-28% improvement in accuracy and 13-
28% improvement in F1 over the baseline using clinician-defined
labeling functions. In our medical image case study, labeling a
subset of about 50 to 120 images from 6,293 unlabeled medical
images using our approach showed significant improvement over
the baseline method, Snuba, with an increase of approximately
5-15% in accuracy and 12-19% in F1 score.

Index Terms—data programming, machine learning, weak
supervision.

I. INTRODUCTION

Deep learning has shown significant promise in various
applications within the field of medicine, ranging from di-
agnostic imaging to drug discovery [1]–[3]. However, its
widespread adoption and effectiveness is constrained by sev-
eral challenges, especially the scarcity of labeled data [4], [5].
Medical data, especially for rare conditions, is often limited
[6]. Labeling the data requires expert-level knowledge, which
can be time-consuming and expensive. Moreover, the rarity of
certain medical conditions means that there are fewer instances
or cases available for study, making it difficult to gather a
sufficiently large dataset that deep learning algorithms require
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for effective training and validation. This scarcity of data can
lead to sub-optimal models that do not adequately represent
the full spectrum of the condition, potentially leading to less
effective or even misleading outcomes when these models are
applied in a clinical setting. Unfortunately, the assumption
about the presence of abundant high quality labeled samples in
medical settings, is often not the main concern when designing
increasingly complex deep learning architectures. Thus it is
imperative that the research community pays more attention
to address this challenge.

To remedy the data scarcity challenge, data programming
has emerged as a potential alternative [7]–[9]. Data program-
ming is a paradigm that aims to simplify and scale up the
process of creating labeled training data, which is essential
for supervised learning [7]. The dominant learning paradigm
in medical AI, manual labeling of data, is often prohibitively
expensive and time-consuming, especially for large datasets.
Data programming offers a more cost-effective and scalable
alternative [10]. It allows domain experts to encode their
knowledge in the form of rule of thumb functions also known
as weak labeling functions. Data programming uses these weak
supervision signals to generate labels, which can be used for
training a machine learning model, effectively bridging the gap
between domain expertise and machine learning.

In reality, such weak labeling functions are heuristic or
algorithmic rules that can assign labels to data points [7],
[11]. These functions are qualified as “weak” as a reminder
to the fact that they are not as accurate or consistent as an
expert labeling function can be. However, such heuristic rules
are often present as domain knowledge and are amenable
to being encoded easily. Developing weak labeling functions
for data programming in machine learning involves a com-
bination of domain expertise, data exploration, and heuristic
approaches. Typically, experts provide valuable insights and
identify specific patterns or indicators relevant to the labeling
task. Alongside expert consultation, exploratory data analysis
plays a vital role. It helps in uncovering hidden patterns,
correlations, or frequent occurrences within the data, which
can inform the creation of effective labeling functions.

However, it is challenging to construct weak labeling func-
tions for high-dimensional data such as images and long
horizon time series data. In order to be useful, the weak
labeling function almost has to act like a decent classifier.



It is well known that high-dimensional data samples contain
vast amounts of information and variability. Therefore, it is
hard to manually identify patterns and features across the
dimensions. For instance, complicated features like texture
may comprise subtle patterns that are not immediately obvious
to the programmer. Even though experts can identify subtle
textures, articulating this knowledge in a formal way that
can be used to train machine learning models is challenging.
The tacit knowledge that experts possess is not always easily
transferable to weak-labeling functions.

To address this above challenge, we propose distance-based
weak labels generation for high-dimensional data. Specifically,
the contribution of this work are as follows:

1) We show that using carefully chosen labeled samples to
construct weak labels can significantly improve labeling
accuracy. We demonstrate this with a thorough compar-
ison against the weak label generation tool, Snuba, for
an equivalent number of labeled samples.

2) We propose a novel algorithm which involves clinicians
in the loop to label prototypical samples. We believe
that our novel approach paves the way to clinician-AI
collaboration in medical settings.

3) We evaluate our algorithm on two challenging high-
dimensional datasets – (1) a time-series dataset consist-
ing of 3,265 low SpO2 alarms collected as part of a study
at a major hospital and (2) a dataset containing 6,293
de-identified medical images uploaded to a major U.S.
hospital’s electronic medical records labeled for specific
body parts. The experimental results show the generated
labeling function outperform the baselines by sufficient
margins on both datasets.

II. RELATED WORK

A. Clinical Trials for Labeled Medical Datasets

The gold standard for constructing large labeled medical
datasets is a clinical trial, in which data is collected and
manually labeled by clinical experts. Unfortunately, clinical
trials require substantial time and effort, involving obtaining
regulatory approvals, recruiting a diverse patient cohort, and
labor-intensive and expensive manual labeling. For example,
to create a dataset for training physiologic alarm suppression
algorithms, nurses may need to review video feeds of patients
to determine the actionability of alarms [12]. Such manual
analysis can be extensive given the significantly high volume
of physiologic monitoring alarms in hospitals, many of which
are not actionable [13]. Our work is not meant to replace
clinical trials; instead, we aim to reduce the amount of time
spent manually labeling trial data by providing an semi-
automated approach to labeling the data with the clinician in
the loop.

B. Data Programming for Labeled Medical Datasets

Recently, a novel method for efficiently and affordably
annotating data has been introduced, termed data program-
ming [7]. This approach is especially relevant in the field of
healthcare and is based on utilizing basic, quantitative insights

to link data with its corresponding labels. For example, a
healthcare professional might note that an alert should be
highly prioritized if it concerns a patient over 65 years old
with a heart rate exceeding 120 beats per minute for more
than a minute. These observations are converted into algo-
rithms known as labeling functions, which may be imperfect,
sporadically inaccurate, or even inconsistent. These functions
either assign a specific class label to data or opt to ‘abstain’
from labeling. By applying a diverse array of these labeling
functions to an unlabeled dataset, data programming models
generate labels for each data entry as probability distributions
across the possible labels. The weak label for a data entry is
then determined as the label with the highest probability, with
confidence matching this probability.

The concept of data programming has gained significant
attention as a solution for efficiently managing and labeling
large datasets. An established technique in this area is Snorkel
[11], [14], [15], which calculates the most effective weight
for each labeling function through a generative graphical
model, incorporating prior knowledge about the distribution
of classes. This incorporation is crucial as it allows Snorkel to
more accurately weigh the importance and relevance of each
labeling function based on the known class distributions. By
doing so, Snorkel effectively calibrates the labeling functions
to better reflect the real-world scenarios they are intended to
model, enhancing the accuracy and reliability of the labels
generated for the dataset. This feature is particularly valuable
in scenarios where class distributions are uneven or where
some classes are significantly more prevalent than others, a
common occurrence in many real-world datasets.

Labeling functions in weakly-supervised data labeling sys-
tems, such as Snorkel, are typically characterized by their
inherent noise and variable error rates [7], [16]. This means
that these functions, which are designed to assign labels
to data points based on specific rules or heuristics, often
produce labels that are not always accurate. The error rates
can vary significantly between different labeling functions,
depending on the complexity of the rules they apply and the
quality of the underlying data they process. Moreover, these
labeling functions may sometimes generate conflicting labels
for the same data points [17]. This conflict arises because each
labeling function operates independently, based on its own set
of criteria or heuristics, without considering the outputs of
other functions. For instance, one labeling function might label
a data point as belonging to one class based on a particular
feature or pattern, while another function might assign a
different class to the same data point based on a different
feature or pattern.

To address this issue, researchers explored the possibility
of developing labeling generation methods that aggregate
the noisy votes from multiple labeling functions [18]–[20].
Researchers in [7], [11], [20] propose a two-stage approach
for weak labeling which using the training labels to train
an end model for downstream tasks. Some researchers have
attempted to develop a one-stage approach which integrates
the label model with the end model [18], [19]. It seeks to unify



the process of labeling and model training, thereby reducing
the complexity and potential errors associated with multi-stage
processes.

Developing labeling functions for data programming can be
challenging for domain experts, particularly for data such as
time series and images. As a result, recent work have explored
automated methods for generating labeling functions [21]–
[24]. In the literature, the closest effort similar to our proposed
approach is Snuba. It uses a small set of labeled examples
(i.e., a validation dataset) to automatically generate and refine
such heuristic functions [21]. These functions are then applied
to unlabeled data to create a training set. Snuba iteratively
improves the functions based on their performance, thereby
enhancing the quality of the labeled data over time. Snuba
can help identifying the most informative features and patterns
in the data and help creating new heuristic weak labeling
functions which is feasible when there is limited access to
domain expertise for writing labeling functions.

III. PROBLEM FORMULATION

Assume that the inputs to be labeled belong to the space X
and the possible labels are in the finite set Y . We are given
an unlabeled dataset Du := {xi}Nu

i=1, such that each sample
xi ∈ X has a unique but unknown label in Y . A vast majority
of real world health data falls in this category. Note that in
reality there exists an unknown oracle classifier C : X 7→ Y ,
which is capable of generating the ground truth labels yi =
C(xi). However, C and therefore yi is unknown.

Next, we discuss the concept of weak labels. It is motivated
by the potential use of quantitative intuitions about how the
data corresponds to labels. To restate a familiar example, a
clinician might say, “when a patient is over 70 years old and
has had a heart rate over 125 beats for over a minute such an
alarm is pretty likely of being high priority”. A weak label is
defined as ŷi = Cw(xi), where Cw is a weak labeling function.
Such weak labels are a source of weak supervision to the
learning algorithm. One often gains from generating multiple
such weak labels {ŷ1i , ŷ2i , . . . , ŷ

Nw
i } corresponding to each

input sample xi, assuming that there are multiple experts (Nw)
who are willing to suggest such weak labels. The next step
is to automatically combine such weak labels and therefore
help achieve better labels for an unlabeled sample xi. This is
known as data-programming [7] in the literature. Such weak
labels sourced from multiple experts can be combined by tools
such as Snorkel to suggest a single probability distribution
and therefore a single possible label corresponding to each
unlabeled sample.

Data programming typically advocates for the use of weak-
labeling functions Cw, which are produced by an expert, to
automatically generate a weak label ŷji for an input sample
xi. However, the challenge in recent years has been to come
up with such weak labeling functions. Especially for high
dimensional data like long-horizon time series signals of ICU
patient vitals or diagnostic images for different pathological
conditions. For instance, a weak labeling function for an image
of a skin lesion would mean coming up with an algorithm

which can nearly classify images to different categories in
Y . This is generally considered a hard problem, especially
in the absence of large quantities of labeled samples. But,
addressing the weak label generation problem can enable us
to use the remaining data-programming pipeline, and build
better machine learning models for smart health.

Before we state our problem, we make the following two
assumptions: 1. We have access to a distance function d : X ×
X 7→ R, which can capture the degree of similarity between
input pairs; and 2. An expert has the ability to label a small
subset (< NL) of samples with the ground truth. We can now
state our research question :

Given a set of unlabeled samples Du, a distance function
d, and an ability to label at most NL samples, is it possible
to automatically generate Nw =

⌊
NL

|Y|
⌋

sets of weak labels
for the unlabeled samples in Du?

We will answer this question in detail over the next few
sections. In Section IV we give a brief overview of the steps
involved at a high level. In Sections V-B and V-C we go over
the details of the different distance functions we used for two
different data types in medicine. Finally, in Section VI, we
demonstrate the effectiveness of our method.

IV. OVERALL APPROACH

We outline our overall approach in this section as shown
in Figure 1. To restate, we begin with an unlabelled set of
samples Du and a distance function d which captures the
degree of similarity. Additionally, we have an expert which can
give us access to ground truth up to a budget of NL samples.
The main essence of our algorithm is that we carefully figure
out which data-samples need to be labeled in order to induce
a labeling on the remaining samples. We outline the overall
algorithm next:

1) Learn representative samples called memories from Du,
with seed sk. Let this set of memories be Mk ⊂ Du,
such that Mk := {m1,m2, . . . ,m|Mk|}.

2) This partitions the unlabeled dataset into |Mk| different

groups {g1, . . . , gq, . . . , g|Mk|} such that Du =
|Mk|⋃
q=1

gq

according to a nearest neighbor sense of partitioning,
that is, xi ∈ gq iff q = argmin

1≤k≤|Mk|
d(xi,mk). This is

termed as the Memory Generation step in Figure 1.
3) Query a clinician to label all samples in Mk. That is,
∀mq ∈ Mk, we obtain a yq = C(mq). This induces a
weak label on all the elements in group gq . Essentially,
∀xj ∈ gq we assign a weak label ŷ

(k)
j = Cw(xj) =

yq . Drawing intuitions from Figure 1, choosing a color
(labels) on the memory points induces a color on all the
samples in a partition.

4) Repeat steps 1 to 3 for Nw different seeds
s1, . . . , sk, . . . sNw

.
5) The weak labels according to the different seeds are

inputs to the data-programming tool which creates the
resulting labels. Each seed sk acts as a distinct labeling



Fig. 1: Overall Approach: Starting from a dataset of unlabeled samples, we generate different partitions using different seeds.
These partitions are centered around real prototypical samples from the dataset referred to as memories. Next, an expert
clinician assigns a label to each prototype. This induces labels on the full dataset. Finally the the memory-induced sets of
weak labels are combined using a data-programming tool to arrive at better labels.

function, producing outputs {ŷ(k)j }. Data programming
combines the outputs of these Nw labeling functions for
each sample

{
ŷ
(1)
j , . . . , ŷ

(k)
j , . . . , ŷ

(Nw)
j

}
into a single

probabilistic label [p1, . . . , p|Y|] where
∑|Y|

i=1 pi = 1.
We discuss the details of the memory generation algorithm

in Section V-A. However, a pertinent detail to note here is
that the number of memories picked in Step 1 in the set Mk

depends on a hyper-parameter called the distance threshold
t. This serves as a parameter which indirectly controls the
number of memory groups we end up with. We pick a
threshold t such that, there are at least |Y| memories in Mk,
for all the seeds k. That is,

|Mk| ≥ |Y|.

This is because if |Mk| < |Y|, then it is guaranteed that
there is at least one sample in Du which is wrongly labeled.
Assuming Du has at least one sample from each class. Let the
total number of samples to be labeled by the expert be Ns.
Then,

Ns =
∑

1≤k≤Nw

|Mk|.

Therefore, the following serves as a lower bound on Ns:

Ns ≥ Nw × |Y|.

Since, the maximum labeling budget is NL, then,

NL ≥ Ns ≥ Nw × |Y|.

Therefore the number of weak labels is Nw ≤
⌊
NL

|Y|
⌋
. Thus,

in the worst case (performance wise) the expert is expected to
label at least |Y| samples and the lower bound on NL grows
in proportion to the number of weak label sets.

V. METHODOLOGY

A. Memory Generation Algorithm

Unsupervised clustering, from simple k-means like
algorithms to self-organizing maps (SOM) and complex
neural gas algorithms [25]–[29], is a promising way to
capture a distribution of the dataset. In a fashion similar to
k-means clustering, we wish to form partitions of the data
into distinct groups or clusters. Clustering with k-means is
a well-known tool but has its challenges when used in the
context of images. An issue with k-means is that it can
potentially produce virtual cluster centers which are absent
in the original dataset. This is essentially because a simple
mean of two (or more) data points (for instance images in
our case) might not correspond to a real data point. This is
crucial since we wish to use these centers and query an expert
for the labels. A sure shot to ensure realistic data samples is
to pick from the dataset itself. Another potential issue with
vanilla k-means is that it is often susceptible to outliers in
the data. Hence, we restrict ourselves to partitioning around
points from the unlabeled set Du.

The closest algorithm which achieves this is PAM [30],
which is short for Partitioning Around Medoids. Intuitively
the algorithm tries to search for centrally located data samples
called medoids which are used to define the cluster bound-
aries in a nearest medoid sense. For the distance function
d : (x1, x2) 7→ R on the data set Du, PAM tries to select
a set of r medoids - Mr : {m1,m2, . . . ,mr} such that the



Algorithm 1 Generate Memories

Input: Du : {x1, x2, . . . xNu
}

Output: Memories M : {m1,m2,m3, . . . ,mr}
Parameter : (Max Global Steps : Zg , Max Local Steps :
Zl, Distance Threshold t, Random Seed s)

1: BestCost = ∞
2: for 1 ≤ g ≤ Zg do
3: Memory Set M = GenerateInitialMemories(Du, t, s, g)

4: CurrentCost = ComputeCost(M )
5: for 1 ≤ l ≤ Zl do
6: Perturb the memories in M locally to generate M ′

7: NewCost ← ComputeCost(M ′)
8: if NewCost < CurrentCost then
9: M ←M ′

10: CurrentCost ← NewCost
11: end if
12: end for
13: if CurrentCost < BestCost then
14: BestCost = CurrentCost
15: M = M {Store the best memory set observed}
16: end if
17: end for
18: return M

following cost is minimized:

Cost(Mr) =

n∑
i=1

min
mj∈Mr

d(mj , xi). (1)

We assume that the inner minimization is always possible, and
we are able to break ties arbitrarily among distinct members
of the set S . The challenge with PAM is that the naive
implementation has a runtime complexity of O(N2

ur
2) [31].

Even though there exists faster variants, they are still largely
inaccessible for applications at the scale of image data sets
generated in medical settings.

In order to circumvent this challenge we use a variant of
the Clustering Large Applications based upon Randomized
Search (CLARANS) [32] algorithm introduced in [33],
[34]. For reference we outline this process in Algorithm
1, which combines randomized global search with a local
clustering method. The algorithm aims to minimize the
objective in Equation 1 and returns a subset of the training
points. These are referred to as memories from here on.
We discuss the working of this algorithm in further detail next.

Algorithm to Generate Memories: The algorithm starts
with a reasonable choice for initial memories M using
GenerateInitialMemories. The aim of this function is to
ensure that each sample in Du is within a distance of at
most t from a memory in M . These memories are randomly
chosen according to the seed s, but ensure coverage of all
points. Notice that we do not choose the number of memories

a priori but instead gets picked as a consequence of distance
score d. Next, starting from this initial choice, the inner
loop (Lines 5 − 12) greedily looks for local improvements
for a fixed number of iterations Zl. The local improvements
involve switching a memory for a nearby data sample as a
candidate replacement. The partitioning cost for the choice
of memories is computed by the function ComputeCost
which evaluates Equation 1. The outer loop of the algorithm
(Lines 2− 17) resets the initial choice repeatedly for different
iterations (Line 3) and keeps track of the memory set M
with the minimum cost for each such reset. This set M is
returned in the end. Algorithm 1 trivially terminates since
each search proceeds for a fixed number of steps.

Thus, depending on the type of data, Algorithm 1 should use
different distance functions d to choose the relevant memories.
This is what we discuss next, where depending on the domain
we choose the appropriate distance function. This is discussed
in detail for time-series and image data in Section V-B and
V-C, respectively.

B. Distance Metric for Medical Time Series Data

In this case study, our objective is to label physiologic
monitoring alarms with respect to their suppressibility. Phys-
iologic monitors that continuously measure parameters like
blood oxygen, heart rate, and respiratory rate often overwhelm
clinicians with a large amount of false alarms causing alarm
fatigue [13]. Ideally, clinicians should only be alerted by
the alarms that provide informative or actionable insights
(i.e., non-suppressible alarms), while the rest of the alarms
are silenced (i.e., suppressible alarms). Achieving this requires
an alarm suppression system capable of determining the sup-
pressibility of a potential alarm based on the patient’s vitals
(time series) at the time of the alarm. However, the system
must be trained and evaluated prior to deployment which
requires labeled time series alarm data. Traditionally, acquiring
such data involves an observational study followed by manual
labeling, which is expensive and time-consuming. Hence we
aim to apply data programming to overcome this challenge.
Unfortunately, defining labeling functions for medical time
series data is generally challenging.

Formulating quantitative labeling functions can be espe-
cially challenging for clinicians, given the dynamic and in-
tricate nature of physiological data. For instance, a clinician
might describe the vitals time series as “jagged” or “erratic”,
which are more of a qualitative observation than a quantifi-
able metric. Moreover, medical time series data is inherently
dynamic and can exhibit complex patterns. Designing labeling
functions that capture the nuances of these patterns and their
clinical significance can be a complex task. One common
approach involves extracting features from a time series and
defining labeling functions over them, but these primitives
are not often well-defined. In contrast, devising a distance
metric provides a more tractable path, leveraging mathematical
principles to objectively quantify relationships between data
points.



(a) Neck and/or Shoulders (b) Back

(c) Hand (d) Leg

Fig. 2: Medical image data examples. Sample dermatological
images taken by patients for teledermatology consultation.

We leverage the Dynamic Time Warping (DTW) dis-
tance [35] to assess the similarity between medical time series
data. DTW proves to be a robust choice for comparing medical
time-series data due to its ability to handle variable speeds and
temporal misalignment inherent in physiological signals. Un-
like traditional metrics that assume a fixed alignment between
sequences, DTW allows for flexible time warping, making it
well-suited for capturing the complex dynamics of vital sign
data where patients may exhibit variations in the timing of
physiological events.

C. Distance Metric for Medical Image Data

In this case study, we address the challenge of identifying
specific body parts in dermatological images captured by
patients via smartphone cameras. Advances in smartphone
camera quality have played a significant role in improving
the reliability in the diagnosis of dermatological conditions
through teledermatology [36]. There is considerable interest
in teledermatology to develop algorithms to assist with the
clinical workflow and improve efficiency. However, developing
such algorithms generally requires a large and diverse anno-
tated dataset for training, which can be time-consuming and
costly to obtain due to the need for expert annotations. For

example, the location of lesions on the body helps narrow
a diagnosis, as many skin conditions are specific to certain
body areas. Annotating body parts for a large dataset of
dermatological images, however, can be tedious and chal-
lenging, particularly when images are captured by patients in
uncontrolled environments (e.g., home, car, etc.) [37]. Data
programming is a promising approach for overcoming these
challenges associated with manual annotation of body parts
in dermatological images, but defining labeling functions for
medical image data also presents its own challenges.

In the context of high-dimensional data like images, defining
and applying labeling functions that capture human visual
understanding across different kinds of images is very chal-
lenging. In contrast, distance metrics provide a straightforward
way to quantify similarity between images based on their
feature representations and can be easily scaled to large image
datasets. Distance functions also reduce human subjectivity
in the labeling process, leading to a more consistent and
objective analysis. Such distance functions can be leveraged
by our approach to automatically generate labeling functions
for image data, consequently facilitating an easier application
of data programming.

Here, we employed the Contrastive Language–Image Pre-
training (CLIP) [38] model to extract two types of features
for our analysis: image representations and probability distri-
butions across image labels. CLIP, a foundation model trained
on an internet-scale dataset of images and text, is able to
generalize to diverse datasets and effectively identify image-
text similarities. We harness CLIP to generate the probability
distribution for each image in our dataset against the 10
predefined body part labels. In addition, we used CLIP’s image
encoder to extract intermediate image representations with a
vector length of 512.

To evaluate the similarity of the predicted probability dis-
tributions over labels, we applied the Kullback-Leibler (KL)
divergence, a method for measuring the distance between
two probability distributions. For the image representations,
we used the Euclidean distance metric to assess the visual
similarity between images.

VI. RESULTS

In this section, we evaluate our approach on medical time
series and medical image case studies.

A. Implementation
For data programming, we use the implementation of

Snorkel and majority vote provided in the Snorkel Python
library, version 0.9.7 (www.snorkel.org). To calculate DTW
distance, we use the Python library DTAIDistance [39].

B. Results for Medical Time Series Data
1) Dataset: We evaluate our approach on a low oxygen

saturation (i.e., SpO2 low) alarm dataset extracted from a
deidentified dataset originally collected as part of a study
approved by the Institutional Review Board of a hospital. Re-
searchers video-recorded 551 hours of patient care on a medi-
cal unit at a major US hospital during July 2014 to November



2015 from 100 children whose families and nurses provided
consent. In addition, the following data was collected: patient
background information, all physiologic monitoring alarms
with corresponding timestamps, and continuously recorded
vital signs.

To obtain the dataset of SpO2 low alarms, we first identify
the maximum length of the SpO2 low alarms. For each alarm,
we then extract the SpO2 time series within a window of that
determined length, positioning the alarm in the middle of the
window. In total, 3,265 SpO2 low alarms were extracted as
part of this dataset.

Each alarm is annotated in terms of technical/clinical,
valid/invalid, and actionable/non-actionable alarms [3]. We
interpret these annotations with respect to suppressibility as
follows: technical, valid non-actionable, and invalid alarms
are interpreted as suppressible, whereas only valid actionable
alarms are non-suppressible.

2) Baseline: We compare labels output by our approach
to labels obtained by applying data programming with weak
labels produced by domain-expert defined labeling functions.
We use the set of sixty-two clinician-designed labeling func-
tions developed for this example from [40], [41]. The labeling
functions analyze the time series data to make predictions on
suppressibility, e.g., an alarm is non-suppressible if the heart
rate is above 220 for longer than 10 seconds after the alarm
starts, otherwise it abstains.

3) Result: Table I shows the accuracy and F1 of labels
produced by our approach with the number of labeled samples
(NL) of 54 and 134 samples compared to that of the baseline
using clinician-defined labeling functions. To produce these
results, we set the max global steps Zg to 5 and the max
local steps Zl to 30, and the distance threshold t to 90
and 60 to yield NL = 54 and NL = 134 samples to be
labeled by the clinician, respectively. The results demonstrate
that our approach yields greater accuracy and F1 scores
than the baseline approach. When using majority vote we
observe an improvement of approximately 17% in accuracy
and 13% in F1 using our approach. Using Snorkel, we observe
improvement of up to 28% on both accuracy and F1 using our
approach. The results in Table I demonstrate that leveraging a
small number of labeled examples supplied by a clinician can
yield more accurate labels.

C. Results for Medical Image Data

1) Dataset: The dataset used in our study consists of
10,140 de-identified images, retrospectively collected from a
teledermatology database. These images were captured by pa-
tients using mobile devices and uploaded into their electronic
medical records at a major US hospital. For efficient labeling,
we utilized the LabelMe [42] interface, adapted to identify
specific body parts. Labels were based on clinical interest,
covering a range of body parts such as the ‘Face’, ‘Scalp’,
‘Ears’, ‘Torso’, ‘Torso-Chest’, ‘Torso-Abdomen’, ‘Breasts’,
‘Back’, ‘Neck & Shoulders’, ‘Arms’, ‘Armpits’, ‘Hands’,
‘Legs’, ‘Feet’, ‘Genitalia’, ‘Buttocks’, ‘Skin-only’, and ‘Not
Derm’ for images that were not related to dermatology. This

process was focused on regions of interest (ROI) within each
image.

The labeling was conducted by two annotators, with any dis-
crepancies resolved through consensus or by marking the im-
age as unclear, ensuring no ambiguities in body part identifica-
tion remained. During the labeling phase, images with multiple
ROIs had all recognizable body parts labeled. However, due
to the complexities associated with multi-label classification in
our label generation algorithm, we later excluded these multi-
labeled images from the dataset. We also encountered images
with no labels, either due to unrecognizable locations or the
presence of rare body parts not defined by the labels, such
as the inside of the mouth. These images were also dropped
from the dataset. In addition, we merged ‘Torso-Abdomen’ and
‘Torso-Chest’ images into a single ‘Torso’ label. We removed
‘Skin-only’ and ‘Not derm’ labels as they were not related
to body detection. Furthermore, ‘Ears’, ‘Breasts’, ‘Genitalia’,
and ‘Buttocks’ were discarded due to their low frequencies,
each having less than 100 images. After refining the dataset,
6,293 images with single labels were retained for analysis. The
distribution of these images across the various body parts is
shown in Table II.

2) Baseline: We use Snuba [43] as a baseline method for
our experiment. Snuba is a system designed to overcome the
challenges of gathering high-quality training labels for deep
learning models. Snuba automatically generates the heuristics
that labels a small subset of the data for which it is most ac-
curate and applies this process iteratively to a large unlabeled
dataset.

3) Result: We transform our multi-class dataset into ten
one-versus-all labeling problems and apply our approach to
each class individually. This setup enables a direct comparison
with the Snuba baseline, as Snuba’s implementation currently
only supports a binary setting. We report the accuracy and
F1 of the labels produced by our approach using CLIP
image representations and probability distributions for varying
labeling budgets NL in Table V. To produce the results for
image representations, we set the max global steps Zg to 5
and the max local steps Zl to 30, and the distance threshold t
to 0.875 and 0.825 to yield NL = 59 and NL = 113 samples
to be labeled by the clinician, respectively. For probability
distributions, we set the max global steps Zg to 5 and the max
local steps Zl to 30, and the distance threshold t to 0.8 and 0.5
to yield NL = 54 and NL = 116, respectively. We summarize
our results by computing the average accuracy and average F1
score across all ten one-versus-all labeling problems, which
are presented in Table III and Table IV. The results show
our approach, using both majority vote and Snorkel, generally
demonstrates improvement over Snuba. Using image repre-
sentation features, our approach yields improved accuracy over
Snuba (up to 6%). Unfortunately, we do not observe consistent
improvement in F1 score over Snuba, but the F1 scores are
generally comparable. In contrast, for probability distribution
features, our approach consistently outperforms Snuba in both
accuracy and F1. We observe a significant increase in accuracy
by 5-15% and in F1 score by 12-19%.



Metric Clinician- Our Approach
Defined LFs NL = 54 NL = 134

Majority Vote Snorkel Majority Vote Snorkel Majority Vote Snorkel

Accuracy 0.630 0.467 0.807 0.746 0.808 0.642
F1 0.734 0.536 0.872 0.823 0.873 0.728

TABLE I: Performance of labels generated by our approach with varying labeling ability NL compared to labels from data
programming with weak labels from clinician-defined labeling functions. We highlight the best performance scores across
approaches in bold, and underline the second best scores.

Classes Number of
Images

Face 937
Scalp 998
Torso 299
Back 381
Neck and/or Shoulders 352
Arms 702
Armpits 185
Hands 1,066
Legs 901
Feet 472

Total 6,293

TABLE II: Medical image dataset class distribution.

Moreover, our results show that our approach using majority
vote outperforms our approach using Snorkel in terms of
both accuracy and F1 scores. Given that about half of the
10 classes have a conflict rate above 10% among labeling
functions, majority voting tends to align with the correct
label more often than Snorkel’s probabilistic model, despite
these disagreements. Furthermore, when analyzing the fea-
tures, the probability distribution feature using KL divergence
consistently outperforms the Euclidean distance metric on
image representation features. This is evident even when the
number of labeled samples (NL), determined by adjusting the
distance threshold, are roughly the same as those used for
image representation. We believe KL divergence effectively
captures the subtle nuances in class probability distributions,
whereas Euclidean distance measures the absolute differences
in feature values, potentially overlooking non-linear perceptual
differences.

Finally, we apply our approach to perform multi-class
labeling of the dataset. Table VI shows the F1 scores of the
labels produced by our approach compared to that of the
top-1 predicted label output by CLIP. CLIP’s performance is
inconsistent, either excellent or extremely poor, achieving an
overall weighted F1 score of 52.7% and an overall accuracy of
55.2%. On the other hand, our method shows more balanced
distribution across classes. It performs better on classes where
CLIP struggles, such as Back, Neck and/or Shoulders, and
Armpits. Our approach generally yields higher overall F1 score
and accuracy, with the exception of when we use majority
vote with CLIP image representations and labeling budget
NL = 59. In this case the overall accuracy is marginally lower
than CLIP’s. However, our method using CLIP’s probability
distribution for the majority vote with NL = 54 shows the best

NL Metric Snuba Our Approach
Majority Vote Snorkel

59 Accuracy 0.883 (0.019) 0.930 (0.032) 0.898 (0.066)
F1 0.431 (0.031) 0.410 (0.288) 0.401 (0.268)

113 Accuracy 0.869 (0.009) 0.931 (0.030) 0.898 (0.048)
F1 0.454 (0.010) 0.459 (0.263) 0.426 (0.246)

TABLE III: Performance comparison between weak labels
generated by Snuba and our approach using Euclidean dis-
tance on CLIP image representation

NL Metric Snuba Our Approach
Majority Vote Snorkel

54 Accuracy 0.788 (0.004) 0.934 (0.038) 0.918 (0.058)
F1 0.320 (0.005) 0.515 (0.335) 0.492 (0.359)

116 Accuracy 0.891 (0.004) 0.941 (0.027) 0.916 (0.046)
F1 0.453 (0.007) 0.579 (0.264) 0.566 (0.288)

TABLE IV: Performance comparison between weak labels
generated by Snuba and our approach using KL divergence
on CLIP probability distribution feature

results, with a 12.1% higher accuracy and a 14.5% higher F1
score compared to CLIP.

D. Ablation Study

In this section, we analyze the impact of the number of
labeled samples on the accuracy of labels produced by our
approach. Note that the number of labeled samples used
captures our labeling budget (NL) when using a clinician in
the loop. The value of NL depends on the distance threshold
t, thus this ablation study directly investigates the influence
of the distance threshold hyper-parameter on the performance
of our approach. We plot the trend in labeling accuracy and
F1 score for the time series case study in Figure 4 and the
medical image case study in Figure 3. In general, our approach
demonstrates consistently high labeling accuracy and growing
F1 as the number of labeled samples increases. However, we
note that for the time series case study in Figure 4, in particular
for Snorkel, the trend in label quality is noisy. We attribute this
to the inherent noise in our approach and plan to quantify its
impact on our approach’s performance in future work.

E. Limitations

In this section, we discuss the limitations of our approach.
Recall that our method relies on pre-selected distance func-
tions and, for image data, high-dimensional features over



Positive Class Metric

Our Approach
CLIP Image Representation CLIP Probability Distribution

NL = 59 NL = 113 NL = 54 NL = 116
Majority Vote Snorkel Majority Vote Snorkel Majority Vote Snorkel Majority Vote Snorkel

Face Accuracy 0.921 0.786 0.928 0.830 0.897 0.815 0.903 0.924
F1 0.650 0.560 0.723 0.608 0.566 0.562 0.535 0.724

Scalp Accuracy 0.954 0.898 0.95 0.918 0.962 0.961 0.961 0.923
F1 0.849 0.748 0.835 0.781 0.878 0.878 0.881 0.796

Torso Accuracy 0.936 0.944 0.953 0.952 0.960 0.960 0.947 0.852
F1 0.233 0.102 0.007 0.000 0.302 0.302 0.477 0.336

Back Accuracy 0.942 0.939 0.935 0.882 0.870 0.842 0.924 0.885
F1 0.241 0.000 0.401 0.378 0.323 0.304 0.401 0.372

Neck and/or Shoulders Accuracy 0.944 0.945 0.940 0.943 0.940 0.944 0.931 0.944
F1 0.000 0.028 0.157 0.095 0.083 0.000 0.077 0.000

Arms Accuracy 0.867 0.874 0.886 0.886 0.888 0.888 0.900 0.834
F1 0.403 0.423 0.392 0.392 0.059 0.000 0.468 0.527

Armpits Accuracy 0.971 0.971 0.967 0.967 0.925 0.884 0.965 0.938
F1 0.000 0.000 0.221 0.221 0.349 0.296 0.454 0.403

Hands Accuracy 0.930 0.908 0.934 0.870 0.975 0.975 0.971 0.966
F1 0.789 0.776 0.793 0.711 0.923 0.926 0.931 0.916

Legs Accuracy 0.875 0.767 0.866 0.818 0.945 0.935 0.931 0.916
F1 0.338 0.535 0.498 0.484 0.801 0.789 0.756 0.757

Feet Accuracy 0.956 0.941 0.952 0.918 0.981 0.979 0.976 0.975
F1 0.598 0.411 0.558 0.591 0.869 0.859 0.832 0.840

TABLE V: Performance of our approach on a class-by-class basis on the medical images case study with CLIP image
representations and with CLIP probability distributions.

Metric CLIP

Our Approach
CLIP Image Representation CLIP Probability Distribution

NL = 59 NL = 113 NL = 54 NL = 116
Majority Vote Snorkel Majority Vote Snorkel Majority Vote Snorkel Majority Vote Snorkel

Face 0.891 0.708 0.774 0.712 0.636 0.574 0.602 0.606 0.606
Scalp 0.911 0.777 0.680 0.819 0.798 0.878 0.878 0.859 0.839
Torso 0.667 0.204 0.248 0.512 1.000 0.393 0.302 0.439 0.414
Back 0.000 0.349 0.420 0.333 0.345 0.331 0.308 0.393 0.384
Neck and/or Shoulders 0.167 0.220 0.500 0.261 0.368 0.131 0.083 0.173 0.104
Arms 0.750 0.350 0.314 0.402 0.446 0.152 0.074 0.489 0.465
Armpits 0.149 0.089 0.118 0.230 0.333 0.330 0.312 0.424 0.454
Hands 0.943 0.736 0.710 0.767 0.748 0.923 0.925 0.915 0.917
Legs 0.830 0.552 0.584 0.449 0.463 0.800 0.794 0.750 0.743
Feet 0.827 0.865 0.865 0.737 0.845 0.868 0.860 0.829 0.832

Overall ACC 0.552 0.551 0.565 0.584 0.604 0.636 0.634 0.673 0.669
Weighted F1 0.527 0.552 0.540 0.578 0.576 0.633 0.619 0.672 0.661

TABLE VI: Performance comparison (F1 score) between labels generated by our approach and the top-1 label output by CLIP

which distance is computed. These items effect the perfor-
mance of the memory generation algorithm which partitions
the data and determines the subset of representative samples
(memories) for the clinician to label. However, in certain
real-world scenarios, the features and distance functions our
approach uses may not be effective. The features may lack
relevance for comparing samples or the distance functions
may not effectively capture the similarity between samples.
This can lead to a poor partitioning of the data, resulting
in low accuracy weak labels when the clinician’s labels
for the memories are imposed on the respective partitions.
Therefore, the effectiveness of our approach hinges heavily on
the suitability of the pre-selected distance functions or high-
dimensional features for the application.

As studied in Section VI-D, the performance of our ap-
proach is impacted by the clinician’s labeling budget NL. As
a clinician increases their budget, the quality of the labels

produced by our approach generally improves. Consequently,
poorly chosen (e.g., very small) labeling budgets can cause our
approach to produce inaccurate probabilistic labels. For the
evaluation in this paper, we explicitly chose labeling budgets
that would be considered reasonable for an clinician in our
case studies. However, in practice, determining an appropriate
labeling budget may not be straightforward and may require
consideration of several factors. For example, the complexity
of the labeling task (e.g., the time and expense associated with
annotating a data sample) is an important factor for an clinician
with time constraints. Additionally, a clinician may have a
desired tolerance for incorrect labels (e.g., a threshold on false
positive labels), thus posing a trade-off where a larger labeling
budget may be necessary to ensure higher label quality. We
plan to explore these factors and devise guidelines based on
them for selecting the labeling budget NL in future work.

Lastly, our approach requires the clinician to manually



(a) Euclidean distance using CLIP image representation (aver-
age over 10 binary classification for body part)

(b) KL divergence using CLIP probability distribution (average
over 10 binary classification for body part)

(c) Euclidean distance using CLIP image representation (multi-
class classification)

(d) KL divergence using CLIP probability distribution (multi-
class classification)

Fig. 3: F1 and Accuracy of our approach using varying number of labeled samples (Nl) for the medical image case study.

Fig. 4: F1 and Accuracy of labels output by our approach using
varying number of labeled samples (NL) for the medical time
series case study.

label a subset of the data determined by the memory gen-
eration algorithm, with the subset’s size being bounded by the
clinician’s labeling budget. As mentioned previously, manual
labeling can be both time-consuming an expensive. Therefore,
despite being a small portion of the data, this requirement
can still pose a limitation in certain real-world scenarios. In
the medical time series data case study, approximately 54
seconds was spent labeling each alarm in the dataset, roughly

55 hours to label all 3,625 alarms [12]. Using our approach
with a labeling budget of 134 alarms, a clinician would spend
only 2 hours labeling. In the medical images case study,
we demonstrate that our approach can produce high quality
labels and only required an expert to label approximately 100
images instead of thousands, reducing the number of samples
to be manually labeled by roughly 99%. Hence, in both case
studies presented in this paper, our approach demonstrates its
capability to significantly reduce manual labeling efforts while
still achieving high-quality labels.

VII. CONCLUSION

Labeling function generation is a challenging problem in
the data-programming paradigm. An assumption made when
automatically coming up with weak-labeling functions is that
a small labeled set is available. In this paper we show that
carefully selecting which samples to label and querying an
expert clinician post facto can have a significant impact on per-
formance. Additionally when compared to similar approaches
this method does not need any classifier training to construct
the weak labeling function from the labeled samples. In
the future our plan is to study how the memory generation
algorithm optimization hyper-parameters impact the accuracy
of labels produced by our approach. Furthermore, we plan
to reduce the number of labeled samples required, thereby



reducing the load on the clinician. We believe that leveraging
large language models and existing medical guidelines may
enable such an improvement.
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