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Abstract— This paper presents an investigation into the
improvement of security and operation time in homomorphi-
cally encrypted systems using Field Programmable Gate Array
(FPGA) technology. The primary objective is to generate keys
efficiently, minimizing key sizes while maintaining security.
By leveraging FPGA capabilities for key generation and key
switching, smaller ciphertext sizes can be achieved, ultimately
improving operation time. The paper focuses on the devel-
opment of a sensor data encryption system implemented on
an FPGA board. The proposed approach enables simultaneous
key generation and encryption of incoming sensor data using
generated keys. The developed system implemented fixed-size
random number generation and prime number checking in
hardware, subsequently expanding these capabilities to produce
arbitrarily sized prime numbers.
Index terms: Homomorphic Encryption, Field Programmable Gate
Array, Security Parameters, Encrypted Control, Cyber-physical
systems

I. INTRODUCTION

Cyber-physical systems have become an increasing target
of cyber attack in recent years [1]–[6]. Recent cryptographic
developments in homomorphic encryption has made the
realization of real-time encrypted control systems possible
by applying homomorphic encryption methods [7]. By en-
crypting the control and sensor signals a control system can
be designed in which the signal information is protected from
attacks such as falsification and sniffing. While the use of a
long key is in general preferred to improve the cybersecurity
of encrypted control systems, the increased computational
overhead due to homomorphic encryption would degrade the
real-time control performance. To resolve this trade-off, a
concept of key switching has been studied in which relatively
low-length keys are generated and switched at a certain
frequency fast enough before a single key is theoretically
identified by the adversary via a brute-force attack [8]. Since
the computational burden to continuously generate keys is
high, the use of a dedicated high-performance circuit, such
as Field Programmable Gate Arrays (FPGAs), is favorable
rather than a fully software-based (e.g., CPU) approach.
This paper presents an FPGA hardware architecture that
can periodically generate new keys for the class of homo-
morphic cyphers over integers with hardness derived from
the Approximate-Greatest Common Divisor (AGCD) and
preform encrypt and decrypt operations with the current key.
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Similar investigations have been preformed into Learning
With Error secured cyphers [9], however the authors believe
integer based cyphers are simpler to both understand and
implement, thus making them a suitable choice for wide
spread adoption. Such implementation would enable not only
fast key generation, but also signal encryption at the site,
resulting in a sensor node with improved security.

Fig. 1: Autonomous system employing dedicated crypto-
graphic circuits with periodic key re-generation. By embed-
ding a Enc circuit into the sensor node, the system can
conceal the sensor signal from the cloud. The embedded Dec
circuit in the actuator node then retrieves the control signal
calculated by the cloud. The KeyGen circuit creates a new
active key periodically replacing the key used by the other
circuits.

II. PROPOSED FPGA TRANSDUCER NODE WITH FAST
KEY GENERATION

The system consists of a dedicated encryption circuit Enc
attached to sensor equipment which immediately encrypts
the sensor signal and exposes only the encrypted signal. The
augmented sensor module is equipped with a communication
channel (e.g. a pin) over which the module recieves the key
with which it is to use to preform encryption. The encrypted
signal can then be sent to the controller for encrypted
calculation of the control signal. A dedicated decryption
circuit Dec is embedded into the actuator node with a
communication channel in the same way as the sensor node.
The decryption circuit then decrypts the control signal, using
the key it received externally.
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Both the sensor and actuator nodes receive their key from
the same key register. This register is periodically overwritten
by the output of a dedicated key-generation circuit KeyGen.
Once the register is updated the Enc, Dec modules will use
this updated value as their keys. This design layout can be
seen in Fig. 1

By adjusting the period Tgen of key generation we can
compensate for weaker keys. Some care is needed during
the transition from one key to the next, since the signal still
in the controller will become stale when the key register is
overwritten. Metrics for how often a key should be switched
to ensure security of a real-time encrypted control system
have been explored by [10].

Homomorphic cyphers over the integers rely on strong
primes to produce secure keys [11], [12]. Therefore in order
to generate a key a PrimeGen circuit must be constructed.
Primes are generated by combination of a Random Number
Generator (RNG) and a Primality Test. There are several
different techniques to achieve RNG in hardware [13], [14],
the presented work uses a collection of Linear Feedback Shift
Registers (LFSR) which each contribute a different bit to
the output and are independently seeded. The RNG output
is constructed by concatenation of sufficient LFSR outputs
to achieve the desired bit-length.

Prime generation can be done in one of two ways, either a
computationally expensive but deterministic operation can be
dispatched to produce a provable prime, or a more computa-
tionally feasible but probabilistic method can be dispatched
to produce a probable prime [15]. Deterministic primality
tests require significant resources, in the case of prime
sieves a list of all integers up to some limit is constructed
and composite numbers are subsequently removed [16].
For large primes, such as those suitable for cryptographic
purposes, the memory requirement of such methods become
infeasible [17]. Because of the difficulties in obtaining a
provable prime, we instead use probable primes with a design
parameter ε which can be adjusted to control the primality
probability tolerance.

The probable primes are generated by a “guess and check”
method where random numbers of appropriate bit-length
are constructed from the RNG module, which is sent to
the Probabilistic Primality Test (PPT) module. The PPT
evaluates the candidate prime p? and if it concludes p? is
prime than successive iterations of the PPT are applied to p?
until primality confidence can be brought within tolerance.

III. RNG USING FEEDBACK SHIFT REGISTER

While true randomness is not achievable within determin-
istic devices such as Field Programmable Gate Arrays (FP-
GAs), pseudorandom number generators can be implemented
utilizing a starting seed to produce random numbers. One
such example is the Linear Feedback Shift Register (LFSR).

An LFSR consists of a clocked shift register with feedback
from its constituent bits, often referred to as “taps”, as
depicted in Fig. 1. By applying the exclusive or (XOR)
operation between bits within the shift register, a new pseu-
dorandom bit value can be introduced into the register at

Fig. 2: Linear Feedback Shift Register with taps at its 0th,
1st, 3rd, and 5th bits

every clock cycle. This feedback loop is depicted in Fig. 2.
LFSRs were chosen as the source of random numbers due

to their low resource utilization and ease of implementation
in hardware–as they consist of only a few gates and registers.
However, they are completely deterministic designs–if an
attacker knew the starting seed and the design, they would be
able to predict future random number outputs, which would
undermine the security of the system. Multiple instances of
LFSRs (See Fig. 3) may be employed to make this attack
difficult, with only specific bits from each LFSR selected for
the output random numbers. Furthermore, nondeterminism
could be introduced by artificially introducing race condi-
tions in the insertion of new bits into the LFSR.

Initially, a 128-bit LFSR generating 16-bit random num-
bers was chosen. For larger random number generation
requirements, multiple instances of the LFSR module (with
distinct seeds) can be combined to produce arbitrarily sized
pseudorandom numbers in hardware. The resulting signal
through a LFSR can be seen in Fig. 4.

Fig. 3: Linear Feedback Shift Register Inputs and Outputs

Fig. 4: Simulated Linear Feedback Shift Register random
number output signal.

IV. MILLER-RABIN PRIMALITY CHECK

The Miller-Rabin primality test is a probabilistic primality
test based on Fermat’s Little Theorem. It “checks” the
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primality of a number n by attempting to prove it to be
composite. As opposed to deterministic method such as
the Sieve of Eratosthenes, the Miller-Rabin test is much
faster with significantly less memory consumption [16].
This is evidenced by their respective runtime complexities–
O(sqrt(n)) for the Sieve of Eratosthenes and O(k ∗ log3(n))
for the Miller-Rabin test, where k is the number of tests run
[18].

Algorithm 1 Miller-Rabin Test

1: procedure MR(n, s)
2: for j ← 1 to s do
3: a← RandomInteger(1, n− 1)
4: if Witness(a, n) then
5: return COMPOSITE
6: else if
7: thenreturn PRIME
8: end if
9: end for

10: end procedure

The Witness procedure of Alg. 1 can be described as
follows. Let a be a random number which is said to be a
witness of n being composite, if

an−1 ̸≡ 1 mod n

These relations are precisely the negation of the equiv-
alence relations of Fermat’s Little Theorem, giving strong
evidence that n is composite [19]. However, even if n
passes the above test, there is a chance that it is a strong
pseudoprime, for which the corresponding value of a would
be a strong liar. To remedy this, the Miller-Rabin test is
performed several times on a potential prime, reducing the
chances that it is a strong pseudoprime with so many strong
liars [20], [21].

Let ε be the probability that n is a strong pseudoprime
after k checks. Then, an upper bound can be placed on the
probability that n is a strong pseudoprime as follows [18]:

ε <

(
1

4

)k

. (1)

Therefore, a corresponding lower bound can be placed on
the probability that n is prime after k checks

P (n is prime after k checks) ≈ 1−
(
1

4

)k

. (2)

A. State Machine

The FPGA based Miller-Rabin circuit is implemented
as a finite state machine (See Fig. 5) with 6 states that
systematically checks an input 32-bit prime number up to a
specified number of checks (k, determined by setting system
parameter ε) and determines whether it is prime or not.

The state machine begins with the transition to the start
state, which takes in a potential prime n and a number of
checks to do k, and resets other intermediate registers. It

Fig. 5: Miller-Rabin State Machine

then transitions to the get exp stage, which prepares the
exponent that will go into the miller rabin check. Next, in
the get random state the random number a is retrieved. The
modular exponentiation step then follows, finding the value
of the base to the prepared exponent, and either continuing,
or going to the finish state if n is composite. Next the
exponent is continually squared and reduced in the squaring
step - going to the finish state if n is composite, and only
going to the check state if the congruence holds. The check
state keeps track of the number of loops (new values of a)
that have been checked, and if it is under the specified k
value, the number of checks is incremented and the loop is
restarted. If the number of checks is equal to k, n has gone
through enough Miller Rabin checks to be deemed prime,
and the transition to the finish state is made.

A modular exponentiation module was designed to com-
pute an mod p for arbitrary a, n, p ∈ Z. The authors
identified some similar projects conducted in research labs;
however, to our best knowledge, there is a limited number of
this type of system integration work reported in the literature.

It repeatedly bit shifts n to the right (divides by 2) while
squaring a and taking its modulus (anew = a2old mod p)
– storing any additional a terms in an intermediate register
(intermediatenew = aold×intermediateold mod p if n is
odd). This process is repeated until n is 0 or 1, after which
the result is calculated directly from the values of a and
intermediate. With this modular exponentiation module,
32-bit primes could be tested – but to generate arbitrary size
prime numbers, further modification was required to ensure
the functionality of all steps of the module for arbitrary input
sizes. To allow for this, the module registers and wires were
parametrized to a desired prime size (size of n), and the logic
for getting random numbers (a in the above equations) for
each iteration of Miller Rabin was changed from being fixed
(to 16 bits) to building a random number from 16-bit random
numbers up to the specified prime size. This logic was kept
clocked/sequential – to limit the resource utilization of the
miller rabin modules – as the speed increase would not have
been worth the extra utilization.
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The Miller-Rabin circuit behavior can be seen in Fig. 6

Fig. 6: Simulated Miller Rabin primality outputs

V. CONSTRUCTING PRIME GENERATION MODULE FROM
RNG AND MILLER-RABIN MODULES

With these building blocks, higher level modules for the
generation of keys could be generated for Dyer’s HE1N
scheme. The random number generation and miller rabin
modules were next combined to create a prime gen module
– again parametrized to allow for arbitrary prime size gener-
ation. For this module, a potential prime number is built up
from 16-bit prime numbers similar to how values for a were
generated in the miller rabin module. These potential primes
are then fed into the miller rabin module, where the number
is checked. This continues until a prime number is found,
after which the module holds until it is reset. Tricks can be
used to speed up the rate of prime number generation - for
example, ensuring that no potential primes are even (which
can be easily implemented by ensuring that their LSB is not
0).

VI. CRYPTOGRAPHIC KEY GENERATION

Using the prime gen module, a key gen module was then
created – which syncs up 3 prime gen modules to generate
a key and public modulus (κ, p, and q). This is where the
strengths of the FPGA show – as while a CPU based design
would have to generate κ, p, and q in series, an FPGA
generates them in parallel, and is only limited by the largest
prime among them (See Fig. 7).

Fig. 7: Key Gen Inputs and Outputs - including 3 Prime Gen
modules

VII. ENCRYPT MODULE

An encrypt module was created to take keys from the key
gen module and generate appropriately sized noise terms for
r and s (See Fig. 8). For this module, speed was crucial –
much more so than everything involved with the key gen –
as new data to encrypt will be coming in each clock cycle,
so if the encryption process takes multiple clock cycles,
incoming data will be missed, and the analog signal will have
more discretization error. To prevent this, this module was
designed to be completely combinatorial – so the encryption
process for a given plaintext value only takes 1 clock cycle
and no data is missed. This was a time/space trade off done
by instantiating as many LFSRs were needed based on the
desired noise term size rather than building up the noise
terms (which would take multiple clock cycles). This entails
the random numbers being generated combinatorically using
multiple rand modules as opposed to using a single rand
module and building random numbers over multiple clock
cycles as was done in the prime gen and miller rabin
modules. Furthermore, to ensure the appropriate size of the
generated noise terms without bit shifting that would take
multiple clock cycles, a bitwise and is taken between the
keys and rand module outputs to ensure that the noise terms
are smaller than the keys.

Fig. 8: Encrypt module inputs and outputs – the random
number generation modules are instantiated parametrically –
using a Verilog generate block

VIII. FINAL BLOCK DESIGN

Fig. 9: Final block diagram with all of the top level modules
– security parameters are λ = η = 32, ν = 16

The final experimental setup consisted of an the Zynq-
7000 development board with a function generator plugged
to its analog input, see Fig. 10. The Internal Logic Analyzer
(ILA) IP was used to view outputs connected to internal
wires in the FPGA. Keys were continuously generated, and
information continuously flowed to the analog input to the
encryption module, and was encrypted in real time by it. The
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Fig. 10: Experimental setup with function generator emulat-
ing sensor data

final block design can be seen in Fig. 9. Though a decryption
module was not designed yet, using the ILA to view the
values of the keys and ciphertext showed that the FPGA was
correctly encrypting the input discretized numbers.

IX. RESULTS

Using these modules, an experiment was conducted to
compare the prime generation time between a CPU and
an FPGA. Keys from 16 bits to 2048 bits were generated
on an FPGA and a CPU. Initially, only time to the first
prime is recorded, which resulted in a much larger spread
of results due to randomness in prime number distribution.
To better characterize steady state performance of both
implementations, multiple samples were taken for each bit
size (5 for CPU, 30-60 for FPGA – CPU tests took very long,
so more than 5 samples for each size would have significantly
increased experiment time).

The times were then averaged and plotted, with their
standard deviations being used for error bars. A log-log scale
was used to show the trends of bit size and time over larger
magnitudes. These preformance behaviors can be seen in
Fig. 11. The FPGA based architecture is shown to have a
consistently lower key generation time in all tested key size
ranges–with key generation times between 10-100× faster–
allowing for much stronger key production for the same
amount of time.

X. CONCLUSION

This paper presented a realization of fast cryptographic
key generation on a FPGA board. Both random number
generation with feedback shift registers and the Miller-Rabin
primality check were implemented. The realized FPGA key
generation was confirmed to be 2 orders of magnitude faster

Fig. 11: Key Generation Time on a CPU and FPGA – FPGA
performance is approximately 2 orders of magnitude better
at minimum

than that with a CPU. Future work includes the management
of key switching and further performance validation.
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