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A B S T R A C T

The prediction of crack propagation in materials is a crucial problem in solid mechanics,
with many practical applications ranging from structural integrity assessment to the design
of advanced materials. The phase-field method has emerged as a powerful tool for modeling
crack propagation in materials, due to its ability to accurately capture the propagation of cracks.
However, current phase-field algorithms suffer from the elevated computational cost associated
with the so-called staggered solution scheme, which requires extremely small time increments
to advance the crack due to its inherent conditional stability. In this paper, we present, for the
first time, a quantitative analysis detailing the numerical implementation and comparison of
two common solution strategies for the coupled large-deformation solid-mechanics-phase-field
problem, namely the quasi-Newton based Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS)
and the full Newton based alternating minimization (or staggered) (AM/staggered) algorithm.
We demonstrate that the BFGS algorithm is a more efficient and advantageous alternative to
the traditional AM/staggered approach for solving coupled large-deformation solid-mechanics-
phase-field problems. Our results highlight the potential of the quasi-Newton BFGS algorithm
to significantly reduce the computational cost of predicting crack propagation in hyperelastic
materials while maintaining the accuracy and robustness of the phase-field method.

1. Introduction

The phase-field approach was established based on the diffuse representation of localized discontinuity and was initially
mployed to simulate brittle fracture [1–3]. Its capacity to capture complex crack geometries – including arbitrary nucleation,
propagation, and branching within a unified framework – has broadened its application across various fracture problems. This
method’s versatility has led to its expansion into a diverse range of scenarios, including multi-physics simulations [4–6], fatigue
analysis [7–10], and the characterization of fracture behavior in elastomeric materials involving large deformations [11–18].

The phase-field method is based on a variational approach to fracture wherein crack initiation and propagation are the direct
results of the minimization of the energy potential functional. The functional is defined as the sum of a strain energy density
function integrated over the volume of a body and a crack surface energy component integrated over the crack region of the body.
While the phase-field approach to fracture has proven vastly effective in capturing complex fracture patterns in brittle and quasi-
brittle materials, a significant drawback to its efficiency is the computational cost associated with solving the required minimization
problem. This issue is due to two factors. On the one hand, extremely fine meshes are often necessary to resolve the damage gradient
due to the non-uniformly distributed phase-field. On the other hand, the non-convexity of the energy potential functional with
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Nomenclature

𝛺0 Initial configuration of the body
𝛤0 Boundary of the initial configuration
𝐦 Unit outward normal vector
𝐗 Position vector in the initial configuration
𝐱 Position vector in the current configuration
𝝌 Motion mapping
𝐮 Displacement field
𝐅 Deformation gradient tensor
0 Sharp crack in the initial configuration
𝑑 Phase-field variable
 Localization band
𝐛0 Body force per unit volume
𝐭0 Prescribed traction
𝛤𝑁0 Natural boundary
𝛱 Potential energy functional
𝛹 Degraded strain energy density function
𝜔(𝑑) Phase-field degradation function
𝐺𝑐 Fracture energy
𝛾 Crack surface density function
𝑙𝑐 Length scale parameter
𝛼(𝑑) Crack geometric function
𝛤𝐷0 Essential boundary
𝐏 First Piola-Kirchhoff stress tensor
 Local crack driving force
𝜓𝑚𝑒𝑐ℎ Intact strain energy density function
𝜇 Shear modulus
𝐾𝐵 Bulk modulus
𝐽 Determinant of the deformation gradient
𝜆𝑖 Principal stretches
𝜓+
𝑚𝑒𝑐ℎ Tensile component of strain energy density
𝜓−
𝑚𝑒𝑐ℎ Compressive component of strain energy density

𝐰𝑢 Arbitrary vector field for displacement
𝑤𝑑 Arbitrary scalar field for phase-field
𝑁𝐴 Shape function for node A
𝐑𝐴𝑢 Element-level residual for displacement at node A
𝑅𝐴𝑑 Element-level residual for phase-field at node A
𝐊𝐴𝐵
𝑢𝑢 Element-level tangent for displacement-displacement coupling

𝐊𝐴𝐵
𝑢𝑑 Element-level tangent for displacement-phase-field coupling

𝐊𝐴𝐵
𝑑𝑢 Element-level tangent for phase-field-displacement coupling

𝐊𝐴𝐵
𝑑𝑑 Element-level tangent for phase-field-phase-field coupling

𝐮̄ Vector of nodal displacements
𝐝̄ Vector of nodal phase-field values
𝐳𝑒 Vector of element unknown nodal values
𝐅̄ F-bar deformation gradient
𝐅̄𝑝𝑒 Deviatoric part of the F-bar deformation gradient
𝐅0 Deformation gradient at the element centroid
𝐏̂ Stress tensor evaluated using 𝐅̄
𝖲̄ Voigt form of the F-bar first Piola-Kirchhoff stress
A Fourth-order tangent modulus tensor
Q𝑅 Fourth-order tensor for F-bar formulation
Q𝑅0 Fourth-order tensor for F-bar formulation at element centroid
2 
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respect to the unknowns (i.e., displacement and phase-field variables) makes any attempt at solving the fully coupled field problem
(i.e., simultaneously solving for the two variables) using a standard Newton-based monolithic solver a rather cumbersome task,
resulting in poor performance and divergence of solution.

Attempts have been made to bypass monolithic solvers and to propose alternative solution methods that provide more robustness.
he alternating minimization (AM) or staggered solver [19,20] has been one such approach that is robust enough to solve the
oupled solid mechanics phase-field governing equations sequentially (i.e., in a staggered manner). However, the AM solver is slow
nd oftentimes requires extremely fine time increments to achieve convergence at critical incremental steps due to its unconditional
tability. Quasi-Newton-based methods such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm have been proposed as
lternative algorithms aimed at achieving both a robust and an efficient solution scheme for the coupled solid mechanics phase-
ield problem [21–25]. However, all existing efforts have focused on linear elastic problems, and the application of these methods
n highly nonlinear configurations has remained unexplored.
Several researchers have sought to incorporate the phase-field approach within a large-deformation setting to simulate the

racture behavior of elastomers, hydrogels, and soft bio-materials using hyperelastic constitutive equations [18,26–33]. Some of
hese works have used the AM/staggered approach, which, as mentioned earlier, is slow and usually requires extremely small time
ncrements to achieve accurate response [6,34–38], while others proposed higher-order schemes or adaptive mesh strategies to help
mprove computational efficiency [33,39–44], but the implementation of such strategies within finite element (FE) software such as
ABAQUS [45] is usually highly complex. However, the use of quasi-Newton-based methods to solve the nonlinear system of coupled
equations has not been investigated in the context of large deformation kinematics.

This work presents several novel contributions to phase-field damage of localized failure in hyperelastic materials undergoing
large deformations. First, we extend the application of the BFGS algorithm beyond linear elastic problems to solve the coupled
large-deformation solid mechanics and phase-field problem for hyperelastic materials. This represents a significant advancement
in computational efficiency for modeling complex fracture patterns in nonlinear elastic materials. Second, we provide a detailed
quantitative comparison of the computational efficiency between the BFGS algorithm and the traditional alternating minimization
(AM)/staggered approach for hyperelastic materials, demonstrating substantial time savings. Third, we present a novel implementa-
tion of the BFGS algorithm within a user-defined element (UEL) subroutine in Abaqus/Standard, specifically tailored for hyperelastic
phase-field problems. Fourth, we demonstrate the effectiveness of the BFGS algorithm for capturing complex fracture patterns in
hyperelastic materials through multiple benchmark examples, including single-edge notch specimens under uniaxial tension and
pure shear, as well as a notched beam under three-point bending. Lastly, we incorporate tension–compression decomposition of
the hyperelastic strain energy density function within the BFGS framework, further extending its applicability to a wider range of
loading scenarios. These contributions collectively represent a significant step forward in the efficient and accurate modeling of
fracture in hyperelastic materials undergoing large deformations.

2. Governing differential equations for the coupled large deformation solid mechanics and phase-field problem

2.1. Notation

Tensorial notation is used in this work. Bold letters are used to signify vectors or tensors. Inner vector products are represented
by the dot ‘‘ ⋅’’, while inner tensor products are denoted by the colon ‘‘ ∶’’ operators. For instance, given vectors 𝐚 and 𝐛 and tensors
𝐀 and 𝐁, we express 𝐚 ⋅ 𝐛 = 𝐚𝖳𝐛 and 𝐀 ∶ 𝐁 = tr(𝐀𝖳𝐁) = tr(𝐀𝐁𝖳), where the superscript 𝖳 denotes the transpose of a vector or tensor.

Furthermore, we use Div and div to represent the material and spatial divergence operators, respectively. For gradient operations,
∇𝐗(.) = ∇(.) = 𝜕(.)

𝜕𝐗 signifies the material gradient operator, while ∇𝐱(.) =
𝜕(.)
𝜕𝐱 represents the spatial gradient operator.

2.2. Kinematics

Consider an elastomeric body in its initial configuration (at time 𝑡 = 0) that occupies a bounded domain 𝛺0, with boundary 𝛤0
and unit outward normal 𝐦 as shown in Fig. 1(a). We denote by 𝐗 the vector containing the location of an arbitrary point in 𝛺0.
After deformation, at a given time 𝑡 ∈ R+, the position of the point at the current configuration becomes 𝐱 = 𝝌(𝐗, 𝑡), where 𝝌 is
a motion mapping from 𝛺0 to the current configuration 𝛺𝑡. The displacement field 𝐮(𝐗, 𝑡) is then defined as the difference of the
position vector in the initial configuration from the position vector at the current configuration (i.e., 𝐮(𝐗, 𝑡) = 𝐱 − 𝐗). The gradient
of the motion mapping with respect to the initial configuration gives the deformation gradient tensor 𝐅 = ∇𝝌(𝐗, 𝑡).

Moreover, consider that the body 𝛺0 contains a sharp crack 0 as shown in Fig. 1(a). The sharp crack is regularized through
a phase-field variable which varies both temporally and spatially within the body 𝛺0. A continuous scalar field, 𝑑(𝐗, 𝑡), is then
assigned to every point in the material domain, ranging between 0 (intact material) to 1 (fully fractured material), thus allowing

for a gradual transition from intact to damaged regions over a localization band  ⊆ 𝛺0 as illustrated in Fig. 1(b).

3 
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Fig. 1. (a) Geometric description of solid body undergoing fracture propagation in the initial (undeformed) and the current (deformed) configurations. (b)
ubstitution of a sharp crack discontinuity surface in a solid body with a crack band representation of a continuous scalar phase-field, 𝑑, to describe the growth
f fracture within the initial configuration.

.3. The variational phase-field theory and governing differential equations

Assuming that the body is subject to a body force per unit volume 𝐛0 over 𝛺0 and prescribed tractions 𝐭0 on the natural boundary
𝛤0𝑁 , the potential energy functional 𝛱 can be expressed in terms of the displacement field and the phase-field variable as

𝛱(𝐮, 𝑑) = ∫𝛺0

𝛹 (𝐅, 𝜔(𝑑))d𝑉 + ∫𝛺0

𝐺𝑐𝛾(𝑑,∇𝑑)d𝑉 − ∫𝛺0

𝐛0 ⋅ 𝐮d𝑉 − ∫𝛤0𝑁
𝐭0 ⋅ 𝐮d𝐴, 𝐮 = 𝐮0 on 𝛤0𝐷 (1)

where 𝛹 (𝐅, 𝜔(𝑑)) is the degraded strain energy density function defined in terms of 𝐅 and the phase-field degradation function 𝜔(𝑑),
nd 𝐺𝑐 is the fracture energy required to propagate a crack per unit area. The term 𝛾(𝑑,∇𝑑) represents the crack surface density
unction and is defined as 𝛾(𝑑,∇𝑑) = 1

𝑐𝛼

[

1
𝑙𝑐
𝛼(𝑑) + 𝑙𝑐∇𝑑 ⋅ ∇𝑑

]

where 𝑐𝛼 = 4 ∫ 1
0
√

𝛼(𝛽)d𝛽, and ∇𝑑 is the gradient of the phase-field
variable with respect to the initial configuration. The term 𝛼(𝑑) is a characteristic function for the phase-field formulation called the
rack geometric function, and 𝑙𝑐 is the length scale that regularizes the diffuse damage band. It is important to note that in the limit
s 𝑙𝑐 approaches 0, the original Griffith theory for fracture is recovered. Finally, 𝐮0 is the prescribed displacement on the essential
oundary 𝛤0𝐷. Note that 𝛤0𝐷

⋂

𝛤0𝑁 = ∅ and 𝛤0𝐷
⋃

𝛤0𝑁 = 𝛤0.

emark 1. Different versions of the crack geometric function 𝛼(𝑑) have been explored in the literature. In this study, we have opted
or the straightforward form 𝛼(𝑑) = 𝑑2 due to its simplicity and ease of implementation. However, it is essential to note that the
iscussions presented in this manuscript remain applicable to all other versions of this function.

By performing variational operations on the total energy functional 𝛱 , the set of governing differential equations for the
isplacement field and phase-field variable can be derived with respect to the initial configuration as follows

Div (𝐏) + 𝐛0 = 𝟎 in 𝛺0 and 𝐏𝐦 = 𝐭0 on 𝛤0𝑁 (2)

𝐺𝑐
𝑐𝛼

(𝛼′(𝑑)
𝑙𝑐

− 2𝑙𝑐∇𝑑 ⋅ ∇𝑑
)

+
𝜕𝛹 (𝐅, 𝜔(𝑑))

𝜕𝑑
= 0 in  ⊆ 𝛺0 and

2𝑙𝑐𝐺𝑐
𝑐𝛼

∇𝑑 ⋅𝐦 = 0 on 𝛤0 (3)

where 𝐏 = 𝜕𝛹 (𝐅,𝜔(𝑑))
𝜕𝐅 is the degraded first Piola–Kirchhoff stress tensor. In the following section, we present the expression for the

hyperelastic strain energy density function upon which the material’s constitutive response is based. In addition, we also highlight
our approach for considering the tension-compression asymmetry in the coupled large-deformation solid mechanics and phase-field
constitutive framework.
4 
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3. Constitutive theory for hyperelastic materials considering tension-compression asymmetry

A neo-Hookean hyperelastic strain energy density function was used in this work. In the absence of phase-field, this function
an be expressed in terms of the deformation gradient as follows

𝜓𝑚𝑒𝑐ℎ(𝐅) =
𝜇
2
[

𝑡𝑟(𝐅𝖳𝐅) − 3 − 2ln [det 𝐅]
]

+
𝐾𝐵
2

[

ln(det 𝐅)
]2 (4)

where 𝜇 and 𝐾𝐵 represent the rubber (i.e., shear) and bulk moduli of the material, respectively.
In order to express the degraded hyperelastic strain energy density function, the different behaviors of fracture in tension and

compression must be taken into account. Treatment of such intricacies is particularly challenging for problems dealing with large
deformations. In this work, we follow the method proposed by Tang et al. [17]. As such, we first rewrite the intact strain energy
density as a function of principal stretches, 𝜆𝑖 where 𝑖 = 1, 2, and 3

𝜓𝑚𝑒𝑐ℎ = 1
2
𝜇

3
∑

𝑖=1
(𝜆2𝑖 − 1 − 2 ln 𝜆𝑖) +

1
2
𝐾𝐵(ln 𝐽 )2 (5)

where 𝐽 = det 𝐅 and can be calculated as 𝐽 = 𝜆1𝜆2𝜆3. The strain energy density function can then be expressed by introducing 𝜓+
𝑚𝑒𝑐ℎ

and 𝜓−
𝑚𝑒𝑐ℎ, the energies associated with tensile and compression, respectively. These two quantities are defined as

𝜓+
𝑚𝑒𝑐ℎ = 𝜓𝑚𝑒𝑐ℎ(𝜆+𝑖 , 𝐽

+) where 𝜆+𝑖 =

{

𝜆𝑖 for 𝜆𝑖 > 1
1 for 𝜆𝑖 ≤ 1

𝐽+ =

{

𝐽 for 𝐽 > 1
1 for 𝐽 ≤ 1

(6)

and

𝜓−
𝑚𝑒𝑐ℎ = 𝜓𝑚𝑒𝑐ℎ(𝜆−𝑖 , 𝐽

−) where 𝜆−𝑖 =

{

𝜆𝑖 for 𝜆𝑖 < 1
1 for 𝜆𝑖 ≥ 1

𝐽− =

{

𝐽 for 𝐽 < 1
1 for 𝐽 ≥ 1

(7)

The degraded strain energy density function then can be obtained by applying the degradation function 𝜔(𝑑) to the tensile
component 𝜓+

𝑚𝑒𝑐ℎ of the energy [46,47]

𝛹 (𝐅, 𝜔(𝑑)) = 𝜔(𝑑)𝜓+
𝑚𝑒𝑐ℎ + 𝜓

−
𝑚𝑒𝑐ℎ (8)

Here, we select 𝜔(𝑑) = (1−𝜅)(1−𝑑)2+𝜅 as the degradation function, with 𝜅 being a parameter of a very small value that is introduced
to avoid computational difficulty when the phase-field approaches 1. Note that in the absence of phase-field (i.e., 𝑑 = 0), the free
energy decomposition above reduces to 𝛹 = 𝜓+

𝑚𝑒𝑐ℎ + 𝜓−
𝑚𝑒𝑐ℎ which constitutes a constraint to be satisfied by 𝜓

+
𝑚𝑒𝑐ℎ and 𝜓

−
𝑚𝑒𝑐ℎ. The

former refers to the energy with tensile stretching while the latter to the energy with compression, at least in one direction [17].
With the strain energy decomposition defined in Eq. (8) and substituting the assumed form of 𝛼(𝑑), Eq. (3) becomes

2(1 − 𝜅)(1 − 𝑑) −
𝐺𝑐
𝑙𝑐

(

𝑑 − 𝑙2𝑐∇𝑑 ⋅ ∇𝑑
)

= 0 in  ⊆ 𝛺0 and ∇𝑑 ⋅𝐦 = 0 on 𝛤0 (9)

Here, the local crack driving force (𝐗, 𝑡) is introduced to ensure the irreversibility condition 𝑑̇ ≥ 0 is enforced and to capture
dependence on deformation history. This function has the form (𝐗, 𝑡) = max𝑠∈[0,𝑡] 𝜓+

𝑚𝑒𝑐ℎ(𝐱, 𝑠) and represents the maximum value
f the tensile strain energy density ever reached [47]. This approach suppresses the negative damage values and ensures that the
istory variable approach is capable of obtaining the correct homogeneous solution.
The next step is to derive the expression of the first Piola–Kirchhoff stress tensor that arises from the presented degraded strain

nergy density function. The standard approach follows naturally from its derivation as 𝐏 = 𝜕𝛹
𝜕𝐅 = 𝜔(𝑑)

𝜕𝜓+
𝑚𝑒𝑐ℎ
𝜕𝐅 +

𝜕𝜓−
𝑚𝑒𝑐ℎ
𝜕𝐅 . However, as

rgued in [3], such formulation introduces numerical difficulty due to the non-linearity associated with the decomposition of the
train energy density function in the case of large-deformation problems. An alternative formulation that overcomes this drawback –
hich was used here – is to derive the first Piola–Kirchhoff stress tensor based on the whole expression of the strain energy density
unction, i.e., 𝐏 = 𝜕𝛹

𝜕𝐅 where 𝛹 (𝐅, 𝜔(𝑑)) = 𝜔(𝑑)𝜓𝑚𝑒𝑐ℎ(𝐅). Thus, using Eq. (4), we can write

𝐏 = 𝜔(𝑑)
𝜕𝜓𝑚𝑒𝑐ℎ
𝜕𝐅

= [(1 − 𝜅)(1 − 𝑑)2 + 𝜅]
[

𝜇[𝐅 − 𝐅−𝖳] +𝐾𝐵 ln(det 𝐅)𝐅−𝖳] (10)

. Finite element formulation

This section outlines the FE formulation of the coupled large-deformation solid-mechanics phase-field problem. First, we present
he weak forms. Subsequently, we explore the FE discretization and piecewise approximation techniques pertaining to both the
isplacement and phase-field functions. Lastly, we present the resulting discrete equations derived from these methods, which will
e solved using specific numerical algorithms. Note that the FE formulation is performed with respect to the initial configuration.
5 
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4.1. Weak forms

In accordance with standard practice, by considering arbitrary vector and scalar fields 𝐰𝐮 and 𝑤𝑑 , whose components vanish
at the corresponding essential displacement and phase-field boundary segments, respectively, the weak form corresponding to the
displacement field (i.e., Eq. (2)) and the phase-field (i.e., Eq. (9)) governing differential equations can be written as

∫𝛺0

(

𝜕𝐰𝐮
𝜕𝐗

)𝖳

𝐏dV = ∫𝛺0

𝐰𝐮
𝖳𝐛0dV + ∫𝛤0𝑁

𝐰𝐮
𝖳𝐭0dA ∀𝐰𝐮 with 𝐰𝐮 = 𝟎 on 𝛤0𝐷

∫𝛺0

[

−𝐺𝑐 𝑙𝑐

(

𝜕𝑤𝑑
𝜕𝐗

)𝖳

∇𝑑 +
𝐺𝑐𝑑
𝑙𝑐

𝑤𝑑

]

dV + ∫𝛺0

𝑤𝑑
[

−2(1 − 𝜅)(1 − 𝑑)
]

dV = 0 ∀𝑤𝑑 with 𝑤𝑑 = 0 on 𝛤0

(11)

where 𝜕𝐰𝐮
𝜕𝐗 and 𝜕𝑤𝑑

𝜕𝐗 are the partial derivatives of the arbitrary vector fields 𝐰𝐮 and 𝑤𝑑 with respect to the reference coordinates 𝐗,
respectively.

4.2. Finite element discretization

The weak forms (11) are discretized using multi-field finite elements; that is, the body 𝛺0 is discretized into 𝑁𝑒 finite elements
𝑒
0 such that 𝛺0 =

⋃𝑁𝑒
𝑖=1𝛺

𝑒
0. Without loss of generality, in what follows, we consider the case of two-dimensional (2-D) problems,

ith the assumption that the three-dimensional (3-D) formulation extends in a straightforward manner.
In 2-D problems, each element node has three nodal degrees of freedom (dofs): two for the displacement field and one for the

hase-field variable. Piecewise approximations for the displacement field 𝐮(𝐗) and phase-field 𝑑(𝐗) functions are then established
nside each element 𝛺𝑒

0. These approximations are carried out by employing FE shape functions 𝑁
𝐴
(𝐗) in terms of the corresponding

nodal displacements 𝐮𝐴 and nodal phase-field 𝑑𝐴 with the index 𝐴 = 1, 2,… , 𝑁𝑛𝑜𝑑𝑒 denoting the nodes of an element. Thus, the
approximate displacement vector field 𝐮𝐞(𝐗) and approximate scalar phase-field 𝑑𝑒(𝐗) in the interior of an element 𝛺𝑒

0 with 𝑁𝑛𝑜𝑑𝑒
odal points are given by the following equations

𝐮𝐞(𝐗) =
𝑁𝑛𝑜𝑑𝑒
∑

𝐴=1
𝑁𝐴

(𝐗)𝐮
𝐴 and 𝑑𝑒(𝐗) =

𝑁𝑛𝑜𝑑𝑒
∑

𝐴=1
𝑁𝐴

(𝐗)𝑑
𝐴 (12)

here 𝐮𝐴 =
[

𝑢1
𝑢2

]𝐴

is the vector containing the x- and y- components of the displacement nodal values for node 𝐴. Then, using a

tandard Galerkin approach, the arbitrary vector and scalar fields 𝐰𝐞
𝐮(𝐗) and 𝑤

𝑒
𝑑 (𝐗), respectively, are interpolated by the same shape

unctions as 𝐮𝖾(𝖷) and 𝑑𝑒(𝐗)

𝐰𝐞
𝐮(𝖷) =

𝑁𝑛𝑜𝑑𝑒
∑

𝐴=1
𝑁𝐴

(𝐗)𝐰
𝐴
𝐮 and 𝑤𝑒𝑑 (𝐗) =

𝑁𝑛𝑜𝑑𝑒
∑

𝐴=1
𝑁𝐴

(𝐗)𝑤
𝐴
𝑑 (13)

lugging Eq. (13) into (11), we obtain the following element-level equations for each of the finite elements 𝛺𝑒
0

⎧

⎪

⎨

⎪

⎩

∫𝛺𝑒0
𝜕𝑁𝐴

𝜕𝐗 𝐏dV = ∫𝛺𝑒0
𝑁𝐴𝐛0dV + ∫𝛤 𝑒0𝑁

𝑁𝐴𝐭0dA

∫𝛺𝑒0
𝑁𝐴[2(1 − 𝜅)(1 − 𝑑𝑒) − 𝐺𝑐𝑑𝑒

𝑙𝑐

]

dV − ∫𝛺𝑒0
𝐺𝑐 𝑙𝑐

( 𝜕𝑁𝐴

𝜕𝐗
)𝖳∇𝑑𝑒dV = 0

(14)

where 𝛤 𝑒0𝑁 is the natural boundary segment in element 𝛺𝑒
0. This system of coupled equations can be solved iteratively using an

appropriate Newton-type iteration procedure by defining the following element-level residuals for the displacement and phase-field

⎧

⎪

⎨

⎪

⎩

𝐑𝐴𝐮 = − ∫𝛺𝑒0
𝜕𝑁𝐴

𝜕𝐗 𝐏dV + ∫𝛺𝑒0
𝑁𝐴𝐛0dV + ∫𝛤 𝑒0𝑁

𝑁𝐴𝐭0dA = 𝟎

𝐑𝐴𝑑 = ∫𝛺𝑒0
𝑁𝐴[2(1 − 𝜅)(1 − 𝑑𝑒) − 𝐺𝑐𝑑𝑒

𝑙𝑐

]

dV − ∫𝛺𝑒0
𝐺𝑐 𝑙𝑐

( 𝜕𝑁𝐴

𝜕𝐗
)𝖳∇𝑑𝑒dV = 0

(15)

nd using the corresponding tangents for the iterative Newton solution procedure

𝐊𝐴𝐵
𝐮𝐮 = −

𝜕𝐑𝐴𝐮
𝜕𝐮𝐵

, 𝐊𝐴𝐵
𝐮𝑑 = −

𝜕𝐑𝐴𝐮
𝜕𝑑𝐵

𝐊𝐴𝐵
𝑑𝐮 = −

𝜕𝐑𝐴𝑑
𝜕𝐮𝐵

, 𝐊𝐴𝐵
𝑑𝑑 = −

𝜕𝐑𝐴𝑑
𝜕𝑑𝐵

(16)

where 𝐴 and 𝐵 = 1, 2,… , 𝑁𝑛𝑜𝑑𝑒 denoting the nodes of an element.
The finite-element procedures have been incorporated into ABAQUS/Standard [45] through the utilization of the UEL subroutine

eature. Within an analysis, the user subroutine UEL is invoked during each iteration within a given increment. The initial nodal
oordinates, along with the current guesses of nodal displacements and phase-field, are provided as inputs to the subroutine. In
urn, the subroutine requires the computation of nodal residuals (15) and consistent tangents (16) as outputs. In the next section, we
present detailed descriptions of two algorithms for solving the nonlinear system of equations. In particular, we discuss differences
6 
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Table 1
Voigt transformation used for fourth-order tensors [50].
m (i , j) n (k , l)

1 (1,1) 1 (1,1)
2 (2,1) 2 (2,1)
3 (1,2) 3 (1,2)
4 (2,2) 4 (2,2)

in how the update of the consistent tangent matrix is obtained as it pertains to the standard AM/staggered algorithm and the
quasi-Newton based BFGS algorithm.

Note that in this work, we have developed user-defined elements for four-node isoparametric quadrilateral plane-strain elements.
dditionally, to circumvent issues associated with volumetric-locking, we employed the F-bar method introduced by de Souza Neto
et al. [48] for fully integrated elements. Appendix A provides details of the procedure for implementing the F-bar method for 2-D
plane-strain elements. Additionally, in the AM/staggered UEL subroutine developed, the approach detailed in the work of Molnár
and Gravouil [49] was used to implement the numerical integration of the AM iterative process.

Remark 2. Eqs. (15) and (16) correspond to the element-level residuals and tangents associated with the coupled large-deformation
olid-mechanics phase-field problem discussed in this work. These quantities are implemented in a UEL subroutine using specific
atrix forms. For the four-node isoparametric quadrilateral plane-strain element developed in this work, the element displacement
esidual vector and tangent matrix are given by

⎧

⎪

⎨

⎪

⎩

𝐑𝐮 = − ∫𝛺𝑒0
𝖦𝖳𝖯dV + ∫𝛺𝑒0

𝖭𝑢
𝖳𝐛0dV + ∫𝛤 𝑒0𝑁

𝖭𝑢
𝖳 𝐭0dA

𝐊𝐮𝐮 = ∫𝛺𝑒0
𝖦𝖳𝖠𝖦dV

(17)

here 𝖭𝑢 =
[

𝑁1 0 𝑁2 0 … 𝑁𝑁𝑛𝑜𝑑𝑒 0
0 𝑁1 0 𝑁2 … 0 𝑁𝑁𝑛𝑜𝑑𝑒

]

is the standard shape functions array with 𝑁𝑛𝑜𝑑𝑒 being the total number

f nodes per element, and 𝖯, 𝖠, and 𝖦, are the Voigt-vector form of the first Piola–Kirchhoff stress, Voigt-matrix form of the tangent
odulus, and modified matrix form of the shape functions derivatives, respectively, defined as follows

• The first Piola–Kirchhoff stress vector 𝖯 = [𝑃11 𝑃21 𝑃12 𝑃22]𝖳 expressed in Voigt notation
• The tangent modulus 𝖠 written in Voigt notation following the transformation presented in Table 1 where 𝖠𝑚𝑛 = A𝑖𝑗𝑘𝑙 =
(

𝜕𝐏
𝜕𝐅

)

𝑖𝑗𝑘𝑙
. Appendix A provides the exact form of the fourth-order tangent modulus tensor, A𝑖𝑗𝑘𝑙, from which 𝖠 can be readily

determined.
• 𝖦-matrix given by the following array

𝖦 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁1

𝜕𝑋1
0 𝜕𝑁2

𝜕𝑋1
0 … 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋1
0

0 𝜕𝑁1

𝜕𝑋1
0 𝜕𝑁2

𝜕𝑋1
… 0 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋1
𝜕𝑁1

𝜕𝑋2
0 𝜕𝑁2

𝜕𝑋2
0 … 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋2
0

0 𝜕𝑁1

𝜕𝑋2
0 𝜕𝑁2

𝜕𝑋2
… 0 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

On the other hand, the phase-field residual and tangent matrix are defined as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐑𝑑 = − ∫𝛺𝑒0

{

[

𝐺𝑐
𝑙𝑐
𝐍𝑑 𝐝̄𝖳 − 2(1 − 𝜅)(1 − 𝐍𝑑 𝐝̄𝖳)

]

(𝐍𝑑 )𝖳 + 𝐺𝑐 𝑙𝑐 (𝐁𝑑 )𝖳𝐁𝑑 𝐝̄𝖳
}

dV

𝐊𝑑𝑑 = ∫𝛺𝑒0

{

[

𝐺𝑐
𝑙𝑐

+ 2
]

(𝐍𝑑 )𝖳𝐍𝑑 + 𝐺𝑐 𝑙𝑐 (𝐁𝑑 )𝖳𝐁𝑑
}

dV
(19)

where 𝐍𝑑 = [𝑁1 … 𝑁𝑁𝑛𝑜𝑑𝑒 ] is the vector of the shape functions, 𝐁𝑑 =
⎡

⎢

⎢

⎣

𝜕𝑁1

𝜕𝑋1

𝜕𝑁2

𝜕𝑋1
… 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋1

𝜕𝑁1

𝜕𝑋2

𝜕𝑁2

𝜕𝑋2
… 𝜕𝑁𝑁𝑛𝑜𝑑𝑒

𝜕𝑋2

⎤

⎥

⎥

⎦

is the array of shape function

derivatives, and 𝐝̄ = [𝑑1 𝑑2 … 𝑑𝑁𝑛𝑜𝑑𝑒 ] is the vector containing phase-field nodal values within each element.

5. Numerical algorithms for solving the coupled large deformation solid mechanics phase-field problem

The process for solving the system of nonlinear Eqs. (15) typically follows an incremental approach. This involves discretizing
the total time interval [0, 𝑇 ] into discrete time increments [𝑡𝑛, 𝑡𝑛+1]𝑛∈[0,𝑁−1] of length 𝛥𝑡 ∶= 𝑡𝑛+1 − 𝑡𝑛 such that 𝑡0 = 0 and 𝑡𝑁 = 𝑇 , and

evaluating all state variables within the increments. With all state variables known at the instant 𝑡𝑛 (i.e., the deformation gradient

7 
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𝐅𝑛, the phase-field variable, 𝑑𝑛, and the history term 𝑛 = (𝐗, 𝑡𝑛)), the system of equations is then solved for the nodal unknowns
𝑛+1 and 𝑑𝑛+1 at each incremental step until the final increment 𝑡𝑁 = 𝑇 is reached.
This section outlines the procedure for implementing the BFGS algorithm as a quasi-Newton-based approach that combines the

robustness of the AM/staggered algorithm with the efficiency of the full monolithic approach. We begin by first presenting how the
AM/staggered approach is typically implemented and then outline the framework for implementing the BFGS approach as a more
efficient alternative to its staggered counterpart.

5.1. AM/staggered algorithm

The energy functional in Eq. (1) is non-convex with respect to the unknown displacement and phase-field when considered
simultaneously. However, when one variable is held fixed, the functional becomes convex with respect to the other. As a result,
the system of nonlinear coupled Eqs. (15) can be decoupled by fixing one of the dofs (either phase-field or displacement) and then
solving for the other in an alternating manner, resulting in the so-called AM or staggered scheme. The AM/staggered approach
involves the following steps, which are embedded in an iterative procedure.

1. At the 𝑘th iteration of a specific time increment [𝑡𝑛, 𝑡𝑛+1], the element nodal displacement vector 𝐮̄𝑘 = {𝐮𝐴𝑘 }𝐴∈[1,𝑁𝑛𝑜𝑑𝑒] is solved
with the phase-field dofs fixed as obtained from the previous iteration; that is, the residual in Eq. (17) is evaluated as

𝐑𝐮 = −∫𝛺𝑒0
𝖦𝖳𝖯𝑘dV + ∫𝛺𝑒0

𝖭𝑢
𝖳𝐛0dV + ∫𝛤 𝑒0𝑁

𝖭𝑢
𝖳 𝐭0dA = 𝟎, 𝖯𝑘 = 𝖯(𝐮̄𝑘, 𝐝̄𝑘−1) (20)

Eq. (20) can then be solved using a Newton–Raphson iteration scheme by defining the following linearized equation
𝐊𝐮𝐮𝛥𝐮̄ = 𝐑𝐮, where 𝛥𝐮̄ = 𝐮̄𝑘 − 𝐮̄𝑘−1 is the difference between the displacement solution at the previous iteration and the
solution at the current iteration, and 𝐊𝐮𝐮 is the tangent matrix defined in Eq. (17).

2. Then, the nodal phase-field vector at the 𝑘th iteration, 𝐝̄𝑘, is solved with the updated nodal displacements 𝐮̄𝑘; that is, the
residual in Eq. (19) is evaluated as

𝐑𝑑 = −∫𝛺𝑒0

{

[𝐺𝑐
𝑙𝑐

𝐍𝑑 𝐝̄𝖳𝑘 − 2(1 − 𝜅)(1 − 𝐍𝑑 𝐝̄𝖳𝑘 )𝑘

]

(𝐍𝑑 )𝖳 + 𝐺𝑐 𝑙𝑐 (𝐁𝑑 )𝖳𝐁𝑑 𝐝̄𝖳𝑘

}

dV = 𝟎 (21)

which can be solved with the corresponding linearized form 𝐊𝑑𝑑𝛥𝐝̄ = 𝐑𝑑 , where similarly, 𝛥𝐝̄ is the difference between
the phase-field solution at the previous iteration and the solution at the current iteration, and 𝐊𝑑𝑑 is the tangent defined in
Eq. (19).

This procedure is repeated until the final solution converges.

.2. BFGS quasi-Newton algorithm

In the introductory section, it was highlighted that the BFGS quasi-Newton algorithm has demonstrated superior efficiency
n solving the coupled solid mechanics phase-field problem under linear elastic conditions [23]. However, other than Liu et al.
51], who proposed a quasi-Newton scheme for the solution of the coupled governing equations in large-deformation solid shells
ithin linear elastic finite elements, there has been no detailed investigation into its application in scenarios involving hyperelastic
arge-deformation kinematics for elastomeric/polymeric materials. The following highlights the main considerations involved in
mplementing the BFGS method to solve large-deformation solid mechanics-phase-field problems.
Let 𝐳𝑒 to be the vector of element unknown nodal values, defined as 𝐳𝑒 = [𝐮̄, 𝐝̄]𝖳 where 𝐮̄ and 𝐝̄ are the element nodal displacement

nd phase-field values as defined earlier. Eq. (15) can then be written in a compact form as

𝐠(𝐳𝑒) = 𝟎 (22)

q. (22) can be linearized with respect to 𝐳𝑒 using the Newton–Raphson method

𝐠 + 𝜕𝐠
𝜕𝐳𝑒

𝛿𝐳𝑒 = 𝐠 −𝐊𝐞𝛿𝐳𝑒 = 𝟎 where 𝛿𝐳𝑒 = [𝛿𝐮̄, 𝛿𝐝̄]𝖳 (23)

he tangent matrix 𝐊𝐞 (oftentimes referred to as Jacobian matrix) is generally not symmetric since the off-diagonals in Eq. (16) may
ot be equal (i.e., 𝐊𝐴𝐵

𝐮𝑑 ≠ 𝐊𝐴𝐵
𝑑𝐮 ) due to the presence of the history variable  in Eq. (15). However, for weakly coupled problems,

he off-diagonal block matrices can be omitted [23], and Eq. (23) then reduces to
[

𝐊𝐮𝐮 0
0 𝐊𝑑𝑑

] [

𝛿𝐮̄
𝛿𝐝̄

]

=
[

𝐑𝐮
𝐑𝑑

]

(24)

here the relevant tangent matrices and residual vectors are used as defined in Eqs. (17) and (19).
In a quasi-Newton procedure, an approximation to the secant tangent between two successive iterations for a specific time step

𝑛 is estimated. The process involves generating a sequence of refined approximations to the Jacobian matrix at iteration 𝑘, denoted
as 𝐊̃𝑒

𝑘, which adhere to the secant condition

𝐠(𝐳𝑒 ) − 𝐠(𝐳𝑒 ) = 𝐊̃𝑒 (𝐳𝑒 − 𝐳𝑒 ) or 𝛿𝐠 = 𝐊̃𝑒𝛿𝐳𝑒 (25)
𝑘 𝑘−1 𝑘 𝑘 𝑘−1 𝑘 𝑘 𝑘
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Table 2
Material properties used to conduct simulations for each case investigated.

μ (MPa) 𝐾𝐵 (MPa) 𝑙𝑐 (mm) 𝐺𝑐 (N/mm) 𝜅

Single-edge notch (Uniaxial tension) (Section 6.1.1) 80 770 175000 0.024 2.7 10−8

Single-edge notch (Pure shear) (Section 6.1.2) 80 770 175000 0.015 2.7 10−8

Notched beam under three-point bending (Section 6.2) 11 539 25000 2.5 0.228 10−8

where 𝛿𝐠𝑘 = 𝐠𝑘 − 𝐠𝑘−1 and 𝛿𝐳𝑒𝑘 = 𝐳𝑒𝑘 − 𝐳𝑒𝑘−1 so that 𝐊̃
𝑒
𝑘 approaches 𝐊

𝑒
𝑘 as the iterations proceed.

The BFGS method provides a computationally efficient approach to create a series of approximations to [𝐊̃𝑒
𝑘]

−1 that fulfill Eq. (25)
hile preserving the symmetry and positive definiteness of 𝐊̃𝑒

𝑘. This is achieved by updating [𝐊̃𝑒
𝑘−1]

−1 to [𝐊̃𝑒
𝑘]

−1 using a ‘‘product
lus increment’’ formula

[𝐊̃𝑒
𝑘]

−1 =

(

𝐈 −
𝛿𝐳𝑒𝑘𝛿𝐠

𝖳
𝑘

𝛿𝐳𝑒𝖳𝑘 𝛿𝐠𝑘

)

[𝐊̃𝑒
𝑘−1]

−1

(

𝐈 −
𝛿𝐳𝑒𝑘𝛿𝐠

𝖳
𝑘

𝛿𝐳𝑒𝖳𝑘 𝛿𝐠𝑘

)𝖳

+
𝛿𝐳𝑒𝑘𝛿𝐳

𝑒𝖳
𝑘

𝛿𝐳𝑒𝖳𝑘 𝛿𝐠𝑘
(26)

here 𝐈 is the second-order identity tensor.
In the actual implementation of this version of the BFGS method, the algorithm does not store each [𝐊̃𝑒

𝑘]
−1 individually. Instead, it

mploys a ‘‘kernel’’ matrix, denoted as [𝐊̃𝑒
𝑚]

−1, and updates it by pre-multiplying and post-multiplying it with the terms
(

𝐈−
𝛿𝐳𝑒𝑗 𝛿𝐠

𝖳
𝑗

𝛿𝐳𝑒𝖳𝑗 𝛿𝐠𝑗

)

and
(

𝐈 −
𝛿𝐳𝑗𝛿𝐠𝖳𝑗
𝛿𝐳𝑒𝖳𝑗 𝛿𝐠𝑗

)𝖳

, respectively for 𝑗 = 𝑚 + 1, 𝑚 + 2,… , 𝑘. This approach involves inner products of vectors and scaling of

vectors by constants, which makes the method computationally efficient. However, it is advisable to limit the number of such
operations to maintain computational efficiency. Typically, a new kernel matrix is created and stored after several iterations. In
the ABAQUS/Standard implementation, this kernel is the actual Jacobian matrix and is regenerated after a specified number of
iterations without achieving convergence, with a default limit of 8 iterations. ABAQUS/Standard does not recreate the kernel unless
this limit is exceeded, allowing the same kernel to be used for multiple increments if BFGS updates are successful. It should be noted
that the local convergence rate of quasi-Newton techniques falls short of the quadratic convergence rate seen with full Newton–
Raphson iterations, which employ an algorithmically consistent Jacobian matrix [52,53]. Nevertheless, quasi-Newton methods can
offer greater computational efficiency as they eliminate the need to construct and invert a new Jacobian matrix during each iteration.
Furthermore, these methods can help avoid issues related to the singularity of the global tangent stiffness matrix.

The BFGS algorithm is activated in an ABAQUS job by the following prompt

*SOLUTION TECHNIQUE, TYPE=QUASI-NEWTON, REFORM KERNEL=25

where the option ‘‘reform kernel’’ is used to set the number of iterations above which the Jacobian matrix [𝐊̃𝑒
𝑚]

−1 is reformed. In
his work, this number was set to 25. Note that the ABAQUS-specific forms of the residual and tangent matrix required for the
FGS UEL implementation are provided in Appendix B. Additionally, an algorithm detailing the procedure followed to solved the
oupled large-deformation phase-field solid mechanics problem using the two approaches discussed in this work (i.e., BFGS vs.
M/Staggered) is provided in Appendix C.

. Representative numerical examples — results and discussion

This section investigates the computational efficiency of the BFGS algorithm in solving phase-field problems within the large
eformation context. We compare the BFGS approach to the AM/staggered approach through a series of benchmark examples. In
articular, we consider three representative numerical examples of elastomers undergoing deformation in various modes: a single-
dge notch sample under uniaxial tension (SNUT), a single-edge notch sample under pure shear (SNPS), and a notched beam under
hree-point bending (3PB). These examples aim to demonstrate the efficiency of the BFGS algorithm in solving large-deformation
olid mechanics problems with varying complexity and fracture propagation patterns. Note that the 3PB case was chosen to illustrate
he efficacy of the tension-compression decomposition outlined in Section 3. The geometry and boundary conditions for each problem
onfiguration are presented in Fig. 2, and the constitutive properties assigned to the materials used in each example are provided
n Table 2. The material properties for the single-edge notch examples were taken from [47], whereas those corresponding to the
PB were taken from [54].
The simulations using the AM/staggered solver were performed with varying time increments in order to thoroughly appreciate

he differences in computational efficiency between the AM/staggered and BFGS solvers. In what follows, we use the notation below
n reference to the type of simulation performed.

• BFGS-ATS, designating a simulation run with the BFGS solver enriched with an automated time-stepping algorithm (ATS) that
is activated whenever the Jacobian of the finite element is negative. The ATS algorithm consists of reducing the time increment
by half at each integration point.

• SNUT-N2, SNUT-N3, and SNUT-N4, designating SNUT simulations run with the AM/staggered solver with a single time
−2 −3 −4
increment of 𝛥𝑡 = 10 s, 𝛥𝑡 = 10 s, and 𝛥𝑡 = 10 s, respectively.
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Fig. 2. Sample geometry and boundary conditions for the single-edge notch problem loaded by a prescribed displacement 𝑢 under (a) uniaxial tension and (b)
ure shear. (c) Sample geometry and boundary conditions for the notched beam under three point bending loaded by a prescribed displacement 𝑢.

• SNUT-N2N4 and SNUT-N2N5, designating SNUT simulations run with the AM/staggered solver with double time-step
incrementation: an initial time increment of 𝛥𝑡 = 10−2 s until the critical increment, then 𝛥𝑡 = 10−4 s or 𝛥𝑡 = 10−5 s, respectively,
for all subsequent increments until complete fracture.

• SNPS-N2N3, SNPS-N2N4, and SNPS-N2N5, designating SNPS simulations run with the AM/staggered solver with double time-
step incrementation: an initial time increment of 𝛥𝑡 = 10−2 s until the critical increment, then 𝛥𝑡 = 10−3 s, 𝛥𝑡 = 10−4 s, or
𝛥𝑡 = 10−5 s, respectively, for all subsequent increments until complete fracture.

• 3PB-N3, designating a 3PB simulation run with the AM/staggered solver with a single time increment of 𝛥𝑡 = 10−3 s.
• 3PB-N2N4 and 3PB-N2N5, designating 3PB simulations run with the AM/staggered solver with double time-step incrementa-
tion: an initial time increment of 𝛥𝑡 = 10−2 s until the critical increment, then 𝛥𝑡 = 10−4 s or 𝛥𝑡 = 10−5 s, respectively, for all
subsequent increments until complete fracture.

A critical aspect of this study involved maintaining equivalent computational power across all simulations to ensure a fair
ssessment of the solutions’ efficiency. To achieve this, we utilized the Cray supercomputer at the Advanced Research Computing
ARC) facility at Virginia Tech. This setup employed parallel computation across 128 AMD EPYC 7702 CPU cores, guaranteeing
hat any observed differences in performance were solely due to the algorithms themselves, rather than variations in computational
esources.

.1. Single-edge notch specimen

In this section, we examine the case of a single-edge notch elastomeric sample loaded on its top edge quasi-statically by a
rescribed displacement in two directions: vertical, exemplifying a uniaxial tensile mode (SNUT), and horizontal, exemplifying a
ure shear mode (SNPS), as shown in Fig. 2a and b, respectively. Various simulations were conducted, each featuring a unique
umerical setup. This included different solver types (i.e., BFGS vs. AM/staggered), as well as different time-step incrementation
ethods.

.1.1. Uniaxial tension
First, we investigate uniaxial tension in the SNUT case to showcase a mode-I fracture. As mentioned in Section 4.2, we discretized

he problem using linear plane-strain four-node quadrilateral elements. The critical path, where crack propagation was expected,
as meshed using an element size that was at least six times smaller than the length-scale 𝑙𝑐 , while the rest of the sample was meshed
sing a larger size, resulting in 14,205 elements as presented in Fig. 3(a). Various simulations were performed, each with a distinct
10 
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Fig. 3. FE mesh used for each of the three representative numerical examples. The element size was taken to be at least six times smaller than the length-scale
(i.e., 𝑙𝑐∕6). Only the region corresponding to the critical path along which crack was expected to propagate was meshed with the aforementioned size. The rest
of the geometry was meshed using a relatively larger element size. (a) The single-edge notched sample under uniaxial tension (SNUT) consisting of 14 205 finite
lements; (b) the single-edge notched sample under pure shear (SNUT) consisting of 30 769 finite elements; and (c) the notched beam sample under three-point
ending (3PB) consisting of 60 695 finite elements.

able 3
omputational time (in minutes) needed to solve the coupled displacement-phase-field problem for each of the simulations performed.

AM/staggered BFGS

SNUT-N2 SNUT-N3 SNUT-N4 SNUT-N2N4 SNUT-N2N5 BFGS-ATS

SNUT 8 74 683 304 3068 29

SNPS-N2N3 SNPS-N2N4 SNPS-N2N5 BFGS-ATS

SNPS 97 437 4055 356

3PB-N3 3PB-N2N4 3PB-N2N5 BFGS-ATS

3PB 224 1902 8640 136

numerical configuration: type of solver used (i.e., BFGS vs. AM/staggered), and type of time-step incrementation (i.e., BFGS-ATS,
SNUT-N2, SNUT-N3, SNUT-N4, SNUT-N2N4, and SNUT-N2N5).

The force–displacement curves for the various simulations performed are presented in Fig. 4a. The computational times required
o obtain these solutions are listed in Table 3. It was found that in order to capture the sudden drop in stress that is expected due
o unstable crack propagation, the AM/staggered approach required extremely small time increments, i.e, 𝛥𝑡 = 10−4 s, resulting in a
large number of increments and prolonged computational time. In contrast, the BFGS algorithm was able to capture the catastrophic
failure with fewer increments and less computational time. This is evident in Fig. 4a, where it can be seen that increasingly smaller
ime increments were required for the AM/staggered solution to converge to the BFGS-based solution. Specifically, the BFGS solution
as computed much faster, taking only 29 min compared to 683 min (11.4 h) for the AM/staggered approach (as shown by the
urves corresponding to BFGS-ATS and SNUT-N4 in Fig. 4a). Note that even after using a larger time step for the first couple of
ncrements leading to the critical time increment, i.e., SNUT-N2N4 configuration, the AM/staggered algorithm still required 4.5
ore hours to arrive at the solution that the BFGS algorithm computed in 29 min (see Table 3). The solution computed by the
NUT-N2N5 solver took 3068 min (51 h), corresponding to a whopping 106 increase in computational time compared the BFGS
olver. Fig. 5 shows the contours of the phase-field variable computed using the BFGS solver with ATS control and the AM/staggered
olver using 𝛥𝑡 = 10−2, 10−3, and 10−4 s. Again, the phase-field profile calculated using the AM/staggered solver with the smallest
ime increment is seen to provide the closest match to the one computed using the BFGS solver.

.1.2. Pure shear
In the SNPS case, we applied a quasi-static horizontal displacement on the top-edge of the rubber specimen to simulate pure
hear loading, as illustrated in Fig. 2b. Similar to the SNUT case, we used linear plane-strain quadrilateral elements and discretized

11 
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Fig. 4. Force-displacement plots for the single-edge notch under uniaxial tension problem obtained using the BFGS and the AM/staggered algorithms. BFGS-ATS
denotes the BFGS solver with an automated time-stepping algorithm, while the affix -N2, -N3, and -N4 refer to the AM/staggered solver with single time
increments of 10−2 s, 10−3 s, and 10−4 s, respectively. The affix -N2N4 and -N2N5 refers to the AM/staggered solver with double time incrementation: an initial
time increment of 10−2 s until the critical increment, followed by 10−4 s or 10−5 s for all subsequent increments until complete fracture, respectively.

the problem with an element size that is at least six times smaller than the length-scale in the critical region where crack was
expected to propagate, resulting in a total of 30 769 finite elements as shown in Fig. 3(b).

Fig. 4b shows the force–displacement curves obtained for each particular case, and Table 3 lists the corresponding computational
imes required to solve each problem. As in the SNUT case, the AM/staggered solver required increasingly smaller time increments
o produce the same response as the BFGS algorithm. More precisely, the AM/staggered algorithm required a reduction in time
ncrement to 10−5 s after the critical region (i.e., SNPS-N2N5) to closely match the force–displacement curve of the BFGS solution.
n terms of computational cost, the BFGS solver required only 356 min (5.93 h), in contrast to the AM/staggered solver (i.e., SNPS-
2N5), which needed 4055 min (67.6 h), making it 11.4 times as time-consuming as the BFGS. Fig. 6 illustrates the phase-field

contours for each case examined in this section. The fracture profile computed by the BFGS solver is qualitatively most similar to
the one obtained using the AM/staggered solver with the smallest time increment (i.e., SNPS-N2N5).

6.2. Beam under three-point bending

In this section, we examine the case of a notched elastomeric beam loaded under three-point bending as shown in Fig. 2c. We
used plane-strain quadrilateral elements to discretize the problem into 60 695 finite elements, with an element size at least six times
as small as the length-scale, as shown in Fig. 3(c). We performed the following simulations: BFGS-ATS, 3PB-N3, 3PB-N2N4, and
3PB-N2N5.
12 
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Fig. 5. Phase-field contours for the single-edge notch under uniaxial tension (SNUT) problem. Four out of the six simulations are displayed: BFGS-ATS, which
denotes the BFGS solver with an automated time-stepping algorithm, and -N2, -N3, -N4, corresponding to the AM/staggered solver with varying time increments
of 10−2 s, 10−3 s, and 10−4 s, respectively.

Fig. 4c presents the force–displacement curves for each case in the 3PB example, while Table 3 details the computational times
eeded for each configuration. Similar to the SNUT and SNPS examples, the AM/staggered solver required smaller and smaller time
ncrements to match the force–displacement response achieved by the BFGS method. Notably, the closest match to the BFGS solver’s
esult (specifically, 3PB-N2N5) took 8640 min (144 h) with the AM/staggered solver, compared to just 136 min (2.3 h) with the
FGS solver. This represents a significant 193 percent increase in computational time. Furthermore, Fig. 7 illustrates the phase-
field contours for each case in this section. The phase-field profile calculated by the BFGS algorithm shows the closest qualitative
resemblance to that obtained using the AM/staggered solver with the smallest time increment (i.e., 3PB-N2N5).

6.3. Discussion and future outlook

The results from previous sections clearly indicate that the BFGS algorithm offers superior efficiency over the AM/staggered
approach in solving the system of nonlinear solid-mechanics phase-field governing Eqs. (2) and (3). This advancement is significant,
considering the traditionally high computational demands of phase-field damage frameworks, which have been an obstacle in their
development. Moreover, the implementation of the BFGS algorithm as a more elegant alternative to the AM/staggered solver
has demonstrated its potential in accurately and efficiently simulating complex fracture patterns in hyperelastic materials, as
exemplified in Section 6.2. Such capability marks a notable progression in addressing the complexities of fracture propagation and
the accuracy required in predictive simulations. The findings of this study shift the narrative from grappling with computational
burdens – which has so far been the major focus of recent developments – to harnessing the intrinsic strengths of the phase-field
approach in capturing crack propagation in complex material systems. Consequently, this work enables the application of the
phase-field approach to more accurately represent soft material behaviors under coupled mechanical–environmental conditions,
such as thermo-oxidation [55], photo-oxidation [56], or other types of nonlinear dissipative heterogeneous systems such as asphalt
oncrete [57–59] or composites such as fiber-reinforced composites [60], thereby extending its utility across a wider spectrum
f multi-physics problems. Furthermore, the framework can also be extended to account problems related to fatigue fracture in
yperelastic materials [7,61].
13 
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Fig. 6. Phase-field contours for the single-edge notch under pure shear (SNPS) problem. BFGS-ATS denotes the BFGS solver with an automated time-stepping
algorithm, and -N2N3, -N2N4, -N2N5, refer to the AM/staggered solver with double time incrementation: an initial time increment of 10−2 s until the critical
increment, followed by 10−3 s, 10−4 s, or 10−5 s for all subsequent increments until complete fracture, respectively.

7. Conclusions

In this work, we have introduced the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as an alternative approach to solve
the nonlinear system of governing equations resulting from large-deformation solid mechanics and phase-field problems in the
context of hyperelastic materials. The phase-field approach, while capable of simulating complex fracture patterns, is hampered
by the substantial computational cost required to solve the displacement-phase-field minimization problem. Here, we propose the
BFGS algorithm as an alternative method for solving the associated weak forms, and numerically implement the framework in a
user-defined element (UEL) subroutine within Abaqus/Standard. Differences pertaining to the numerical solution procedure of the
BFGS solver were presented in detail in comparison with the more traditional alternating minimization (AM)/staggered algorithm.

Several benchmark examples were studied, exemplifying elastomers undergoing deformation in various modes: a single-edge
notch sample under uniaxial tension (SNUT), a single-edge notch sample under pure shear (SNPS), and a notched beam under
three point bending (3PB). These examples were intended to demonstrate the efficiency of the BFGS algorithm in solving large-
deformation solid mechanics problems with varying complexity and fracture propagation patterns. The 3PB case, in particular, was
chosen so as to illustrate the efficacy of the incorporated tension-compression decomposition of the associated hyperelastic strain
energy density function. Across all three representative numerical examples, the BFGS algorithm consistently outperformed the
AM/staggered method:

• For the SNUT case, BFGS was 23.5 times faster than the most accurate AM/staggered solution (29 min vs. 683 min).
• In the SNPS scenario, BFGS demonstrated an 11.4-fold speed increase (356 min vs. 4055 min).
• The 3PB example showed the most dramatic improvement, with BFGS computing the solution 63.5 times faster than the
AM/staggered approach (136 min vs. 8640 min).

Importantly, our results demonstrate that the BFGS algorithm improves the computational efficiency in solving the coupled
large deformation phase-field-displacement solid mechanics problems while reproducing the same fracture behavior and force–
displacement responses as the AM/staggered solutions with the most refined time step. This combination of accuracy and efficiency
14 
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Fig. 7. Phase-field contours for the notched beam under three-point bending (3PB) problem. BFGS-ATS denotes the BFGS solver with an automated time-stepping
lgorithm, while 3PB-N3 refers to the AM/staggered solver with a single time increment of 10−3 s all throughout the simulation. 3PB-N2N4 and 3PB-N2N5 refer
to the AM/staggered solver with double time incrementation: an initial time increment of 10−2 s until the critical increment, followed by 10−4 s or 10−5 s for
all subsequent increments until complete fracture, respectively.

makes the BFGS approach a promising tool for advancing the practical application of phase-field models in simulating complex
fracture patterns in hyperelastic materials.

The findings presented in this study have significant implications for the field of fracture mechanics in hyperelastic materials.
The demonstrated efficiency of the BFGS algorithm paves the way for more widespread adoption of phase-field methods in studying
complex fracture phenomena in soft materials. This is particularly relevant for scenarios involving multi-physics conditions, such as
thermo-oxidation and photo-oxidation, where computational demands have typically been a limiting factor. Moreover, the enhanced
computational efficiency offered by the BFGS algorithm opens up new avenues for investigating larger and more complex systems
within reasonable timeframes. This advancement is particularly beneficial for studying composite materials and systems exhibiting
various dissipation mechanisms, such as fatigue fracture.
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Appendix A. F-bar method

This section provides details of the displacement residuals and tangents for 2-D F-bar plane-strain quadrilateral elements in the
reference configuration according to de Souza Neto et al. [48].

First, the F-bar deformation gradient is defined as

𝐅̄ =
⎡

⎢

⎢

⎣

𝐅̄𝑝𝑒
0
0

0 0 1

⎤

⎥

⎥

⎦

where 𝐅̄𝑝𝑒 =
(

det 𝐅0
det 𝐅

)1∕2
𝐅 (27)

where 𝐅0 is the deformation gradient at the centroid of the element. The degraded first Piola–Kirchhoff stress then becomes

𝐏(𝐅̄) =
(

det 𝐅0
det 𝐅

)−1∕2
𝐏̂(𝐅̄) (28)

where 𝐏̂(𝐅̄) is the stress tensor in Eq. (10) evaluated using 𝐅̄ instead of 𝐅. 𝐏(𝐅̄) can be written in Voigt notation as 𝖲̄ =
(

det 𝐅0
det 𝐅

)−1∕2
[𝑃11 𝑃21 𝑃12 𝑃22]𝖳. Hence, the matrix form of the displacement residual in Eq. (17) becomes

𝐑𝐮 = −∫𝛺𝑒
𝖦𝖳𝖲̄dV + ∫𝛺𝑒0

𝖭𝑢
𝖳𝐛0dV + ∫𝛤 𝑒0𝑁

𝖭𝑢
𝖳 𝐭0dA (29)

ubsequently, the matrix form for the displacement tangent is given by

𝐊𝐮𝐮 = ∫𝛺𝑒0

[

𝖦𝖳𝖠𝖦 +
(

det 𝐅0
det 𝐅

)−1∕2
𝖦𝖳(𝖰𝑅0𝖦𝟢 − 𝖰𝑅𝖦)

]

dV (30)

here 𝖠, 𝖰𝑅, and 𝖰𝑅0 are the matrix forms of the fourth-order tensors

A =
𝜕𝐏̂(𝐅̄)
𝜕𝐅̄

Q𝑅0 =
1
2
A ∶ (𝐅̄⊗ 𝐅−𝖳

0 ) − 1
2
𝐏(𝐅̄)⊗ 𝐅−𝖳

0

Q𝑅 = 1
2
A ∶ (𝐅̄⊗ 𝐅−𝖳) − 1

2
𝐏(𝐅̄)⊗ 𝐅−𝖳

(31)

he fourth-order tangent modulus tensor A is given in index form as follows

A𝑖𝑗𝑘𝑙 = 𝜇𝛿𝑖𝑘𝛿𝑗𝑙 + [𝜇 −𝐾𝐵 ln(det 𝐅̄)]𝐹−1
𝑙𝑖 𝐹

−1
𝑗𝑘 +𝐾𝐵𝐹−1

𝑙𝑘 𝐹
−1
𝑗𝑖 (32)

rom which the corresponding Voigt second-order tensor form can be derived using the transformation table in Remark 2.

ppendix B. Abaqus element-level residual and tangent used in the BFGS uel subroutine: 𝗥𝗛𝗦 and 𝗔𝗠𝗔𝗧𝗥𝗫

In ABAQUS, each UEL developed must contain two important outputs: the element-level residual denoted by 𝖱𝖧𝖲, and the
lement-level tangent denoted by 𝖠𝖬𝖠𝖳𝖱𝖷. For the BFGS UEL subroutine developed in this work, the following order of indices
as used

• Residual (dimension 1 ×𝑀)
𝖱𝖧𝖲 =

[

𝑅1 𝑅1 𝑅2 𝑅2 …𝑅𝑀𝑅𝑀𝑅1𝑅2 …𝑅𝑀
]

𝑢1 𝑢2 𝑢1 𝑢2 𝑢1 𝑢2 𝑑 𝑑 𝑑
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• Tangent (dimension 3𝑀 × 3𝑀)

𝖠𝖬𝖠𝖳𝖱𝖷 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾11
𝑢1𝑢1

𝐾11
𝑢1𝑢2

… 𝐾1𝑀
𝑢1𝑢1

𝐾1𝑀
𝑢1𝑢2

𝐾11
𝑢1𝑑

… 𝐾1𝑀
𝑢1𝑑

𝐾11
𝑢2𝑢1

𝐾11
𝑢2𝑢2

… 𝐾1𝑀
𝑢2𝑢1

𝐾1𝑀
𝑢2𝑢2

𝐾11
𝑢2𝑑

… 𝐾1𝑀
𝑢2𝑑

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾𝑀1
𝑢1𝑢1

𝐾𝑀1
𝑢1𝑢2

… 𝐾𝑀𝑀
𝑢1𝑢1

𝐾𝑀𝑀
𝑢1𝑢2

𝐾𝑀1
𝑢1𝑑

… 𝐾𝑀𝑀
𝑢1𝑑

𝐾𝑀1
𝑢2𝑢1

𝐾𝑀1
𝑢2𝑢2

… 𝐾𝑀𝑀
𝑢2𝑢1

𝐾𝑀𝑀
𝑢2𝑢2

𝐾𝑀1
𝑢2𝑑

… 𝐾𝑀𝑀
𝑢2𝑑

𝐾11
𝑑𝑢1

𝐾11
𝑑𝑢2

… 𝐾1𝑀
𝑑𝑢1

𝐾1𝑀
𝑑𝑢2

𝐾11
𝑑𝑑 … 𝐾1𝑀

𝑑𝑑

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾𝑀1
𝑑𝑢1

𝐾𝑀1
𝑑𝑢2

… 𝐾𝑀𝑀
𝑑𝑢1

𝐾𝑀𝑀
𝑑𝑢2

𝐾𝑀1
𝑑𝑑 … 𝐾𝑀𝑀

𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

here the displacement components in 𝖱𝖧𝖲 and 𝖠𝖬𝖠𝖳𝖱𝖷 are given by Eqs. (29) and (30), respectively, whereas those corresponding
o the phase-field are given by Eq. (19).

ppendix C. Algorithm for solving coupled large deformation solid mechanics and phase-field problems

Algorithm 1: Algorithm for solving coupled large deformation solid mechanics and phase-field problems
Input: Material properties
Output: Converged solution for displacement 𝐮 and phase-field 𝑑
Initialize variables and parameters; Choose solution method: Staggered or BFGS; while not converged do

if Staggered method then
for each iteration 𝑘 do

Solve for displacement 𝐮̄𝑘 with fixed 𝐝𝑘−1:
• Calculate residual: 𝐑𝐮 = − ∫𝛺𝑒0

𝖦𝖳𝖯𝑘dV + ∫𝛺𝑒0
𝖭𝑢

𝖳𝐛0dV + ∫𝛤 𝑒0𝑁
𝖭𝑢

𝖳 𝐭0dA with 𝖯𝑘 = 𝖯(𝐮̄𝑘,𝐝𝑘−1)

• Solve: 𝐊𝐮𝐮𝛥𝐮̄ = 𝐑𝐮 with 𝛥𝐮̄ = 𝐮̄𝑘 − 𝐮̄𝑘−1

Solve for phase-field 𝐝𝑘 with updated 𝐮̄𝑘:

• Calculate residual: 𝐑𝑑 = − ∫𝛺𝑒0

{

[

𝐺𝑐
𝑙𝑐
𝐍𝑑𝐝𝖳𝑘 − 2(1 − 𝜅)(1 − 𝐍𝑑𝐝𝖳𝑘 )𝑘

]

(𝐍𝑑 )𝖳 + 𝐺𝑐 𝑙𝑐 (𝐁𝑑 )𝖳𝐁𝑑𝐝𝖳𝑘

}

dV

• Solve: 𝐊𝑑𝑑𝛥𝐝 = 𝐑𝑑

Check convergence;
end

else if BFGS method then
Compute initial approximation to the inverse of the Jacobian, 𝐊̃−1

0 ; Set initial 𝐳0 = [𝐮̄0, 𝐝̄0]𝑇 ;
for each iteration 𝑘 = 1, 2,… do

Solve for the correction: 𝐜 = −[𝐊̃𝑘−1]−1𝐠(𝐳𝑘−1), where 𝐠 = [𝐑𝑢,𝐑𝑑 ]𝑇 ;
Update solution: 𝐳𝑘 = 𝐳𝑘−1 + 𝐜;
Compute the change in residual: 𝛿𝐠 = 𝐠(𝐳𝑘) − 𝐠(𝐳𝑘−1);
if not converged then

Update the approximation of the inverse Jacobian using the BFGS formula:

[𝐊̃𝑘]−1 =

(

𝐈 −
𝛿𝐳𝑘𝛿𝐠𝖳𝑘
𝛿𝐳𝖳𝑘𝛿𝐠𝑘

)

[𝐊̃𝑘−1]−1
(

𝐈 −
𝛿𝐳𝑘𝛿𝐠𝖳𝑘
𝛿𝐳𝖳𝑘𝛿𝐠𝑘

)𝖳

+
𝛿𝐳𝑘𝛿𝐳𝖳𝑘
𝛿𝐳𝖳𝑘𝛿𝐠𝑘

end
Check convergence;

end
end

end
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