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Abstract. We explore the possibility of simulating the grade-two fluid model
in a geometry related to a contraction rheometer, and we provide details on
several key aspects of the computation. We show how the results can be used
to determine the viscosity ν from experimental data. We also explore the

identifiability of the grade-two parameters α1 and α2 from experimental data.
In particular, as the flow rate varies, force data appears to be nearly the same

for certain distinct pairs of values α1 and α2; however, we determine a regime
for α1 and α2 for which the parameters may be identifiable with a contraction
rheometer.

1. Introduction. A rheometer is a device that is used to determine physical prop-
erties of fluids such as viscosity, but also other properties for non-Newtonian fluids,
via controlled experiments. To use a rheometer to characterize parameters used in
computational models of fluids, it is necessary to have a way to convert data from
the form produced by the rheometer into an estimate of model parameters. In ideal
cases of hypothetical rheometers [20], this can be done with analytical solutions of
the model equations. But in more realistic cases, it is necessary to solve the model
equations numerically in the rheometer geometry, creating a mapping from model
parameters to approximations of the rheometer data. Then one can attempt to in-
vert this mapping to generate model parameters from experimental data. Here we
explore the first step (the forward problem) for a particular model and a particular
rheometer geometry. In a subsequent paper [18], we will examine the corresponding
inverse problem.

The grade-two fluid model is the lowest-order member of a family of models pro-
posed by Rivlin and Ericksen [7, 9]. In these models, the stress-strain relationship
involves derivatives of the fluid velocity. The grade-two model involves two param-
eters in addition to the fluid viscosity and has been widely studied [6]. On the
other hand, computational models have been limited so far by restrictions on the
two parameters, the dimension, or boundary conditions [3, 4, 8, 9].

Recently, an algorithm was proposed [16] for both two and three dimensions that
supports the use of general parameters and inflow boundary conditions. We use
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this algorithm to compute a force integral over the contraction region for the flow
in a contracting duct. We compute the force integral over a range of parameters
and carefully analyze the structure of the resulting data to determine a regime in
which we may be able to identify parameters in the grade-two model.

We study the proposed computational method in detail. We point out another
algorithm designed for more restrictive settings. The latter algorithm is able to
find solutions for much larger parameter values, for constrained parameter values
(α1 + α2 = 0). To improve our solves and to extend the parameter regime where
we are able to solve with the more general method, we consider an implementation
of the extrapolation technique known as Anderson Acceleration (AA) [2], similar to
that given in [14, 15].

The remainder of this paper is organized as follows. Sections 1.1-1.7 summarize
the main results from [16], namely the new algorithm for the grade-two model
and the theory describing its convergence; additionally, here we provide details on
an Anderson accelerated version of the nonlinear iteration. Section 2 describes the
contracting duct domain over which we will perform the force integral computations,
and describes the main characteristics of the flow in this duct. Section 3 contains the
main results of the paper. In this section we define the force integral and provide a
study of the structure of the computed data with respect to each of its parameters
in order to determine a regime in which this rheometer may be used to identify
parameters in the grade-two model. Section 4 contains the computational details of
the calculations performed in the preceeding section focusing on the computational
mesh and its local refinement. The included appendix contains further technical
details on determining appropriate inflow boundary conditions for grade-two flow
in both a channel and a pipe.

1.1. Grade-two fluid model. The lowest-order, grade-two model of Rivlin and
Ericksen [7, 9] can be expressed as

−ν∆u+ u · ∇u+∇p = ∇· τ̂ ,
∇·u = 0 in Ω, u = g on ∂Ω,

(1)

where

τ̂ = α1

(
u · ∇A−A◦(∇u)t − (∇u)◦A

)
+ (2α1 + α2)A◦A, (2)

and A = ∇u + (∇u)t. We use the operator ◦ to explicitly denote tensor multi-
plication, which in this case is simply matrix multiplication. We assume that the
boundary data g is defined on all Ω, is divergence free, and sufficiently smooth, to
be specified subsequently.

The equations (1–2) can be viewed as a perturbation of the Navier–Stokes system

−∆u+Ru · ∇u+∇p = 0,

∇·u = 0 in Ω, u = g on ∂Ω,
(3)

where R = UL/ν is the Reynolds number (U is a velocity scale and L is a length
scale used to nondimensionalize the equations). When R = 0, the system (3) is
called the Stokes equations. The pressure p has been rescaled as well.

1.2. Special case in dimension two. When α1+α2 = 0, there is a simplification
[8, 9] that can be made in two dimensions that reduces the system (1–2) to

−ν∆u+ z(u2,−u1)t +∇q = 0, ∇·u = 0, νz + α1u · ∇z = ν curlu, in Ω,
(4)
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where curlu = (u2,1 − u1,2) and p = q + 1
2 |u|2. Here, z = curl (u − α1∆u) [9].

Unfortunately, this simplification does not generalize to α2 ̸= −α1 or to three
dimensions. Thus we consider the following.

1.3. Alternate formulation of the grade-two model equations. Define the
tensor u¹ u by (u¹ u)ij = ui uj . Then

∇· (u¹ u) = u · ∇u.

Let π be related to p by
νπ + α1u · ∇π = p. (5)

Define
τ = α1(∇u)t◦A+ (α1 + α2)A◦A− u¹ u, (6)

and
N(u, π) = −α1π∇ut + τ .

Note that N is not a symmetric tensor due to the term π∇ut. The incompress-
ibility condition ∇·u = 0 implies that

∇· (π∇ut) = ∇ut∇π, ∇·N(u, π) = −α1∇ut∇π +∇· τ . (7)

Therefore

∇·N(u, π) = −α1∇ut∇π +∇·
(
α1∇ut◦A+ (α1 + α2)A◦A− u¹ u

)
. (8)

Now consider the problem proposed in [16]:

−∆u+∇π = w in Ω, ∇·u = 0 in Ω, u = g on ∂Ω,

(νI + α1u · ∇)w = ∇·N(u, π) in Ω, w = wb on Γ−,
(9)

where
Γ− =

{
x ∈ ∂Ω

∣∣ α1 g(x) · n < 0
}
. (10)

The following is proved in [16].

Theorem 1.1. Suppose that (u, π) solves (9) and p is given by (5). Then (u, p)
satisfies (1) with τ̂ defined by (2). The vector function w satisfies

w =
1

ν

(
∇· τ̂ − u · ∇u−∇p

)
+∇π.

One modeling challenge arises because (1) is a third-order PDE due to the pres-
ence of the term u · ∇(∆u). Therefore it is necessary to specify an additonal
boundary condition beyond what would be done for the Navier–Stokes equations to
have a unique solution. The quantity w on which we pose a boundary condition is
the divergence of the stress.

1.4. An algorithm for the transformed equations. The system (9) is analo-
gous to the reduced system in [9], and that paper suggested the algorithm used in
[16] for solving (9): start with some w0, then solve for n g 1

−∆un +∇πn = wn−1 in Ω, ∇·un = 0 in Ω, un = g on ∂Ω,

(νI + α1u
n · ∇)wn = ∇·N(un, πn) in Ω, wn = wb on Γ−.

(11)

For definiteness, we will take w0 = wb. In [9], convergence of this iteration is
proved for small data g and wb.

The following discrete variational form of (11) which is suitable for finite element
approximation, and accompanying numerical algorithm, is given in [16]. Let Wh

be the space of continuous, vector-valued, piecewise polynomials of degree k, let
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Vh =
{
v ∈Wh

∣∣ v = 0 on ∂Ω
}
, and let Πh be continuous, scalar-valued, piecewise

polynomials of degree k − 1. For the computations shown throughout this paper,
we use k = 4.

First, using the iterated penalty method: find un,ℓ ∈ Vh + g such that∫
Ω

∇u
n,ℓ :∇v dx+ ρ

∫
Ω

∇·u
n,ℓ

∇·v dx =

∫
Ω

w
n−1

· v dx−

∫
Ω

∇· z
ℓ
∇·v dx, ∀v ∈ Vh,

z
ℓ+1 = z

ℓ + ρu
n,ℓ

.

(12)

Once this is converged, we set un = un,ℓ and define the pressure via [12]
∫

Ω

πn q dx =

∫

Ω

−∇· zℓ+1 q dx ∀q ∈ Πh. (13)

We can pose the transport equation (11) via: find wn ∈ Ṽh +wb such that

ν

∫

Ω

wn · v dx+ α1

∫

Ω

(
un · ∇wn

)
· v dx−

∫

Ω

(
∇·N(un, πn)

)
· v dx = 0 ∀v ∈ Ṽh,

(14)

where wb is posed only on the inflow boundary, that is,

Ṽh =
{
v ∈Wh

∣∣ v = 0 on Γ−

}
, Γ− =

{
x ∈ ∂Ω

∣∣ n · g < 0
}
.

1.5. Anderson accelerating the solution sequence. We consider augmenting
the solver for nonlinear system (11), which is implemented via (12)-(14), by applying
a filtered version of AA as in [14, 15] to the approximation sequences {un} and {zn}.

The first equation in (11) is solved by the iterated penalty method (12), which
also generates zn. The L2 projection of the divergence of zn is computed via (13)
and used to solve for the auxiliary variable wn in (14). For consistency, it makes
sense to perform the extrapolation on zn along with un, with the extrapolation
parameter determined entirely by un.

Specifically, we consider the following modification to (12)-(14). Starting with an
initial iterate u0, let ûn = un,l upon convergence of (12). The algorithm recombines
up to mmax previous iterates ûj and update steps δuj = ûj−uj−1, for n−m f j f
n, to form the next iterate un. It also recombines the corresponding iterates and
updates steps zj and δzj = ẑj − zj−1 to form the next iterate zn. The algorithm
with depth m = 0 reduces to the original fixed-point iteration without acceleration.

The filtered version of AA described below was introduced in [14] and built upon
in [15] to better control the accumulation of higher-order terms in the residual ex-
pansion by enforcing a sufficent linear independence condition (or, if the parameter
σ is chosen close enough to 1, a near-orthogonality condition), between the columns
of the coefficient matrix of the underlying least-squares problem. The acceleration
becomes an enabling technology allowing the solution for larger parameter pairs
(α1, α2) than can be solved without the acceleration. This is demonstrated and
further discussed in appendix C.

Filtered AA is implemented and described naturally as a linear algebra routine,
operating on the coefficients Un of the basis expansion un =

∑
Un
i ϕi, where the

{ϕi} span the discrete space Vh. In agreement with standard practice, the inner
optimization for this problem is performed with respect to the l2 norm.

Algorithm 1.2. (Filtered AA.) Set depth mmax. Compute Û1 and δUn =

Û1 − U0.
Set m0 = 0, F0 =

(
(δUn+1 − δUn)

)
and E0 =

(
(Un − Un−1)

)
.

For n = 1, 2, . . ., set mn = min{mn−1 + 1,mmax}
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Compute X̂n+1 and δXn+1 = X̂n+1 −Xn, for X = {U,Z}
Set FXn =

(
(δXn+1 − δXn) FXn−1

)
and EXn =

(
(Xn −Xn−1) EXn−1

)
,

for X = {U,Z}.
Set (EUn, FUn, EZn, FZn,mn, γn) = Filter (EUn, FUn, δU

n+1, EZn, FZn,mn).
Set damping factor 0 < βn f 1.
Set Xn+1 = Xn + βn δX

n+1 − (EXn + βn FXn) γn, for X = {U,Z}.

The filtering algorithm computes the solution to a least-squares problem of the
form γn = argminµ∈Rmn ∥δUn+1 − Fnγ∥l2 , such that columns of Fn are filtered out
if the direction sine between any column of Fn and the subspace spanned by the
columns to its left are less in magnitude than parameter σ. In [15] this is referred
to as angle filtering. Setting σ = 0 means no filtering is performed, and setting
σ = 1 filters out any column of Fn that is not orthogonal to the columns to its
left. Here we use a dynamic filtering strategy as was shown effective in [14, 15].
This method starts with a higher filtering tolerance σmax which filters out more
columns in the preasymptotic regime and relaxes to a lower tolerance σmin which
uses more columns for a better optimization in the asymptotic regime. Here we use

σmin = 0.1, σmax = 2−1/2, and σ = max{min{σmax, ∥δUn+1∥1/2l2
}, σmin}.

Algorithm 1.3. ((E,F,EZ, FZ,m, γ) = Filter(E,F, δU,EZ, FZ,m).) Given
minimum and maximum filtering thresholds 0 f σmin < σmax < 1
Compute F = QR, the thin QR decomposition of F

Set σ = max{min{σmax, ∥δUn+1∥1/2l2
}, σmin}

For i = 2, . . .mn

Compute σi = |rii|/∥fi∥l2 , where rii is the diagonal entry of R, and fi is column
i of F

If σi < σ, remove column i from F , E, FZ and EZ, and set m = m− 1
If any columns were removed, recompute F = QR
Solve Rγ = QT δU for γ

In the examples that follow we perform the iterations without damping (βn = 1
for all n). In practice, 0 < βn < 1 can often be used to solve problems for a wider
range of parameters.

1.6. Required inflow boundary conditions. One feature of the proposed
method (11) is that it clarifies the required additional boundary condition, namely
for w = −∆u +∇π. Although we cannot say how to pick this in general, Appen-
dix B computes w for typical flow geometries. We can extend this using Amick’s
theorem [1] as described in [17].

1.7. Theoretical details. We collect in Appendix A details on the Lebesgue and
Sobolev spaces and norms used. Let d be the dimension of Ω. Assume that the
domain regularity asssumtion [16, (4.2)] holds for Q0 > d and Q1 > d/2, as follows.
Suppose that the solution of

−∆u+∇p = w and ∇·u = 0 in Ω, u = g on ∂Ω, (15)

satisfies, for 1 f q f Qs, s = 0, 1, and any g ∈ W s+2
q (Ω) and w ∈ W s

q (Ω), the
following estimate:

∥u ∥W s+2
q (Ω) + ∥π ∥W s+1

q (Ω) f cq,s
(
∥w ∥W s

q
(Ω) + ∥g ∥W s+2

q (Ω)

)
, (16)
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(a) (b)

Figure 1. Flow in a contracting duct for Stokes flow uS and
Navier-Stokes flow uN. (a) horizontal flow component of uS, and
(b) horizontal flow component of uN − uS, for R = 10, both with
mesh parameter 64. The computational domain Ω is as specified
in (20), with bi = 1, bo = 1, L = 1, H = 0.5. Computed using (3).

for a constant cq,s that depends only on q and s. This assumption holds if we round
off the corners of the contracting duct. The following is proved in [16, Theorem
4.1].

Theorem 1.4. Suppose that d < q < Q0. If the boundary data and initial iterates

are sufficiently small, the iterates (11) are bounded for all n > 0:

∥wn ∥Lq(Ω) f K, ∥un ∥W 2
q
(Ω) + ∥πn ∥W 1

q
(Ω) f cq

(
∥g ∥W 2

q
(Ω) +K

)
, (17)

where K is a finite positive constant. Suppose further that r f Q1 satisfies

2

d
>

1

r
>

1

q
+

1

2
. (18)

Then

∥wn ∥W 1
r
(Ω) f K, ∥un ∥W 3

r
(Ω) + ∥πn ∥W 2

r
(Ω) f cq

(
∥g ∥W 3

r
(Ω) +K

)
. (19)

Moreover, (un, πn,wn) converge geometrically in W 2
r (Ω)

d ×W 1
r (Ω)× Lr(Ω)d to

the solution (u, π,w) of (9). In view of Theorem 1.1, (u, p) is the solution of the

grade-two model (1), where p is related to π by (5).

Note that there is a typo in [16, Theorem 4.1], where the estimates for s = 1
should have q replaced by r.

The constraint (18) implies q > 2 for d = 2 and q > 6 for d = 3, and thus the
constraint q > d is satisfied implicitly.

2. Grade-two flow in a contracting duct. We begin by describing a typical
flow problem involving a contracting duct. We pose a Poiseuille flow profile at the
inlet and exit of the channel. We allow “buffers” at each end of the contraction
for the flow to regain the Poiseuille flow profile. Thus the domain consists of three
parts, first the inlet buffer

Ωi =
{
(x, y)

∣∣ − bi f x f 0, |y| f 1
}
.

The contraction zone has length L and height H and is defined by

Ωe =
{
(x, y)

∣∣ 0 f x f L, |y| f 1 + ((H − 1)/L)x
}
.



ANALYSIS OF RHEOMETER FOR GRADE-TWO FLOW 277

(a) (b)

Figure 2. Horizontal flow of the difference uG−uN for uG being
the solution of the grade-two model (4) with (a) R = 10, α1 = 10,
α2 = −10, and (b) R = 40, α1 = 1, α2 = −1, both with mesh
parameter 64. The computational domain Ω is as specified in (20),
with bi = 1, L = 1, H = 0.5, and with (a) bo = 1, (b) bo = 2.
Computed using (4).

Finally, the outlet buffer is

Ωo =
{
(x, y)

∣∣ L f x f L+ bo, |y| f H
}
.

Then the computational domain is

Ω = Ωi ∪ Ωe ∪ Ωo. (20)

We will see that the lengths of these buffer zones influence the results substan-
tially in some cases.

The Poiseuille-like boundary conditions we choose are as follows. At the inlet,
we choose

u(−bi, y) = (1− y2, 0)t, y ∈ [−1, 1].

At the outlet, we choose

u(L+ bo, y) =
(
H−1(1− (y/H)2), 0

)t
, y ∈ [−H,H].

The choice of Poiseuille-like boundary conditions for the flow variable u is based
on Amick’s theorem [1] as described in [17].

The corresponding inflow boundary conditions for w [16] are

w(−bi, y) =
(
0,

4U2

ν
y(3α1 + 2α2)

)t
, y ∈ [−1, 1]. (21)

2.1. Stokes versus Navier–Stokes. In figure 1, we see the horizontal flow com-
ponent in the domain Ω for Stokes flow uS, shown in panel (a), and the horizontal
flow component of the difference uN−uS, shown in panel (b), between the horizon-
tal flow component of the Navier-Stokes solution (R = 10) and the Stokes solution.
Several features are of interest. First of all, the Navier-Stokes solution returns to the
parabolic profile quickly both before and after the contraction. Secondly, there is
a significant boundary layer for the Navier-Stokes solution in the contraction zone,
and the flow there is more plug-like (flatter in the middle), with the Stokes solution
being larger in the middle of the contraction zone. This may be counter-intuitive,
in that the Stokes flow is faster in the middle of the contraction zone, but this is
consistent with what is known for Jeffrey-Hamel flow [10].



278 SARA POLLOCK AND L. RIDGWAY SCOTT

Re α1 uN − uG uS − uG uN − uS ∥ z ∥L2 ∆pN ∆pG
0.1 0.01 2.26e-06 8.17e-04 8.18e-04 8.7577 575.2 575.3
1.0 0.01 2.25e-04 7.98e-03 8.09e-03 8.7497 58.45 58.55
1.0 0.1 1.87e-03 7.00e-03 8.09e-03 8.6597 58.45 59.45
1.0 1.0 6.07e-03 3.34e-03 8.09e-03 7.6517 58.45 68.49

10.0 1.0 6.64e-02 6.61e-03 6.97e-02 4.7639 6.801 16.83
50.0 1.0 2.09e-01 7.31e-03 2.14e-01 3.5618 2.232 12.24
10.0 10.0 6.93e-02 7.48e-04 6.97e-02 3.2948 6.801 107.2
50.0 10.0 2.14e-01 8.12e-04 2.14e-01 3.0423 2.232 102.6

Table 1. Relative differences ∥ua − ub ∥H1(Ω)/∥uS ∥H1(Ω), indi-
cated in columns 3–5 by ua − ub, between solutions to Grade-Two
uG, Navier-Stokes uN, and Stokes uS. ∥uS ∥H1(Ω) = 9.2616 in all
cases. The parameters defining the computational domain (20) are,
in all cases, H = 0.5, L = 1, bo = 3, and bi = 1, and the meshsize
is 64. In all cases, α2 = −α1. Computed using (4).

2.2. Grade-two with α1 + α2 = 0. In figure 2(a), we depict the grade-two flow
with α2 = −α1 computed via (4) in the domain Ω defined in (20), showing the
horizontal flow component for the difference uG − uN for R = 10 and α1 = 10. For
that domain, we have bi = 1, bo = 1, L = 1, H = 0.5. Here we use the shorthand
Re for the Reynolds number, and for the numerical value we write R. In figure
2(b), we depict the grade-two flow in the domain Ω defined in (20), showing the
horizontal flow component for the difference uG − uN for R = 40 and α1 = 1. For
that domain, we have changed to bo = 2 to allow the flow to return to a parabolic
form in the outflow buffer.

Table 1 gives data for other values of α1, but still with α2 = −α1. Several things
emerge from this table. First of all, it is evident that the discrepancy between the
Stokes and Navier-Stokes equations is close to linear for small Re, with the coefficient
in this case being on the order of 0.008. But for larger Re, the relationship is
sublinear. Similarly, the discrepancy between Navier-Stokes and grade-two is close
to linear for small α1, with the coefficient in this case being on the order of 0.02
for R = 1. However, for R = 10, the difference between α1 = 1 and α1 = 10 is
minimal. The same thing is true for R = 50. Rather, as α1 increases, uG tends to
uS. We would describe this behavior as shear thickening.

2.3. Grade-two with α1 + α2 ̸= 0. In figure 3 we contrast the difference in re-
sults between the Stokes solution and the grade-two model when parameters α1

and α2 are chosen independently, with α1 + α2 ̸= 0. We observe that we are no
longer able to obtain solutions for such large parameter values, and more care is
required with defining the mesh. In the plot on the right, with α1 = α2 = 0.2, we
see some nonsmoothness in u arising in the vicinity of the reentrant corners. The
plot on the left with α1 = α2 = 0.02 remains smooth. While we have ∥un ∥H2(Ω)

bounded in terms of ∥wn−1 ∥L2(Ω), from (8)-(9), the norm of the auxiliary variable
∥wn ∥L2(Ω) is bounded by ∥∇·N(un, πn) ∥L2(Ω), which requires ∥un ∥H2(Ω) to be
bounded. More details on these bounds may be found in [16]. Thus wn is sensitive
to higher derivatives of un, and as illustrated in figure 4, these are not bounded for
domains with nonconvex corners. These corner singularities motiviate the localized
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Figure 3. Horizontal flow component of the difference uG − uS

for ν = 1, U = 2−2 and (a) α1 = α2 = 0.02, (b) α1 = α2 = 0.2. The
computational domain Ω is as specified in (20), with bo = 1, bi = 1,
L = 1, and H = 0.5. The computational mesh was generated by
four uniform refinements of the left-most mesh of figure 10.
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Figure 4. Vertical component of the vector-valued auxiliary
variable w for ν = 1, U = 2−2 and (a) α1 = α2 = 0.02, (b)
α1 = α2 = 0.2. The computational domain Ω is as specified in
(20), with bo = 1, bi = 1, L = 1, and H = 0.5. The computational
mesh was generated by four uniform refinements of the left-most
mesh of figure 10.

refinement of the mesh for the accurate computation of the integral over the con-
traction boundary described in the next section. The localized refinement is further
discussed in section 4.

3. Contraction rheometer. Contraction rheometers have been constructed e.g.
by Stading [13]. The contraction zone generates a complex flow pattern that can
be used to measure nonlinear relationships between the stress and rate of strain. A
recent paper [20] examines the concept of identifiability for a rheometer for a given
fluid model. The typical experiment with a rheometer involves varying the flow rate
and measuring a force as a function of flow rate. In [20], it is shown how to extract
model parameters from such a function for certain models.

For some models and rheometers, it is not possible to distinguish certain pa-
rameters in a model, so these models are not identifiable by that rheometer. For
example [20], an extensional flow rheometer can determine the sum α1 +α2 for the
grade-two model, but it does not distinguish the individual values αi. And a simple
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viscosity ν = 1 ν = 2
(α1, α2) (0.1, 0.1) (0.1, 0.2) (0.2, 0.1) (0.1, 0.1) (0.1, 0.2) (0.2, 0.1)
U = 2−6 -11.00226 -11.01962 -11.02835 -21.95676 -21.97412 -21.98282
U = 2−7 -10.97838 -10.98706 -10.99141 -21.93292 -21.94159 -21.94593
U = 2−8 -10.96646 -10.97080 -10.97297 -21.92101 -21.92534 -21.92751

∆2 -10.95458 -10.95458 -10.95458 -21.90911 -21.90912 -21.90913

Table 2. F (U)/U with force F defined in (23), over the compu-
tational domain Ω as specified in (20), with bi = 1, bo = 1, L = 1,
H = 0.5. Results are shown for small values of U and varying val-
ues of α1 and α2 with ν = 1 and ν = 2. The bottom row shows the
extrapolated values as U → 0 computed by the Aitken ∆2 process
using the three rows above. Computations were performed on a
local refinement of the mesh shown in figure 10, as described in
subsection 4.1

shear rheometer is insensitive completely to both parameters αi. Thus a natural
question arises: can a contraction rheometer identify the grade-two model?

3.1. Force measurements. The force F that is measured by a contraction rheome-
ter is defined as:

F =

∫

∂Ω

νψ nt(∇u+∇ut)x̂ ds−
∫

∂Ω

ψ pntx̂ ds, (22)

where x̂ is the first Euclidean basis vector and ψ = 1 for x ∈ (0, L) and zero else-
where (that is before and after the contraction, see (20) and preceeding definitions).
Recall that p is given by (5). Since u is zero on the boundary, the formula simplifies
to p = νπ on the support of ψ on ∂Ω. Thus (22) simplifies to

F = ν

(∫

∂Ω

νψ nt(∇u+∇ut)x̂ ds−
∫

∂Ω

ψ π ntx̂ ds

)
. (23)

Experimentally, this force is measured by a null balance device that keeps the
contraction portion of the device from moving. The required force is thus propor-
tional to F . Computing F (U) for various flow rates allows us to attempt to identify
the parameters of a model. Typically, the flow rate U is increased steadily from
zero, possibly plateauing at given values of U temporarily to allow a steady state
to re-establish. The limiting value of F (U)/U for small values of U is typically
proportional to the viscosity ν. Other features of F can be used to identify other
parameters.

In particular, the bottom row of table 2, which was computed by applying
Aitken’s ∆2 process to the three rows above to compute a value of F (U)/U as
U → 0, shows the computed force is approximately −10.9546ν. Table 3 shows the
result of applying the same process across a wider range of (α1, α2) parameters. We
see the same results as in table 2 for small values of α1 and α2, with a difference in
the fourth decimal place when these parameters are an order of magnitude larger.
We next turn our attention to the identifiability of α1 and α2.

3.2. Visualizing the data. In this section we consider the computed data from
our force measurement simulations f(U, ν,α) = F (U)/U for α = (α1, α2). Writing
α in polar coordinates as α = α(cos(θ), sin(θ)), we can visualize the dependence of
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α1/α2 -0.64 -0.16 -0.04 -0.01
0.01 -10.9545 -10.9545 -10.9545 -10.9546
0.04 -10.9545 -10.9545 -10.9546 -10.9546
0.16 -10.9545 -10.9546 -10.9546 -10.9546
0.64 -10.9546 -10.9546 -10.9546 -10.9547

α1/α2 0.01 0.04 0.16 0.64
0.01 -10.9546 -10.9546 -10.9546 -10.9546
0.04 -10.9546 -10.9546 -10.9546 -10.9546
0.16 -10.9546 -10.9546 -10.9546 -10.9546
0.64 -10.9547 -10.9547 -10.9547 -10.9548

Table 3. limU→0 F (U)/U with force F defined in (23), over
the computational domain Ω as specified in (20), with bi = 1,
bo = 1, L = 1, H = 0.5. Results shown are determined by applying
Aitken’s ∆2 process as in table 2 to the computed F (U)/U with
U = 2−6, 2−7, 2−8, for different (α1, α2) pairs with ν = 1. Compu-
tations were performed on a local refinement of the mesh shown in
figure 10, as described in subsection 4.1

Figure 5. Generated data f(U, ν,α) = F (U)/U with the
same computational domain and mesh as in table 2 for α =
α(cos(jπ/8), sin(jπ/8)) with ν = 1 and varying α and j. Left:
U = 2−8; center: U = 2−7; right: U = 2−6.

f on U , α and θ as follows. This allows us to better understand regimes where the
parameters α1, α2 could be identifiable using this rheometer.

First in figure 5 we consider snapshots in U while θ is varied for different values
of α. We make three important observations from these three snapshots. First,
f has a nonlinear dependence on θ for fixed U . In contrast, as shown in figure 6
and table 4 which display the difference between the computed data and the best
fit linear, quadratic and cubic polynomials for a range of U values with α and θ
fixed, f is close to linear in U ; this is further illustrated in figures 7 and 8. Second,
it appears that each of the fixed-α trajectories of figure 5 cross at θ = jπ/8 for
j ≈ −2.5, which we will look at more closely in table 5 and see further illustrated
in figure 7. Third, it appears f is symmetric over θ ≈ jπ/8 for j = 1.5, which we
will look at more closely in figure 8.

To visualize the near linearity of f as a function of U , we computed the best fit
regression line I1f , quadratic fit I2f , and cubic fit I3f to the 10 data points for
U = 0.01, 0.02, . . . , 0.1, with fixed θ ∈ {±3π/16,±π/16} and α ∈ {0.03, 0.07, 0.14}.
The results of the errors f −If normalized by its maximum value for each line are
shown in figure 6. The normalization factors are shown in table 4. We see that
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Figure 6. Normalized difference of the error in the least squares
regression line (left), quadratic fit (center) and cubic fit (right)
and the generated data f(U, ν,α) = F (U)/U . The normalization
factors (maximum errors) are shown in table 4. Each plot shows
an overlay of 12 (α, θ) pairs for α = α(cos(θ), sin(θ)) with θ ∈
{±π/16,±3π/16}, α ∈ {0.03, 0.07, 0.14} and U increasing from
0.01 to 0.1. The data f(U, ν,α) were generated with the same
computational domain and mesh as in table 2.

max (f − I1f)
α/θ −3π/16 −π/16 π/16 3π/16
0.03 3.810e-6 0.419e-6 0.533e-6 0.563e-6
0.07 0.576e-6 1.052e-6 1.360e-6 1.420e-6
0.14 1.306e-6 2.532e-6 3.339e-6 3.423e-6

max (f − I2f)
α/θ −3π/16 −π/16 π/16 3π/16
0.03 5.760e-8 0.020e-8 0.040e-8 0.043e-8
0.07 0.054e-8 0.305e-8 0.562e-8 0.579e-8
0.14 0.554e-8 2.622e-8 4.677e-8 4.769e-8

max (f − I3f)
α/θ −3π/16 −π/16 π/16 3π/16
0.03 6.385e-10 0.052e-10 0.049e-10 0.038e-10
0.07 0.062e-10 0.057e-10 0.057e-10 0.097e-10
0.14 0.124e-10 0.694e-10 1.283e-10 0.564e-10

Table 4. Maximum error between the computed data points
f(U, ν,α) = F (U)/U and the regression line I1f , quadratic fit
I2f , and cubic fit I3f . Each line fits the data for the flow
rate U increasing linearly from 0.01 to 0.1 with fixed values of
α = {0.03, 0.07, 0.14} and θ = {±π/16,±3π/16}.

• the error in each linear regression line is approximately quadratic, with its
maximum magnitude on the order of 10−6;

• the error in each best-fit quadratic is approximately cubic, with its maximum
magnitude on the order of 10−8;

• and the error in the best-fit cubic is not clearly structured but has maximum
magnitude on the order of 10−10.

To investigate the crossing of trajectories of each fixed value of α near θ =
−5π/16, for each Uk = 2−k, k = 6, 7, 8, we computed the intersection of the linear
interpolants connecting f at θL = −2.65π/8 (left of the crossing) to θR = −2.5π/8
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U = 2−8, θ8 = −2.50266827
α θ = θ8 · π/8 θ = −2.5π/8
0.01 -10.9556149 -10.9556158
0.05 -10.9556149 -10.9556190
0.1 -10.9556149 -10.9556231
0.2 -10.9556149 -10.9556313

U = 2−7, θ7 = −2.50268795
α θ = θ7 · π/8 θ = −2.5π/8
0.01 -10.9566795 -10.9566812
0.05 -10.9566795 -10.9566878
0.1 -10.9566795 -10.9566961
0.2 -10.9566795 -10.9567126

U = 2−6, θ6 = −2.50272560
α θ = θ6 · π/8 θ = −2.5π/8
0.01 -10.9588091 -10.9588125
0.05 -10.9588091 -10.9588259
0.1 -10.9588091 -10.9588427
0.2 -10.9588091 -10.9588762

Table 5. Generated data f(U, ν,α) = F (U)/U with the same
computational domain and mesh as in table 2. Results are shown
for values of α = α(cos(θ), sin(θ)) near the crossing of trajctories of
constant α values shown in figure 5. The crossing for each value of
U occurs at approximately θ = θk ·π/8, k = 6, 7, 8. Left: U = 2−8;
center: U = 2−7; right: U = 2−6.

Figure 7. Generated data f(U, ν,α) = F (U)/U with the same
computational domain and mesh as in table 2 showing how f
changes with U for U = 2−j , j = {8, 7, 6, 4, 2} and different val-
ues of α, the magnitude of α = α(cos(θ), sin(θ)). Left: θ = −3π/8;
center: θ = −2π/8; right: θ = −π/8.

(right of the crossing) for α = 0.01 and α = 0.2. The computed crossing points
θ = θkπ/8 are shown in table 5 along with the value of f(U, 1,α) at each of the
given coordinates. As shown in the table, f is constant through 7 decimal places at
each θ = θkπ/8, U = 2−k pair of coordinates (not shown: the values are decreasing
with α for each at the 9th digit). At θ = −2.5π/8, about 0.001 to the right in θ, the
values of f are increasing with α, where the differences are seen in the fifth decimal
place, which is on the order of the tolerance of our solve. This shows that α, the
magnitude of α, is not identifiable using the contraction rheometer if the argument
θ of α is close to −2.5π/8.

Figure 7 shows snapshots of f as a function of U for different values of α with
θ = −3π/8 (left) and θ = −2π/8 (center), which lie on either side of the crossing.
We observe that the constant-α trajectories are in opposite order on these two plots.
Comparing the center plot for θ = −2π/8 and the right plot for θ = −π/8, we can
see how the angle between fixed-α trajectories changes for different values of θ.
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Figure 8. Generated data f(U, ν,α) = F (U)/U with the same
computational domain and mesh as in table 2 showing how f
changes with U for U = 2−j , j = {8, 7, 6, 4, 2} and different val-
ues of θ, the argument of α = α(cos(θ), sin(θ)). Left: α = 0.01;
center: α = 0.05; right: α = 0.1.

Figure 9. Zoomed in view of figure 8 showing generated data
f(U, ν,α) = F (U)/U with the same computational domain and
mesh as in table 2 showing how f changes with U for U =
2−j , j = {8, 7, 6, 4, 2} and different values of θ, the argument of
α = α(cos(θ), sin(θ)). Left: α = 0.01; center: α = 0.05; right:
α = 0.1. The first two plots use the same scaling.

Our third observation from figure 5 is that f appears symmetric around θS ≈
3π/16, that is,

f(U, ν, α(cos(θS + t), sin(θS + t)) = f(U, ν, α(cos(θS − t), sin(θS − t)), (24)

where the equality holds up to the tolerance of our solve. This matching of trajec-
tories of f as U is increased is further illustrated in figure 8 which shows f for four
different values of α and varying U . The fixed-θ trajectories are nearly linear in U ;
and,

• the data for θ = π/2 = 8π/16 overlays the data for θ = −π/8 = −2π/16
(t = 5π/16 in (24)),

• the data for θ = 3π/8 = 6π/16 overlays the data for θ = 0 (t = 3π/16 in
(24)), and

• the data for θ = π/4 = 2π/8 = 4π/16 overlays the data for θ = π/8 = 2π/16
(t = π/16 in (24)).

Figure 9 shows a zoomed-in view of figure 8. The point at (0, 0) was added
to each of these plots to illustrate again the near-linearity in U of data f for
small flow rates U . In terms of identifying α given a sequence of measurements
of f(U, ν,α) for varying flow rates U , we conclude that we can only expect to
identify α = α(cos(θ), sin(θ)) in a limited range in arguments θ of α, namely
θ ∈ (−5π/16, 3π/16].
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Figure 10. Boundary refinements (rb) and point refinements (rp)
of the computational mesh for the contracting duct. Left: rb =
0, rp = 0; center: rb = 2, rp = 0; right: rb = 2, rp = 4.

4. Computational details. For our simulations of flow in a contracting duct, as
described in section 2, we used the following parameters. We solved to a default rela-
tive tolerance of

∥∥un − un−1
∥∥
H1

/∥un∥H1 < 10−5, and an iterated-penalty-method

(IPM) [5, 19] tolerance of
∥∥∇· (un,l)

∥∥ < 10−10, with IPM parameter ρ = 104. We
used Lagrange degree k = 4 elements for the space Vh from subsection 1.4. All
computations were performed using FEniCS [11, 19].

4.1. Localized mesh refinement. For the contraction rheometer computations
described in Section 3, we performed a local refinement of the left-hand mesh in
figure 10. The localized refinements consisted of boundary refinements (denoted
rb) and point refinements (denoted rp). The boundary refinements first mark any
element sharing an edge with the contraction boundary. These elements were iden-
tified by (a) having a maximum distance of 0.65 to the points (0.4,±0.5), and (b)
sharing an edge with the boundary. The refinement includes subdivision of the
marked elements, followed by a completion step refining certain neighboring ele-
ments to ensure the mesh is conforming. The point refinements (denoted rp) first
subdivide any element that contains one of the four endpoints of the contraction
boundary, namely (1,±0.5) and (0,±1); followed by a completion step to ensure the
mesh is conforming. Meshes with rb = 2, rp = 0 and rb = 2, rp = 4 are illustrated
in the center and right of figure 10.

To determine a computationally efficient but accurate mesh, we first compared
uniform refinements (denoted ru) to refinements focused on the contraction bound-
ary, as described above. As shown in table 6, without any point refinements, bound-
ary refinements consistently gave the same result as uniform refinements to two dec-
imal places in the computation of the normalized force integral F/U . Comparing
entries with like errors, we see with boundary refinements alone, computing with
75,274 degrees of freedom (dof) gives similar accuracy to 367,178 dof with uniform
refinements alone.

As shown in table 7, with 12 point refinements, uniform and boundary refinement
gave the same results to three significant digits on the least refined and four on
the most refined meshes. Again comparing entries with similar accuracy we see
seven boundary refinements with 99,850 dof gives similar accuracy to four uniform
refinements with 389,770 dof. By comparison with table 8, we see that after 7
refinements of either type plus the 12 point refinements, F/U converged to two
decimal places. To maintain efficiency, we eliminated the uniform refinements, and
attained significantly more accuracy using a combination of point refinements and
boundary refinements, as shown in table 8. In particular, 9 boundary refinements
followed by 12 point refinements resolves F/U to at least 5 × 10−4. Increasing rp
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F (U)/U
rp = 0 rb = 0 rb = 1 rb = 2 rb = 3
ru = 0 -0.00000 -5.08710 -7.80120 -9.30473
ru = 1 -5.08429 -7.80074 -9.30503 -10.15792
ru = 2 -7.80075 -9.30300 -10.15784 -10.64975
ru = 3 -9.30527 -10.15532 -10.64951 -10.93667
ru = 4 -10.15816 -10.64720 -10.93639 -11.10560

F (U)/U
rp = 0 rb = 4 rb = 5 rb = 6 rb = 7
ru = 0 -10.15756 -10.64941 -10.93652 -11.10571
ru = 1 -10.64980 -10.93692 -11.10612
ru = 2 -10.93688 -11.10607
ru = 3 -11.10587

dim(Vh)
rp = 0 rb = 0 rb = 1 rb = 2 rb = 3 rb = 4 rb = 5 rb = 6 rb = 7
ru = 0 1258 2186 3834 6474 11226 20538 39098 75274
ru = 1 4882 6338 8978 13730 23042 41602 77778
ru = 2 19234 21618 26370 35682 54242 90418
ru = 3 76354 80594 89906 108466 144642
ru = 4 304258 312442 331002 367178

Table 6. F/U with force F defined in (23), and dim(Vh) us-
ing degree k = 4 elements over the computational domain Ω is as
specified in (20), with bi = 1, bo = 1, L = 1, H = 0.5 and pa-
rameters α1 = 0.3, α2 = 0.1, ν = 1 and U = 2−4. The results
shown for ru uniform refinements and rb boundary refinements of
the mesh shown in figure 10 demonstrate that without point refine-
ments, uniform refinements can be exchanged for refinements over
the contraction boundary to increase the accuracy of the compu-
tation with fewer degrees of freedom.

from 12 to 16 however did not appear to increase the accuracy of the computation.
The results of subsection 3.2 were computed with the most accurate combination
found here: rb = 9 and rp = 12, for a total of 315,922 degrees of freedom in the
discrete space Vh, using quartic (degree 4) vector-valued Lagrange basis functions.
As seen in the analysis above, this combination appears to balance the resolution
of the boundaries and the reentrant corners with the interior of the mesh.

4.2. Computational mesh. In this section we summarize our findings on defining
an appropriate computational mesh for this problem. First, the discrete inf-sup
constant should not degenerate as the mesh size is decreased. The convergence of the
IPM algorithm slows with diminishing returns if the inf-sup constant is sufficiently
small. This slow convergence can be mitigated to some extent by an early exit
strategy for the IPM iteration defined in (12), allowing the iterations to terminate
if ∥∇·un,l ∥/∥∇·un,l−1 ∥ > 1/2, if this occurs before a tolerance or a maximum
number of iterations is reached. Of course this only improves the slow convergence
of IPM with a small inf-sup constant and relaxes the requirement of choosing an
IPM tolerance that is not too small; the entire algorithm will still ultimately diverge
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F (U)/U
rp = 12 rb = 0 rb = 1 rb = 2 rb = 3
ru = 0 -11.33672 -11.34446 -11.34942 -11.35244
ru = 1 -11.34479 -11.34947 -11.35249 -11.35439
ru = 2 -11.34960 -11.35246 -11.35435 -11.35554
ru = 3 -11.35258 -11.35434 -11.35553 -11.35626
ru = 4 -11.35440 -11.35552 -11.35625 -11.35668

F (U)/U
rp = 12 rb = 4 rb = 5 rb = 6 rb = 7
ru = 0 -11.35434 -11.35553 -11.35626 -11.35670
ru = 1 -11.35558 -11.35631 -11.35674
ru = 2 -11.35627 -11.35671
ru = 3 -11.35669

dim(Vh)
rp = 12 rb = 0 rb = 1 rb = 2 rb = 3 rb = 4 rb = 5 rb = 6 rb = 7
ru = 0 22186 23754 25850 29002 34266 44090 63162 99850
ru = 1 26002 27906 31058 36322 46146 65218 101906
ru = 2 40354 43186 48450 58274 77346 114034
ru = 3 97474 102162 111986 131058 167746
ru = 4 325378 334010 353082 389770

Table 7. F/U with force F defined in (23), and dim(Vh) using
degree k = 4 elements over the computational domain Ω is as spec-
ified in (20), with bi = 1, bo = 1, L = 1, H = 0.5 and parameters
α1 = 0.3, α2 = 0.1, ν = 1 and U = 2−4. The results shown for
ru uniform refinements, rb boundary refinements and 12 point re-
finements of the mesh shown in figure 10 demonstrate that used
together with point refinements, uniform refinements can be ex-
changed for refinements over the contraction boundary to increase
the accuracy of the computation with fewer degrees of freedom.

if the IPM does not converge to un,l with a sufficiently small divergence. We include
a further discussion of the convergence of IPM for Stokes in subsection 4.3.

The problem of non-convex corners causes an issue for solving the transport
problem. Figure 11 shows the second component of the terminal approximation to
w via (14) on three meshes with comparable mesh sizes. The figure on the left is
computed on a mesh generated by mshr with parameter M = 16. In the center
is the same computation performed on the computational mesh shown in figure 10
with two uniform refinements. On the right of figure 11 is a variant in which the
re-entrant corner is smoothed into two corners with smaller internal angles. The
height of the spike is ten times higher on the the mesh generated by mshr than either
of the other two. Simulations run on either uniform or boundary refinements of this
mesh realized poor convergence of the IPM iteration, indicating degeneration of
the inf-sup constant. The smoothed domain on the right has multiple spikes which
are moderately shorter than on the mesh shown in 10. The singular behavior of
w at nonconvex corners is a feature of the problem formulation given by (9). For
this problem, a good computational mesh should allow for local refinement and
resolution of the singularity without causing the algorithm to diverge.
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F (U)/U
ru = 0 rp = 0 rp = 4 rp = 8 rp = 12 rp = 16
rb = 4 -11.35705 -11.35434 -11.33619 -11.20465 -10.15756
rb = 5 -10.64941 -11.26481 -11.34434 -11.35553 -11.35706
rb = 6 -10.93652 -11.30100 -11.34936 -11.35626 -11.35716
rb = 7 -11.10571 -11.32291 -11.35247 -11.35670 -11.35709
rb = 8 -11.20614 -11.33624 -11.35439 -11.35738 -11.35547
rb = 9 -11.26616 -11.34440 -11.35559 -11.35767 -11.35522

dim(Vh)
ru = 0 rp = 0 rp = 4 rp = 8 rp = 12 rp = 16
rb = 4 11226 20186 27226 34266 41306
rb = 5 20538 30010 37050 44090 51130
rb = 6 39098 49082 56122 63162 70202
rb = 7 75274 85770 92810 99850 106890
rb = 8 147098 158106 165146 172186 179226
rb = 9 290322 301842 308882 315922 322962

Table 8. F/U with force F defined in (23), and dim(Vh) using
degree k = 4 elements over the computational domain Ω is as spec-
ified in (20), with bi = 1, bo = 1, L = 1, H = 0.5 and parameters
α1 = 0.3, α2 = 0.1, ν = 1 and U = 2−4. The results shown for no
uniform refinements, rb boundary refinements and rp point refine-
ments of the mesh shown in figure 10 demonstrate that sufficient
refinement at the four endpoints of the contraction boundary to-
gether with boundary refinements provides an increase in accuracy.
As seen with rp = 16, too many refinements at those points does
not further increase the accuracy.

1000 0 1000 2000 3000 4000 400 200 0 200 400 300 200 100 0 100 200 300

Figure 11. Spikes in w at the re-entrant corners of the domain
on three different meshes with U = 1, ν = 1, and α1 = α2 = 0.1.

4.3. IPM and Stokes. We noted in the previous section that the grade-two sim-
ulations for Poiseuille flow may degrade slightly as the mesh is refined and as the
iterated-penalty method (IPM) tolerance is decreased. This is unfortunately a fea-
ture of the IPM which may be mitigated by defining a mesh on which the inf-sup
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M ∥u− uh ∥H1 ∥∇·uh ∥L2 IPM iters ρ split type
32 1.67e-08 1.02e-11 3 1.00e+04 crossed-triangle
32 2.34e-09 4.90e-11 4 1.00e+03 crossed-triangle
32 3.68e-10 3.91e-11 7 1.00e+02 crossed-triangle
32 4.27e-09 1.21e-11 3 1.00e+04 right-triangle
32 5.76e-10 5.52e-11 4 1.00e+03 right-triangle
32 3.22e-10 5.63e-11 9 1.00e+02 right-triangle

Table 9. Stokes errors for Poiseuille flow in the domain (25) with
L = 1 for ν = 1, using the iterated penalty method [19] (IPM)
with quartics on an M × M array of squares split in two ways.
The Malkus crossed-triangle split consists of squares divided into
four triangles by the bisectors. The right-triangle split consists of
squares divided into two right triangles.

constant is robust. Table 9 indicates the effect of the penalty parameter ρ on the
convergence of IPM. Larger ρ gives faster convergence for the divergence, but at
the expense of less accuracy for the velocity. Table 9 shows the errors after the
optimal number of IPM iterations in terms of minimizing the velocity error, u−uh.
We see that a smaller error can be achieved at the cost of doing more iterations
with a smaller ρ. As ρ is decreased further, the number of IPM iterations becomes
prohibitively large.

5. Conclusion. We have demonstrated that it is possible, with suitable care, to
simulate the grade-two model in a geometry related to a contraction rheometer.
We have indicated how the results can be used to determine the viscosity ν from
experimental data. We have also explored issues related to identifying the grade-two
parameters α1 and α2 with certain caveats. In particular, the force data appears
to be the same for distinct values of α, however, we identify a regime in which α

may be identifiable with a contraction rheometer.

6. Data availability. Our codes and mesh data will be available on the corre-
sponding author’s webpage.
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Appendix A. Spaces. Here we collect the notation used for various Sobolev
spaces and norms. We denote by Lp(Ω) the Lebesgue spaces [5] of p-th power
integrable functions, with norm

∥ f ∥Lp(Ω) =

(∫

Ω

|f(x)|p dx
)1/p

.

Note that we can easily apply the same notation to vector or tensor valued
f . We think of tensors of any arity as vectors of the appropriate length, and we
think of |f(x)| as the Euclidean length of this vector. For tensors of arity 2 (i.e.,
matrices) this is the same as the Frobenius norm. We will write the spaces for such
tensor-valued functions as Lp(Ω)m for the appropriate m (e.g., m = d2 for arity 2).
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Similarly, we denote by L∞(Ω) the Lebesgue space of essentially bounded functions,
with

∥ f ∥L∞(Ω) = sup
{
|f(x)|

∣∣ a.e. x ∈ Ω
}
.

Correspondingly, we define Sobolev spaces and norms of order m by

∥ f ∥Wm

p
(Ω) =

( ∑

|³|≤m

∥D³f ∥pLp(Ω)

)1/p

,

where D³ is the weak derivative ∂³/∂x|³| [5]. More precisely, the spaces Wm
p (Ω)

are defined as the subspaces of Lp(Ω) for which the corresponding norm is finite.
The case p = 2 is denoted by H:

Hm(Ω) =Wm
2 (Ω).

Appendix B. Determining inflow boundary conditions. The proposed
method (11) requires specification of boundary conditions for w = −∆u + ∇π.
Here we compute w for typical flow geometries. It corresponds to the divergence of
the stress.

B.1. Grade-two channel flow. In [16], simple two-dimensional grade-two flows
(Couette and Poiseuille) are presented for the domain Ω defined by

Ω =
{
x ∈ R

2
∣∣ 0 < x1 < L, 0 < x2 < 1

}
. (25)

Suppose that u2 ≡ 0 and u1 depends only on x2. This is true for shear flow
(Couette flow) and pressure-driven flow (Poiseuille flow). For the remainder of this
subsection, we refer to u1 as just u to simplify notation. For shear (Couette) flow,
w = 0. For Poiseuille flow, in the channel (25),

g = u = U

(
x2(L− x2)

0

)
, w = −2U2

ν
(L− 2x2)

(
0

2α2 + 3α1

)
.

Furthermore,

p(x) = −2Uνx1 + (2α1 + α2)U
2(L− 2x2)

2 + cp. (26)

B.2. Grade-two pipe flow. Consider Poiseuille flow in a circular pipe. To be
specific, we define the domain Ω to be

Ω =
{
x ∈ R

3
∣∣ x21 + x22 < 1, 0 < x3 < L

}
. (27)

Suppose that u1 = u2 ≡ 0 and

u3(x) = U
(
1−

(
x21 + x22

))
. (28)

This is true for pressure-driven flow (Poiseuille flow). For such flows, u ·∇u = 0,
and the strain rate ∇u is given by

∇u = −2U




0 0 0
0 0 0
x1 x2 0


 , ∇ut = −2U



0 0 x1
0 0 x2
0 0 0


 .

Thus

A = −2U





0 0 x1

0 0 x2

x1 x2 0



 , u · ∇A = 0, A◦A = 4U2





x2

1 x1x2 0
x1x2 x2

2 0
0 0 x2

1 + x2

2



 ,

A◦(∇u) = 4U2





x2

1 x1x2 0
x1x2 x2

2 0
0 0 0



 , A◦(∇u
t) = 4U2





0 0 0
0 0 0
0 0 x2

1 + x2

2



 ,
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(∇u)t◦A =
(
At◦(∇u)

)t
=

(
A◦(∇u)

)t
= A◦(∇u) = 4U2




x21 x1x2 0
x1x2 x22 0
0 0 0


 ,

A◦(∇u) + (∇u)t◦A = 8U2




x21 x1x2 0
x1x2 x22 0
0 0 0


 ,

(∇u)◦A =
(
At◦(∇u)t

)t
=

(
A◦(∇u)t

)t
= A◦(∇u)t = 4U2



0 0 0
0 0 0
0 0 x21 + x22


 .

We can simplify this by introducing two matrices

J = 4U2




x21 x1x2 0
x1x2 x22 0
0 0 0


 , K = 4U2



0 0 0
0 0 0
0 0 x21 + x22


 .

For example,

A◦A = J+K, A◦(∇u) + (∇u)t◦A = 2J, (∇u)t◦A = J.

For the steady-state, grade-two fluid model, the stress tensor simplifies [16] to

TG = νA+ α1

(
u · ∇A+A◦(∇u) + (∇u)t◦A

)
+ α2A◦A

= TN + 2α1J+ α2(J+K).
(29)

The tensor τ is given by (6):

τ = α1(∇u)t◦A+ (α1 + α2)A◦A− u¹ u

= α1J+ (α1 + α2)(J+K)− u¹ u.
(30)

We can compute ∇· τ as follows. By definition,

(∇·J)i =
∑

j

Jij,j = Ji1,1 + Ji2,2, ∇·J =



J11,1 + J12,2
J21,1 + J22,2

0


 = 4U2



3x1
3x2
0




since J is constant in x3 and thus Ji3,3 = 0. Similarly, ∇·K = 0. Therefore

∇· τ = (2α1 + α2)∇·J = 12U2(2α1 + α2)
(
x1 x2 0

)t
.

From (7) we find

∇·N(u, π) = −α1∇ut∇π +∇· τ =
(
2α1Uπx3

+ 12U2(2α1 + α2)
) (
x1 x2 0

)t
.

(31)

Also −ν∆u = 4νU
(
0 0 1

)t
. Thus

4νU



0
0
1


+∇p = ∇·

(
TG − TN

)
= ∇·

(
(2α1 + α2)J)

)
= 12U2(2α1 + α2)



x1
x2
0


 .

Therefore

px3
= −4νU,

(
px1

px2

)
= 12U2(2α1 + α2)

(
x1
x2

)
.

These equations are solved by

p(x) = −4νUx3 + 6U2(2α1 + α2)
(
x21 + x22

)
.
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Let us make the ansatz that π(x) = −4Ux3 + f(x1, x2). We have

p = νπ + α1uπx3
= p− 6U2(2α1 + α2)

(
x21 + x22

)
+ νf − 4Uα1u , (32)

which suggests that

νf = 6U2(2α1 + α2)
(
x21 + x22

)
+ 4U2α1

(
1−

(
x21 + x22

))

= U2(8α1 + 6α2)
(
x21 + x22

)
+ 4U2α1.

(33)

Therefore

π(x) = −4Ux3 + ν−1U2
(
(8α1 + 6α2)

(
x21 + x22

)
+ 4α1

)
.

In particular, (31) implies

∇·N(u, π) = U2
(
16α1 + 12α2

) (
x1 x2 0

)t
. (34)

Similarly,

w = −∆u+∇π = ν−1U2(16α1 + 12α2)



x1
x2
0


 .

This provides an appropriate initial condition for solving the third (transport)
equation in (11) for pipe flow with boundary conditions given by (28).

Note that w,x ≡ 0. Thus (9) implies that

∇·N = νw,

which is consistent with (34).

Appendix C. Benefits of Anderson acceleration. In subsection 1.5 it was re-
marked that AA can be used as an enabling technology to allow the use of larger
parameter pairs (α1, α2). A demonstration and discussion of this observation fol-
lows.

As can be seen from the theoretical foundations in [16] referenced in Theorem 1.4,
how small the boundary data and solution has to be in order to ensure convergence
depends on parameters α1 and α2. In table 10 we consider the flow rate U and
parameter pairs (α1, α2) on the boundary of the convergent regime with fixed ν =
1. The computations are performed on the same fixed mesh used throughout the
numerical experiments in this paper, namely over the computational domain Ω as
specified in (20), with bi = 1, bo = 1, L = 1, H = 0.5, with local refinement
of the mesh shown in figure 10, as described in subsection 4.1. Filtered AA was
implemented as described in subsection 1.5 with algorithmic depth mmax = 10 in
algorithm 1.2 and without relaxation: βn = 1 for all n. The filtering parameters in
algorithm 1.3 were set as σmax = 1/

√
2 and σmin = 0.1, as used in [15]. The initial

iterate in each case was taken as the solution to the corresponding Stokes problem.
The results of table 10 show that when the iteration without AA converges,

the iteration with AA converges as well, and the iteration counts differ in this
example by at most one. However, in seven of the ten cases in which the iteration
without AA diverged, as indicated by “D” in the table, the iteration with AA still
converged. The heuristic explanation for this can be found in [14], which shows
that the effect of AA on each iteration is to reduce the first order term in the
residual proportional to the gain factor from the optimization problem, at the cost
of introducing higher-order terms. In the notation of algorithm 1.2, the gain factor
is given by

∥∥δUn+1 − FUn+1γn
∥∥ /

∥∥δUn+1
∥∥. By its definition the gain factor is no

greater than one, as γ is the solution to the least-squares problem that minimizes



ANALYSIS OF RHEOMETER FOR GRADE-TWO FLOW 293

U = 2−3 Iteration (11) Algorithm 1.2 and iteration (11)
θ −π/4 −π/8 0 π/8 π/4 −π/4 −π/8 0 π/8 π/4

α = 0.1 4 4 4 4 4 4 5 5 5 5
α = 0.2 4 6 D D D 5 6 9 6 6
α = 0.3 4 D D D D 5 15 D D D

U = 2−4 Iteration (11) Algorithm 1.2 and iteration (11)
θ −π/4 −π/8 0 π/8 π/4 −π/4 −π/8 0 π/8 π/4

α = 0.2 4 4 4 4 4 4 5 5 5 5
α = 0.3 4 5 6 7 5 4 5 6 6 5
α = 0.4 4 6 D D D 5 6 9 9 7

Table 10. Iteration count to relative tolerance of∥∥un − un−1
∥∥
H1

/∥un∥H1 < 10−5 for iteration 11 with and with-

out AA algorithm 1.2, for varying (α1, α2) parametrized by
α(cos(θ), sin(θ)) and fixed ν = 1. The letter “D” indicates di-
vergence. The computations are performed over the domain Ω as
specified in (20), with bi = 1, bo = 1, L = 1, H = 0.5, with local
refinement of the mesh shown in figure 10, as described in subsec-
tion 4.1.

the numerator of this fraction. With a successful optimization, which occurs when
δUn+1 lies close to the span of FUn+1, the gain factor can be close to zero. When
the residual is small enough for the higher-order terms not to interfere, AA can by
this mechanism effectively enable convergence.
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