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Abstract. The purpose of this paper is to develop a practical strategy to
accelerate Newton’s method in the vicinity of singular points. We present an

adaptive safeguarding scheme with a tunable parameter, which we call adap-
tive γ-safeguarding, that one can use in tandem with Anderson acceleration
to improve the performance of Newton’s method when solving problems at or
near singular points. The key features of adaptive γ-safeguarding are that it
converges locally for singular problems, and it can detect nonsingular problems
automatically, in which case the Newton-Anderson iterates are scaled towards
a standard Newton step. The result is a flexible algorithm that performs well
for singular and nonsingular problems, and can recover convergence from both

standard Newton and Newton-Anderson with the right parameter choice. This
leads to faster local convergence compared to both Newton’s method, and

Newton-Anderson without safeguarding, with effectively no additional compu-
tational cost. We demonstrate three strategies one can use when implementing
Newton-Anderson and γ-safeguarded Newton-Anderson to solve parameter-
dependent problems near singular points. For our benchmark problems, we
take two parameter-dependent incompressible flow systems: flow in a channel
and Rayleigh-Bénard convection.

1. Introduction. Nonlinear systems of equations of the form f(x) = 0, with
f : Rn → R

n, arise frequently in applications. Many times the solutions depend
on parameters (see [6, 7, 33, 39, 40, 41, 53] and references therein) that can have a
significant effect on the solution. Of particular interest are bifurcation points, which
are characterized by the breakdown of local uniqueness of a solution for a partic-
ular parameter, and correspond to a qualitative change in the solution’s behavior
[6, 32, 39]. Sets of solutions of similar qualitative behavior are called branches
[39]. Studying these branches provides a more complete understanding of the so-
lutions, and has applications in a wide variety of fields such as echocardiography
[41], economics [56], physics [40], and engineering [57]. A necessary condition for
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bifurcation comes from the Implicit Function Theorem, which says that the Jaco-
bian at a solution x∗, f ′(x∗), is necessarily singular if x∗ is a bifurcation point [32,
p. 8]. Bifurcation points are thus examples of singular points, i.e., points x for which
f ′(x) is singular. Techniques for computing solution branches such as continuation
[53] and deflation [7, 17] require many solves of f(x) = 0 as the parameter is var-
ied, and these problems become singular or nearly singular near bifurcation points.
A popular method for solving nonlinear equations is Newton’s method defined in
Algorithm 1.

Algorithm 1 Newton

1: Choose x0 ∈ R
n.

2: for k=1,2,... do

3: wk+1 ← −f
′(xk)

−1f(xk)

4: xk+1 ← xk + wk+1

5: end for

When f ′(x) is Lipschitz continuous and f ′(x∗) is nonsingular, Newton’s method
exhibits local quadratic convergence in a ball centered at x∗. This is essentially
the celebrated Newton-Kantorovich theorem [35]. If we remove the nonsingular
assumption and let f ′(x∗) be singular, then the convergence behavior changes dra-
matically. Rather than local quadratic convergence from any x0 in a sufficiently
small ball around x∗, we see local linear convergence in a starlike domain of conver-
gence around x∗ [11, 12, 22, 48, 49]. Since bifurcation points are necessarily singular
points, this means that continuation or deflation algorithms using Newton’s method
may converge slowly or fail to converge at or near a bifurcation point. This chal-
lenge has motivated the study of modifications [11, 13, 18, 19, 23, 22, 27, 31] or
alternatives [3, 4, 5, 16, 30, 50] to Newton’s method that can improve convergence
behavior at singular points. Among the modifications, Richardson extrapolation
and overrelaxation are popular and perform well. They can achieve superlinear
and arbitrarily fast linear convergence respectively under certain conditions [23] at
the cost of additional function evaluations and some knowledge of the order of the
singularity [22, 23]. The order may be inferred from monitoring the singular values
of the Jacobian as the solve progresses. A popular alternative to Newton’s method
for singular problems is the Levenberg-Marquardt method [3, 4, 5, 16, 30]. Under
standard assumptions and the local error bound, or local Lipschitzian error bound,
the Levenberg-Marquardt method can achieve local quadratic convergence [30]. The
local error bound is known to be much weaker than the standard nonsingularity as-
sumption. Indeed, it can hold even for singular problems [4]. However, without the
local error bound or nonsingularity, Levenberg-Marquardt is not guaranteed such
success. In the absence of the local error bound, one may insist that the function
f is 2-regular [18, 19, 28, 29], in which case Levenberg-Marquardt converges locally
linearly in a starlike domain much like Newton’s method [28].

The method of interest in this paper, Anderson acceleration, has a long track
record of accelerating linearly converging fixed-point methods, and has been ap-
plied in many different fields [1, 34, 37, 38, 44, 51, 55]. Further, when applied as
a modification to Newton’s method at singular points, in contrast to Richardson
extrapolation or overrelaxation discussed in [23], this success requires no knowledge
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of the order of the root or additional function evaluations. It was also shown re-
cently that under a condition equivalent to 2-regularity (discussed further in Section
2), Anderson accelerates Newton’s method when applied to singular problems [10],
and therefore outperforms Levenberg-Marquardt in the absence of the local error
bound. This was demonstrated numerically in [10]. Also known as Anderson ex-
trapolation or Anderson mixing [54], Anderson acceleration was first introduced in
1965 by D.G. Anderson in [2] to improve the convergence of fixed-point iterations
applied to integral equations. The algorithm combines the previous m+ 1 iterates
and update steps into a new iterate at each step of the solve. The number m is
commonly known as the algorithmic depth. The combination of the m+ 1 iterates
often involves solving a least-squares problem, but since m is typically small, the
computational cost of this step is in general orders of magnitude less than that of
a single linear solve. There are problems for which taking m much larger can be
beneficial [42, 54], and later in this paper we will see numerically that increasing m
can improve or recover convergence near bifurcation points. With greater depths,
the least-squares problem may suffer from ill-conditioning if proper care is not taken
in the implementation [43]. In [10], the authors developed a convergence and ac-
celeration theory for Anderson accelerated Newton’s method with depth m = 1,
defined in Algorithm 2, applied to singular problems. This is a special case of depth
m g 1 given in Algorithm 3.

Algorithm 2 Newton-Anderson(1)

1: Choose x0 ∈ R
n. Set w1 = −f ′(x0)

−1f(x0), and x1 = x0 + w1.

2: for k=1,2,... do

3: wk+1 ← −f
′(xk)

−1f(xk)

4: γk+1 ← (wk+1 − wk)
Twk+1/∥wk+1 − wk∥

2
2

5: xk+1 ← xk + wk+1 − γk+1(xk − xk−1 + wk+1 − wk)

6: end for

Algorithm 3 Newton-Anderson(m)

1: Choose x0 ∈ R
n and m g 0. Set w1 = −f ′(x0)

−1f(x0), and x1 = x0 + w1.

2: for k=1,2,... do

3: mk ← min{k,m}

4: wk+1 ← −f
′(xk)

−1f(xk)

5: Fk =
(

(wk+1 − wk) · · · (wk−m+2 − wk−m+1)
)

6: Ek =
(

(xk − xk−1) · · · (xk−m+1 − xk−m)
)

7: γk+1 ← argminγ∈Rm∥wk+1 − Fkγ∥
2
2

8: xk+1 ← xk + wk+1 − (Ek + Fk)γk+1

9: end for

A major challenge when proving convergence of Newton-like methods near sin-
gular points is ensuring that the iterates remain well-defined. The authors in [10]
introduced a novel safeguarding scheme called γ-safeguarding, defined in Algorithm
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4 in Section 2, to deal with this problem. The result was a convergence proof for
γ-safeguarded Newton-Anderson, and it was observed numerically to perform better
or no worse compared to standard Newton-Anderson, particularly when applied to
nonsingular problems.

The purpose of this paper is to extend these ideas of [10] by developing an adap-
tive version of γ-safeguarding that automatically detects nonsingular problems, and
to demonstrate the effectiveness of Newton-Anderson and adaptive γ-safeguarded
Newton-Anderson at solving parameter-dependent PDEs near bifurcation points in
fluid problems. This new adaptive scheme is proven to be locally convergent under
the same conditions as the non-adaptive scheme, and the automatic detection of
nonsingular problems enables local quadratic convergence when applied to nonsin-
gular problems. Such a property is desirable when solving nonlinear problems near
bifurcation points, because even if the problem itself is not singular, convergence can
still be affected if it is close to a singular problem [14]. One would like to enjoy the
benefits of Newton-Anderson in the preasymptotic regime such as a larger domain of
convergence [45], but not lose quadratic convergence in the asymptotic regime if the
problem is nonsingular. It is not always known a priori if a problem is singular or
nonsingular, and Anderson acceleration can reduce the order of convergence when
applied to superlinearly converging iterations such as Newton’s method applied to
a nonsingular problem [47]. This problem is solved with adaptive γ-safeguarded
Newton-Anderson with effectively no additional computational cost. We also show
numerically that increasing the algorithmic depth of the Newton-Anderson algo-
rithm can recover convergence when Newton fails near bifurcation points, but only
for specific choices of m.

The algorithms of interest in this paper are Newton, defined in Algorithm 1,
Newton-Anderson with algorithmic depth 1

(

NA(1)
)

defined in Algorithm 2, Newton-

Anderson with algorithmic depthm
(

NA(m)
)

defined in Algorithm 3, γ-safeguarded

Newton-Anderson
(

γNA(r)
)

, defined in Algorithm 5, and adaptive γ-safeguarded

Newton-Anderson
(

γNAA(r̂)
)

, defined in Algorithm 7. We implement γNA(r) and
γNAA(r̂) by replacing line 5 in Algorithm 2 with, respectively, γ-safeguarding (Al-
gorithm 4) and adaptive γ-safeguarding (Algorithm 6). The norm in the algorithms
is the Euclidean norm. There should be no confusion between NA(m) and γNA(r)
or γNAA(r̂) since γ-safeguarding is currently only developed for depth m = 1. The
rest of the paper is organized as follows. In Section 2, we review the original γ-
safeguarding algorithm and its role in the convergence theory developed in [10].
In Section 3, we introduce the new adaptive γ-safeguarding algorithm and prove
that γNAA(r̂) can recover local quadratic convergence when applied to nonsingular
problems in Corollary 3.4. We conclude in Section 4 by applying NA and γNAA(r̂)
to two parameter-dependent incompressible flow systems, and discussing various
strategies one can use when employing γ-safeguarding.

2. The γ-safeguarding algorithm. For the theory discussed in Section 2 and
Section 3, unless stated otherwise, we take f : Rn → R

n to be a C3 function, f(x∗) =
0, N = null (f ′(x∗)), R = range (f ′(x∗)), dimN = 1, and PN and PR to be the
orthogonal projections onto N and R respectively. The assumption that R § N is
common in the singular Newton literature [11, 21], and no generality is lost in finite
dimensions. Indeed, Newton’s method is essentially invariant under nonsingular
affine transformations of the domain and nonsingular linear transformations of the
range [15]. Thus to determine the convergence behavior of Newton’s method applied
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to a general C3 function F : Rn → R
n, it suffices to study that of f(x) = UTF (x)V ,

where U and V come from the single value decomposition F ′(x∗) = UΣV T . Since
f ′(x∗) = UTF ′(x∗)V = Σ, it follows that null (f ′(x∗)) § range (f ′(x∗)). Lastly, let
∥ · ∥ denote the Euclidean 2-norm, Bρ(x) denote a ball of radius ρ centered at x,
ek = xk − x∗, wk+1 = −f ′(xk)

−1f(xk), and

θk+1 =
∥wk+1 − γk+1(wk+1 − wk)∥

∥wk+1∥
, (1)

where γk+1 is computed via Algorithm 2. The term θk+1 is known as the optimiza-

tion gain, and is key to determining when Anderson acceleration is successful both
in the singular and nonsingular cases [10, 42].

Algorithm 4 γ-safeguarding

1: Given xk, xk−1, wk+1, wk, γk+1, and r ∈ (0, 1). Set λ = 1.

2: βk+1 ← r∥wk+1∥/∥wk∥

3: if γk+1 = 0 or γk+1 g 1 then

4: λ← 0

5: else if |γk+1|/|1− γk+1| > βk+1 then

6: λ←
βk+1

γk+1 (βk+1 + sign(γk+1))

7: end if

8: xk+1 ← xk + wk+1 − λγk+1(xk − xk−1 + wk+1 − wk)

Algorithm 5 γ-Safeguarded Newton-Anderson (γNA(r))

1: Choose x0 ∈ R
n and r ∈ (0, 1). Set w1 = −f ′(x0)

−1f(x0), and x1 = x0 + w1

2: for k=1,2,... do

3: wk+1 ← −f
′(xk)

−1f(xk)

4: γk+1 ← (wk+1 − wk)
Twk+1/∥wk+1 − wk∥

2
2

5: βk+1 ← r∥wk+1∥/∥wk∥

6: λ← 1

7: if γk+1 = 0 or γk+1 g 1 then

8: λ← 0

9: else if |γk+1|/|1− γk+1| > βk+1 then

10: λ←
βk+1

γk+1 (βk+1 + sign(γk+1))

11: end if

12: xk+1 ← xk + wk+1 − λγk+1(xk − xk−1 + wk+1 − wk)

13: end for
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To implement γNA(r), one replaces line 5 in Algorithm 2 with Algorithm 4 giving
Algorithm 5. The resulting steps, xk+1 = xk+wk+1−λγk+1(xk−xk−1+wk+1−wk),
can be viewed as NA steps scaled by λ towards a Newton step based on a user-chosen
parameter, r, which is set at the start of the solve. This parameter determines how
strongly the NA steps are scaled towards a Newton step, i.e., how close a γNA(r)
step is to a Newton step. When r ≈ 0, the γNA(r) iterates will be heavily scaled
towards the latest Newton step, and when r ≈ 1, the γNA(r) iterates will behave
more like standard NA. The idea behind γ-safeguarding is to take advantage of the
particular convergence behavior of Newton’s method near singular points, which we
now describe. Since dimN = 1, N is spanned by some nonzero ϕ ∈ R

n. If the
linear operator D̂(·) := PNf ′′(x∗) (ϕ, PN (·)) is nonsingular as a map from N to N ,

then there exists ρ̂ > 0 and σ̂ > 0 such that f ′(x) is nonsingular for all x ∈ Ŵ :=
Bρ̂(x

∗) ∩ {x : ∥PR(x − x∗)∥ < σ̂∥PN (x − x∗)∥} and Newton’s method converges

linearly to x∗ from any x0 ∈ Ŵ [11]. The assumption that D̂ is nonsingular as a
linear map on N is equivalent to the assumption that f is 2-regular at x∗ in the
direction ϕ [19]. A stronger result due to Griewank [22, Theorem 6.1] says that when

D̂ is nonsingular, Newton’s method converges from every x0 in a starlike region with
density 1 with respect to x∗, and the iterates lead into Ŵ provided ∥x0 − x∗∥ is
sufficiently small. Thus for our purposes in this paper studying local convergence
of NA, it suffices to study the behavior of iterates in Ŵ . Though the focus of this
work is the dimN = 1 case, we note that Griewank’s Theorem [22, Theorem 6.1]
holds for dimN > 1, and numerical experiments from [10] on small-scale problems
indicate that NA and γNAA(r̂) are effective when dimN > 1. While the current
theoretical results for γNAA(r̂) require dimN = 1, extensions of these results for
dimN > 1 will be studied in future work.

The main challenge in accelerating Newton’s method is ensuring the iterates
remain in Ŵ , which requires ∥PR(x − x∗)∥/∥PN (x − x∗)∥ to remain bounded. In
other words, the iterates can’t be accelerated “too much” along the null space.
Evidently, Anderson may accelerate Newton significantly, especially in Ŵ when
dimN = 1. This is demonstrated by the following proposition. We will use the
notation (xk+wk+1)

α := xk+wk+1−γk+1(xk−xk−1+wk+1−wk). Similarly, PNeαk =
PNek − γk+1PN (ek − ek−1), (TkPRek)

α := TkPRek − γk+1(TkPRek − Tk−1PRek−1),
and wα

k+1 = wk+1 − γk+1(wk+1 − wk). Here Tk denotes a linear map defined in

the proof of Proposition 2.1. We also note that D̂ is nonsingular if and only if
D̂(x)(·) := PNf ′′(x∗)(PN (x−x∗), PN (·)) is nonsingular for all x with PN (x−x∗) ̸=
0.

Proposition 2.1. Let f ∈ C3, dimN = 1, D̂ nonsingular, and xk, xk−1 ∈ Ŵ
so that xk+1 = (xk + wk+1)

α is well-defined. If PNwk+1 ̸= PNwk and |1 −
γk+1| ∥PNek∥ ̸= |γk+1| ∥PNek−1∥ ̸= 0, then for sufficiently small σ̂ > 0 and ρ̂ > 0
there is a constant C = C(σ̂, ρ̂) such that

∥PNek+1∥ f Cmax{|1− γ̂|, |γ̂|}max{∥ek∥
2, ∥ek−1∥

2}, (2)

where γ̂ := (PNwk+1)
T (PNwk+1 − PNwk)/∥PNwk+1 − PNwk∥

2.

Proof. First note that wα
k+1 = PNwα

k+1+PRw
α
k+1. Since γk+1 := argminγ∈R

∥wk+1−
γ(wk+1 − wk)∥ by Algorithm 2, and R § N , we have that for any γ ∈ R,

∥wα
k+1∥

2 f ∥PNwk+1 − γ(PNwk+1 − PNwk)∥
2

+ ∥PRwk+1 − γ(PRwk+1 − PRwk)∥
2. (3)
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Taking γ = γ̂ gives ∥PNwk+1 − γ̂(PNwk+1 − PNwk)∥
2 = 0. By Proposition 3.1 in

[10], we can write

wα
k+1 = −(1/2)PNeαk + ((Tk − I)PRek)

α
+ qkk−1, (4)

where Tk(·) := (1/2)D̂(xk)
−1f ′′(xk)(ek, ·) is a linear map whose range lies in N

[10], and ∥qkk−1∥ f cmax{|1 − γk+1|, |γk+1|}max{∥ek∥
2, ∥ek−1∥

2} for a constant c
determined by f . Hence ∥wα

k+1∥ f ∥PRwk+1 − γ̂PR(wk+1 − wk)∥ f cmax{|1 −

γ̂|, |γ̂|}max{∥ek∥
2, ∥ek−1∥

2}. Proposition 3.1 in [10] gives PNek+1 = (1/2)PNeαk +
(TkPRek)

α + qkk−1. Let µ
e
k+1 = ∥(TkPRek)

α + qkk−1∥/∥(1/2)PNeαk∥. This expansion
of PNek+1 combined with Equation (4) gives

∥PNek+1∥ f

(

1 + µe
k+1

1− µe
k+1

)

∥PNwα
k+1∥

f Ck max{|1− γ̂|, |γ̂|}max{∥ek∥
2, ∥ek−1∥

2}, (5)

where we define Ck := c(1 + µe
k+1)(1− µe

k+1)
−1. One can show that µe

k+1 → 0 as σ̂

and ρ̂ tend to zero [10]. Thus for sufficiently small σ̂ and ρ̂ we have Ck f C. This
completes the proof.

Note that γ̂ can be very large when PNwk+1 ≈ PNwk, which may correspond
to the terminal phase of the solve. So this bound is meaningful in the asymptotic
regime when there is still a significant decrease in the residual at each step. Such
a bound is good for a single step, but this dramatic acceleration of PNek+1 could

place xk+1 outside the domain of invertibility Ŵ , i.e., xk+1 may stray too far from
N . This is where γ-safeguarding is useful. It ensures that the γNA(r) iterates

remain within Ŵ by taking advantage of the way Newton steps are attracted to
N and scaling NA steps towards Newton steps when the conditions of Algorithm
4 are met. This is also the key to the convergence proof of γNA(r) given in [10].
However, given the results of [47], if the problem is nonsingular one should use
Newton’s method without Anderson, but it is not always obvious a priori if the
problem at hand is singular or nonsingular. In the next section, we develop an
adaptive version of γNA(r) that enjoys guaranteed local convergence when applied
to singular problems, but can also detect nonsingular problems automatically, at no
additional computational cost, and “turn off” NA in response. This leads to local
quadratic convergence if the problem is nonsingular.

3. Adaptive γ-safeguarding. It was observed in [10] that γNA(r) performed
competitively with standard NA(1). For example, γNA(0.5) could outperform
NA(1) when applied to certain nonsingular problems. This is not surprising given
the results of [47], and it had previously been observed numerically in [45] that NA
does not necessarily improve convergence when applied to nonsingular problems.
Thus, by setting the γ-safeguarding parameter r = 0.5, thereby scaling the iterates
closer to Newton steps, we see less of the effect of a full NA step on the order of
convergence.

Even if it is known that the problem is nonsingular, one may still wish to use
NA to take advantage of the larger domain of convergence [45]. In such a scenario
one could set r close to zero, but this means the effect of NA is never completely
eliminated which could lead to a smaller order of convergence relative to Newton for
nonsingular problems. This, and the fact that often it is not known a priori if the
problem is singular or nonsingular, motivates the development of an adaptive form
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of γNA(r) that can automatically detect nonsingular problems, and scale an NA
step accordingly, without sacrificing local convergence and acceleration for singular
problems. We will denote this adaptive choice of r from Algorithm 4 by rk+1, with
k denoting the iteration count. There are three criteria that the choice of rk+1

should satisfy, which we record in Criteria 3.1.

Criteria 3.1. An adaptive γ-safeguarding tolerance rk+1 should satisfy the follow-

ing.

1. rk+1j1 if ∥PNek∥/∥PNek−1∥j1;

2. rk+1 ≈ 1 if ∥PNek∥/∥PNek−1∥ ≈ 1; and

3. limk→∞ rk+1 = 0 if f ′(x∗) is nonsingular.

Criterion 3.1.1 says that if ∥PNek∥/∥PNek−1∥ is very small, then we want to scale
the NA step generated from xk and xk−1 heavily towards xk+wk+1. In the singular
case, this will (locally) keep xk+1 within the domain of invertibility. Alternatively, if
the problem is nonsingular, but close to a singular problem, then scaling NA towards
a Newton step is also preferred when ∥PNek∥/∥PNek−1∥ is small since then we do
not slow Newton’s fast local quadratic convergence. Criterion 3.1.2 says that if
∥PNek∥/∥PNek−1∥ is close to one, then the error is not decreasing significantly, and
we want to allow NA to act on xk and xk−1 without significant scaling of γk+1 from
safeguarding. Lastly, Criterion 3.1.3 is important because if f ′(x∗) is nonsingular,
Newton’s method will converge quadratically in a neighborhood of x∗. We therefore
want to “turn off” NA near x∗, and insisting that rk+1 → 0 asymptotically achieves
this.

Observing Criteria 3.1.1-3, one may note that we essentially want rk+1 to behave

like ∥PNek∥/∥PNek−1∥ within the domain of convergence Ŵ . Of course, we can not

compute ∥PNek∥/∥PNek−1∥, but Equation (4) says that in Ŵ , wk+1 ≈ PNek. So
if we take rk+1 = ∥wk+1∥/∥wk∥, we can expect Criteria 3.1.1-2 to be enforced
locally. For Criterion 3.1.3, if f ′(x∗) is nonsingular, then locally we will have
∥wk+1∥/∥wk∥ → 0. Thus rk+1 = ∥wk+1∥/∥wk∥ satisfies the three criteria within the
domain of convergence. With this choice of rk+1, we have adaptive γ-safeguarding
and γNAA(r̂).

Algorithm 6 Adaptive γ-safeguarding

1: Given xk, xk−1, wk+1, wk, γk+1, and r̂ ∈ (0, 1), set ηk+1 = ∥wk+1∥/∥wk∥,
rk+1 = min{ηk+1, r̂}, and λa = 1.

2: βk+1 ← rk+1ηk+1

3: if γk+1 = 0 or γk+1 g 1 then

4: λa ← 0

5: else if |γk+1|/|1− γk+1| > βk+1 then

6: λa ←
βk+1

γk+1 (βk+1 + sign(γk+1))

7: end if

8: xk+1 ← xk + wk+1 − λaγk+1(xk − xk−1 + wk+1 − wk)
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Algorithm 7 Adaptive γ-Safeguarded Newton-Anderson (γNAA(r̂)))

1: Choose x0 ∈ R
n and r̂ ∈ (0, 1). Set w1 = −f ′(x0)

−1f(x0) and x1 = x0 + w1

2: for k=1,2,... do

3: wk+1 ← −f
′(xk)

−1f(xk)

4: γk+1 ← (wk+1 − wk)
Twk+1/∥wk+1 − wk∥

2
2

5: ηk+1 ← ∥wk+1∥/∥wk∥

6: rk+1 ← min{ηk+1, r̂}

7: βk+1 ← rk+1ηk+1

8: λa ← 1

9: if γk+1 = 0 or γk+1 g 1 then

10: λa ← 0

11: else if |γk+1|/|1− γk+1| > βk+1 then

12: λa ←
βk+1

γk+1 (βk+1 + sign(γk+1))
13: end if

14: xk+1 ← xk + wk+1 − λaγk+1(xk − xk−1 + wk+1 − wk)

15: end for

Adaptive γ-safeguarding differs from Algorithm 4 only in line 2. In Algorithm 4,
βk+1 = rηk+1 whereas βk+1 = rk+1ηk+1 in Algorithm 6 with rk+1 = min{ηk+1, r̂}.
This one change can have a significant impact on convergence as demonstrated in
Section 4, and can enable locally quadratic convergence when applied to nonsin-
gular problems (see Corollary 3.4). Similar to γNA(r), one implements γNAA(r̂)
by replacing line 5 in Algorithm 2 with Algorithm 6 and setting r̂ at the start
of the solve. The result is Algorithm 7. The choice of r̂ here sets the weak-
est safeguarding the user wants to impose. Thus we are always safeguarding at
least as strictly as standard γ-safeguarding with r = r̂. Stated concisely, we
have rk+1 f r̂. Local convergence of γNAA(r̂) then follows from Theorem 6.1
in [10]. To state this precisely, let λk+1 be the value of λa computed by Al-
gorithm 6 at step k, θλk+1 = ∥wk+1 − λk+1γk+1(wk+1 − wk)∥/∥wk+1∥, xNA

k+1 :=
xk + wk+1 − λk+1γk+1(xk − xk−1 + wk+1 − wk), and σk := ∥PRek∥/∥PNek∥. Then
we have the following theorem.

Theorem 3.1. Let dimN = 1, and let D̂ be invertible as a map on N . Let

Wk := B∥ek∥(x
∗) ∩ {x : ∥PR(x − x∗)∥ < σk∥PN (x − x∗)∥}. If x0 is chosen so that

σ0 < σ̂ and ∥e0∥ < ρ̂, for sufficiently small σ̂ and ρ̂, x1 = x0+w1, and xk+1 = xNA
k+1

for k g 1, then Wk+1 ¢ W0 for all k g 0 and xk → x∗. That is, {xk} remains

well-defined and converges to x∗. Furthermore, there exist constants C > 0 and

κ ∈ (1/2, 1) such that

∥PRek+1∥ f Cmax{|1− λk+1γk+1| ∥ek∥
2, |λk+1γk+1| ∥ek−1∥

2} (6)

∥PNek+1∥ f κθλk+1∥PNek∥ (7)
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for all k g 1.

Under the assumptions of Theorem 3.1, Griewank’s Theorem [22, Theorem 6.1]

says that Newton’s method almost surely leads into the domain of convergence Ŵ
provided x0 is sufficiently close to x∗. This effectively means that if the sequence xk

generated by γNAA(r̂) approaches x∗ we will have almost sure convergence even-
tually, and this convergence will be faster than Newton. The precise improvement
is determined by the asymptotic behavior of θλk+1. Globalization techniques such
as linesearch methods may be used to bring the γNAA(r̂) iterates closer to x∗. In
particular, γNAA(r̂) with an Armijo linesearch was shown to be effective in [10].

Our choice of rk+1 in Algorithm 6 is partially motivated by Criterion 3.1.3. That
is, in the case of a nonsingular problem, we prefer to use Newton asymptotically
rather than NA. Hence we want rk+1 to tend to zero as our solver converges, thereby
scaling the γNAA(r̂) iterates heavily towards pure Newton steps in the asymptotic
regime and enjoying quadratic convergence locally. The remainder of this section is
dedicated to quantifying how close a γNAA(r̂) iterate is to a standard Newton iterate
in the asymptotic regime when f ′(x∗) is nonsingular. The main result is Theorem
3.3 below which bounds ∥xNA

k+1 − xNewt
k+1 ∥ locally, where xNewt

k+1 := xk + wk+1, and

xNA
k+1 := xNewt

k+1 −λk+1γk+1(x
Newt
k+1 −x

Newt
k ). This notation is introduced to emphasize

the Newton and Newton-Anderson iterates in the comparison. We will also define
eNewt
k := xNewt

k − x∗ = xk−1 + wk − x∗. The following lemma will be used in the
proof of Theorem 3.3. Lemma 3.2 bounds |λk+1γk+1|, the scaled γk+1 returned
by γNAA(r̂) at iteration k, in terms of ηk+1 and rk+1 = min{ηk+1, r̂}. The proof
consists of walking through the cases in Algorithm 6, and is therefore left to the
interested reader.

Lemma 3.2. Let ηk+1 = ∥wk+1∥/∥wk∥ and r̂ ∈ (0, 1). Define rk+1 := min{ηk+1, r̂}
and βk+1 := rk+1ηk+1 as in Algorithm 6. Let λk+1 be the value computed by Al-

gorithm 6 at iteration k. If ηk+1 < 1, then λk+1γk+1 returned by Algorithm 6

satisfies

|λk+1γk+1| f
βk+1

1− βk+1

. (8)

when λk+1 = 1, and

|λk+1γk+1| =
βk+1

1 + sign(γk+1)βk+1

. (9)

when λk+1 < 1.

With Lemma 3.2, we can bound ∥xNA
k+1 − xNewt

k+1 ∥ in terms of ∥ek∥, ∥ek−1∥, and
ηk+1.

Theorem 3.3. If f ′(x∗) is nonsingular, then there exists a ρ > 0 and a constant

C depending only on f such that for xk and xk−1 in Bρ(x
∗) and ηk+1 < 1,

∥xNA
k+1 − xNewt

k+1 ∥ f C

(

βk+1

1− βk+1

)

max{∥ek∥
2, ∥ek−1∥

2} (10)

when λk+1 = 1, and

∥xNA
k+1 − xNewt

k+1 ∥ f C

(

βk+1

1 + sign(γk+1)βk+1

)

max{∥ek∥
2, ∥ek−1∥

2} (11)

when λk+1 < 1.
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Proof. Using our notation from the discussion preceding Lemma 3.2, an iterate
generated by γNAA(r̂) takes the form xNA

k+1 = xNewt
k+1 − λk+1γk+1

(

xNewt
k+1 − xNewt

k

)

.

Therefore ∥xNA
k+1−x

Newt
k+1 ∥ = |λk+1γk+1| ∥x

Newt
k+1 −x

Newt
k ∥. Since f ′(x∗) is nonsingular,

we can take ρ sufficiently small to ensure that ∥eNewt
j+1 ∥ f C∥ej∥

2, where C is a con-
stant determined by f , when ∥ej∥ < ρ for j = k, k−1. Hence, upon adding and sub-
tracting x∗ we obtain ∥xNewt

k+1 −x
Newt
k ∥ = ∥eNewt

k+1 −e
Newt
k ∥ f 2Cmax{∥ek∥

2, ∥ek−1∥
2}.

To complete the proof, we write 2C = C and apply Lemma 3.2 to bound |λk+1γk+1|
for the cases λk+1 = 1 and λk+1 < 1.

We conclude this section with Corollary 3.4, which proves that γNAA(r̂) can
recover local quadratic convergence from NA when applied to nonsingular problems.

Corollary 3.4. If f ′(x∗) is nonsingular, ∥ek∥ < ∥ek−1∥, and ηk+1 < r̂, then there

exists a ρ > 0 and constants C1 and C2 depending only on f such that

∥ek+1∥ f

(

C1

1− r̂2
+ C2

)

∥ek∥
2 (12)

for xk, xk−1 ∈ Bρ(x
∗).

Proof. Adding and subtracting eNewt
k+1 to ek+1 gives ∥ek+1∥ f ∥x

NA
k+1 − xNewt

k+1 ∥ +

∥eNewt
k+1 ∥. By Theorem 3.3,∥xNA

k+1−x
Newt
k+1 ∥ f Cβk+1(1−βk+1)

−1 max
{

∥ek∥
2, ∥ek−1∥

2
}

,

and for xk ∈ Bρ(x
∗), ∥eNewt

k+1 ∥ f C2∥ek∥
2. Since ηk+1 < r̂, we have βk+1 = η2k+1.

Moreover, when f ′(x∗) is nonsingular, Taylor expansion shows that

ηk+1 f C1

∥ek∥

∥ek−1∥
(13)

for xk, xk−1 ∈ Bρ(x
∗). Thus βk+1 max

{

∥ek∥
2, ∥ek−1∥

2
}

f C1∥ek∥
2, and therefore

∥ek+1∥ f

(

C1

1− r̂2
+ C2

)

∥ek∥
2. (14)

4. Numerics. In this section, we demonstrate the effectiveness of NA and γNAA(r̂)
near bifurcation points by applying these algorithms to the following parameter-
dependent PDEs. All computations are performed on an M1 MacBook with GNU
Octave 8.2.0.

4.1. Test Problems.

1. Navier-Stokes Flow in a Channel














−µ∆u+u ·∇u+∇p = 0

∇ · u = 0

u = uin, Γin,

u = 0, Γwall,

−pn+ (µ∇u)n = 0, Γout.

(15)

2. Rayleigh-Bénard Convection


























−µ∆u+u ·∇u+∇p− RiTey = 0

∇ · u = 0

−κ∆T + u ·∇T = 0

T = 1, Γ1 := {1} × (0, 1),

T = 0, Γ2 := {0} × (0, 1),

∇T · n = 0, Γ3 := (0, 1)× {0, 1},

u = 0, ∂Ω = Γ1 ∪ Γ2 ∪ Γ3.

(16)
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In both models, u denotes the fluid velocity, p the pressure, and n the outward
normal. In Model (15), µ denotes the viscosity parameter. In Model (16), T denotes
the temperature of the fluid, and Ri denotes the Richardson number, which is the
parameter of interest for Model (16). We set µ = κ = 10−2. These parameters
values are chosen so as to replicate the results seen in [20] as Ri ranges from 3.0 to
3.5. For the flow in a channel, Model (15), we use P2 − P1 Taylor-Hood elements
[8, p. 164]. The channel, shown in Figure 1, is arranged such that the left most
boundary lies at x = 0, the right most boundary lies at x = 50, and the boundary
components are given by Γin = {0} × [2.5, 5], Γout = {50} × [0, 7.5], and Γwall =
[0, 10]× ({2.5} ∪ {5}) ∪ {10} × ([0, 2.5] ∪ [5, 7.5]) ∪ [10, 40]× ({0} ∪ {7.5}). For the
Rayleigh-Béndard Model, we use P2 − P

disc
1 Scott-Vogelius elements [24], where

Pdisc
1 denotes piece-wise linear discontinuous elements. The P2−P

disc
1 elements are

stable on Alfeld-split, also known as barycenter-split, triangulations [46, p. 77]. The
meshes used for each model are shown below.

Figure 1. Meshes used for benchmark problems. Top: Mesh
used for Rayleigh-Bénard model. Bottom: mesh used for flow in a
channel.

For Model (15), it is known [39] that there exists a critical viscosity µ∗ ∈ (0.9, 1)
at which a bifurcation occurs. For µ > µ∗, the stable velocity solution is symmetric
about the center horizontal (y = 3.75) as seen in the top plot of Figure 2. For
µ < µ∗, there is still a symmetric solution, but it is unstable. Stability is inherited
by two asymmetric solutions seen in the bottom two plots of Figure 2.
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Figure 2. Solutions to channel flow problem (15) for different
µ. Top: Representative symmetric solution for µ = 1.0. Middle:
Representative asymmetric solution with positive vertical velocity
upon exiting the narrow channel for µ = 0.9. Bottom: Repre-
sentative asymmetric solution with negative vertical velocity upon
exiting the narrow channel for µ = 0.9.

The parameter region of interest for Model (16) is Ri ∈ [3, 3.5]. In this range,
the flow appears to be in transition from a single eddy in the center of the domain
to two eddies as seen in Figure 3 below.

Figure 3. Velocity streamlines for velocity u from Model (16)
showing transition from one eddy to two eddies. Top Left: Ri =
3.0. Top Right: Ri = 3.1. Bottom Left: Ri = 3.2. Bottom Right:
Ri = 3.4.
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For Model (15), we take the zero vector as our initial iterate. For Model (16), we
initialize our iterate by applying a Picard step and then applying γNAA(r̂). The
H1 seminorm is used in our implementations [8]. Before we discuss the numerical
results, we recall that

• Newt is Algorithm 1.
• NA is Algorithm 2.
• NA(m) is Algorithm 3.
• γNA(r), Algorithm 5, is Algorithm 2 with line 5 replaced by Algorithm 4.
• γNAA(r̂), Algorithm 7, is Algorithm 2 with line 5 replaced by Algorithm 6.

For γNA(r) and γNAA(r̂), we set r and r̂ respectively to a fixed quantity for all
iterations.

4.2. General Discussion of Results. The following experiments demonstrate
three strategies for solving nonlinear problems near bifurcations using NA and
γNAA(r̂). The first two are asymptotic safeguarding and preasymptotic safeguard-

ing. With asymptotic safeguarding, we run NA until the residual is smaller than
some user-chosen threshold, and we use γNAA(r̂) for all subsequent iterates. Hence
the solve will behave like NA until the last few iterations when γNAA(r̂) is applied.
For the experiments in Section 4.3, we activated γNAA(r̂) when ∥wk+1∥ < 10−1.
We chose 10−1 since we want to activate γ-safeguarding as early as possible. This
allows for earlier detection of a nonsingular problem, and thus faster convergence.
We found that activating γ-safeguarding for ∥wk+1∥ < τ < 10−1 will not necessarily
break convergence, but if the problem is nonsingular, this will not be detected as
early. Activating γNAA(r̂) when ∥wk+1∥ < 1 can break convergence, though this
seems to be problem-dependent. Convergence for Model (15) was virtually unaf-
fected with threshold ∥wk+1∥ < 1, but for Model (16) with Ri = 3.5, setting the
activation threshold to 1 caused γNAA(0.9) to diverge when it had converged with
threshold 0.1. With activation threshold 0.1, asymptotic safeguarding is shown to be
effective close to the bifurcation point, where Newton’s method can fail to converge.
Preasymptotic safeguarding, on the other hand, applies γNAA(r̂) at each step of the
solve. Interestingly, we observe that γNAA(r̂) applied preasymptotically can out-
perform NA when applied to Model (16), and even recover convergence when both
Newton and NA diverge (see Figure 11). A theoretical explanation for this requires
a better understanding of these methods in the preasymptotic regime. In particular,
a better understanding of the descent properties of Anderson acceleration would be
of great value. It is known [52] that for singular problems in the preasymptotic
regime, where ∥f(x)∥ is not small, the Newton update step sk = −f ′(xk)

−1f(xk),
or wk+1 in our notation, can be large and nearly orthogonal to the gradient of ∥f∥22.
With NA, our update step takes the form sNA

k = wk+1 − γk+1(x
Newt
k+1 − xNewt

k ). It

is clear that sNA
k is a descent direction for sufficiently small γk+1, since in this case

it is nearly wk+1. It is possible that for certain values of γk+1, s
NA
k is a stronger

descent direction than sk.
Another possible explanation as to why γNAA(r̂) can outperform NA in some

cases is its resemblance to restarted Anderson acceleration methods. Restarted
versions of Anderson acceleration are often applied in various forms for depthm > 1,
and have been shown to effective in practice [9, 25, 26, 36]. In the special case of
Newton-Anderson with depth m = 1, every odd iterate is simply a Newton step,
rather than a combination of the previous two Newton steps. Hence the algorithm
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is “restarted” every other step. Explicitly, we have for k g 1,

x2k−1 = xNewt
2k−1

x2k = xNewt
2k − γ2k(x

Newt
2k − xNewt

2k−1)

In other words, γ2k−1 = 0 for all k g 1. With γNAA(r̂), γk+1 is not necessarily
set to zero, but it is scaled towards zero, significantly so depending on βk+1. In
this way, one may think of γNAA(r̂) as a quasi-restarted Anderson scheme when
the depth m = 1. At the moment, γ-safeguarding is not developed for m > 1,
but this interpretation of γNAA(r̂) as a quasi-restarted method could lead to such
a development. Presently, these are only heuristics, but they provide interesting
questions for future projects.

The third technique we demonstrate to solve these problems near bifurcation
points is increasing the depth m. Evidently, the right choice of m can significantly
improve convergence by reducing the number of iterations to convergence by half,
and increase the domain of convergence with respect to the parameter. We found,
however, that such performance was very sensitive to the choice of m. So while the
results suggest this could be developed into a viable strategy, more work is required
to achieve this.

In all experiments we take r̂ ∈ (0, 1) since this is the range in which local con-
vergence of γNAA(r̂) is guaranteed by Theorem 3.1. In practice, neither Algorithm
5 nor Algorithm 7 breaks down if one sets r or r̂ respectively to zero, one, or a
value greater than one. Setting r or r̂ to zero reduces the iteration to Newton, and
choosing one leads to a more NA like iteration in the preasymptotic regime. A
systematic study of γNAA(r̂) with r̂ g 1 has not been performed, but experiments
performed thus far show no significant advantage over r̂ ∈ (0, 1).

What the best choice of r̂ is remains an open question. Numerical experiments
suggest the best choice depends on the initial guess x0. For example, when applied
to the channel flow problem preasymptotically (see Section 4.4), setting r̂ = 0.9
results in faster convergnece than Newton if x0 is the zero vector. If we perturb
this x0 (discussed in Section 4.4.1), then the choice of r̂ = 0.9 leads to γNAA(r̂)
converging slower than Newton, while r̂ = 0.5 outperforms NA and Newton. This
phenomena, that the best choice of r̂ in γNAA(r̂) varies with x0, is seen with other
choices of x0 as well. Elucidating this dependence is the subject of ongoing work.

4.3. Asymptotic Safeguarding. Under the assumptions of Theorem 3.1 or The-
orem 3.3, γNAA(r̂) is guaranteed to converge locally. This motivates the strategy
of this subsection. As discussed above, asymptotic safeguarding is when we only
apply γNAA(r̂) once the residual is smaller than a set threshold. This allows one to
take full advantage of NA in the preasymptotic regime, and ensures fast quadratic
convergence for nonsingular problems. In practice, this means fast local conver-
gence provided NA reaches the domain of convergence. We activate γNAA(r̂) when
∥wk+1∥ < 10−1 in the experiments below. When ∥wk+1∥ > 10−1, we run NA.

4.3.1. Results for Channel Flow Model. The results when applied to Model (15) are
shown below in Figures 4, 5, and 6. The takeaway is that when applied asymptot-
ically, convergence of γNAA(r̂) is not as sensitive to the choice of r̂ as it is when
applied in the preasymptotic regime (see Section 4.4), and Algorithm 6 is working
as intended by detecting that the problem is nonsingular. This is seen in the plot
on the right of Figures 4, 5, and 6. Recall that rk+1 is the adaptive parameter in
Algorithm 6 that determines how close a γNAA(r̂) step is to a Newton step. When
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rk+1 ≈ 0, and the criteria in Algorithm 6 is met, the γNAA(r̂) step xk+1 will be
close to a Newton step. When rk+1 ≈ 1, this scaling will be much less severe, and
the γNAA(r̂) step xk+1 will be close to an NA step. From our discussion in Sec-
tion 3, we want rk+1 → 0 when the problem is nonsingular in order to enjoy local
quadratic convergence. This is not guaranteed with NA [47]. Observing the rk+1

plots in Figures 4, 5, and 6, one notes that rk+1 → 0 as the solver converges. Since
rk+1 = min{ηk+1, r̂}, this is equivalent to ηk+1 → 0 as the solve converges. Thus
by Theorem 3.3, the γNAA(r̂) iterates converge to Newton iterates asymptotically.
This is precisely what γNAA(r̂) was designed to do: detect nonsingular problems,
and respond by scaling the iterates towards Newton asymptotically. Since γNAA(r̂)
is only activated when ∥wk+1∥ < 10−1 in these examples of asymptotic safeguard-
ing, rk+1 is only computed, and plotted, for the last two iterations. In the next
section on preasymptotic safeguarding, a more interesting rk+1 history is seen. Our
methods, including NA, failed to converge for µ < 0.92. If one wishes to solve
a problem at a particular parameter, and a direct solve fails like we see here for
µ < 0.92, one could still employ NA or γNAA(r̂) to solve the problem directly for a
parameter value close to the desired one to obtain an initial guess for continuation.
The benefit here is that the continuation would be required in a smaller parameter
range, thus reducing the total number of solves required. We will see in Section 4.5
that increasing m can lead to convergence for a wider range of parameters.

Figure 4. Comparison of γNAA(r̂) applied asymptotically with
Newton and NA applied to Model (15) with µ = 0.96.

Figure 5. Comparison of γNAA(r̂) applied asymptotically with
Newton and NA applied to Model (15) with µ = 0.94.
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Figure 6. Comparison of γNAA(r̂) applied asymptotically with
Newton and NA applied to (15) with µ = 0.92.

4.3.2. Results for Rayleigh-Bénard Model. The results of asymptotic safeguarding
with activation threshold 0.1 applied to Model (16) are similar to those of Model
(15) seen in the previous section. In this case, however, NA diverged for Ri = 3.0
and Ri = 3.2. For Ri = 3.0, Newton’s method converges, but all methods diverged
for Ri = 3.2. In Section 4.4, we are able to recover convergence for Ri = 3.2 with
preasymptotic safeguarding. For Ri = 3.1, Ri = 3.3, Ri = 3.4, and Ri = 3.5,
Newton diverged while NA and γNAA(r̂) converged. Like with Model (15), we
see rk+1 → 0 as the solve converges. The results for Ri = 3.4, shown below, are
representative of the others for which NA converged.

Figure 7. Comparison of γNAA(r̂) applied asymptotically with
Newton and NA applied to Model (16) with Ri = 3.4.

4.4. Preasymptotic Safeguarding. In this section, we demonstrate the preasymp-
totic safeguarding strategy, where γNAA(r̂) is activated starting at iteration k = 2,
the first iteration where NA can be applied. Compared to asymptotic safeguarding,
preasymptotic safeguarding is more sensitive to the choice of r̂, but, with the right
choice of r̂, it can recover convergence when both Newton and NA fail.

4.4.1. Results for Channel Flow Model. Here we present the results from applying
the preasymptotic safeguarding strategy to the channel flow Model (15). Evidently,
Newton’s method can still converge quickly with the right initial guess when µ =
0.96. Figure 8 demonstrates that in this case, NA and γNAA(r̂) also perform
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well. The right-most plot in Figure 8 demonstrates that the γNAA(r̂) is working
as intended. That is, rk+1 → 0, and therefore γNAA(r̂) is detecting that Newton
is converging quickly, and responds by scaling its update steps towards a pure
Newton iteration. With µ = 0.94, we are closer to the bifurcation point, and
observing the left plot in Figure 9, we see that Newton takes many more iterations
to converge. However, after a long preasymptotic phase, Newton does eventually
converge quickly, which suggests that the problem is not truly singular for µ = 0.94.
This is again detected by γNAA(r̂). Even though the γNAA(r̂) algorithms take a
few more iterations to converge than NA with µ = 0.94, the terminal order of
convergence of γNAA(r̂) is greater than that of NA. Approximating the rate by
qk+1 = log(∥wk+1∥)/ log(∥wk∥) at each step k, and letting qterm denote the terminal
order, we found that qterm = 1.537 for NA, qterm = 3.386 for γNAA(0.1), and qterm =
2.091 for γNAA(0.9). In the right most plot in Figure 9, we take as our initial iterate
the zero vector, but with the fifth entry set to 50. From this perturbed initial
guess, Newton’s method is seen to perform better than NA. Further, γNAA(0.1)
and γNAA(0.5) outperform both Newton and NA, with γNAA(0.5) converging in
about half as many iterations as NA. This demonstrates the flexibility offered by
γNAA(r̂). That is, whether Newton or NA is the best choice for a particular problem
and initial guess, γNAA(r̂) is more agnostic to these choices, and can perform well in
either case. There is still, however, sensitivity to r̂. We found that γNAA(r̂) failed
to converge for r̂ = 0.3, 0.5, 0.6, 0.7, and 0.8. γNAA(r̂) converged with r̂ = 0.4, but
only after 74 iterations. We observed that γNA(0.5), the non-adaptive version of
γ-safeguarding, managed to converge. The reason for this variation is likely due to
the complex behavior of Newton and NA in the preasymptotic regime, leading to
sensitivity to the choice of r̂. With preasymptotic safeguarding, our methods failed
for µ < 0.94, hence continuation may still be required in some cases, but NA and
γNAA(r̂) can be used to efficiently solve the problem closer to the bifurcation point
compared to Newton, thereby reducing the overall computational cost. The point
is that applying γNA(r) and γNAA(r̂) in the preasymptotic regime can still lead
to faster convergence than Newton, but this convergence is again sensitive to the
choice of r̂, and further work is required to understand this sensitivity.

Figure 8. Results of preasymptotic safeguarding applied to
Model (15) for µ = 0.96. Left: Convergence history for Newton,
NA, and γNAA(r̂) for µ = 0.96. Right: The value of rk+1 at each
iteration for the adaptive methods.
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Figure 9. Results of preasymptotic safeguarding applied to
Model (15) for µ = 0.94. Left: Convergence history for Newton,
NA, and γNAA(r̂) for µ = 0.94 with zero vector initial guess. Right:
Convergence history for Newton, NA, and γNAA(r̂) for µ = 0.94
with perturbed initial guess.

4.4.2. Results for Rayleigh-Bénard Model. With preasymptotic safeguarding ap-
plied to Model (16), we again see more varied behavior since we have γ-safeguarding
activated from the beginning of the solve. The results are shown in Figures 10, 11,
and 12. The rk+1 plots are only shown for those values of r̂ for which γNAA(r̂) con-
verged. We found that for Ri = 3.0 and Ri = 3.1, γNAA(r̂) failed to converge with
r̂ = 0.1, 0.5, or 0.9. Convergence is recovered with r̂ = 0.4 and r̂ = 0.6 respectively.
We also ran γNAA(r̂) with these r̂ values for Ri = 3.2, 3.3, 3.4, and 3.5. The results
were similar for Ri = 3.3, 3.4, and 3.5. Hence we only show the results for Ri = 3.4
in Figure 12. The theme demonstrated in Figures 10, 11, and 12 is that when
preasymptotic safeguarding is employed, it is possible to converge faster than stan-
dard NA. Moreover, as seen in Figure 11, γNAA(r̂) can converge when both Newton
and NA diverge. One may note that in the right-most plot in Figure 10, prior to the
asymptotic regime where rk+1 → 0, we observe rk+1 < r̂ = 0.6 only twice. Using
the restarted Anderson interpretation discussed in Section 4.2, we could say that
there are two quasi-restarts prior to the asymptotic regime. Evidently, these two
quasi-restarts are essential, since we found that non-adaptive γ-safeguarding with
r̂ = 0.6, Algorithm 4, diverges. Similar behavior of rk+1 is seen in Figures 11 and
12. It remains unclear precisely how the choice of r̂ affects convergence, e.g., in
Figure 10, why does γNAA(0.6) converge, but γNAA(r̂) diverges for r̂ = 0.1, 0.4,
0.5, and 0.9? As previously discussed, a better understanding of these methods in
the preasymptotic regime would help answer questions like these, and this will be
the focus of future studies.

Figure 10. Comparison of γNAA(r̂) applied preasymptotically
with Newton and NA applied to Model (16) with Ri = 3.1.
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Figure 11. Comparison of γNAA(r̂) applied preasymptotically
with Newton and NA applied to Model (16) with Ri = 3.2.

Figure 12. Comparison of γNAA(r̂) applied preasymptotically
with Newton and NA applied to Model (16) with Ri = 3.4.

4.5. Increasing Anderson Depth. The strategy employed in this section is to
increase the depth of the NA from m = 1 used in previous sections.

4.5.1. Results for Channel Flow Model. The plots in Figure 13 demonstrate the
effectiveness of increasing the algorithmic depth m to solve Model (15) near the
bifurcation point. We also experimented with applying γNAA(r̂) asymptotically.
When ∥wk+1∥ < 1, we set m = 1 and activated γNAA(r̂) with r̂ = 0.9. These
results are seen as the dashed lines in the left-most plot in Figure 13. The philos-
ophy is similar to that of preasymptotic safeguarding. We use NA(3) to reach the
asymptotic regime, and then allow adaptive γ-safeguarding to detect if the problem
is nonsingular. We set m = 1 because, for the present, γ-safeguarding is only de-
signed for m = 1. The left-most plot in Figure 13 shows how, from the same initial
iterate, we are able to solve Model (15) for a wider range of µ values, including in
the regime where Newton, NA(1), and γNAA(r̂) failed to converge.
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The right-most plot in Figure 13 focuses on the results of applying NA(3) to
Model (15) with µ = 0.92. The point here is that even in the regime where NA(1)
converges, NA(3) converges in about half as many iterations. Thus increasing the
algorithmic depth can lead to faster convergence. The improved convergence seen
with increasing the depth m suggests that a generalization of γ-safeguarding for
greater depths could be useful as a generalization of the strategies presented in
previous sections. However, for this strategy to be effective in general, further
study is needed on the proper choice of depth m. In the chosen parameter regime,
m = 3 was the only value of m ∈ {1, 2, ..., 10} observed to improve convergence
when NA(1) failed.

Figure 13. Results from increasing Anderson depth m. Left:
Convergence history of NA(3) for various choices of µ near µ∗.
Solid lines are NA(3), and dashed lines are NA(3) with asymptotic
γNAA(r̂). Right: Convergence history for NA(1) and NA(3) with
µ = 0.92.

4.5.2. Results for Rayleigh-Bénard Model. The results of increasing m to solve
Model (16) are shown below in Figure 14. As with Model (15), we experimented
with reducing m = 1 and activating γ-safeguarding asymptotically. The dashed
lines in Figure 14 are the results of these experiments. For this problem, activa-
tion occurred when ∥wk+1∥ < 10−1 since we found that activating γNAA(r̂) with
r̂ = 0.9 when ∥wk+1∥ < 1 broke convergence like it did in Section 4.3.2. We once
again observe that the right choice of m > 1 can improve convergence significantly.
This can be seen in Figure 14 for Ri = 3.3. Moreover, Figure 14 demonstrates that
increasing m can recover convergence when NA(1) fails to converge for Ri = 3.0 and
Ri = 3.2. However, for Ri = 3.1, 3.4, and 3.5, there was no significant improvement
gained from increasing m > 1. The results for Ri = 3.4 shown below in Figure 14
are representative of the results for Ri = 3.1 and Ri = 3.5.

The most significant difference between NA(m) without asymptotic γNAA(r̂),
and NA(m) with asymptotic γNAA(r̂), is seen with m = 10. It also appears that
m = 10 is more sensitive to the activation threshold than smaller choices of m.
This is seen in Figure 14 for Ri = 3.3 and Ri = 3.4. These results are promising,
and motivate further investigation to fully understand how the choice of m affects
convergence near singularities, and in particular, near bifurcation points.
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Figure 14. Convergence history of NA(m) for m = 1,2,3,4,5,
and 10 for Ri =3.0, 3.2, 3.3, and 3.4. Dashed lines denote NA(m)
with asymptotic γNAA(r̂) with r̂ = 0.9 activated when ∥wk+1∥ <
10−1.

5. Conclusion. We have presented a modification of Anderson accelerated New-
ton’s method for solving nonlinear equations near bifurcation points. We proved
that, locally, this modified scheme can detect nonsingular problems and scale the
iterates towards a pure Newton step, which leads to faster local convergence com-
pared to standard NA. We numerically demonstrated two strategies one can employ
when using our modified NA scheme to solve nonlinear problems near bifurcation
points, with our test problems being two Navier-Stokes type parameter-dependent
PDEs. Asymptotic safeguarding was shown to recover local quadratic convergence
when the problem is nonsingular, and it shows virtually no sensitivity to the choice
of parameter r̂. It can, however, be sensitive to the choice of activation threshold.
Preasymptotic safeguarding is shown to significantly improve convergence, and can
recover convergence when both Newton and NA fail. There is strong sensitivity
to the choice of r̂ though, and future work will clarify this dependence. We also
demonstrated that increasing the Anderson depth m can improve convergence, and
increase the domain of convergence with respect to the problem parameter. Future
projects will further study how the choice of m impacts convergence, and work
towards developing γ-safeguarding for greater algorithmic depths.
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[7] N. Boullé, V. Dallas and P. E. Farrell, Bifurcation analysis of two-dimensional Rayleigh-

Bénard convection using deflation, Phys. Rev. E, 105 (2022), 16 pp.
[8] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics,

Cambridge University Press, 2007.
[9] M. Chupin, M. Dupuy, G. Legendre and E. Séré, Convergence analysis of adaptive DIIS
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