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Abstract—The growing quantity of wireless network activity
generated every second of every day creates challenges for
network operators, such as detecting anomalies and providing
sufficient capacity. This same network activity also creates
opportunities for Smart and Connected Systems (SCSs) to
adapt to changing population dynamics, detect and proactively
adapt to unexpected events such as public safety threats, traffic
jams, or adverse weather events, for example. The GHOST
project is researching the challenges of modeling, analyzing, and
generating patterns of network activity. The GHOST project
has demonstrated that Nonnegative Matrix Factorization (NMF)
provides a robust mechanism for modeling network activity
patterns that can be used to generate realistic network activity.
The GHOST team has further demonstrated the capability for
injecting programmed activity patterns into a live, functioning
wireless network.
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I. INTRODUCTION

Every day, 2.45 billion pieces of content are shared on
Facebook, nearly 500 million Tweets are shared on Twitter,
and 3.5 billion Snaps are shared on Snapchat [1]. The daily
amount of data generated by social media alone amounts to
41.72 million terabytes. Internet traffic conducted on mobile
phones worldwide has risen from 0.7% in 2009 to over 50% of
all traffic by 2023, further accelerated by 5G [2]. Africa leads
mobile traffic with over 70% of web page views generated by
mobile devices. In 2017 Cisco estimated that average network
traffic per capita would reach 49.8 GB per month by 2022 with
global IP network traffic reaching 332,7 Exabytes per month
[3].

This large quantity of data not only creates a challenge
for network operators to detect anomalies and provide suf-
ficient capacity but also creates opportunities for Smart and
Connected Systems (SCSs) to adapt to changing population
dynamics. NIST defines a SCS as a collection of interrelated
systems that can collect and analyze data to make decisions
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with and without human interaction [4]. Without human in-
teraction and access to personal identifiable information (PII),
SCSs have the capability to use the monitored network activity
to adapt to regular patterns of usage, or detect and predict
significant and potentially challenging or threatening events
while also preserving user anonymity. Examples of detectable
events include large gatherings like celebrations of sports
victories; protests with the potential to become riots; public
safety threats; traffic jams; or adverse weather events.

The University of Colorado Boulder (UCB) is a medium-
scale SCS. UCB enrolls over 36,000 students, has over 16,000
faculty and staff, and operates its own police force, campus-
wide Wi-Fi network, and soon its own private 5SG network.
Figure 1 demonstrates Wi-Fi activity on the UCB campus
during a weekday at two different times and highlights some
of the patterns that can be discovered in network activity.
The size of the circles represent the number of active WiFi
connections in each campus building and illustrates the shift
in WiFi activity from dormitories in the morning at the lower
right of each frame to academic buildings at mid-day in the
upper left and upper right of each frame.

Figure 1 highlights how network activity can reveal signifi-
cant information about the behavior of a population or an orga-
nization. It is possible to not only uniquely identify individual
users, but entire groups of users using the metadata generated
by their devices and their online behavior in combination with
the generated network traffic. Recent examples of using such
individual and group metadata include the identification of
Russian officers using their cellular connection during the war
in Ukraine [6], tracking the movement of protests using social
media [7], revealing the exact location of Polish troops by
using dating apps on their phones [8], drawing GPS maps of
US military bases due to troops using Fitbits [9], and Al being
used to monitor student protests on social media [10].

These long-term observations of network activity can be
used to create patterns of life that can predict regular behavior
as well as detect changes in behavior and can be used to as
input to models seeking to generate realistic network activity.
Conversely, generating realistic traffic is not that simple. Not
only does the artificial network traffic need to be responsive
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Fig. 1: Wi-Fi user count showing student movement from dormitories to academic buildings [5].

to network conditions, but the traffic generator also needs to
capture realistic packet interactions. Most traffic generation
is intended for capacity planning, bandwidth measurements,
and simulations, where mostly aggregate characteristics matter.
Components such as accurate packet inter-arrival rates, packet
size distributions, broken packets, and port distributions are
of less importance [11]. Without modeling user behavior and
realistic network activity first, it is impossible to capture the
realistic effects in the generated traffic.

Therefore, the objective of this research is to first model,
analyze, and generate realistic network activity corresponding
to medium to large-scale human behavior in natural envi-
ronments. Real user behavior needs to be modeled first to
identify baseline activity, regular patterns, and typical events,
which can then be used to detect and predict anomalies
that could indicate threats or significant changes in behavior.
Finally, network activity patterns are generated that mimic
and are indistinguishable from real large-scale network activity
patterns. The results will provide a proof-of-concept for other
organizations and SCSs to monitor network activity for threats
and dynamically optimize system parameters. Additionally, re-
alistic activity patterns can be used to drive system architecture
and design as well as upgrades to meet changing demands.

II. BACKGROUND

This research continues research from 2020 that began
with a study of network activity on the UCB campus Wi-Fi
using anonymized data [5]. At UCB, all Wi-Fi access points
(APs) are geospatially registered and report statistics such as
the number of connected devices, occupied bandwidth, and
requested destination addresses. Before being made available
for research, all data is converted to a summary format of
user counts that does not contain any information that could
be used to identify or track individuals. Still, the number of
Wi-Fi connections at various locations is closely correlated
to population density. Hence, variations in the number of
connections reveal population behavior over time.

[12] explored the use of non-negative matrix factorization
(NMF) for modeling network activity. Using Wi-Fi data from
the UCB campus library, they noted a diurnal pattern of
activity that also distinguished weekends from weekdays. They
modeled the pattern using a four component NMF decompo-
sition, and showed that the general pattern of behavior could
be reconstructed from the NMF decomposition.

Patterns of life in general consists of three components
[13]: (1) the event describing a significant change in state;
(2) an activity describing what an individual or a group is
doing; and (3) a sequence of observable actions establishing
a behavior. Together, they establish a pattern that can be
considered normality. Having access to such a pattern of
normality enables an SCS to understand how and when people
engage in commerce, when activity is shifted to recreation, or
when and where religious activities are conducted. However,
defining such a pattern is not without its challenges. While
some research has attempted to measure communications
traffic patterns using machine learning, most of it is focused on
short-term predictions such as using Hidden Markov Models
and Long Short Term Memory models to detect anomalies
[14] or using network flow information to predict network
traffic bursts [15]. More recently, the use of transformers has
gained in popularity in various research areas, but has not
found many applications in pattern of life analysis yet and is
beyond the scope of this research. Additionally, most ordinary
neural networks do not predict network activity well and most
traffic analysis tools like Wireshark or Netflow don’t have the
necessary power to handle large-scale network activity [16].

We therefore build on the results of [5] and [12] to construct
realistic models of large-scale and long-term network activity
using Wi-Fi user counts spanning July 2019 to the beginning of
Covid in March 2020. Those models are then used to compute
expected network activity and implement software on network
devices to generate actual network activity. In the next section,
we describe the methodology used, including details on NMF,
the underlying data set, and details on how the generated



model could be used to replicate the user connection count
with a single device.

III. METHODOLOGY
A. Non-negative Matrix Factorization (NMF)

Non-negative Matrix Factorization (NMF) factors a matrix
D into the product of two lower rank matrices, W and H.
An important limitation is that the input matrix D must
be completely non-negative. Let the data matrix D be an
m X n matrix where D;; is greater than or equal to 0. NMF
decomposes D into two matrices such that:

D~W.H (1)

Every element of matrices W;; and H;; are greater than or
equal to 0, where the so called inner dimension k satisfies k <
min (z,y). W is an m X k basis matrix that holds the patterns,
or clusters, discovered from the dataset. H is a kxn coefficient
matrix that holds the corresponding weight, or importance, of
each pattern in W.

W H is an approximation of D. To optimize the approxima-
tion, an algorithm from Python’s scikit-learn package, known
as the “multiplicative update rule”, can be used. This algorithm
calculates W and H by measuring the error between the matrix
D and the product of its factors W and H, on the basis of
Euclidean distance:
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The Euclidean distance is non-increasing under the update
rules. Using this, two equations can be derived to update
matrices W and H.

To update the W matrix:
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To update the H matrix:
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The matrices W and H are first initialized with random
values. Using equations 2, 3, and 4, values of W and H
are then simultaneously updated and the algorithm is run
iteratively until we find values for W and H that minimize the
cost function (see Equation 2). In other words, the process of
computing new matrices for W and H, and the resulting error
using Equation 2, is repeated until W and H converge. Thus,
the multiplicative update rules will modify the initial values
of W and H until the approximation error converges or until
the product of them approaches D.

NMF has a rich history dating back to the early 1960s in
the fields of analytical chemistry and remote sensing [17]. The
work done in the 60s was not directly referred to as NMF,
although it was equivalent. In fact, NMF did not appear in
its present form until 1994 when a paper was published on
positive matrix factorization [18]. The true explosion of the
topic can be directly traced to a Nature article by Lee and

Seung in 1999 when data compression and feature extraction
were shown to be intrinsic properties of NMF [19].

Using NMF to model group behavior based on compre-
hensive and anonymized network data from the UCB campus
Wi-Fi network has several advantages: data often represent
the integrated results of interrelated variables acting together,
which could also be replaced by a lower-dimensional rep-
resentation [20]. Additionally, a lot of real data are often
non-negative. Therefore, to make data more intuitive and
to eliminate conflicts with the data’s underlying physical
reality, low rank data should also be positive. NMF’s non-
negative constraint is achieved by not allowing W and H to
have an arbitrary sign. This constraint results in NMF only
allowing additive and not subtractive combinations, leading to
a parts-based representation with localized features that better
represent intuitive notions [19].

NMF also has some downsides: due to its non-convexity,
NMF can only guarantee locally optimal solutions. Addi-
tionally, NMF has a convergence issue by requiring that the
inner dimension k must be provided. This method results in
different values of k leading to different factorization results
and a lack of unique solutions [20], [21]. However, despite its
downsides, NMF is highly versatile making it possible to be
used with many different types of applications and better suited
to model long-term trends. Different from other dimension-
ality reduction algorithms like principal component analysis
(PCA) and singular value decomposition (SVD), NMF has the
advantage of creating sparse and easily interpretable features
as its parts-based representation is more intuitive than those
achieved by PCA and SVD, which take holistic approaches
to dimensionality reduction. This advantage can be further
strengthened by the use of k-means to intialize NMF [21],
[22]. In the end, the intuitive and realistic models created by
NMF could in a further step be used as an input to generative
models, such as GANs, which then create new network traffic
or activity based on the model created by NMF.

B. Dataset and Data Pre-processing

The data used in this study was provided by the UCB
Office of Information Technologies (OIT). To calculate the
total number of active users in each building, the data from
multiple Wi-Fi access points (APs) within the building was
combined. The APs at UCB are set up in a configuration where
several APs provide coverage for a large area, and devices can
roam between them effortlessly. As a result, each device is
counted by only one AP, ensuring that duplicate counts for a
building are avoided.

By collecting connected device counts throughout the day,
time series data is obtained that will be analyzed using NMF.
To protect privacy, OIT removed all identifying information
from the data before releasing it, leaving only the active user
counts. This anonymity is one of the appealing aspects of this
dataset, as it minimizes privacy concerns for network users
and does not violate any privacy rights.

Unfortunately, the sampling frequency of the UCB Wi-
Fi network system is rather irregular. Without any control



over when device counts are reported, the intervals at which
user counts are sampled vary irregularly over time and space,
usually ranging from 3 to 12 minutes. Additionally, irregular
outages in the data reporting, lasting for hours or even days,
can lead to unfortunate gaps in the data. To ensure consistent
interpretation of the data, a standard sampling frequency is
preferred before applying any matrix factorization. To improve
data consistency, linear interpolation was performed on the
dataset, to yield a ten-minute interpolation of the data.

Section 4 of this paper will illustrate the analysis of data
from UCB’s Norlin Library, Williams Village, and the Ann
and H.J. Smead Aerospace Engineering building.

C. Matrix Interpolation

With the ten-minute interpolation, 144 data points are ac-
quired per day. Each day is treated as a sample and arranged
chronologically as columns in the data matrix D. As a result,
the factors W and H possess straightforward interpretations.
Specifically, the columns of W represent the activity patterns,
while the rows of H represent the weights assigned to the
activity patterns in the original data. It is crucial to have
the columns of the data matrix aligned with the same time
points throughout the day to ensure reliable comparisons.
Without interpolation, the columns would likely have different
dimensions.

This embedding of data assists in constraining the factor-
ization process and enhances NMF’s capability to generate
patterns that can be physically interpreted. Given any day in
the training data, we can reconstruct its pattern by combining
the columns of W, each of which represents a pattern of
network activity, in a linear manner, with the coefficients
(weights) represented by a corresponding column of H for the
desired day. Additionally, it is noteworthy that we can assess
the significance of each column of W on a specific day by
examining the weights within the A matrix.

The model created using NMF can then be used to generate
realistic network activity by adding user counts to the UCB
network in specific locations mimicking real user behavior.

D. Multiple Device Identities

While normally each Wi-Fi connected device is represented
by a single network interface controller (NIC) and a single
media access control (MAC) address, it would be unfeasible
to carry around hundreds of devices to recreate the observed
movement of user counts or create unexpected, but realistic
looking movement in unusual location.! Instead of pulling a
cartload of devices across campus, a single Raspberry Pi 4
together with a single USB Wi-Fi adapter is used to simulate
multiple devices authenticated and connecting to UCB access
points (AP). For this to work, it is essential that the Wi-Fi
adapter supports monitor mode, which is why the CanaKit
Raspberry Pi WiFi Wireless Adapter with the Ralink 5370
chipset was used [24]. While it does support monitor mode

! Although, something similar has been demonstrated by an artist in Berlin
using a cartload of phones to appear as a traffic cluster on Google Maps,
causing Google Maps to divert road users [23].

and a wide range of operating systems, it is limited to the 2.4
GHz Wi-Fi spectrum. With the CanaKit adapter, the Raspberry
Pi OS has access to capturing all Wi-Fi traffic. Scapy, an
interactive packet manipulation library written in Python, is
then used to manipulate the captured packets.

To make one Raspberry Pi appear as multiple devices on a
Wi-Fi AP, the CanaKit adapter is first put into monitor mode
and the Wi-Fi interface is reconfigured in Raspberry Pi OS
to use the target AP’s control channel. The control channel
can be either determined by finding the channel on which the
AP sends out its beacons or by using Scapy to transmit probe
requests and capturing the probe response. The Raspberry Pi is
also pre-loaded with a file containing a list of valid first 3 MAC
address octets. 48-bit MAC addresses, usually represented by
6 octets in the form of hexadecimal 2-digit numbers, consist
of 2 parts: the organizationally unique identifier (OUI) and the
NIC identifier. The first 3 octets are randomly pulled from a
list of valid OUIs to prevent access points from rejecting an
unknown OUI. The second pair representing the NIC on the
other hand is completely randomly generated.

With the interface configured and a list of valid random
MAC addresses generated, the process begins by using Scapy
to capture a beacon frame and reading the frame’s “supported
rates” field as the AP expects the correct supported rates in any
subsequent requests. The extracted supported rates are then
inserted into authentication and association requests, which are
then transmitted in the same order. The AP then replies with
an association response containing either a success message
or the reason for the association failure.

At this point, each randomly generated MAC address is
associated with the AP and a network operator can see that
all of these devices are in the process of connecting to the AP.
For the network operator the process however is not completed
until each MAC address is associated with an IP address. Two
methods can be used to complete this final step, depending
on the AP’s configuration: (1) if the AP accepts static IP
address, a DHCP inform packet can be used to inform the AP
of the specific MAC address’ selected IP address. While this
can admittedly lead to collisions if a selected IP address has
already been taken by a different device on the network, the
DHCP inform process is much simpler than the second method
and can simply be repeated with a different IP address until
a free one has been found. (2) If the AP is configured to not
allow static IP addresses, a DHCP discover message has to be
sent first, followed by a capturing a DHCP offer response and
sending the DHCP request. For method (2) 2 requests have to
be sent (DHCP discover and DHCP request) and 2 responses
have to be captured (DHCP offer and the acknowledgment)
per MAC address.

Once this step has been completed for each MAC address,
each ghost device is associated in the network with an IP
address and appears to the network operator as connected to
the network and as a physical device that can be tracked. At
this point, each MAC and IP address combination can be used
to transmit packets, access the network, and make it look like
multiple devices are using the network from this location.



IV. RESULTS

[12] and [5] demonstrated that a particular pattern of net-
work activity could be modeled and accurately reconstructed
using NMF. Our GHOST project demonstrated that NMF
decompositions could be used to generate scalable patterns
of network activity that could be additively injected into an
existing pattern to alter its appearance. We call the injected
pattern GHOST traffic.

Figure 2 illustrates the basic GHOST concept. The figure
shows in blue the original Wi-Fi activity for a randomly
selected Saturday at the UCB library. The red line is a
scaled NMF model for a typical weekday at the UCB library.
The purple line shows the user count activity that would be
observed by the network operator by injecting GHOST device
activity into the recordings, effectively changing the Saturday
pattern in shape and scale.

Injecting Saturday with GHOST Traffic

—— original
—— GHOST traffic
—— observed traffic

[ 20 40 60 80 100 120 140
Time of Day

Fig. 2: Injecting GHOST traffic developed from an NMF model
changes the observed pattern of network activity.

Figure 3 shows how GHOST models can be used to generate
realistic network activity on a larger scale by injecting GHOST
devices into recordings of Wi-Fi activity. In the figure, the blue
line shows the original Wi-Fi activity over an entire week from
Sunday to the next Saturday at the UCB library. The figure
clearly shows diurnal activity peaks for each day of the week.
Weekend activity is clearly different from weekday activity.
The red lines show the injected activity data for Sunday and
Saturday derived from the NMF model of a weekday. The
purple line shows the activity that would be observed by
the network operator. Injected GHOST activity has effectively
made weekend activity match weekday activity.

Figure 4 demonstrates the view of a network operator during
tests injecting GHOST device activity onto a real network
and access count data collected by the UCB Wi-Fi network.
The experiment was conducted on a Thursday afternoon on
the third floor of the Ann and H.J. Smead Aerospace Engi-
neering building. As previous models highlighted, Thursday
already shows declining activity. Additionally, the third floor
of the Aerospace Engineering building has less traffic than
for example the first floor, resulting in a fairly flat activity
curve. However, the data received from the UCB Wi-Fi system
clearly shows that the Raspberry Pi system was able to make
it look like much more activity was observed than on a typical
Thursday afternoon and night. Note that the baseline of 2
devices accessing the Wi-Fi network at all times is caused
by nearby vending machines.

Making a Weekend Look Like a Weekday

—— original
—— GHOST traffic
—— observed

Usercount

0 200 400 600 800 1000
Timestamps

Fig. 3: Injecting GHOST traffic makes weekend network ac-
tivity look like weekday activity.

V. CONCLUSION AND FUTURE WORK

Understanding and adapting to changing population dynam-
ics is an important capability for SCSs. Wireless network
activity is a data source closely correlated with population dy-
namics. UCB campus Wi-Fi activity clearly correlates closely
with the geospatial movements of students, faculty, and staff
over time. The GHOST project, using NMF decompositions of
Wi-Fi activity demonstrated that realistic network activity can
be injected into observed data streams to alter the observed
patterns. Further, the GHOST project demonstrated that a
single device can be programmed to appear as multiple devices
to the network operator. Integrated, these capabilities are a first
step towards enabling SCS owners and operators to identify
typical patterns of activity, identify anomalies, and generate
realistic activity to inform system design and test / evaluate
system performance.

Future research relying on the generated realistic models
includes the following:

o Development of a library of parameterized NMF models
of typical campus activities, such as: conferences, con-
certs, sports events, move-in/move-out weeks, semester
breaks, summer session, and more. The library will also

include models of the transition paths between events.
« Identification and modeling of example anomalous events

such as public safety alerts or weather alerts.
o Development of a monitoring capability to detect partic-

ular events or anomalies.
o Combine the traffic generation capability with the ca-

pability of a single device to present itself as multiple
devices.
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