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Abstract:

The design of novel reactors and chemical processes requires an understanding of the fundamental
chemical-physical processes at small spatial and temporal scales, and systematic scale up of these
studies to investigate how the process will perform at industrial scales. The financial and temporal
costs of these studies can be significant. The use of statistical machine learning-based methods can
significantly reduce these costs. The use of design of experiments methods can help design an
experimental plan that efficiently explores the design space using the fewest experiments possible.
Computational methods such as computational fluid dynamics (CFD) are effective tools for
detailed studies of the small-scale physics and are critical aids to facilitate and understand physical
experiments. However, CFD methods can also be time consuming, often requiring hours or days
of time on supercomputers. In this research, we investigate the combination of machine learning
with reducng 3D CFD simulation to 2D by exploiting axial symmetry to facilitate design of
experiments. Focusing on a 3D carbon dioxide (CO2) capture reactor as an example, we
demonstrate how machine learning and CFD can help facilitate modeling and design optimization.
A 2D CFD is used to simulate the chemical-physical processes in the reactor and is then coupled
with machine learning to develop a less computationally expensive model to accurately predict
CO2 adsorption. The learned model can be used to optimize the design of the reactor. This paper
demonstrates the decrease in temporal and financial costs of designing industrial-scale chemical
processes by combining reducing CFD dimension and machine learning. Equally importantly, this
research demonstrates the significance of selecting a proper machine learning algorithm for
different tasks by comparing performances of different machine learning algorithms.

Key Words: Computational Fluid Dynamics, Machine learning, Reduced Order Model, Black-
box Optimization, Data Augmentation

Introduction:

Chemical science and engneering research development relies on data, and data limitations can
severely hinder the research process. How to utilize data efficiently and obtain more data cost-
effectively becomes essential in data-limited research projects. Tools and methods, such as
fractional factorial design and sequences of experiments in Design of experiments (DoE), have
been developed to efficiently explore parameter space and utilize data effectively'. However,
physical experiments can be financially and temporally costly, limiting what is achievable even
with DoE. With the improvement of software and hardware, computational methods such as



computational fluid dynamics (CFD), molecular dynamics (MD), and density functional theory
(DFT) are reliable alternatives to obtain data at lower cost?>3-*. While computational methods can
alleviate some data limitation problems i DoE, the methods are still too costly to produce large
datasets. Therefore, more resources are needed to further reduce the data-limitation problem, and
a promising pathway is to utilize machine learning (ML) methods>-%. This study introduces a novel
method that first reduces a 3D CFD into 2D by exploiting the axial symmetry, and then uses a
combination of ML and CFD to aid DoE, helping to relieve data-limitation issues.

While DoE has been successfully used for efficiently exploring parameter spaces, one of its main
limitations is how to propose new experiments based on previous ones so as to maximize the
amount of information learned or for optimization’. Bayesian optimization, a general black-box
optimization tool, can potentially overcome these limitations when used in conjunction with DoE.
Bayesian optimization builds a surrogate model with quantified uncertainty using previously
explored datapoints. Then based on the surrogate model, Bayesian optimization can either 1)
explore query poits with high uncertainty to improve the surrogate model, or 2) exploit the
surrogate model and evaluate the most promising query point. Balancing the trade-off between
exploration and exploitation makes Bayesian optimization a promising tool to guide DoE®%:1%, For
example, Vahid et al used Bayesian optimization guided DoE to successfully propose two new
high-strength aluminum alloys'?.

However, applying Bayesian optimization directly to DoE can be unrealistic. When the experiment
is temporally or financially costly, Bayesian optimization might not have enough datapoints to
explore or exploit. Therefore, computational simulations such as CFD and DFT can be important
aids to reduce the cost!'!-!%1314 DFT can be used to calculate molecular properties given atomic
parameters, and Bayesian optimization can use the DFT calculation to find optimal molecular
structures for specific purposes. For example, Ando et al used Bayesian optimization and DFT to
successfully find new molecules which could improve organic semiconductor carrier mobility!!.
Bayesian optimization as a general black-box optimization tool can be applied not only to DFT,
but also to CFD. CFD can be used to calculate flow properties given boundary and initial
conditions, and Bayesian optimization can use the CFD calculations to find optimal boundary and
mitial conditions for specific purposes. For example, Park et al used Bayesian optimization and
CFD to maximize gas holdup and mmnimize power consumption in a gas-sparged stirred tank
reactor!?.

Bayesian optimization combined with traditional computational methods such as CFD and DFT
can be powerful tools to facilitate DoE. However, even computational simulations can be too
costly. Without enough datapoints to explore or exploit, Bayesian optimization might not yield
any useful results. The issue of limited data can be potentially solved by two methods. First, when
symmetries present in the model, the dimension of the model can be reduced from 3D to 2D. The
dimension reduction can greatly reduce the computational cost while still mantaining reasonable
accuracy!>-16:17-18 For example, as Li et al mentioned, it is a widely applied practice to regard flow
in a cylindrical column fluid-bed riser as two-dimensional flow!8. With less computational cost for
each CFD smulation, more data can be generated. In addition, more data can be generated by
augmenting data through training machine learning algorithms on traditional computational
methods!?-20-2122.23 For example, Masoumi et al used CFD to predict the outlet water temperature
of asphalt solar collectors, then used an artificial neural network to learn from the CFD results and



predict outlet water temperature accurately at a much lower computational cost'®. Essentially, a
reduced order surrogate model was learned by a ML algorithm from a traditional computational
method.

Building a reduced order surrogate model potentially solves the limited amount of data problem
in optimization’*?>. Machine learing algorithms can learn surrogate models to make accurate but
much less computationally mtensive predictions. The learned surrogate models can then be used
to substitute traditional computational methods and can be called upon by a more “data hungry”
optimization algorithm. For example, Owoyele et al used machine learning algorithms such as
kernel ridge regression (KRR), support vector regression, and artificial neural networks to learn
reduced order surrogate models of CFD for mternal combustion engne designs. Then a genetic
algorithm used the surrogate models to find the optimal design variable to reduce fuel consumption
in the design variable domain?®.

Similarly, this research adopted the strategy of learning surrogate models from CFD with one ML
algorithm and optimizing the design with the learned surrogate model using another ML algorithm.
In this work we focused on a carbon capture reactor for point source capture. A solid sorbent
carbon capture reactor is modeled where a porous material (Microlith) captures CO2 through
temperature swing adsorption, where COz2 is adsorbed at low temperatures, and desorbed at higher
temperatures?’. The quantitative correlation between adsorption and desorption rate and
temperature was studied using CFD and machine learning.

The chemical transport phenomena i the reactor were modeled with CFD based on experimental
data. Then a surrogate model was developed with KRR which was used in conjunction with
Bayesian optimization to optimize the reactor design. There are two main novel contributions of
this research. Firstly, this paper is the first that compares the effectiveness of using KRR and NN
to learn from CFD simulation results, illustrating the importance of selecting the appropriate ML
algorithm for a given material science and engmneering research task. In addition, this research is
the first that achieves reduced order modeling through combining KRR and transforming a 3D
CFD into 2D using axial symmetry. The reduced order modeling method i this research can be
used in other types of research as well. KRR can be replaced by other appropriate ML method such
as NN, random forest, etc. When different symmetries or other properties present in a specific
application, other dimension reduction techniques such as thin layer approximation, planar
symmetry, etc. can replace the axisymmetric assumption to transform the CFD model from 3D to
2D. Even in the cases where 3D CFD modeling is necessary, 2D simplification can serve as a good
starting point for qualitative analysis with significantly lower computational cost!'®. ML methods
can further reduce the computational cost while maintaining reasonable accuracy.

Methods:

In this research, both CFD and ML are used to investigate CO2 capture in a solid sorbent reactor.
The CFD model initially simulates the chemical-physical processes in the reactor. The CFD
results are then used to train ML algorithms for faster predictions, which are then used for DoE
and optimization.

Computational Fluid Dynamics Methods




The carbon capture reactor considered in this work is based on a jelly-roll design where a coated
wire mesh (Microlith) is rolled around itself and CO: is fed into the center of the roll and flows
radially outward (Figure 1(a)). COz1is adsorbed onto the Microlith as it flows through the jelly
roll. The adsorption of CO: is governed by mass, momentum, energy, and species conservation
equations, which is modeled using a two fluid modeling approach?®.

Mass conservation is solved in the solid (s) and gas phases (g) as,
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where €is the volume fraction, pis the density, v is the velocity, and R is the reaction source
term.

Momentum conservation is solved in each phase as,
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where P is the pressure, Tis the stress tensor, / is the second nvariant of the deviator of the strain
rate tensor for gas, g is the gravitational constant, and f is the flow resistance caused by the
porous media of the Microlith. In this work, the solid is closely packed, so the momentum
conservation equation for the solid phase is omitted. The resistance to flow caused by the solid
phase was computed using the Syamlal-O’Brien model with the MfiX default C1=0.8 and
D1=2.65.

As the reaction is exothermic, it is important to calculate the heat exchange. Therefore, the
energy conservation equation is solved in each phase as,
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where Cp is the specific heat, T is the temperature, g is the conductive heat flux, y, is the Fluid-
solids heat transfer coefficient corrected for mterphase mass transfer, AH is the heat of reaction,
Vg 1s the radiative heat transfer coeflicient, and Trg is the fluid phase radiation temperature.

Since the temperatures of both solid and fluid phases are between 295 Kelvin and 350 Kelvin,



only conduction and convection are considered while radiation is turned off n the CFD
modeling. In other words, yg, and y;, are set to zero.
Finally, the species conservation in each phase is given by,
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where X is mass fraction of species, and D is the diffusion coefficient of the species. All
equations above are from MFiX documentation?®.

The adsorption of CO2 on the Microlith is modeled as,

CO,(g) +1n - CO,(s) (9)

where » indicates the number of sites needed for the adsorption of each CO2 molecule. The
reaction is modeled as Langmuir adsorption,
Rg = kCcoz CII\I/IL (10)

where k is the adsorption reaction rate coefficient; C¢q and Cyy, are the molar concentrations of
COz2and Microlith respectively. In the modeling process, k and n are fit to experimental data.

The adsorption in the Microlith is reversible, therefore it is also important to consider desorption,
CO,(s) = CO,(g) +n * (11)

where 7 indicates the number of sites freed up after desorption of each CO2 molecule, same as
adsorption. The desorption reaction rate is modeled as linearly proportional to reactant
concentration,

R, = Kk4Crym (12)

where k, is the desorption reaction rate coefficient; Crmis the molar concentrations of Microlith
with adsorbed COs-. In the modeling process, kg is fit to experimental data.

The governing equations for the CO: reactor are modeled with the Department of Energy’s
Multiphase Flow with Interphase eXchanges (MFiX) CFD software?®, using the built-in two
fluid model with the adsorption (Eq. (10)) and desorption (Eq. (12)) source terms added to the
model through user defined functions.

Machine Learning and Bisection Method




Three ML algorithms are used i this research: kernel ridge regression (KRR), Bayesian
optimization, and neural network (NN). Besides ML algorithms, the bisection method is also
used.

KRR is aregression tool It stems from linear regression. Given data input matrix X and

measurement vector y, linear regression algorithms find a coefficient vector K that minimizes the
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where n is the dimension of the vector y, and the norm || « || symbol indicates the L norm, ie. for

any n-dimensional vector Z,
n
2
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Due to the linearity of matrix multiplication, linear regression is limited to regressing linear
functions. To regress non-linear functions, the kernel trick can be used. The core of the kernel
trick is mapping the data matrix X to a higher dimensional space with a mapping function ®. The

regression task then becomes minimizing,
2
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One downside of adding the kernel trick is that the regression can be much more susceptible to
noise. Therefore, it is necessary to prevent the regression algorithm from overfitting (i.e.
regressing the noise).

To reduce overfitting, regularization can be used. More specifically, a penalty term A ||7€ || is
added to the error, and the regression task becomes minimizing

1 o 2 o2
6=£||CD(X)k—j’l| + Ak || (16)

where A is a positive real number. The penalty term deters the coefficient vector k from being too
complicated, hence alleviating the overfitting problem. For a more detailed mathematical
explanation of KRR, refer to Vovk?®.

Bayesian optimization is an iterative optimization tool that relies on Bayes’ rule to find the
maximum value of an unknown function. In each iteration, the algorithm suggests a new point in
the parameter space to evaluate the unknown function. The optimization proceeds in two steps;
first, a Gaussian process is used to build a surrogate model based on the observed datapoints, and
then an acquisition function selects the most promising poimnt to evaluate next. This process of
building a Gaussian process surrogate model and selecting a query point using an acquisition



function is repeated until a stopping criterion is met, such as reaching a predetermined number of
iterations. The result is an optimized set of parameters that maximize the unknown function.

Gaussian process can be defined as a distribution over functions f(x) defined by a mean
function m(x) and a covariance function k(x,x’'),

f(x) ~ GP(m(x), k(x,x)) (17)

Therefore, for any finite set X = {x,,x,,...,x,,}, function values sampled on X follow a
multivariate Gaussian distribution,

fFX) ~N(m(X), k(X, X)) (18)

To build a surrogate model using Gaussian process, the unknown function g(x)is first evaluated
on a finite set X,. Then a surrogate model f(x) predicts what g(x) evaluates to on another finite
set X,, with f(X,) following a Gaussian conditional distribution f(X,) | g(X;). More
specifically,

FX) 19 ~ N (m(X,] g(X,)) k(X ] g(X,), X1 (X)) (19)
where m(X S| f(X 1)) is the conditional mean function of X, given the evaluation on X,, and
k(X,| f(X),X,| f(X,))is the conditional covariance function®?. Based on m(le f(Xl)) and

k(X,! f(X1),X,| £(X,)), the Gaussian process model can estimate the predictive uncertainty in
addition to making predictions, which the acquisition functions can take advantage of.

Acquisition functions are regarded as policies that determine new query points on which the
unknown finction g(x) is evaluated in the optimization process. Acquisition functions balance
between exploration and exploitation by taking into account the tradeoff between evaluating
points with high uncertainty for f(x) (exploration) and points with high expectation that f(x) is
maximal (exploitation). Popular acquisition functions include the expected improvement, upper
confidence bound, and probability of improvement. Probability of improvement selects the pomt
with the largest probability to make an improvement as the next query point. Expected
improvement takes into account not only the probability to make an improvement but also the
expected amount of improvement that can be made, and selects the query point that can make the
largest expected improvement. Upper confidence bound encourages exploring query points with
large uncertainties and at the same time rewards exploiting the current surrogate model.
Compared to the unknown finction g(x), acquisition finctions can be computed quickly,
making them useful for finding optima of g(x). For a more detailed explanation of Bayesian
optimization, refer to Agnihotri etaP!.

NN is a versatile machine learning algorithm mspired by biological nervous systems. This
research uses NN as a regression tool. Each NN consists of neurons, weights, biases, and
activation functions. Neurons are in the format of multiple layers of tensors. Write the it layer of
neurons as X;. X; is multiplied by the corresponding weight matrix W;, followed by the addition
of a bias tensor B;. An activation function f then operates on the result of multiplication and
addition to create the next layer of neurons X, ,. Mathematically, the computation at each layer
of neurons is represented by the equation



X1 = f(W;- X + B)) (20)

Eq. (20) defines the forward propagation of the neural network. Namely each neuron in the later
layer is computed through the neurons and weights of the previous layer until it reaches the
output layer. The output layer can be compared to the ground truth (for example, the
experimental results) and a loss function similar to Eq. (15) can be calculated. Namely

L(W,B) = %“Y —1?||2 (21)

where W represents all the weights, B represents all the biases, N is the number of samples in the
input tensor X, Y is the ground truth tensor, and ¥ is the NN prediction. The goal of NN is
adjusting W and B so that the loss L(W,B) is mnimized. The adjustment procedure is called the
backpropagation 32. Typically, backpropagation is achieved through gradient descent.

The bisection method 33 is a numerical technique used to approximate the root of a given
function. Given an unknown function g(x) and a value y, the bisection method can be applied to
approximate the x value that satisfies g(x) = y. The method works by first identifying two
values X ., and x40, such that g(x,,.,) >y and g(x,,q40r) <Y, and then iteratively

updating X, and x,,,,,,, based on the evaluation of their middle point g(% X oper + Xunder))-

Implementation

The objective of this study was to model and enhance the performance of CO: capture in a solid
sorbent reactor designed in a jelly roll configuration, as illustrated in Figure 1(a). Flue gas, which
had a high concentration of COg, entered the reactor through a central inlet and exits radially
outwards. The sorbent is a Microlith designed by Precision Combustion, Inc. (PCI). The
Microlith consists of the sorbent material coated on wires and stacked as shown in Figurel(b).
The simulation domain, shown n Figure 2, was an axisymmetric domain where the ilet for the
flue gas was at the bottom, and the outlet was at the top. The flue gas flowed through the
Microlith (shown i dark grey in Figure 2) in the axial direction, and left the domain from the top
outlet. This axisymmetric domain was used as a simplified representation of the jelly roll
configuration to solve the 2D Navier-Stokes equations for CO2 flow and adsorption in the jelly
roll. Experimental data was provided by industry collaborator PCIL.
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Figure 1: (a) Jelly roll configuration. (b) Stacked structure of Microlith.



Initial experimental data used to develop the CFD model was for CO2z adsorption at a single
temperature. Tests were run for 25 minutes with a Microlith containing 2.27 kg of CO2 sorbent
material, an airflow rate of 60 L/s, and a CO2 volume concentration of 15%. The concentration
of CO2 at the outlet was measured every 40 seconds. In the mitial CFD simulations, the Microlith
was modeled with a void fraction of 70% based on the experimental setup. The mlet velocity u
was set to be u=0.238 nvs and the bed thickness h was set to be h=0.14 m. Both u and h matched
the experimental setup. The rest of the mnitial conditions (ICs) and boundary conditions (BCs)
were summarized in Table 1. The mesh was chosen to be 30 (horizontal direction) by 50 (vertical
direction). A mesh convergence study was done and showed that the mean square differences of
CO2 concentration time series at the outlet between a 30 by 50 grid and a 60 by 100 grid was
0.0019 (less than 1.5% of maximum CO:2 concentration), and the mean square differences of CO:2
concentration time series at the outlet between a 60 by 100 grid and a 120 by 200 grid was
0.0008. In order to balance between accuracy and computational time, the 30 by 50 rectangular
mesh was selected. Only the first 720 seconds of the experiment was modeled with CFD, since
the CO:z concentration to match experimental data in which COz levels reached an equilibrium
after 720 seconds. As the simulation time and mput CO:2 concentration were the same across all
simulations, time (x-axis) and CO:z concentration (y-axis) were normalized to be between 0 and 1
for better performance of Bayesian optimization®*. The time step was selected to be 0.001
seconds. A two-fluid model was chosen as the solver. The under-relaxation factor was set to 1 as
the MFiX default.
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Figure 2: CFD simulation domain of an axisymmetric section of the Jelly roll configuration of Figure 1(a). The darker gray area
indicates the Microlith where CO3 is adsorbed. The arrows indicate the approximate airflow path. The barrier (black) obstructs air
flow and directs it into the sorbent bed.

Table 1: 1Cs and BCs

BCs ICs

Left wall Free-slip wall, adiabatic Outlet Pressure 101325 Pa

Right wall No-slip wall, adiabatic Fluid density Ideal gas law

Bottomwall | No-slip wall, adiabatic Fluid diffusivity Diluted mixture approximation (air)
Top wall No-slip wall, adiabatic Fluid viscosity Sutherland’s law

Barrier No-slip wall, adiabatic Sorbent bed solid volume fraction 0.3

Inlet Mass inflow Sorbent bed solid density 420kg/m’

Outlet Pressure outflow




The bisection method was mitially used to determmne the k and n values in the Langmuir model
represented by Eq. (10).

Once the chemistry (ie. k and n values) was determined for the CFD, 100 CFD cases were
simulated in parallel to predict CO2 concentration over time at the outlet of the reactor for
various combinations of mlet velocity (u) and bed thickness (h). The simulation results were then

used to train a KRR algorithm to predict CO2 concentration at the outlet for each mput pair of u
and h.

The trained KRR was then further utilized with Bayesian optimization in a benchmarking case
which varied mlet velocity (u) and bed thickness (h) to maximize the breakthrough time (the
point at which the CO:z concentration at the outlet reaches 10% of inlet concentration, since 5%
to 10% is typically the mdustry standard for breakthrough). This correlates to the reactor design
that would have the greatest capacity for CO:2 capture before it needs to be regenerated or
replaced.

Fmally, KRR and Bayesian optimization were applied on temperature varying data to fine tune
the adsorption model by adding desorption into the modeling. The setup to collect temperature
varying data was the same as before, except the inlet temperature was controlled to be at 22°C,
30°C, 40°C, and 50°C. Furthermore, the concentration of COz2 at the outlet was measured every
second instead of every 40 seconds, matching the changes in the experimental setup done by our
industry collaborator, PCI.

Results and Discussion:

CFD Modeling of Experimental CO> Capture at a Single Temperature

COz capture on the Microlith was modeled by a Langmuir model (Egs. (9) and (10)). The
reaction rate (k) and the adsorption sites (n) in Eq. (10) were calibrated using the bisection

method to match the experimental data (Figure 3). A loss function €(k,n) was defined to
determmne how well the simulation fits the experimental data given each k and n,

1 - - 2
e(k,n) = N || Yerp — yEXPll (22)
where N was the total number of datapoints in the experimental data of CO2 concentration at the

outlet, ¥, was the CFD simulation time series data of CO2 concentration at the outlet, and
Vexp Was the experimental time series data of CO2 concentration at the outlet.

Therefore, the bisection method was used to minimize the value of e(k,n) of a domain where

k €(0,1)and n € {1,2,3,4} For each n value, the best fitting k value was chosen after applying
bisection method and denoted as k,,. Then the best fitting n and k,, parr was chosen to minimize
€(k,n) across all four n values.
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The best fitting k and n values were determined to be k = 0.13 and n = 2 with an e(k, n) value
0.006. The chemical intution behind the n value was that each oxygen atom in the CO2 molecule
occupies one site.

The best fitting CFD simulation (Figure 3) did not capture the experimental data in the beginning
of the experiment, due to the inttialization and heating of the bed at the start of the experiment.
This problem was addressed in later subsections with more data and a more fine-tuned model.
However, the matching of the CFD simulation with the experimental data after the heating phase
provided confidence in the CFD model’s chemical representation of the experiment and provided
an initial bound for the k value as well as the precise n value for more sophisticated modeling for
future data sets.
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Figure 3: Best fitting result of CFD with the bisection method. The time and CO; concentration data are normalized.

KRR Model Training

Once the chemistry was established, 100 CFD cases were simulated in parallel to predict CO2
concentration over time at the outlet of the reactor for various combinations of inlet velocity (u)
and bed thickness (h). The bounds of u and h are chosen to be u € (0.188 m/s, 0.277 m/s) and h
€ (0.134 m, 0.211 m), based on the experimental parameters. The simulation results were then
used to train a KRR algorithm to predict CO2 concentration at the outlet. Training was performed

on 5% of the data, with the remaining 95% used to generate and evaluate predictions. The loss
function was defined as,

1= .
6=N’|y—y (23)
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where N was the total number of datapoints within the time series data of CO2 concentration at

the outlet, 3/_; was the KRR predicted time series data of CO2 concentration at the outlet, and y
was the CFD simulated time series data of CO2 concentration at the outlet. The KRR training
minimized the loss function € on the training set.
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Figure 4: Examples of CFD simulation compared to the KRR prediction trained on 100 CFD simulations where (a) shows the
worst fitting case with mean square error 0.0058 and (b) shows the best fitting case with mean square error 0.0017. KRR
prediction (yellow dots) was compared to the CFD simulation (green triangle). The axes are normalized.
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As seen in Figure 4, the KRR model was able to accurately predict the CFD data. Figure 4 shows
two example cases from the 100 scenarios that were run; similar plots can be made for the other
98 CFD simulations. All KRR predictions agreed well with the CFD data, with a mean root-
mean-square error of 0.0029, indicating that KRR was able to accurately regress the Langmuir
model in the given parameter range. Moreover, each CFD simulation took more than eight hours
to complete, while the KRR surrogate model took less than a second. The KRR surrogate model
provided an efficient and accurate alternative to CFD for analyzing the effects of changing
parameters u and h on CO:> concentration at the outlet. The fast, mexpensive, and accurate
predictions of KRR surrogate model enabled fast optimization of the carbon reactor, as shown in
the following subsection.

Optimization of Reactor Desien

Following KRR training, Bayesian optimization was used in conjunction with KRR to identify
the optimal u and h values within bounds u € (0.188 m/s, 0.277 m/s) and h € (0.134 m, 0.211 m)
that would maximize the breakthrough time t......... These bounds were chosen based on the KRR
training bounds, since KRR is better at interpolation than extrapolation.

The Bayesian optimization on ty..... sServed as a benchmark. Due to the simple geometry of the
jelly-roll model, it was expected that the thicker the bed, the longer it would take for CO2to
reach the breakthrough threshold since more adsorbent would be in the bed. Meanwhile, the
slower the mlet velocity, the longer it would take for CO2to reach the breakthrough threshold
since less reactant was input into the bed each unit time. As a result, given the bound u and h, to
OptimizZe  tows wouarr the lower bound of u (ie. u=0.188m/s) and upper bound of h (ie. h=0.211m)
needed to be chosen. Therefore, t......could be used as a benchmark to test if Bayesian
optimization was capable of finding the optimized design based on the black box KRR surrogate

12



model. The Bayesian optimization result showed the optimal t........= 374 seconds was achieve
when u=0.188 m/s and h =0.201 m, agreeing well with the expected values after only 200
iterations and 10 randomly explored mitial pomts, which boosted the confidence for further
usage of Bayesian optimization with KRR i this research.

Modeling with Temperature Varying Data

The success of KRR with Bayesian optimization in the benchmarking case to maximize tou o
gave confidence for modeling additional CO2 adsorption datasets at four different temperatures.
At higher temperatures, it was necessary to account for CO2 desorption from the Microlith.
Therefore, the CFD model was expanded to include desorption (Eq. (12)). As was done in the
adsorption only case, the reaction parameters were fit to experimental data. Two parameters were
set to vary in the CFD models: k (adsorption reaction rate coefficient), and k4 (desorption
reaction rate coefficient). In total 231 CFD simulations were run, with the bounds on the two
variables k € (0.08, 0.4) k, € (0, 0.0044). The k and k4 values for each simulation were selected
by a Bayesian optimization that attempted to fit the experimental data at 22 °C (145 simulations)
and 50 °C (86 simulations). Bisection method was not used here because the solution space was
two-dimensional and bisection method could only work in one-dimensional space. As the CFD
simulations were computationally expensive, Bayesian optimization was not able to find k and
k, values that fit the experiment data well with limited amount of CFD simulation datapoints to
explore.

Therefore, KRR and NN were used to regress the CFD simulations, so that KRR and NN could
predict similar CO2 concentration time series at the outlet to the CFD simulations but with less
than 1% of computational cost. Both KRR and NN used randomly sampled datapomts from all
CFD results for training and were tested on the 86 simulations of 50 °C. NN training used 10%
of the total data while KRR training used 1% of total data. Figure 5 shows the NN and KRR
regressions of CFD results. NN required ten times more data for training, but was much less able
to regress the CFD, with a maximum root-mean-square error 0.042, almost 10 times higher than
the maximum root-mean-square error of KRR, which was 0.0048. Therefore, KRR was selected
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as the regression tool for the remainder of the paper given its power of regressing more
accurately with only 10% of training data that NN required.
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Figure 5: Examples of (a) NN and (b) KRR regressions of CFD. The green triangles are the CFD simulations.
The yellow dots are NN prediction in (a) and KRR predations in (b). The axes are normalized.

The mitial run of KRR of Bayesian optimization attempted to find the optimal values of three
variables k, k4, and another variable tsnift to fit the experimental data of all four temperatures. The
variable tshift was mtroduced to account for the initialization of the reactor as it came up to
temperature and flow conditions. In comparison, CFD simulations did not require time to reach
temperature and flow conditions. Therefore, the KRR simulations learned from CFD were

shifted to the right on the time axis by tshift, so that the KRR simulations could align better with
the experimental data. The bounds of the three variables were set to be k € (0.08, 0.4), ke (0,
0.0044), and tshitt € (0 5,100 s).

Figure 6 shows the best fitting k, k;, and tshire by varying all three parameters for each
temperature data. Only k; showed a clear trend. Both k and tg,; ¢, showed variances due to the
stochastic nature of Bayesian optimization’3. However, due to the nature of the chemical reaction
in the CO2 capture reactor, it was believed that the adsorption reaction rate was much less
mfluenced by temperature, unlke the desorption reaction. Therefore, the average k value of
Figure 6(a) was taken as the adsorption reaction rate in future simulations, ie. k = 0.175.
Meanwhile, the unknown reaction period in the beginning of the reaction was believed to last a
similar amount of time for each experiment. Therefore, the time shift was chosen to be tgp;r, =
95 s.
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Figure 6: Plots of k, kg4, and tgp; ¢, in 22°C,
30°C, 40 °C, and 50 °C. (a) k vs
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Figure 7: Plots of CO; concentration at the outlet vs time in different temperature.
Both vertical and horizontal axes are normalized. The GT legend stands for ground
truth, i.e. experimental results. The KRR legend stands for kernel ridge regression.
Each plot represents the best fitting of each temperature data. (a)22 °C, (b)30 °C,

()40 °C, and (d)50 °C.
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In the second run of KRR of Bayesian optimization to fit the experimental data of all four
temperatures, the values of k and tsnift were fixed and only ky was varied to fit the experimental
data for all temperatures. The choice of only varying k, corresponded with the physical system
where the desorption process is only significant at elevated temperatures and would be expected
to be a strong fimction of temperature. Figure 7 shows the fittings after fixing k and tg; .. The
fittings agreed well with the latter half of the experimental data of each temperature, with a
maximum L error of 0.019 for the latter half of the time series among the regressions for the
four temperature data. The algorithm focused on fitting the latter half of the reaction because that
is the time period when the reactor environment was steady and the adsorption and desorption
reactions were mostly governed by Eq. (10) and Eq. (12).

As a verification, the k; of 30°C and 50°C were used to fit an Arrhenius equation in Figure 8.
The 22°C and 40°C k, values lied closely to the Arrhenius equation predictions, indicating that
likely the Bayesian optimization and KRR captured the physics in the experimental data.
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—— 30 and 50 Celsius fit
Bayesian prediction

0.0040
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0.0030
g 0.0025
0.0020
0.0015
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Temperature (Kelvin)

Figure 8: Arrhenius equation fitting based on thebest fitting k ; value of the 30 °C
and 50 °C data. The blue curve is the Arrhenius fitting and the orange dots are the best

fitting k ; values.

Conclusions:

This research showed the possibility and advantages of combining physics with machine learning
to aid DoE. More specifically, this research demonstrated the possibility of using KRR aided CFD
to model and optimize carbon capture reactors. With the fast and accurate predictions of a KRR
surrogate model, a Bayesian optimizer can be used to optimize the carbon capture reactor design.
Apart from optimizing product design, Bayesian optimizers can also be used with CFD to model
unknown physical and chemical reactions with the aid of a KRR surrogate model

The KRR surrogate model was able to learn from only 1% of the CFD training results, and
regressed the test set with maximum root-mean-square error of 0.019. Moreover, while each CFD
simulation costed about eight hours on 28 CPU-cores to complete, KRR generated each prediction
within a second on just 1 CPU-core. This showed the strong capability of KRR to aid CFD after
learning. With the fast and accurate prediction power of the KRR surrogate model, Bayesian
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optimization was used to optimize the reaction bed of the carbon capture reactor. In the
benchmarking optimization test, the Bayesian optimizer used the KRR surrogate model to
successfully pick the optimal design for the longest breakthrough time. Finally, the Bayesian
optimization and KRR algorithms successfully guided CFD to improve modeling of the variable
temperature experimental data with desorption added mto the CFD simulations, fitting the
experimental data with lower error.

To the authors’ best knowledge, this research was the first one that compared the capability of NN
and KRR to learn from CFD results. For material science and engneering research, it is vital to
pick the correct machine learning tool so that the tool balances accuracy, computational cost, ease
of use, etc. In the case of this research, KRR was a better tool compared to NN because it was
more accurate, required less traming data, and was simpler to implement. Selecting KRR as the
regression tool made it effective to couple a regression tool with Bayesian optimization to learn
and guide the modeling of unknown chemistry in CFD models. In addition, this research was the
first to achieve reduced order modeling through exploiting axisymmetric property of the model
and KRR. This paradigm of reducing the dimensions of a model and then using a ML algorithm
to regress the reduced-dimension simulation results can be applied to other cases as well. The
dimension reduction can be achieved through other methods such as thin layer assumption, planar
symmetry, etc., and other ML regression tools such as NN, random forest, Gaussian process
regression, etc. can replaced KRR.

The success of the machine learning guided CFD modeling in this research demonstrated that
machine learning algorithms could be versatile and helpful tools in DoE. As was shown here, when
combined with CFD, they could be used for regression to build mexpensive but accurate models.
By making predictions budget-friendly, optimization of material properties becomes possible. The
paradigm developed i this paper can be widely applied to other types of DoE research, such as
battery optimization and catalyst selection. For different applications, other ML methods can
replace KRR and Bayesian optimization algorithms, such as random forest and genetic algorithm;
other computational methods can replace CFD, such as density functional theory and molecular
dynamics. But the procedures for optimization remain the same. Namely, given a small amount of
experimental data, apply a computational method to develop a model with or without the aid of
ML to model the experimental data, then regress the model with ML (i.e. build a surrogate model)
to reduce the computational cost while achieving similar accuracy, and finally use ML or other
algorithms to optimize the system based on the ML surrogate model. The ML aided DoE has the
potential to greatly reduce temporal and financial costs in the DoE process, making it feasible to
conduct research in areas where data acquisition costs are limiting factors.
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