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Abstract:  
 
 
The design of novel reactors and chemical processes requires an understanding of the fundamenta l 
chemical-physical processes at small spatial and temporal scales, and systematic scale up of these 
studies to investigate how the process will perform at industrial scales. The financial and temporal 
costs of these studies can be significant. The use of statistical machine learning-based methods can 
significantly reduce these costs. The use of design of experiments methods can help design an 
experimental plan that efficiently explores the design space using the fewest experiments possible. 
Computational methods such as computational fluid dynamics (CFD) are effective tools for 
detailed studies of the small-scale physics and are critical aids to facilitate and understand physical 
experiments. However, CFD methods can also be time consuming, often requiring hours or days 
of time on supercomputers. In this research, we investigate the combination of machine learning 
with reducing 3D CFD simulation to 2D by exploiting axial symmetry to facilitate design of 
experiments. Focusing on a 3D carbon dioxide (CO2) capture reactor as an example, we 
demonstrate how machine learning and CFD can help facilitate modeling and design optimizat ion. 
A 2D CFD is used to simulate the chemical-physical processes in the reactor and is then coupled 
with machine learning to develop a less computationally expensive model to accurately predict 
CO2 adsorption. The learned model can be used to optimize the design of the reactor. This paper 
demonstrates the decrease in temporal and financial costs of designing industrial-scale chemical 
processes by combining reducing CFD dimension and machine learning. Equally importantly, this 
research demonstrates the significance of selecting a proper machine learning algorithm for 
different tasks by comparing performances of different machine learning algorithms.  
 
Key Words: Computational Fluid Dynamics, Machine learning, Reduced Order Model, Black-
box Optimization, Data Augmentation  
 
Introduction:  
 
Chemical science and engineering research development relies on data, and data limitations can 
severely hinder the research process. How to utilize data efficiently and obtain more data cost-
effectively becomes essential in data-limited research projects. Tools and methods, such as 
fractional factorial design and sequences of experiments in Design of experiments (DoE), have 
been developed to efficiently explore parameter space and utilize data effectively1. However, 
physical experiments can be financially and temporally costly, limiting what is achievable even 
with DoE. With the improvement of software and hardware, computational methods such as 
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computational fluid dynamics (CFD), molecular dynamics (MD), and density functional theory 
(DFT) are reliable alternatives to obtain data at lower cost2,3,4. While computational methods can 
alleviate some data limitation problems in DoE, the methods are still too costly to produce large 
datasets. Therefore, more resources are needed to further reduce the data-limitation problem, and 
a promising pathway is to utilize machine learning (ML) methods5,6. This study introduces a novel 
method that first reduces a 3D CFD into 2D by exploiting the axial symmetry, and then uses a 
combination of ML and CFD to aid DoE, helping to relieve data-limitation issues.  
 
While DoE has been successfully used for efficiently exploring parameter spaces, one of its main 
limitations is how to propose new experiments based on previous ones so as to maximize the 
amount of information learned or for optimization7. Bayesian optimization, a general black-box 
optimization tool, can potentially overcome these limitations when used in conjunction with DoE. 
Bayesian optimization builds a surrogate model with quantified uncertainty using previously 
explored datapoints. Then based on the surrogate model, Bayesian optimization can either 1) 
explore query points with high uncertainty to improve the surrogate model, or 2) exploit the 
surrogate model and evaluate the most promising query point. Balancing the trade-off between 
exploration and exploitation makes Bayesian optimization a promising tool to guide DoE8,9,10. For 
example, Vahid et al used Bayesian optimization guided DoE to successfully propose two new 
high-strength aluminum alloys10. 
 
However, applying Bayesian optimization directly to DoE can be unrealistic. When the experiment 
is temporally or financially costly, Bayesian optimization might not have enough datapoints to 
explore or exploit. Therefore, computational simulations such as CFD and DFT can be important 
aids to reduce the cost11,12,13,14. DFT can be used to calculate molecular properties given atomic 
parameters, and Bayesian optimization can use the DFT calculation to find optimal molecular 
structures for specific purposes. For example, Ando et al used Bayesian optimization and DFT to 
successfully find new molecules which could improve organic semiconductor carrier mobility1 1 . 
Bayesian optimization as a general black-box optimization tool can be applied not only to DFT, 
but also to CFD. CFD can be used to calculate flow properties given boundary and init ia l 
conditions, and Bayesian optimization can use the CFD calculations to find optimal boundary and 
initial conditions for specific purposes. For example, Park et al used Bayesian optimization and 
CFD to maximize gas holdup and minimize power consumption in a gas-sparged stirred tank 
reactor12. 
 
Bayesian optimization combined with traditional computational methods such as CFD and DFT 
can be powerful tools to facilitate DoE. However, even computational simulations can be too 
costly. Without enough datapoints to explore or exploit, Bayesian optimization might not yield 
any useful results. The issue of limited data can be potentially solved by two methods. First, when 
symmetries present in the model, the dimension of the model can be reduced from 3D to 2D. The 
dimension reduction can greatly reduce the computational cost while still maintaining reasonable 
accuracy15,16,17,18. For example, as Li et al mentioned, it is a widely applied practice to regard flow 
in a cylindrical column fluid-bed riser as two-dimensional flow18. With less computational cost for 
each CFD simulation, more data can be generated. In addition, more data can be generated by 
augmenting data through training machine learning algorithms on traditional computationa l 
methods19,20,21,22,23. For example, Masoumi et al used CFD to predict the outlet water temperature 
of asphalt solar collectors, then used an artificial neural network to learn from the CFD results and 
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predict outlet water temperature accurately at a much lower computational cost19. Essentially, a 
reduced order surrogate model was learned by a ML algorithm from a traditional computationa l 
method.  
 
Building a reduced order surrogate model potentially solves the limited amount of data problem 
in optimization24,25. Machine learning algorithms can learn surrogate models to make accurate but 
much less computationally intensive predictions. The learned surrogate models can then be used 
to substitute traditional computational methods and can be called upon by a more “data hungry” 
optimization algorithm. For example, Owoyele et al used machine learning algorithms such as 
kernel ridge regression (KRR), support vector regression, and artificial neural networks to learn 
reduced order surrogate models of CFD for internal combustion engine designs. Then a genetic 
algorithm used the surrogate models to find the optimal design variable to reduce fuel consumption 
in the design variable domain26.  
 
Similarly, this research adopted the strategy of learning surrogate models from CFD with one ML 
algorithm and optimizing the design with the learned surrogate model using another ML algorithm. 
In this work we focused on a carbon capture reactor for point source capture. A solid sorbent 
carbon capture reactor is modeled where a porous material (Microlith) captures CO2 through 
temperature swing adsorption, where CO2 is adsorbed at low temperatures, and desorbed at higher 
temperatures27. The quantitative correlation between adsorption and desorption rate and 
temperature was studied using CFD and machine learning.   
 
The chemical transport phenomena in the reactor were modeled with CFD based on experimenta l 
data. Then a surrogate model was developed with KRR which was used in conjunction with 
Bayesian optimization to optimize the reactor design. There are two main novel contributions of 
this research. Firstly, this paper is the first that compares the effectiveness of using KRR and NN 
to learn from CFD simulation results, illustrating the importance of selecting the appropriate ML 
algorithm for a given material science and engineering research task. In addition, this research is 
the first that achieves reduced order modeling through combining KRR and transforming a 3D 
CFD into 2D using axial symmetry. The reduced order modeling method in this research can be 
used in other types of research as well. KRR can be replaced by other appropriate ML method such 
as NN, random forest, etc. When different symmetries or other properties present in a specific 
application, other dimension reduction techniques such as thin layer approximation, planar 
symmetry, etc. can replace the axisymmetric assumption to transform the CFD model from 3D to 
2D. Even in the cases where 3D CFD modeling is necessary, 2D simplification can serve as a good 
starting point for qualitative analysis with significantly lower computational cost18. ML methods 
can further reduce the computational cost while maintaining reasonable accuracy.  
 
Methods:  
 
In this research, both CFD and ML are used to investigate CO2 capture in a solid sorbent reactor. 
The CFD model initially simulates the chemical-physical processes in the reactor. The CFD 
results are then used to train ML algorithms for faster predictions, which are then used for DoE 
and optimization.  
 
Computational Fluid Dynamics Methods 
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The carbon capture reactor considered in this work is based on a jelly-roll design where a coated 
wire mesh (Microlith) is rolled around itself and CO2 is fed into the center of the roll and flows 
radially outward (Figure 1(a)). CO2 is adsorbed onto the Microlith as it flows through the jelly 
roll. The adsorption of CO2 is governed by mass, momentum, energy, and species conservation 
equations, which is modeled using a two fluid modeling approach28.  
 
Mass conservation is solved in the solid (s) and gas phases (g) as, 

∂
∂t

(ϵsρs) + ∇ ⋅ (ϵsρsvs���⃗ ) = Rs (1) 
 
 

∂
∂t
�ϵgρg�+ ∇ ⋅ �ϵgρgvg���⃗ � = Rg (2) 

 
where ϵ is the volume fraction, ρ is the density, v ��⃗  is the velocity, and R is the reaction source 
term.  
 
Momentum conservation is solved in each phase as, 
 

∂
∂t

(ϵ𝑠𝑠ρ𝑠𝑠𝑣𝑣𝑠𝑠���⃗ ) + ∇ ⋅ (ϵ𝑠𝑠ρ𝑠𝑠𝑣𝑣𝑠𝑠���⃗ ⊗ 𝑣𝑣𝑠𝑠���⃗ ) = −ϵ𝑠𝑠∇𝑃𝑃 + ∇ ⋅ τ𝑠𝑠 − 𝐼𝐼𝑔𝑔𝑔𝑔 + ϵ𝑠𝑠ρsg�⃗  (3) 

 
∂
∂t
�ϵ𝑔𝑔ρ𝑔𝑔𝑣𝑣𝑔𝑔����⃗� + ∇ ⋅ �ϵ𝑔𝑔ρ𝑔𝑔𝑣𝑣𝑔𝑔����⃗ ⊗ 𝑣𝑣𝑔𝑔����⃗� = −ϵg∇P + ∇ ⋅ τg + Igs + fg + ϵgρgg�⃗ (4) 

 
 
where P is the pressure, τ is the stress tensor, I is the second invariant of the deviator of the strain 
rate tensor for gas, g�⃗  is the gravitational constant, and f  is the flow resistance caused by the 
porous media of the Microlith. In this work, the solid is closely packed, so the momentum 
conservation equation for the solid phase is omitted. The resistance to flow caused by the solid 
phase was computed using the Syamlal-O’Brien model with the MfiX default C1=0.8 and 
D1=2.65.  
 
As the reaction is exothermic, it is important to calculate the heat exchange. Therefore, the 
energy conservation equation is solved in each phase as,   

ϵsρsCps �
∂Ts
∂t

+ v�⃗ ⋅ ∇Ts� = −∇qs − γs�Ts − Tg� − ΔHs + γRs(TRs4 − Ts4) (5) 

 
 

𝜖𝜖𝑔𝑔𝜌𝜌𝑔𝑔𝐶𝐶𝑝𝑝𝑝𝑝 �
𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

+ 𝑣⃗𝑣 ⋅ ∇𝑇𝑇𝑔𝑔� = −∇𝑞𝑞𝑔𝑔 + 𝛾𝛾𝑠𝑠�𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑔𝑔� − Δ𝐻𝐻𝑔𝑔 + 𝛾𝛾𝑅𝑅𝑅𝑅�𝑇𝑇𝑅𝑅𝑅𝑅4 − 𝑇𝑇𝑔𝑔4� (6) 

 
where Cp is the specific heat, 𝑇𝑇 is the temperature, 𝑞𝑞 is the conductive heat flux,  𝛾𝛾𝑠𝑠  is the Fluid-
solids heat transfer coefficient corrected for interphase mass transfer, Δ𝐻𝐻  is the heat of reaction, 
𝛾𝛾𝑅𝑅  is the radiative heat transfer coefficient, and 𝑇𝑇𝑅𝑅𝑅𝑅 

  is the fluid phase radiation temperature. 
Since the temperatures of both solid and fluid phases are between 295 Kelvin and 350 Kelvin, 
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only conduction and convection are considered while radiation is turned off in the CFD 
modeling. In other words, 𝛾𝛾𝑅𝑅𝑅𝑅  and 𝛾𝛾𝑅𝑅𝑅𝑅  are set to zero.    
 
Finally, the species conservation in each phase is given by,  

∂
∂t

(ϵsρsXs) + ∇ ⋅ (ϵsρs𝑣⃗𝑣Xs) = ∇ ⋅ (𝐷𝐷 ∇𝑋𝑋𝑠𝑠) + 𝑅𝑅𝑠𝑠 (7) 

 
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜖𝜖𝑔𝑔𝜌𝜌𝑔𝑔𝑋𝑋𝑔𝑔� + ∇ ⋅ �𝜖𝜖𝑔𝑔 𝜌𝜌𝑔𝑔𝑣⃗𝑣𝑋𝑋𝑔𝑔� = ∇ ⋅ �𝐷𝐷 ∇𝑋𝑋𝑔𝑔�+𝑅𝑅𝑔𝑔 (8) 

 
 
where X is mass fraction of species, and D is the diffusion coefficient of the species. All 
equations above are from MFiX documentation28.  
 
The adsorption of CO2 on the Microlith is modeled as, 
 

  
CO2(g) + n ∗→ CO2(s) (9) 

  
where n indicates the number of sites needed for the adsorption of each CO2 molecule. The 
reaction is modeled as Langmuir adsorption,    

Rg  = kCCO2 CMLn (10) 
 

where k is the adsorption reaction rate coefficient; CCO2  and CML  are the molar concentrations of 
CO2 and Microlith respectively. In the modeling process, k and n are fit to experimental data.  
 
The adsorption in the Microlith is reversible, therefore it is also important to consider desorption,   

CO2(s)→ CO2(g) + n ∗ (11) 
 
where n indicates the number of sites freed up after desorption of each CO2 molecule, same as 
adsorption. The desorption reaction rate is modeled as linearly proportional to reactant 
concentration,    

Rg  = kdCRM (12) 
 

where kd is the desorption reaction rate coefficient; CRM is the molar concentrations of Microlith 
with adsorbed CO2. In the modeling process, kd is fit to experimental data. 
 
The governing equations for the CO2 reactor are modeled with the Department of Energy’s 
Multiphase Flow with Interphase eXchanges (MFiX) CFD software28, using the built-in two 
fluid model with the adsorption (Eq. (10)) and desorption (Eq. (12)) source terms added to the 
model through user defined functions.  
 
Machine Learning and Bisection Method 
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Three ML algorithms are used in this research: kernel ridge regression (KRR), Bayesian 
optimization, and neural network (NN). Besides ML algorithms, the bisection method is also 
used.  
 
KRR is a regression tool. It stems from linear regression. Given data input matrix X and 
measurement vector y, linear regression algorithms find a coefficient vector 𝑘𝑘�⃗  that minimizes the 
error 𝜖𝜖 

𝜖𝜖 =
1
𝑛𝑛
��𝑋𝑋𝑘𝑘�⃗  − 𝑦⃗𝑦��

2
(13) 

 
where n is the dimension of the vector 𝑦⃗𝑦, and the norm || • || symbol indicates the L2 norm, i.e. for 
any n-dimensional vector 𝑧𝑧,  

�|𝑧𝑧|�2 = �𝑧𝑧𝑖𝑖  ⋅  𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(14)  

 
Due to the linearity of matrix multiplication, linear regression is limited to regressing linear 
functions. To regress non-linear functions, the kernel trick can be used. The core of the kernel 
trick is mapping the data matrix X to a higher dimensional space with a mapping function Φ. The 
regression task then becomes minimizing,  

𝜖𝜖 =  
1
𝑛𝑛
��Φ(𝑋𝑋)𝑘𝑘�⃗  – 𝑦⃗𝑦��

2
(15) 

 
 

One downside of adding the kernel trick is that the regression can be much more susceptible to 
noise. Therefore, it is necessary to prevent the regression algorithm from overfitting (i.e. 
regressing the noise).  
 
To reduce overfitting, regularization can be used. More specifically, a penalty term λ ||𝑘𝑘�⃗  || is 
added to the error, and the regression task becomes minimizing  

𝜖𝜖 =  
1
𝑛𝑛
��Φ(𝑋𝑋)𝑘𝑘�⃗  – 𝑦⃗𝑦��

2
+ 𝜆𝜆 ��𝑘𝑘�⃗  ��

2
(16) 

 
 
where λ is a positive real number. The penalty term deters the coefficient vector 𝑘𝑘�⃗  from being too 
complicated, hence alleviating the overfitting problem. For a more detailed mathematical 
explanation of KRR, refer to Vovk29.  
 
Bayesian optimization is an iterative optimization tool that relies on Bayes’ rule to find the 
maximum value of an unknown function. In each iteration, the algorithm suggests a new point in 
the parameter space to evaluate the unknown function. The optimization proceeds in two steps; 
first, a Gaussian process is used to build a surrogate model based on the observed datapoints, and 
then an acquisition function selects the most promising point to evaluate next. This process of 
building a Gaussian process surrogate model and selecting a query point using an acquisit ion 
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function is repeated until a stopping criterion is met, such as reaching a predetermined number of 
iterations. The result is an optimized set of parameters that maximize the unknown function.  
 
Gaussian process can be defined as a distribution over functions 𝑓𝑓(𝒙𝒙) defined by a mean 
function 𝑚𝑚(𝒙𝒙) and a covariance function 𝑘𝑘(𝒙𝒙,𝒙𝒙′), 

𝑓𝑓(𝑥𝑥)∼ 𝒢𝒢𝒢𝒢�𝑚𝑚(𝑥𝑥), 𝑘𝑘(𝒙𝒙,𝒙𝒙′)� (17) 
 
Therefore, for any finite set 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛}, function values sampled on 𝑋𝑋 follow a 
multivariate Gaussian distribution,  

𝑓𝑓(𝑋𝑋) ∼ 𝒩𝒩�𝑚𝑚(𝑋𝑋), 𝑘𝑘(𝑋𝑋,𝑋𝑋)� (18) 
 
 
To build a surrogate model using Gaussian process, the unknown function 𝑔𝑔(𝑥𝑥) is first evaluated 
on a finite set 𝑋𝑋1. Then a surrogate model 𝑓𝑓(𝑥𝑥) predicts what 𝑔𝑔(𝑥𝑥) evaluates to on another finite 
set 𝑋𝑋2, with 𝑓𝑓(𝑋𝑋2) following a Gaussian conditional distribution 𝑓𝑓(𝑋𝑋2) | 𝑔𝑔(𝑋𝑋1). More 
specifically,  

𝑓𝑓(𝑋𝑋2) | 𝑔𝑔(𝑋𝑋1)∼ 𝒩𝒩 �𝑚𝑚�𝑋𝑋2| 𝑔𝑔(𝑋𝑋1)�,𝑘𝑘(𝑋𝑋2| 𝑔𝑔(𝑋𝑋1),𝑋𝑋2| 𝑔𝑔(𝑋𝑋1))� (19) 
where  𝑚𝑚�𝑋𝑋2| 𝑓𝑓(𝑋𝑋1)� is the conditional mean function of 𝑋𝑋2 given the evaluation on 𝑋𝑋1, and 
𝑘𝑘(𝑋𝑋2| 𝑓𝑓(𝑋𝑋1),𝑋𝑋2| 𝑓𝑓(𝑋𝑋1)) is the conditional covariance function30. Based on 𝑚𝑚�𝑋𝑋2| 𝑓𝑓(𝑋𝑋1)� and 
𝑘𝑘�𝑋𝑋2| 𝑓𝑓(𝑋𝑋1),𝑋𝑋2| 𝑓𝑓(𝑋𝑋1)�, the Gaussian process model can estimate the predictive uncertainty in 
addition to making predictions, which the acquisition functions can take advantage of.  
 
Acquisition functions are regarded as policies that determine new query points on which the 
unknown function 𝑔𝑔(𝑥𝑥) is evaluated in the optimization process. Acquisition functions balance 
between exploration and exploitation by taking into account the tradeoff between evaluating 
points with high uncertainty for 𝑓𝑓(𝑥𝑥) (exploration) and points with high expectation that 𝑓𝑓(𝑥𝑥) is 
maximal (exploitation). Popular acquisition functions include the expected improvement, upper 
confidence bound, and probability of improvement. Probability of improvement selects the point 
with the largest probability to make an improvement as the next query point. Expected 
improvement takes into account not only the probability to make an improvement but also the 
expected amount of improvement that can be made, and selects the query point that can make the 
largest expected improvement. Upper confidence bound encourages exploring query points with 
large uncertainties and at the same time rewards exploiting the current surrogate model. 
Compared to the unknown function 𝑔𝑔(𝑥𝑥), acquisition functions can be computed quickly, 
making them useful for finding optima of 𝑔𝑔(𝑥𝑥). For a more detailed explanation of Bayesian 
optimization, refer to Agnihotri et al31.  
 
NN is a versatile machine learning algorithm inspired by biological nervous systems. This 
research uses NN as a regression tool. Each NN consists of neurons, weights, biases, and 
activation functions. Neurons are in the format of multiple layers of tensors. Write the ith layer of 
neurons as 𝑋𝑋𝑖𝑖. 𝑋𝑋𝑖𝑖  is multiplied by the corresponding weight matrix 𝑊𝑊𝑖𝑖, followed by the addition 
of a bias tensor 𝐵𝐵𝑖𝑖 . An activation function 𝑓𝑓 then operates on the result of multiplication and 
addition to create the next layer of neurons 𝑋𝑋𝑖𝑖+1. Mathematically, the computation at each layer 
of neurons is represented by the equation  
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𝑋𝑋𝑖𝑖+1 =  𝑓𝑓(𝑊𝑊𝑖𝑖 ⋅ 𝑋𝑋𝑖𝑖 + 𝐵𝐵𝑖𝑖) (20)  
 
Eq. (20) defines the forward propagation of the neural network. Namely each neuron in the later 
layer is computed through the neurons and weights of the previous layer until it reaches the 
output layer. The output layer can be compared to the ground truth (for example, the 
experimental results) and a loss function similar to Eq. (15) can be calculated. Namely  

𝐿𝐿(𝑊𝑊,𝐵𝐵) =  
1
𝑁𝑁
��Y −𝑌𝑌� ��

2
(21) 

where W represents all the weights, B represents all the biases, 𝑁𝑁 is the number of samples in the 
input tensor 𝑋𝑋, 𝑌𝑌 is the ground truth tensor, and 𝑌𝑌� is the NN prediction. The goal of NN is 
adjusting W and B so that the loss 𝐿𝐿(𝑊𝑊,𝐵𝐵) is minimized. The adjustment procedure is called the 
backpropagation 32. Typically, backpropagation is achieved through gradient descent. 
 
The bisection method 33 is a numerical technique used to approximate the root of a given 
function. Given an unknown function 𝑔𝑔(𝑥𝑥) and a value 𝑦𝑦, the bisection method can be applied to 
approximate the 𝑥𝑥 value that satisfies 𝑔𝑔(𝑥𝑥) = 𝑦𝑦. The method works by first identifying two 
values 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑥𝑥𝑢𝑢𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 such that 𝑔𝑔(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ) > 𝑦𝑦 and  𝑔𝑔(𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) < 𝑦𝑦, and then iteratively 
updating 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 based on the evaluation of their middle point  𝑔𝑔(1

2
(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑥𝑥𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 )).  

 
Implementation 
 
The objective of this study was to model and enhance the performance of CO2 capture in a solid 
sorbent reactor designed in a jelly roll configuration, as illustrated in Figure 1(a). Flue gas, which 
had a high concentration of CO2, entered the reactor through a central inlet and exits radially 
outwards. The sorbent is a Microlith designed by Precision Combustion, Inc. (PCI). The 
Microlith consists of the sorbent material coated on wires and stacked as shown in Figure1(b). 
The simulation domain, shown in Figure 2, was an axisymmetric domain where the inlet for the 
flue gas was at the bottom, and the outlet was at the top. The flue gas flowed through the 
Microlith (shown in dark grey in Figure 2) in the axial direction, and left the domain from the top 
outlet. This axisymmetric domain was used as a simplified representation of the jelly roll 
configuration to solve the 2D Navier-Stokes equations for CO2 flow and adsorption in the jelly 
roll. Experimental data was provided by industry collaborator PCI.  

 
Figure 1: (a) Jelly roll configuration. (b) Stacked structure of Microlith. 

(a) 
 

(b) 
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Initial experimental data used to develop the CFD model was for CO2 adsorption at a single 
temperature. Tests were run for 25 minutes with a Microlith containing 2.27 kg of CO2 sorbent 
material, an airflow rate of 60 L/s, and a CO2 volume concentration of 15%. The concentration 
of CO2 at the outlet was measured every 40 seconds. In the initial CFD simulations, the Microlith 
was modeled with a void fraction of  70% based on the experimental setup. The inlet velocity u 
was set to be u=0.238 m/s and the bed thickness h was set to be h=0.14 m. Both u and h matched 
the experimental setup. The rest of the initial conditions (ICs) and boundary conditions (BCs) 
were summarized in Table 1. The mesh was chosen to be 30 (horizontal direction) by 50 (vertical 
direction). A mesh convergence study was done and showed that the mean square differences of 
CO2 concentration time series at the outlet between a 30 by 50 grid and a 60 by 100 grid was 
0.0019 (less than 1.5% of maximum CO2 concentration), and the mean square differences of CO2 
concentration time series at the outlet between a 60 by 100 grid and a 120 by 200 grid was 
0.0008. In order to balance between accuracy and computational time, the 30 by 50 rectangular 
mesh was selected. Only the first 720 seconds of the experiment was modeled with CFD, since 
the CO2 concentration to match experimental data in which CO2 levels reached an equilibrium 
after 720 seconds. As the simulation time and input CO2 concentration were the same across all 
simulations, time (x-axis) and CO2 concentration (y-axis) were normalized to be between 0 and 1 
for better performance of Bayesian optimization34. The time step was selected to be 0.001 
seconds. A two-fluid model was chosen as the solver. The under-relaxation factor was set to 1 as 
the MFiX default. 

  
Figure 2: CFD simulation domain of an axisymmetric section of the Jelly roll configuration of Figure 1(a). The darker gray area 
indicates the Microlith where CO2 is adsorbed. The arrows indicate the approximate airflow path. The barrier (black) obstructs air 
flow and directs it into the sorbent bed.  
 
 
Table 1: ICs and BCs 

BCs  ICs  
Left wall Free-slip wall, adiabatic Outlet Pressure 101325 Pa 
Right wall No-slip wall, adiabatic Fluid density Ideal gas law 
Bottom wall No-slip wall, adiabatic Fluid diffusivity Diluted mixture approximation (air) 
Top wall No-slip wall, adiabatic Fluid viscosity Sutherland’s law 
Barrier No-slip wall, adiabatic Sorbent bed solid volume fraction  0.3 
Inlet Mass inflow Sorbent bed solid density 420kg/m3 

Outlet Pressure outflow   



 10 

 
 
 
The bisection method was initially used to determine the k and n values in the Langmuir model 
represented by Eq. (10).  
 
Once the chemistry (i.e. k and n values) was determined for the CFD, 100 CFD cases were 
simulated in parallel to predict CO2 concentration over time at the outlet of the reactor for 
various combinations of inlet velocity (u) and bed thickness (h). The simulation results were then 
used to train a KRR algorithm to predict CO2 concentration at the outlet for each input pair of u 
and h.  

The trained KRR was then further utilized with Bayesian optimization in a benchmarking case 
which varied inlet velocity (u) and bed thickness (h) to maximize the breakthrough time (the 
point at which the CO2 concentration at the outlet reaches 10% of inlet concentration, since 5% 
to 10% is typically the industry standard for breakthrough). This correlates to the reactor design 
that would have the greatest capacity for CO2 capture before it needs to be regenerated or 
replaced.  

Finally, KRR and Bayesian optimization were applied on temperature varying data to fine tune 
the adsorption model by adding desorption into the modeling. The setup to collect temperature 
varying data was the same as before, except the inlet temperature was controlled to be at 22°C, 
30°C, 40°C, and 50°C. Furthermore, the concentration of CO2 at the outlet was measured every 
second instead of every 40 seconds, matching the changes in the experimental setup done by our 
industry collaborator, PCI.  
 
 
Results and Discussion:   
 
CFD Modeling of Experimental CO2 Capture at a Single Temperature 
 
CO2 capture on the Microlith was modeled by a Langmuir model (Eqs. (9) and (10)). The 
reaction rate (k) and the adsorption sites (n) in Eq. (10) were calibrated using the bisection 
method to match the experimental data (Figure 3). A loss function 𝜖𝜖(𝑘𝑘,𝑛𝑛) was defined to 
determine how well the simulation fits the experimental data given each k and n,  

𝜖𝜖(𝑘𝑘,𝑛𝑛) = 1
𝑁𝑁
�|  𝑦⃗𝑦𝐶𝐶𝐶𝐶𝐶𝐶 −  𝑦⃗𝑦𝐸𝐸𝐸𝐸𝐸𝐸 |�

2
(22)

where N was the total number of datapoints in the experimental data of CO2 concentration at the 
outlet, 𝑦⃗𝑦𝐶𝐶𝐶𝐶𝐶𝐶 was the CFD simulation time series data of CO2 concentration at the outlet, and 
 𝑦⃗𝑦𝐸𝐸𝐸𝐸𝐸𝐸 was the experimental time series data of CO2 concentration at the outlet.  
 
Therefore, the bisection method was used to minimize the value of 𝜖𝜖(𝑘𝑘,𝑛𝑛) of a domain where 
𝑘𝑘 ∈ (0,1) and 𝑛𝑛 ∈  {1,2,3,4} For each n value, the best fitting k value was chosen after applying 
bisection method and denoted as 𝑘𝑘𝑛𝑛. Then the best fitting n and 𝑘𝑘𝑛𝑛 pair was chosen to minimize 
𝜖𝜖(𝑘𝑘,𝑛𝑛) across all four n values.  
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The best fitting k and n values were determined to be 𝑘𝑘 = 0.13 and 𝑛𝑛 = 2 with an 𝜖𝜖(𝑘𝑘,𝑛𝑛) value 
0.006. The chemical intuition behind the n value was that each oxygen atom in the CO2 molecule 
occupies one site.  
 
The best fitting CFD simulation (Figure 3) did not capture the experimental data in the beginning 
of the experiment, due to the initialization and heating of the bed at the start of the experiment. 
This problem was addressed in later subsections with more data and a more fine-tuned model. 
However, the matching of the CFD simulation with the experimental data after the heating phase 
provided confidence in the CFD model’s chemical representation of the experiment and provided 
an initial bound for the k value as well as the precise n value for more sophisticated modeling for 
future data sets.  

Figure 3: Best fitting result of CFD with the bisection method. The time and CO2 concentration data are normalized.  
 
  
KRR Model Training 

Once the chemistry was established, 100 CFD cases were simulated in parallel to predict CO2 
concentration over time at the outlet of the reactor for various combinations of inlet velocity (u) 
and bed thickness (h). The bounds of u and h are chosen to be u ∈ (0.188 m/s, 0.277 m/s) and h 
∈ (0.134 m, 0.211 m), based on the experimental parameters. The simulation results were then 
used to train a KRR algorithm to predict CO2 concentration at the outlet. Training was performed 
on 5% of the data, with the remaining 95% used to generate and evaluate predictions. The loss 
function was defined as,  

𝜖𝜖 =
1
𝑁𝑁
��  𝑦𝑦′���⃗ − 𝑦⃗𝑦��

2
(23) 
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where N was the total number of datapoints within the time series data of CO2 concentration at 
the outlet, 𝑦𝑦′���⃗  was the KRR predicted time series data of CO2 concentration at the outlet, and 𝑦⃗𝑦 
was the CFD simulated time series data of CO2 concentration at the outlet. The KRR training 
minimized the loss function 𝜖𝜖 on the training set.  

 
As seen in Figure 4, the KRR model was able to accurately predict the CFD data. Figure 4 shows 
two example cases from the 100 scenarios that were run; similar plots can be made for the other 
98 CFD simulations. All KRR predictions agreed well with the CFD data, with a mean root-
mean-square error of 0.0029, indicating that KRR was able to accurately regress the Langmuir 
model in the given parameter range. Moreover, each CFD simulation took more than eight hours 
to complete, while the KRR surrogate model took less than a second. The KRR surrogate model 
provided an efficient and accurate alternative to CFD for analyzing the effects of changing 
parameters u and h on CO2 concentration at the outlet. The fast, inexpensive, and accurate 
predictions of KRR surrogate model enabled fast optimization of the carbon reactor, as shown in 
the following subsection.  
 
Optimization of Reactor Design 

Following KRR training, Bayesian optimization was used in conjunction with KRR to identify 
the optimal u and h values within bounds u ∈ (0.188 m/s, 0.277 m/s) and h ∈ (0.134 m, 0.211 m) 
that would maximize the breakthrough time tbreak through. These bounds were chosen based on the KRR 
training bounds, since KRR is better at interpolation than extrapolation.  

The Bayesian optimization on tbreak through served as a benchmark. Due to the simple geometry of the 
jelly-roll model, it was expected that the thicker the bed, the longer it would take for CO2 to 
reach the breakthrough threshold since more adsorbent would be in the bed. Meanwhile, the 
slower the inlet velocity, the longer it would take for CO2 to reach the breakthrough threshold 
since less reactant was input into the bed each unit time. As a result, given the bound u and h, to 
optimize tbreak through, the lower bound of u (i.e. u=0.188m/s) and upper bound of h (i.e. h=0.211m) 
needed to be chosen. Therefore, tbreak through could be used as a benchmark to test if Bayesian 
optimization was capable of finding the optimized design based on the black box KRR surrogate 

(a) 
 

(b) 
 Figure 4: Examples of CFD simulation compared to the KRR prediction trained on 100 CFD simulations where (a) shows the 

worst fitting case with mean square error 0.0058 and (b) shows the best fitting case with mean square error 0.0017. KRR 
prediction (yellow dots) was compared to the CFD simulation (green triangle). The axes are normalized. 
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model. The Bayesian optimization result showed the optimal tbreak through = 374 seconds was achieve 
when u = 0.188 m/s and h = 0.201 m, agreeing well with the expected values after only 200 
iterations and 10 randomly explored initial points, which boosted the confidence for further 
usage of Bayesian optimization with KRR in this research.  

 
Modeling with Temperature Varying Data 
 
  
The success of KRR with Bayesian optimization in the benchmarking case to maximize tbreak through 
gave confidence for modeling additional CO2 adsorption datasets at four different temperatures. 
At higher temperatures, it was necessary to account for CO2 desorption from the Microlith. 
Therefore, the CFD model was expanded to include desorption (Eq. (12)). As was done in the 
adsorption only case, the reaction parameters were fit to experimental data. Two parameters were 
set to vary in the CFD models: k (adsorption reaction rate coefficient), and kd (desorption 
reaction rate coefficient). In total 231 CFD simulations were run, with the bounds on the two 
variables k ∈ (0.08, 0.4)  kd∈ (0, 0.0044). The k and kd values for each simulation were selected 
by a Bayesian optimization that attempted to fit the experimental data at 22 °C (145 simulations) 
and 50 °C (86 simulations). Bisection method was not used here because the solution space was 
two-dimensional and bisection method could only work in one-dimensional space. As the CFD 
simulations were computationally expensive, Bayesian optimization was not able to find k and 
kd values that fit the experiment data well with limited amount of CFD simulation datapoints to 
explore. 
 
Therefore, KRR and NN were used to regress the CFD simulations, so that KRR and NN could 
predict similar CO2 concentration time series at the outlet to the CFD simulations but with less 
than 1% of computational cost. Both KRR and NN used randomly sampled datapoints from all 
CFD results for training and were tested on the 86 simulations of 50 °C. NN training used 10% 
of the total data while KRR training used 1% of total data. Figure 5 shows the NN and KRR 
regressions of CFD results. NN required ten times more data for training, but was much less able 
to regress the CFD, with a maximum root-mean-square error 0.042, almost 10 times higher than 
the maximum root-mean-square error of KRR, which was 0.0048. Therefore, KRR was selected 
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as the regression tool for the remainder of the paper given its power of regressing more 
accurately with only 10% of training data that NN required.   

 
The initial run of KRR of Bayesian optimization attempted to find the optimal values of three 
variables k, kd, and another variable tshift  to fit the experimental data of all four temperatures. The 
variable tshift was introduced to account for the initialization of the reactor as it came up to 
temperature and flow conditions. In comparison, CFD simulations did not require time to reach 
temperature and flow conditions. Therefore, the KRR simulations learned from CFD were 
shifted to the right on the time axis by tshift, so that the KRR simulations could align better with 
the experimental data. The bounds of the three variables were set to be k ∈ (0.08, 0.4),  kd∈ (0, 
0.0044), and tshift ∈ (0 s,100 s).  
 
Figure 6 shows the best fitting 𝑘𝑘, 𝑘𝑘𝑑𝑑, and tshift by varying all three parameters for each 
temperature data. Only 𝑘𝑘𝑑𝑑 showed a clear trend. Both 𝑘𝑘 and 𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 showed variances due to the 
stochastic nature of Bayesian optimization35. However, due to the nature of the chemical reaction 
in the CO2 capture reactor, it was believed that the adsorption reaction rate was much less 
influenced by temperature, unlike the desorption reaction. Therefore, the average 𝑘𝑘 value of 
Figure 6(a) was taken as the adsorption reaction rate in future simulations, i.e. 𝑘𝑘 = 0.175. 
Meanwhile, the unknown reaction period in the beginning of the reaction was believed to last a 
similar amount of time for each experiment. Therefore, the time shift was chosen to be 𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 =
95 𝑠𝑠.   

Figure 5: Examples of (a) NN and (b) KRR regressions of CFD. The green triangles are the CFD simulations. 
The yellow dots are NN prediction in (a) and KRR predations in (b). The axes are normalized.  

(a) 
 

(b) 
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(a) 
 

(b) 
 

(c) 
 

Figure 6: Plots of k, 𝑘𝑘𝑑𝑑, and 𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 in 22°C, 
30°C, 40 °C, and 50 °C. (a) k vs 
temperature, (b) 𝑘𝑘𝑑𝑑 vs temperature, and (c) 
𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 vs temperature.  

  

  

Figure 7: Plots of CO2 concentration at the outlet vs time in different temperature. 
Both vertical and horizontal axes are normalized. The GT legend stands for ground 
truth, i.e. experimental results. The KRR legend stands for kernel ridge regression. 
Each plot represents the best fitting of each temperature data. (a)22 °C, (b)30 °C, 
(c)40 °C, and (d)50 °C. 

(a) 
 

(b) 
 

(c) 
 

(d) 
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In the second run of KRR of Bayesian optimization to fit the experimental data of all four 
temperatures, the values of k and tshift were fixed and only kd was varied to fit the experimental 
data for all temperatures. The choice of only varying kd corresponded with the physical system 
where the desorption process is only significant at elevated temperatures and would be expected 
to be a strong function of temperature. Figure 7 shows the fittings after fixing 𝑘𝑘 and 𝑡𝑡𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖. The 
fittings agreed well with the latter half of the experimental data of each temperature, with a 
maximum L2 error of 0.019 for the latter half of the time series among the regressions for the 
four temperature data. The algorithm focused on fitting the latter half of the reaction because that 
is the time period when the reactor environment was steady and the adsorption and desorption 
reactions were mostly governed by Eq. (10) and Eq. (12).    
 
As a verification, the 𝑘𝑘𝑑𝑑 of 30°C and 50°C were used to fit an Arrhenius equation in Figure 8. 
The 22°C and 40°C 𝑘𝑘𝑑𝑑 values lied closely to the Arrhenius equation predictions, indicating that 
likely the Bayesian optimization and KRR captured the physics in the experimental data.  

 
 
Conclusions:  
 
This research showed the possibility and advantages of combining physics with machine learning 
to aid DoE. More specifically, this research demonstrated the possibility of using KRR aided CFD 
to model and optimize carbon capture reactors. With the fast and accurate predictions of a KRR 
surrogate model, a Bayesian optimizer can be used to optimize the carbon capture reactor design. 
Apart from optimizing product design, Bayesian optimizers can also be used with CFD to model 
unknown physical and chemical reactions with the aid of a KRR surrogate model.  
 
The KRR surrogate model was able to learn from only 1% of the CFD training results, and 
regressed the test set with maximum root-mean-square error of 0.019. Moreover, while each CFD 
simulation costed about eight hours on 28 CPU-cores to complete, KRR generated each prediction 
within a second on just 1 CPU-core. This showed the strong capability of KRR to aid CFD after 
learning. With the fast and accurate prediction power of the KRR surrogate model, Bayesian 

Figure 8:  Arrhenius equation fitting based on the best fitting 𝑘𝑘𝑑𝑑 value of the 30 °C 
and 50 °C data. The blue curve is the Arrhenius fitting and the orange dots are the best 
fitting 𝑘𝑘𝑑𝑑 values.  
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optimization was used to optimize the reaction bed of the carbon capture reactor. In the 
benchmarking optimization test, the Bayesian optimizer used the KRR surrogate model to 
successfully pick the optimal design for the longest breakthrough time. Finally, the Bayesian 
optimization and KRR algorithms successfully guided CFD to improve modeling of the variable 
temperature experimental data with desorption added into the CFD simulations, fitting the 
experimental data with lower error.  
 
To the authors’ best knowledge, this research was the first one that compared the capability of NN 
and KRR to learn from CFD results. For material science and engineering research, it is vital to 
pick the correct machine learning tool so that the tool balances accuracy, computational cost, ease 
of use, etc. In the case of this research, KRR was a better tool compared to NN because it was 
more accurate, required less training data, and was simpler to implement. Selecting KRR as the 
regression tool made it effective to couple a regression tool with Bayesian optimization to learn 
and guide the modeling of unknown chemistry in CFD models. In addition, this research was the 
first to achieve reduced order modeling through exploiting axisymmetric property of the model 
and KRR. This paradigm of reducing the dimensions of a model and then using a ML algorithm 
to regress the reduced-dimension simulation results can be applied to other cases as well. The 
dimension reduction can be achieved through other methods such as thin layer assumption, planar 
symmetry, etc., and other ML regression tools such as NN, random forest, Gaussian process 
regression, etc. can replaced KRR.   
 
The success of the machine learning guided CFD modeling in this research demonstrated that 
machine learning algorithms could be versatile and helpful tools in DoE. As was shown here, when 
combined with CFD, they could be used for regression to build inexpensive but accurate models. 
By making predictions budget-friendly, optimization of material properties becomes possible. The 
paradigm developed in this paper can be widely applied to other types of DoE research, such as 
battery optimization and catalyst selection. For different applications, other ML methods can 
replace KRR and Bayesian optimization algorithms, such as random forest and genetic algorithm; 
other computational methods can replace CFD, such as density functional theory and molecular 
dynamics. But the procedures for optimization remain the same. Namely, given a small amount of 
experimental data, apply a computational method to develop a model with or without the aid of 
ML to model the experimental data, then regress the model with ML (i.e. build a surrogate model) 
to reduce the computational cost while achieving similar accuracy, and finally use ML or other 
algorithms to optimize the system based on the ML surrogate model. The ML aided DoE has the 
potential to greatly reduce temporal and financial costs in the DoE process, making it feasible to 
conduct research in areas where data acquisition costs are limiting factors.  
 
 
Acknowledgements 
 
This work was funded by the National Science Foundation (1932922, 2218729) and DOE 
through Precision Combustion Incorporated (PCI) (DE-SC0017221). Precision Combustion Inc. 
provided all experimental data used in this research. The author would like to thank Codruta 
Loebick and Benjamin Baird from PCI for access to PCI data and many helpful discussions on 
their carbon capture system.  
 



 18 

 
References: 
 
(1) Franceschini, G.; Macchietto, S. Model-Based Design of Experiments for Parameter 

Precision: State of the Art. Chem. Eng. Sci. 2008, 63 (19), 4846–4872. 
https://doi.org/10.1016/j.ces.2007.11.034. 

(2) Zhong, W.; Yu, A.; Zhou, G.; Xie, J.; Zhang, H. CFD Simulation of Dense Particulate 
Reaction System: Approaches, Recent Advances and Applications. Chem. Eng. Sci. 2016, 
140, 16–43. https://doi.org/10.1016/j.ces.2015.09.035. 

(3) Maginn, E. J.; Elliott, J. R. Historical Perspective and Current Outlook for Molecular 
Dynamics As a Chemical Engineering Tool. Ind. Eng. Chem. Res. 2010, 49 (7), 3059–3078. 
https://doi.org/10.1021/ie901898k. 

(4) Density functional theory for chemical engineering: From capillarity to soft materials - Wu - 
2006 - AIChE Journal - Wiley Online Library. 
https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.10713 (accessed 2023-03-28). 

(5) Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational 
Science and Engineering. Computation 2020, 8 (1), 15. 
https://doi.org/10.3390/computation8010015. 

(6) Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; 
Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive 
Insights Into Chemical Systems. Chem. Rev. 2021, 121 (16), 9816–9872. 
https://doi.org/10.1021/acs.chemrev.1c00107. 

(7) Thebelt, A.; Wiebe, J.; Kronqvist, J.; Tsay, C.; Misener, R. Maximizing Information from 
Chemical Engineering Data Sets: Applications to Machine Learning. Chem. Eng. Sci. 2022, 
252, 117469. https://doi.org/10.1016/j.ces.2022.117469. 

(8) Frazier, P. I.; Wang, J. Bayesian Optimization for Materials Design. In Information Science 
for Materials Discovery and Design; Lookman, T., Alexander, F. J., Rajan, K., Eds.; 
Springer Series in Materials Science; Springer International Publishing: Cham, 2016; pp 
45–75. https://doi.org/10.1007/978-3-319-23871-5_3. 

(9) Greenhill, S.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S. Bayesian Optimization for 
Adaptive Experimental Design: A Review. IEEE Access 2020, 8, 13937–13948. 
https://doi.org/10.1109/ACCESS.2020.2966228. 

(10) Vahid, A.; Rana, S.; Gupta, S.; Vellanki, P.; Venkatesh, S.; Dorin, T. New Bayesian-
Optimization-Based Design of High-Strength 7xxx-Series Alloys from Recycled 
Aluminum. JOM 2018, 70 (11), 2704–2709. https://doi.org/10.1007/s11837-018-2984-z. 

(11) Ando, T.; Shimizu, N.; Yamamoto, N.; Matsuzawa, N. N.; Maeshima, H.; Kaneko, H. 
Design of Molecules with Low Hole and Electron Reorganization Energy Using DFT 
Calculations and Bayesian Optimization. J. Phys. Chem. A 2022, 126 (36), 6336–6347. 
https://doi.org/10.1021/acs.jpca.2c05229. 

(12) Park, S.; Na, J.; Kim, M.; Lee, J. M. Multi-Objective Bayesian Optimization of Chemical 
Reactor Design Using Computational Fluid Dynamics. Comput. Chem. Eng. 2018, 119, 25–
37. https://doi.org/10.1016/j.compchemeng.2018.08.005. 

(13) Zhang, Y.; Apley, D. W.; Chen, W. Bayesian Optimization for Materials Design with 
Mixed Quantitative and Qualitative Variables. Sci. Rep. 2020, 10 (1), 4924. 
https://doi.org/10.1038/s41598-020-60652-9. 



 19 

(14) Ge, H.; Bakir, A. H.; Yadav, S.; Kang, Y.; Parameswaran, S.; Zhao, P. CFD Optimization 
of the Pre-Chamber Geometry for a Gasoline Spark Ignition Engine. Front. Mech. Eng. 
2021, 6. 

(15) Abdi, R.; Krzaczek, M.; Tejchman, J. Comparative Study of High-Pressure Fluid Flow in 
Densely Packed Granules Using a 3D CFD Model in a Continuous Medium and a 
Simplified 2D DEM-CFD Approach. Granul. Matter 2021, 24 (1), 15. 
https://doi.org/10.1007/s10035-021-01179-2. 

(16) Vegini, A. A.; Meier, H. F.; Iess, J. J.; Mori, M. Computational Fluid Dynamics (CFD) 
Analysis of Cyclone Separators Connected in Series. Ind. Eng. Chem. Res. 2008, 47 (1), 
192–200. https://doi.org/10.1021/ie061501h. 

(17) Li, T.; Gel, A.; Pannala, S.; Shahnam, M.; Syamlal, M. CFD Simulations of Circulating 
Fluidized Bed Risers, Part I: Grid Study. Powder Technol. 2014, 254, 170–180. 
https://doi.org/10.1016/j.powtec.2014.01.021. 

(18) Li, T.; Pannala, S.; Shahnam, M. CFD Simulations of Circulating Fluidized Bed Risers, 
Part II, Evaluation of Differences between 2D and 3D Simulations. Powder Technol. 2014, 
254, 115–124. https://doi.org/10.1016/j.powtec.2014.01.022. 

(19) Masoumi, A. P.; Tajalli-Ardekani, E.; Golneshan, A. A. Investigation on Performance of an 
Asphalt Solar Collector: CFD Analysis, Experimental Validation and Neural Network 
Modeling. Sol. Energy 2020, 207, 703–719. https://doi.org/10.1016/j.solener.2020.06.045. 

(20) Jinnouchi, R.; Asahi, R. Predicting Catalytic Activity of Nanoparticles by a DFT-Aided 
Machine-Learning Algorithm. J. Phys. Chem. Lett. 2017, 8 (17), 4279–4283. 
https://doi.org/10.1021/acs.jpclett.7b02010. 

(21) Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Nørskov, J. K. To Address Surface Reaction 
Network Complexity Using Scaling Relations Machine Learning and DFT Calculations. 
Nat. Commun. 2017, 8 (1), 14621. https://doi.org/10.1038/ncomms14621. 

(22) Kochkov, D.; Smith, J. A.; Alieva, A.; Wang, Q.; Brenner, M. P.; Hoyer, S. Machine 
Learning–Accelerated Computational Fluid Dynamics. Proc. Natl. Acad. Sci. 2021, 118 
(21), e2101784118. https://doi.org/10.1073/pnas.2101784118. 

(23) Vinuesa, R.; Brunton, S. L. Enhancing Computational Fluid Dynamics with Machine 
Learning. Nat. Comput. Sci. 2022, 2 (6), 358–366. https://doi.org/10.1038/s43588-022-
00264-7. 

(24) Eldred, M.; Dunlavy, D. Formulations for Surrogate-Based Optimization with Data Fit, 
Multifidelity, and Reduced-Order Models. In 11th AIAA/ISSMO Multidisciplinary Analysis 
and Optimization Conference; American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.2006-7117. 

(25) Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control—
Surrogate Models, Feedback Control and Objective Reduction. Math. Comput. Appl. 2018, 
23 (2), 30. https://doi.org/10.3390/mca23020030. 

(26) Owoyele, O.; Pal, P.; Vidal Torreira, A.; Probst, D.; Shaxted, M.; Wilde, M.; Senecal, P. K. 
Application of an Automated Machine Learning-Genetic Algorithm (AutoML-GA) 
Coupled with Computational Fluid Dynamics Simulations for Rapid Engine Design 
Optimization. Int. J. Engine Res. 2022, 23 (9), 1586–1601. 
https://doi.org/10.1177/14680874211023466. 

(27) Hedin, N.; Andersson, L.; Bergström, L.; Yan, J. Adsorbents for the Post-Combustion 
Capture of CO2 Using Rapid Temperature Swing or Vacuum Swing Adsorption. Appl. 
Energy 2013, 104, 418–433. https://doi.org/10.1016/j.apenergy.2012.11.034. 



 20 

(28) MFIX. NETL Multiphase Flow Science. https://mfix.netl.doe.gov/products/mfix/ (accessed 
2023-03-28). 

(29) Vovk, V. Kernel Ridge Regression. In Empirical Inference: Festschrift in Honor of 
Vladimir N. Vapnik; Schölkopf, B., Luo, Z., Vovk, V., Eds.; Springer: Berlin, Heidelberg, 
2013; pp 105–116. https://doi.org/10.1007/978-3-642-41136-6_11. 

(30) Soch, J. Conditional distributions of the multivariate normal distribution. The Book of 
Statistical Proofs. https://statproofbook.github.io/P/mvn-cond.html (accessed 2023-03-28). 

(31) Agnihotri, A.; Batra, N. Exploring Bayesian Optimization. Distill 2020, 5 (5), e26. 
https://doi.org/10.23915/distill.00026. 

(32) Backprop.Pdf. https://www.cs.cornell.edu/courses/cs5740/2016sp/resources/backprop.pdf 
(accessed 2024-02-13). 

(33) Thapliyal, P.; Tomar, K. Role of Bisection Method. Int. J. Comput. Appl. Technol. Res. 
2014, 3 (8). 

(34) Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification 
Performance. Appl. Soft Comput. 2020, 97, 105524. 
https://doi.org/10.1016/j.asoc.2019.105524. 

(35) Frazier, P. I. A Tutorial on Bayesian Optimization. arXiv July 8, 2018. 
https://doi.org/10.48550/arXiv.1807.02811. 

 
 
  



 21 

 


