
Flat Spectra of Energetic Particles in Interplanetary Shock Precursors

Mikhail Malkov
1

, Joe Giacalone
2

, and Fan Guo
3

1
Department of Astronomy and Astrophysics, University of California, San Diego, La Jolla, CA 92093, USA

2
Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA

3
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 2024 January 17; revised 2024 June 16; accepted 2024 July 11; published 2024 September 12

Abstract

The observed energy spectra of accelerated particles at interplanetary shocks often do not match the diffusive shock
acceleration (DSA) theory predictions. In some cases, the particle flux forms a plateau over a wide range of
energies, extending upstream of the shock for up to seven flux e-folds before submerging into the background
spectrum. Remarkably, at and downstream of the shock we have studied in detail, the flux falls off in energy as ò

−1,
consistent with the DSA prediction for a strong shock. The upstream plateau suggests a particle transport
mechanism different from those traditionally employed in DSA models. We show that a standard (linear) DSA
solution based on a widely accepted diffusive particle transport with an underlying resonant wave–particle
interaction is inconsistent with the plateau in the particle flux. To resolve this contradiction, we modify the DSA
theory in two ways. First, we include a dependence of the particle diffusivity κ on the particle flux F (nonlinear
particle transport). Second, we invoke short-scale magnetic perturbations that are self-consistently generated by,
but not resonant with, accelerated particles. They lead to the particle diffusivity increasing with the particle energy
as ∝ò

3/2 that simultaneously decreases with the particle flux as 1/F. The combination of these two trends results in
the flat spectrum upstream. We speculate that nonmonotonic spatial variations of the upstream spectrum, apart
from being time-dependent, may also result from non-DSA acceleration mechanisms at work upstream, such as
stochastic Fermi or magnetic pumping acceleration.

Unified Astronomy Thesaurus concepts: Interplanetary shocks (829); Interplanetary particle acceleration (826)

1. Introduction

Diffusive shock acceleration (DSA; Krymskii 1977; Axford
et al. 1978; Bell 1978; Blandford & Ostriker 1978) is arguably
the most universal and robust mechanism whereby particles can
be accelerated to high energies in shocks across the Universe.
Its physical and intuitive grounds are comprehensible. The
particle momentum spectrum behind the shock comes from a
“back-of-the-envelope” calculation. It is a power law∝ p− q,
with an index ( )= -q r r3 1 that, to the first approximation,
depends only on the shock compression r.

The simplicity of the DSA is, however, deceptive. After
almost half a century of research, it is still challenging to
calculate the rate at which it operates and the maximum energy
particles can gain in realistic shock environments. Its index q

often disagrees with observations even if the shock is known to
be strong, and the index q should be equal to 4. When the
spectrum is harder than predicted, the difference is usually
explained by a nonlinear shock modification due to the growing
pressure of accelerated particles (see Malkov & Drury 2001 for
a review). When softer, the disagreement can, e.g., be attributed
to the nonstationarity and curvature of the shock, strong short-
scale magnetic perturbations generated by accelerated particles,
and propagation of particle scattering waves relative to the
plasma flow (Kennel et al. 1986; Bell et al. 2019; Hanusch
et al. 2019; Malkov & Aharonian 2019; Diesing &
Caprioli 2021). These arguments are primarily applied to the
supernova remnant shocks, in which measurements of
energetic particles are limited in accuracy and indirect by

nature, thus obscuring the cause of the spectral softening. The
particle spectra are inferred from the emission of accelerated
electrons and, maybe, from the ³- radiation generated by
accelerated protons interacting with adjacent molecular clouds,
if present. If so, telling the radiatively more efficient leptons
from overwhelmingly more abundant hadrons is still
challenging.
This paper considers an even more puzzling DSA disagree-

ment with the observed spectra. Notably, at some, but not all,
interplanetary shocks observed in situ (e.g., Lario et al.
2018, 2022; Perri et al. 2023), the particle flux flattens

upstream, whereas the downstream part still agrees with the
DSA. Since the disagreement is partial, it helps identify the
DSA elements responsible. In addition, it might shed light on
how the DSA is sped up by waves excited by the accelerated
particles themselves (Bell 1978). Recall that within the DSA,
particles gain energy when they cross and recross the shock by
scattering off magnetic perturbations of whatever origin.
Therefore, strong self-generated waves “bootstrap” the particle
acceleration.
Central to the bootstrap is a simultaneous growth of wave

amplitudes and their lengths during the acceleration. Scattering
is most efficient when the wave–particle resonance condition,

( ) ~kr p 1g , is maintained throughout the wave and particle
spectra up to at least the maximum particle momentum, pmax.
Here, rg is the particle gyroradius, rg= cp/eB0, and k is the
wavenumber of resonant Alfvén waves. However, the fastest-
growing waves do not necessarily scatter particles most rapidly,
which is required for efficient acceleration.
Resonant waves typically saturate at a level not significantly

higher than ´B/B0∼ 1 (Völk et al. 1984). Macroscopically
driven nonresonant instabilities may continue to grow beyond
this level. Two types of them are often invoked in DSA
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treatments. One is current-driven, also called the Bell’s
instability (Bell 2004). The other one is an acoustic instability
driven by the pressure gradient of accelerated particles (Drury
& Falle 1986). Because they are powered by these macroscopic
sources of free energy, nonresonantly driven waves act
differently on energetic particles than resonantly driven waves.
In the latter case, a wave with a given wavenumber k interacts
only with a narrow group of particles in momentum space.
Instead, nonresonantly driven waves indiscriminately affect
broader swaths of energetic particles.

We will show that a nonresonant wave–particle interaction
also leads to a different scaling of particle diffusivity with their
energy. As a result, their propagation into the upstream medium
against the inflowing plasma becomes energy-independent
beyond a certain distance upstream, thus flattening the
spectrum. Hence, it is expected to occur when the upstream
population of energetic particles grows to the point beyond
which the nonresonantly driven instabilities dominate the
resonantly driven ion-cyclotron instability. We will also show
that this change of the particle transport regime upstream does
not affect the DSA-predicted spectral slope downstream, as
also observed. The question of when exactly this change of
instability occurs depends on the strength and type of the
nonresonant drivers (current, pressure gradients, and pressure
anisotropy, leading to the firehose and mirror-type plasma
instabilities; Malkov et al. 2010; Bykov et al. 2013).

The goal of this paper is to demonstrate that the mechanism
outlined above may indeed flatten the upstream spectrum. We
will use just one highly representative shock observed in 2005
May that generated nearly perfectly flat spectra in a broad
energy range. At the same time, considering just one case does
not suffice to derive general conditions under which the shock
flattening occurs. Apart from the strength of the instability
driver, they depend on other shock parameters discussed in the
above references and on the shock geometry. The latter
controls the shock's ability to sustain an intense population of
accelerated particles upstream against losses. Understanding
the general conditions for spectral flattening clearly requires a
separate survey-type study with detailed knowledge of the
parameters of each shock in the sample. It will be particularly
critical to differentiate between the resonant and nonresonant
cases. However, such a study is out of the scope of the present
paper.

We have organized this paper along its line of arguments as
follows. Because the flat upstream spectra are uncommon, in
the next section, we specify particle transport regimes that may
result in such spectra. Next, we review the turbulence spectra
that may be consistent with such regimes. Each of these two
steps will be made assuming two different types of wave–
particle interaction: resonant and nonresonant. The above-
described analyses will allow us to eliminate some common
combinations of turbulence spectra, particle transport regimes,
and wave–particle interaction types (resonant versus nonreso-
nant) inconsistent with the flat spectra. In Section 2.2, we show
that the wave–particle interaction is likely nonresonant, the
particle transport must be nonlinear (flux-dependent), and the
wave spectrum is likely to be of the Iroshnikov–Kraichnan
type. In Section 3, we discuss a nonlinear transport regime that
leads to the flat spectra. Section 4 deals with the acceleration
model based on this transport regime. In Section 5, we fit the
model predictions to the data. The paper concludes with a
summary and discussion of its results.

2. Observational Hints

In this section, we constrain the particle transport and its
underlying MHD turbulence required for the spectral flattening
observed at the interplanetary shock of 2005 May (e.g., Lario
et al. 2018, 2022; Perri et al. 2023). We selected this data set
because the flat particle flux upstream, inconsistent with the
DSA, coexists with its DSA-compliant downstream counter-
part. This example offers insights into conditions under which
the “standard” (linear diffusion) DSA model fails. It helps
eliminate turbulence and transport combinations inconsistent
with the data. We will show that if the particle diffusivity does
not depend on their intensity, it is difficult to explain the flat
particle flux. We will, therefore, introduce such a dependence
in a way similar to that proposed at the inception of the DSA
(Bell 1978). We will also rule out several types of turbulence
spectra. These analyses help us zero in on a unique
combination of turbulence and particle transport regimes
leading to the flat particle flux upstream of the shock.

2.1. Constraining the Particle Diffusion Coefficient

Figure 1 demonstrates disagreements with the “standard”
DSA model. However, we start with what is agreeable. On the
downstream side, the particle flux decreases approximately as
ò
−1 with energy, consistent with the DSA prediction for a
shock with a compression ratio close to 4. Immediately on the
upstream side, the low-energy part of the spectrum initially
decays more steeply with distance from the shock. This
behavior is also qualitatively consistent with the DSA if the
particle diffusivity grows with energy.
Further upstream, the disagreements with the DSA become

obvious. Let us consider a general steady-state DSA solution in
a fixed scattering environment. As we mentioned earlier, the
particle scattering can be enhanced by unstable magnetic
perturbations. However, in most DSA schemes, this enhance-
ment does not change the slope of the spectrum. It decreases
the acceleration time. The scattering perturbations may saturate
at a fixed ´B∼ B0 level if the particle intensity is sufficient to
drive them to this level. Assuming also that the scattering
supports particle diffusion with a particle diffusivity ( )k z, ,
we first examine which κ might make the spectrum flat at some
distance upstream, provided that the spectrum is ò

− 1 at and
behind the shock, as observed.
Upstream particles conserve their energy as long as the

second-order Fermi acceleration and the shock modification by
accelerated particles are negligible. The basic DSA solution
arises from a balance between convective and diffusive particle
fluxes. No particle losses are assumed; particles do not escape
from those parts of the shock precursor where the balance is
maintained. In the shock reference frame, moving at a speed u,
on its upstream (z< 0) side, this balance can be written down
as follows:

( ) ( )k
¶
¶

- =z
F

z
uF, 0, 1

where κ is the particle diffusivity in the diffusive flux from the

shock, written in the form of Fick’s law, and u is the flow

(shock) velocity that convectively transports particles back to

the shock. Note that the above equation can also be obtained by

integrating Equation (8), which we will discuss later, assuming

no particle injection or losses inside of the shock precursor.
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To compare the DSA solution with the data, we use here the
particle flux,  ( ) ( )=F d f p vp dp2 , with energy normalization,
instead of the particle distribution, f, normalized to 4πp2dp.
Here v= p/m is the particle velocity. According to the DSA,
particles injected at ò∼mu2 at the shock front develop the
spectrum F=Q0ò

− s for ò?mu2, where Q0 is the intensity of
seed particles extracted from the thermal pool at the shock
interface. Here the index ( ) ( )= + - = -s r r q2 2 1 2 1,
and r is the shock compression. The derivation of s can be
inferred from Equations (13) and (14). The transition of ( )F
between the thermal downstream core and the power-law part
of the spectrum, ∝ò

− s, can also be calculated analytically,
given the seed extraction mechanism at ò∼mu2 (see Malkov &
Drury 2001 and references therein). In what follows, we focus
on sufficiently high energies where the power-law dependence
is established.

The data shown in Figure 1 indicate that s≈ 1, as predicted
by the DSA for strong shocks. If s deviates from the value
shown above, the balance in Equation (1) is likely to be
violated (see, e.g., Section 4 below). This equation also implies
that the upstream plasma, inflowing into the shock at the speed
u, carries no preaccelerated particles from z=−∞ (F→ 0),
and Equation (1) remains valid up to z=−∞. Not being fully
consistent with the data, this assumption is not essential as long
as κ does not depend on F, while both F and ∂F/∂z are
negligible far upstream.

Far upstream, the flux in Figure 1 flattens abruptly in z in
each energy channel, proceeding from lower to higher energy.
It almost certainly manifests a preexisting background
spectrum. Since it is much lower than the flux in the area of

the disagreement with the DSA, we have neglected it in
Equation (1) but will use it as a boundary condition when
fitting the data in Section 5. Assuming here that all the
accelerated particles are initially injected at the shock front
from the plasma thermal core, a complete solution at ò?mu2,
upstream and downstream, can be written as

§
¨
©

⎡
⎣⎢

⎤
⎦⎥




( ) ( )

õ
ò k=

- <-

-

F
Q u

dz

z
z

Q z

exp
,

, 0,

, 0.

2
s

z

s

0

0

0

Immediately behind the shock, the observed spectrum
remains nearly constant (see zoom in Figure 1), which justifies
the above solution at z� 0. However, the spectrum gradually
decays at larger z. This decay contrasts evolving curved shocks
with stationary plane ones, which is seen from an analytically
solvable case of the DSA at expanding spherical shocks
(Malkov & Aharonian 2019). Further downstream (at
t≈ 135.2), the flux drops sharply, presumably because it
crosses a magnetic “piston.” It is associated with a coronal
mass ejection that likely drives the shock. We will not further
discuss these two downstream flux decreases, as they are
unlikely to affect the upstream flattening.
Now, we test if the spectrum can be flat in an extended

region upstream for any realistic κ in Equation (2). If κ grows
with the particle energy and is z-independent, the energy
spectrum has an isolated maximum at some  ( )zmax . It can be
obtained from the equation   ( ) ( ) ∣ ∣k k¢ = u z s2 . The
spectrum is, therefore, not flat in any extended area upstream.
Note that the observed particle flux decreases in the flat-

Figure 1. Top panels: EPAM 5 minute averaged solar particle fluxes. Bottom panels: MAG 16 s averaged interplanetary magnetic field data. The right two panels
zoom in to a near-shock region, indicated in the bottom left panel. The data were downloaded from the ACE Science Center: http://www.srl.caltech.edu/ACE/ASC/
level2.
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spectrum area by up to 3 orders of magnitude (depending on
the energy). Therefore, we can safely reject the above scenario,
in which κ is z-independent everywhere upstream.

Based on the upper right panel of Figure 1, the spectrum
flattens at z< z0, where z0 roughly corresponds to t= 135.06. If
the solution in Equation (2) applies, F must be energy-
independent at z= z0, but it still must decrease as ò

− s at z= 0.
From Equation (2), we thus have



( )

( )ò k
=u

dz

z
s

,
ln , 3

z

0
0

0

where ò0> ò relates to the normalization of F. Beyond z0, the

spectrum is observed to be flat. We can infer the transition

point z0 from the observations, which is about the same for all

energy channels. The above relation means that the quantity

k-1 (z-averaged over z0< z< 0) must decrease with energy as

 ( )ln 0 . This relation does not, however, fully constrain the

turbulence spectrum in the area z0< z< 0. We will return to

that constraint later.
The spectral flatness at z< z0 requires κ to be ò-independent

in this area. To examine whether physically reasonable wave
spectra can meet this requirement and Equation (3), let us start
with the most straightforward possibility, assuming that the
particle diffusion is field-aligned. It is a good approximation if
the wave amplitudes are moderate and the angle between the
shock normal and magnetic field, ϑBn, is not too close to π/2:
d J<B B cot2

0
2

Bn (Section 3). A common DSA assumption is
that the particle cyclotron resonance with waves supports their
diffusion, so k∥≈ ωc/v∥, where v∥ is the particle velocity along
the field. It is assumed that the wave frequency ω= ωc. Hence,
for the diffusion coefficient, we have k k d~ µ v Bk

3 2 (e.g.,
Lee 1982). This relation links z with ò by virtue of Equation (3)
because ´Bk depends on z. Namely, it requires a z-averaged

magnetic fluctuation spectrum to be ¯ ( )d µ -B k k klnk
2 3

0 within

z0< z< 0, where w=k m2c0 0 . Since k dµ v Bk
3 2, it

becomes energy-independent if we neglect the logarithmic

dependence on k of dBk
2 or assume that the z-averaging

somehow compensates for this insignificant factor, compared to
k−3, in the spectral density. These are relatively mild changes,
though. For z< z0, one thus obtains d µ -B kk

2 3, which makes κ
roughly energy-independent, as required for the flat spectrum.
Let us now consider the possibility of generating the k−3

spectrum.

2.2. Constraining the Underlying Wave Turbulence

The turbulence spectrum often discussed as being resonantly
generated by accelerated particles is the k−2 spectrum,
associated with nonrelativistic particles (Lee 1983; Forman &
Webb 1985), and k−1, associated with the relativistic ones
(Bell 1978). Both cases are valid for the r= 4 shock
compression ratio, thus corresponding to the p−4 spectrum
downstream (normalized to p2dp). Resonant wave–particle
interactions without wave cascading are employed in obtaining
these results. The steep k−3 wave spectrum, inferred in the
preceding subsection, would correspond to a very flat, p−3

particle spectrum at and behind the shock. The latter is hardly
possible, as even in the limit of much more powerful shocks,
strongly modified by particles accelerated to ultrarelativistic
energies, the flattest asymptotic downstream spectrum is p−3.5

(Malkov & Drury 2001). However, the spectrum in question,

corresponding to ( ) =F const, is observed farther upstream.
As we mentioned, Lee’s theory relates the wave spectrum
upstream to the particle spectrum downstream, which is an
oversimplification in describing the flat upstream spectra.
According to Figure 1, the spectrum remains flat despite

decaying by 2–3 orders of magnitude upstream. This behavior
is counterintuitive and defies the standard DSA principles.
Indeed, particles observed far upstream have likely spent most
of their last acceleration cycle (crossing and recrossing the
shock, gaining ∼Ush/v of their current energy) while balancing
between the convection with the flow toward the shock and
diffusing against it. Diffusion generally intensifies with the
particle energy, which should lead higher-energy particles to
diffuse farther upstream. It seems they should break the
spectrum flatness, whatever mechanism maintains it up to a
certain distance. On the contrary, the spectrum remains flat in a
wide area upstream.
Unstable waves, initiated far upstream, where the particle

flux is low, are convected with the flow to the shock, and their
growth rate must increase along with the particle flux. The
turbulence intensifies if no significant instability suppression
(quasi-linear or nonlinear) occurs. Eventually, it may saturate
and change its spectral shape before a fluid element crosses the
shock. The question is why and how the particle spectrum
remains flat, whereas the transport driving turbulence evolves.
To answer this question, we consider the following scenario.
When the wave and particle flux grow toward the shock, the

particle transport goes nonlinear, thus making their diffusivity,
κ, flux-dependent (Bell 1978; Lee 1982). Meanwhile, the
resonant wave–particle interaction, which is behind the quasi-
linear calculations of particle transport in the above references
and Section 2.1, ceases to apply if the wave amplitudes grow
beyond the level of a resonant, quasi-linear regime of the
wave–particle interaction. Assuming further that the waves are
nonresonantly driven by a pressure gradient of energetic
particles (Drury & Falle 1986), we may use some results of
Malkov & Moskalenko (2021). According to them, an
ensemble of weak shocks (shocklets) generated by the pressure
gradient evolves toward longer scales by shock mergers
(inverse turbulence cascade). As their strength increases, the
spectrum develops a magnetic turbulence component transfer-
ring to shorter scales (forward cascade). The magnetic part of
the turbulence supports particle scattering, thus controlling
their spatial transport. The forward cascade flattens the
spectrum to a k−3/2 Iroshnikov–Kraichnan (IK) spectrum
(Iroshnikov 1964; Kraichnan 1965).
The IK spectrum is not a prerequisite for flat particle flux, as

shown in the sequel. Nonetheless, Perri et al. (2023) have
identified the wave spectrum k−1.51 precisely in the area of the
flat particle spectrum (see Figure 4 in their paper). Compared to
the canonical DSA spectrum (k−2 in a nonrelativistic regime),
the IK spectrum contains more energy in shorter scales. Given
their significant amplitudes, a particle suffers many scattering
events while interacting with a broad range of waves, still much
shorter than its Larmor radius. In effect, it accumulates a
significant deflection before completing its Larmor rotation.
By contrast, most of the DSA studies rely on resonant wave–

particle interactions, assuming a low-amplitude, random-phase
wave spectrum with ´Bk= B0. In some cases, though not
frequently, an opposite approximation of a single dominant
wave with ´B1 B0 in a broad quasi-linear ´Bk= B0

continuum compares positively with simulations and even

4
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observations (see, e.g., Hanusch et al. 2019 and references
therein). These approaches do not work for the case at hand,
both de facto and because the required conditions do not hold.
As seen from Figure 1, separate field components reach the
level ´B B0 and often form coherent short-scale structures. If
the spectrum is sufficiently flat and intense, particles with a
large Larmor radius should be deflected by such perturbations
multiple times during each rotation. For sufficiently large
amplitudes, an approximation based on a sequence of
uncorrelated particle deflections by the magnetic perturbations
with the scales l= rg but large-amplitude ´Bl B0 has proved
more accurate.

As the IK spectrum is significantly flatter than Lee’s resonant
k−2 spectrum, we may assume that the wave–particle
interaction with high-energy particles is dominated by a
krg? 1 condition that is essentially nonresonant. At the same
time, the phases of the short-scale magnetic perturbations are
randomized as the waves cascade to shorter scales. The
nonresonant transport is then easily calculated in the above-
described, well-known fashion. One starts with an angular
diffusion in momentum space, assuming that by crossing the
turbulence correlation length, l, particles deflect only by a small
angle ´ϑ. For the angular diffusion rate, we find

( )( )n J d= D ~t lv r B B2 g l
2 2

0
2. Here, we assumed that the

angle Δϑ is accumulated from vt/l? 1 uncorrelated deflec-
tions, each of which is at an angle ( )( )dJ d~ l r B Bg l 0 . Note
that unlike the standard quasi-linear derivation that we applied
to the resonant wave–particle interaction leading to the parallel
diffusion k dµ v Bk

3 2, the length scale l in the amplitude ´Bl is
not related to the particle velocity, v. Thus, by defining the
parallel diffusion in a standard way as κ∥= vλ/3 with the
particle mean free path, λ= v/ν, we arrive at the following
expression for κ∥:

⎜ ⎟⎛
¿

À
⎠ ( )k

n w d
= ~

v v

l

B

B3
. 4

c l

2 3

2

0
2

Since l is a fixed turbulence correlation length, it is not

associated with the resonant wavenumber = µ-k r 1 ;g
1

the parallel diffusivity scales with energy as κ∥∝ ò
3/2, instead

of κ∥∝ ò
3/4, which one would obtain in the case of a resonant

particle diffusion, specifically for the IK spectrum.

3. Possible Regimes of Particle Self-confinement

To fit the data shown in Figure 1, in this section, we
introduce some further modifications to the “standard” DSA
mechanism. We also justify simplifications, such as a planar
and stationary shock assumption, that we will use later.
Although the diffusion–convection balance essentially controls
particle transport upstream, similarly to Equation (1), we now
also allow for an injection of thermal particles at the shock
discontinuity and an escape of accelerated and influx of
preexisting energetic particles from the far-upstream space.
Therefore, the total particle flux, diffusive plus convective,
across the shock precursor is not exactly zero, although it is
much smaller than its primary components.

Freshly injected particles are vital for spectral flatness.
Indeed, some 4 orders of magnitude of enhancement of the
particle flux at the shock, compared to the background
(z=−∞), would be impossible by a mere reacceleration of
the background population, preexisting far upstream. The
reaccelerated flux enhancement would hardly exceed a factor of

a few, depending on the shock compression and the back-
ground upstream spectrum. This aspect of the DSA was
discussed in detail by Malkov & Moskalenko (2021) in
conjunction with a recently discovered fine structure in a
galactic cosmic-ray spectrum, which is also deemed incompa-
tible with the “standard” DSA, assuming that the DSA is
responsible for the cosmic-ray acceleration.
On the far-upstream end of the flat-spectrum region, the

simple diffusion–convection balance in Equation (1) needs to
be supplemented with the background cosmic rays convected
into the shock precursor and the shock-accelerated cosmic rays
diffusively leaked from it. Inside the flat-spectrum region and
in the shock vicinity, the particle flux is greatly enhanced over
the background level, which couples it with the wave intensity.
By contrast, a simple relation between the particle flux and
wave intensity is not accurate in the far-upstream region, where
both quantities approach their background levels and decouple.
Their intensities are generally unrelated to each other. There-
fore, a linear relation between the particle flux and wave energy
density introduced below by Equation (7) contains a model
parameter, ψ. It is, however, essential only in the transition
region to the background energetic particles and does not
significantly affect most of the shock precursor where the flat
particle flux is observed.
The spatial downstream distribution of shock-accelerated

particles is qualitatively sensitive to even a gradual time
dependence of the shock speed and its front curvature. In a
steady planar shock, the downstream distribution is homo-
geneous. If the shock slows down and expands in a self-similar
way, e.g., after a point explosion, the distribution of accelerated
particles is more complicated but can still be obtained from a
self-similar solution (Malkov & Aharonian 2019). The solution
shows that the particle distribution decays behind the shock as
well. This self-similar solution is relevant to the downstream
particle distribution shown in Figure 1 because coronal mass
ejection shocks in the heliosphere are also curved and
decelerating. However, the gradual flux decrease shown in
Figure 1 and interpreted in the above sense is not critical for the
upstream flattening. Hence, the stationary and planar shock
approximation with a constant flux downstream in studying the
upstream flattening appears justified.
The shock under consideration has been found to be oblique

with ϑBn≈ 62° (Perri et al. 2023). So, we also need to estimate
the effect of transport anisotropy. It is characterized by two
components of the diffusion tensor, κ∥ and κ⊥, along and
across the magnetic field, respectively. Their combination
governs the diffusion along the shock normal, k =
k J k J+ ^cos sin2

Bn
2

Bn. Since the value ( )J »tan 3.52
Bn is

relatively large, κ⊥ may significantly contribute to the particle
diffusion immediately ahead of the shock, where it is enhanced,
and κ∥ is suppressed by a self-driven turbulence. However,
κ⊥= κ∥ where the magnetic field fluctuations remain limited
to ´B B0, as we discussed at the end of Section 2.1.
Therefore, κ⊥∼ κ∥ only in a narrow region ahead of the shock.
Farther upstream, where the spectrum flattens, the cross-field
diffusion decreases, as the wave energy Ew does, while

k k~^ Ew
2 (the dimensionless wave energy Ew, normalized

to the background magnetic field energy, is introduced below).
A rough estimate of Ew in the upstream area adjacent to the
shock can be made by assuming that the wave pondermotive
pressure exerted on particles is equilibrated by their partial
pressure (see Equation (7) below). It shows that Ew∼

5
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  ( )m F n VA0
2. Here n0= ρ/m is the plasma density. By

scaling Ew down from its maximum value at  ~m 109

cm s−1, assuming n0∼ 1 cm−3, VA∼ 107 cm s−1, we can place

the following upper limit:  ( ) -E F z10 ,w
5 . By noting that

 ( )= » » ´F z, 0 const 5 105 (Figure 1), while sharply

decreasing at z< 0, we conclude that the quasi-linear treatment

of the wave interactions with plasma we invoke below in the

flat region is tenable.
In the flat-spectrum region, the ϑBn appears to decrease

compared to the near upstream, though with considerable

variations. These trends can be gleaned from Figure 1 in Perri

et al. (2023). Therefore, κ⊥ might significantly contribute to the

particle diffusion upstream only in a relatively narrow

transition zone between the shock and the flat-spectrum area,

where Ew attains its maximum at Ew∼ 5. In this transition

zone, low-energy particles exhibit a steeper flux decay, which

is necessary to converge to the flat particle flux farther

upstream. In understanding the nature of this spatial decay, one

needs to consider the angular particle dynamics in momentum

space underlying the diffusive approximation. As we see from

Figure 1 (bottom right), the ∣ ∣B profile makes traps and

magnetic barriers for the particles immediately ahead of the

shock. It is reasonable to assume that the trap adjacent to the

shock is filled with the downstream ò
−1 particles, leaking in the

upstream direction and forming the flat spectrum. We can

conjecture that these magnetic structures regulate the particle

leakage, making their flux almost energy-independent, at least

in this particular case of the 2005 May shock.
Consider such a magnetic trap near the shock front. Its loss-

cone angle is defined by the trap’s mirror ratio, B Bmin max, so

that only particles that have pitch angles at the bottom of the

trap sin2a < B Bmin max may leak through the trap’s barrier

where B approaches Bmax. Adiabaticity of particle motion is

assumed but increasingly violated for higher energies, so these

particles are more likely to leak, thus facilitating the formation

of energy-independent flux upstream. The energy-biased

leakage mechanism warrants a separate study, which is beyond

the scope of this paper. An observationally learned fact is that

the leaking particle flux becomes and remains flat farther

upstream of the trap. The flat flux sustainability is the focal

point of this study.
On a practical note, neglecting κ⊥ allows us to solve

Equation (9) below in explicit form. With κ⊥ included, it can

be solved implicitly via an inverse function ( )z F p, , which

would only obscure the interpretation of the result but give us

no further insight into the physics of the spectral flattening. As

we will see, the parallel diffusion alone supports a rapid

transition of the power-law spectrum at the shock, which is

close to ò
−1, into the flat spectrum upstream. Therefore,

neglecting the cross-field diffusion in a narrow layer adjacent to

the shock, where Ew approaches unity and possibly even

exceeds it, appears commensurate with this level of

consideration.
For the field-aligned diffusion, we follow Bell’s approach to

its quasi-linear suppression by Alfvén waves generated by

accelerated particles upstream (Bell 1978), except the wave–

particle interaction is nonresonant in our case. We define the

dimensionless wave spectral density, Ew, already used above,

by relating it to the rms magnetic field fluctuations, dá ñB2 , and

the background field, B0, as follows:

( ) ( )ò ò
dá ñ

= =
B

B
E k d k E p d pln ln .

2

0
2 w w

The last relation conveniently implies an inverse dependence

p∝ k−1
(Skilling 1975), although we do not impose the

resonance relation ( )r ~p k 1g . Note that we use the same

notation Ew for the p- and k-dependent spectral densities, which

should not lead to confusion. We also use the physical

arguments of Blandford (1980) and Drury (1983) about the

relation between the wave generation and the work done by the

pressure of accelerated particles on the fluid. For that purpose,

we introduce a dimensionless partial pressure of energetic

particles and normalize it, as Ew, to d pln :

( ) ( )
p
r

=P p
V
vp f

8

3
, 5

A
2

4

where f is the ordinary particle distribution function normalized

to 4πp2dp. The wave-generation rate upstream of the shock can

be obtained from the rate at which the pressure of energetic

particles does work on the waves. The waves are propagating

oppositely to the inflowing plasma, so their speed in the shock

frame is u− Vw, with Vw≈ VA. Balancing the wave ponder-

motive pressure with that of the energetic particles (e.g.,

Drury 1983), we have (see also the Appendix)

( ) ( )-
¶
¶

=
¶
¶

M
E

z

P

z
1 , 6A

w

where MA= u/VA is the shock Alfvén Mach number. This

equation extends the pressure balance principle to a detailed

balance that, generally speaking, requires the wave–particle

resonance that we do not assume. However, the balance is

crucial for the coordinate dependence of P and Ew, not on

momentum and wavenumber. For a successful fit of the particle

spectrum in the entire upstream region, it is also essential that

Ew and P decouple far from the shock front, where they

approach the respective background levels. Thus, after

integration, we ought to write


( )

( ) ( )
p

r
y=

-
+E

m

M V
F

16 2

3 1
. 7w

3 2

A A
2

Here ( )y p is an arbitrary function of particle momentum

mentioned earlier and  ( ) ( )=F z d vp f p dp, 2 is the particle

flux normalized to Fdò, as introduced in Equation (1). We will

use this quantity instead of f and P for fitting the solution to the

data. It might appear plausible to obtain ψ from the far-

upstream values of Ew and F, i.e., at z=−∞. However, the

underlying Equation (6) is valid in a strongly nonlinear particle

transport regime in which both particle and wave intensities are

high; other terms become essential when the particle pressure

gradient decreases to the background level. Additional wave

processes other than their convection and generation by the

particle pressure in Equation (6) need to be included, such as

linear damping, wave steepening, and nonlinear Landau

damping. Thus, ( )y p remains undetermined at this level of

the model. However, as we will see, ψ does not affect the fit in

most of the shock precursor and is essential only at the

6
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transition to the spatially independent background particle flux

far upstream.

4. Acceleration Model

We now return to Equation (4) and rewrite it as follows:
κ∥= κ0/Ew, with κ0∝ ò

3/2. To make contact with traditional
treatments, at first we use the distribution function with the
particle density normalized to fp2dp and will return to the
particle flux ( )F for a comparison with the data later. The
stationary convection–diffusion equation for f at the shock front
has the following form:

( ) ( ) ( ) ( )k J d d
¶
¶
=
¶
¶

¶
¶
- D

¶
¶

+u
f

z z

f

z

p
u

f

p
z Q p zcos

3
. 82

Bn

The last two terms on the right-hand side are associated with

the particle acceleration on the velocity jump Δu≡ u− ud,

preceded by their injection at the rate Q from a thermal plasma

core (Malkov & Drury 2001). Here u is the upstream flow

speed, as before, and ud is the downstream flow speed, both

measured in the shock frame.
Let us integrate Equation (8) within the upstream region

(z< 0, two last terms on the right-hand side dropped):

( ) ( ) ( )J k
¶
¶
- = F-E

f

z
uf z pcos . 9w

1 2
Bn 0

We have introduced κ0 here by κ0= κ∥Ew, which we will fully

specify in Section 5. The integration constant ( )F p is thus

minus the total z-independent particle flux (diffusive plus

convective) on the left-hand side. If Φ is known, we can

determine the particle distribution at the shock, ( )f p0 , which is

observed to decay approximately as p−4, as in strong shocks.

The particle distribution ( )f p z, flattens upstream to p−2.

Based on the observations shown in Figure 1, the flattening

occurs over a short distance where the particle intensity

declines progressively more steeply in the upstream direction

as the particle energy decreases. In the traditional DSA

framework, ( )F p can be specified using the far-upstream

convective flux Φ=Φ∞= ( ) ( )- -¥ º - ¥uf p uf p, , pro-

vided that ∂f/∂z→ 0, Ew≠ 0 at z→−∞. However, given

the data shown in Figure 1, there are problems with this

identification of ( )F p , which we discuss below.
A decaying particle flux upstream in Figure 1 abruptly

changes to a constant ( )¥f p in all energy channels at
( )= - ¥z z p . The value of z∞ is larger, and the transition is

sharper at higher particle energies. With good accuracy, the
derivative ∂f/∂z can be regarded as discontinuous at z=−z∞.
Hence, in the context of the convection–diffusion problem
formulated in ( )Î -¥ ¥z , , the break at z=−z∞ in the
particle spectrum (a jump of ∂f/∂z) requires an extra term

( ) ( )d- + ¥S p z z on the right-hand side of Equation (8). It
effectively represents a particle sink, similar to the source of
injected particles ( )d+Q z but with an opposite sign. Physically,
it means that upon diffusing to the point z=−z∞ against the
plasma flow, particles injected and accelerated at the shock
front earlier promptly escape toward −∞.

It is worthwhile to compare the boundary z∞ with a so-called
free-escape boundary (FEB), broadly used in Monte Carlo
simulations of the DSA (e.g., Ellison et al. 1990). There is a
significant physical difference between the z∞ and FEB.
Namely, z∞ depends strongly on p, while the FEB in

simulations typically does not. Another practical observation
is that ( )¥z p is primarily defined by the background spectrum

( )¥f p , at least for the flat particle fluxes shown.
Since the particle distribution is constant outside of the

interval ( )- ¥z , 0 , it is plausible to formulate the boundary
value problem for Equation (8) in the finite interval zä (−z∞,
0) upstream instead of z ä (−∞, 0), which would be typical for
the traditional DSA. We therefore must set ( )= ¥f f p as the
left boundary condition at z=−z∞. Both f∞ and z∞ can be
extracted from the data in all energy channels to calibrate the
acceleration model in the next section.
As a second boundary condition for Equation (8), it is

natural to set ( )=f f p0 at z= 0. We will argue that it is also
worth extracting from the data rather than calculating it using
shock parameters. The difference with the left boundary
condition is that f0 can, ideally, be obtained “from the first
principles” by integrating Equation (8) across z= 0, which
yields the following differential equation for f0:

( ) ( ) ( )F = - - D
¶
¶

+ º Fp uf
p

u
f

p
Q p

3
, 100

0
0

where ( )F p is the same integration constant in Equation (9). It

is instructive to return for a moment to the traditional DSA, in

which one sets ( )F = F = -¥ ¥uf p0 . By substituting this

relation into Equation (10), one then obtains the solution ( )f p0

at and behind the shock. However, this approach to obtaining

the integration constant ( )F p in Equation (9) has the following

problems.
First, the accuracy of Equations (8) and (9) is questionable

near the shock, since the quasi-linear expression for the
diffusive flux is not a good approximation where the wave
intensity is high, and the particle intensity changes sharply.
Second, the shock speed parameters u and ud≡ u−Δu
entering Equation (10) significantly fluctuate near the shock
transition. For example, Perri et al. (2023) indicate a strong
deviation for the shock compression, r≡ u/ud= 3.0± 0.6. So,
this parameter does not define the spectrum accurately. Third,
we have neglected the cross-field transport, which will likely be
significant near the discontinuity. Lastly, available analytic
calculations of the injection rate ( )Q p , which are needed for
computing ( )f p0 in Equation (10), still require a seed particle
source at p∼mu (Malkov & Drury 2001). The simulations are
generally helpful, but they still have significant disagreements.
They become particularly evident when comparing particle
injection into the DSA with different mass-to-charge ratios
(A/Q; see Hanusch et al. 2019 and references therein). Hanusch
et al. (2019) scrutinizes numerical and analytical injection
models using their predictions of A/Q injection patterns of
different ions. Indeed, trajectories of nonrelativistic particles in
electromagnetic fields are differentiated by this ratio, as
opposed to the ultrarelativistic particles for which the rigidity
defines the trajectory.
In light of these problems, we extract ( )f p0 for a boundary

condition in Equation (9) at z= 0 directly from the data. It
provides a more stable time-averaged boundary value than we
could possibly calculate using Equation (10), given the
uncertainties listed above. Within this formulation, we will at
first regard the total particle flux across the shock precursor, Φ,
as a free parameter that will be determined from the boundary
condition at z=−z∞, at which it transitions into the particle
flux escaping the shock to z=−∞.
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5. Solving and Calibrating the Acceleration Model

After expressing the wave energy density ( )E z,w in
Equation (9) and the particle distribution f through the particle
flux F using Equation (7) and the relation  ( ) =F d

( )f p vp dp2 , respectively, we evaluate Equation (9) to the
following form:

 


( )
( )

( )
( ) ( )

k
y+

¶
¶

- = Y
-

K z
F

F

z
F , 11

0
3 2

where we have introduced the notation

 
( )

( ) ( ) ( )
r
p

Jº
-

Y = F
-

K
V M

m
z

m

u

3 1

16 2
cos ;

2
. 12

A A
1

2
Bn

Recall that ψ and Ψ emerged from the integration of the wave

production balance in Equation (6) and that of the convective–

diffusive particle transport in Equation (8), respectively. As we

discussed in the previous section, Ψ can be formally expressed

through the particle injection rate Q and the upstream and

downstream flow speeds u and ud, using Equation (10). By

omitting Q for nonthermal particles, for Ψ, we have

 

( ) ( )Y = -

+
¶
¶

- +

s
F

1
. 13

s
s

1

0

Here, we have converted the power-law index q, introduced

earlier for ( )f p0 , to its equivalent for ( )= =F F z, 00 :

( )=
D

- = -s
u

u

q3

2
1

2
1. 14

Although the contribution of the injection term Q is negligible

at high energies, it defines the normalization of F0 and thus Ψ.

However, ( )Y vanishes where F0 follows the DSA spectrum

∝ò
− s, but as s is known only approximately, we keep Ψ in the

analysis. The opposite is also true: if Φ0=Q= 0 in

Equation (10), and thus Ψ= 0, the spectrum F0 obeys the

standard DSA power law with the index s given above. Since

we use a steady-state model, while the shock parameters likely

fluctuate, it is difficult to calculate Ψ a priori. A more plausible

approach is to extract it by fitting the solution of Equation (11)

to the data, although we will constrain Ψ below.
The measured downstream spectrum closely follows the

DSA predictions if one takes the uncertain compression ratio
close to or slightly above the upper bound given by Perri et al.
(2023), r= 3.6. It means that Ψ is small compared to F0 and
even ( )F z in a significant part of the shock precursor, Ψ= F.
Other than that, Ψ is largely unconstrained, as long as we do
not specify the injection efficiency and shock compression. To
minimize the number of parameters it depends upon, we will
represent Ψ by a power-law function of ò with an amplitude and
index extracted from the data rather than precalculated from the
relation in Equation (13).

Turning to the parameter ψ, from Figure 1, we see that near
z=−z∞, F is way below its values almost across the entire
shock precursor. By Equation (6), the same conclusion can be
drawn for Ew. Hence, ( )y p in Equation (7) must also be small
compared to F, except near z=−z∞. Summarizing the above
considerations, we treat Ψ and ψ as free parameters and use F0

and F∞ as more reliable inputs for the model since we
determine them directly from the data. However, we have also
used them to constrain the less certain parameters Ψ and ψ.

After introducing a normalized distance ζ in place of z,
which has the dimensionality of 1/F,


( ) ( )

( )òz
k

=
¢
¢

dz

K z
, 15

z3 2

0 0

Equation (11) rewrites as

( )
y z+
¶
¶

- = Y
F

F
F

1
. 16

The flat spectrum requires the following two conditions: ζ is

ò-independent and ( ) yF . We obtain a solution that also

satisfies the boundary condition  ( ) ( )=F F0, 0 for arbitrary

values of parameters ψ and Ψ:

⎜ ⎟⎡
⎣⎢
⎛
¿

À
⎠

⎤
⎦⎥

( ) ( )( )y
y
y

y= Y - +
Y -
+

- -y z-Y
-

F
F

e1 1 . 17
0

1

The solution at large negative ζ, which we associate with an

area of far-upstream transition to the background population of

energetic particles, depends on Ψ and ψ. Remarkably, in the

near-upstream area of transition from the downstream spectrum

( )F0 to the broad flat-flux area, including the latter, the

solution is insensitive to these parameters. It is, therefore,

worthwhile to begin the solution analysis with small negative ζ

since it helps understand how this transition from the

downstream ( )F0 to the flat upstream distribution occurs.

5.1. Near- and Mid-upstream Zones

By developing the general solution F in Equation (17) in a
Taylor series in ∣( ) ∣ y z- Y 1 and assuming, as argued
earlier, that ψ= F in most of the shock precursor, we find that
within these approximations, F does not depend on Ψ or ψ:

( )
z-

F
F

F1
. 18

0

0

Using the data, we fit ( )eF0 by F0∝ ò
− σ, where σ≈ 1.03

(Table 1). In order to compare this result with the data shown in

Figure 1, we need to convert the normalized distance to the

shock, ζ, to the spacecraft time used in that figure. We first

relate the time to the physical distance as follows:

( )= -z U t tsc sh , where Usc denotes the spacecraft speed

relative to its shock-crossing point at the time instance tsh.

This conversion may contain some geometrical uncertainty

associated with a possibly oblique motion of the shock front

relative to the spacecraft. However, it combines with an

uncertainty in κ0 parameterization in Equation (15). Using

Equation (4), it is convenient to represent κ0, introduced earlier

as κ0= κ∥Ew, as follows:

⎜ ⎟⎛
¿

À
⎠



k
w w

» ~
v
w w

v

l
, where ,0

1

3 2
1
2

ci

1

ci

and where ò1= 91.5 keV is the particle energy in the lowest

energy channel that we use in our analysis, v1≈ 3× 108 cm s−1

is the respective particle velocity, and l is the dominant scale of

nonresonant magnetic perturbations responsible for particle

scattering. Here, w is a free parameter of the model, which is of

the order of the ratio of the Larmor radius of the particles with

velocity v1 to the turbulence scale l. The advantage of
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Table 1

Input Functions and Parameters for Equation (17)

Function of ò(keV) Parameters

F0 Ψ ψ ζ C0 CΨ Cψ Cζ σ ³ ρ μ ò1 tsh

Fit  ( )sC0 1  ( )gYC 1  ( )y
rC 1  ( ) ( )-z

mC t t1 sh 5.5 × 105 685 185 2.61 × 10−3 1.03 0.103 0.14 0.04 91.5 keV 135.091 (DoY)

Equation/BC BC Equation (13) Equation (7) Equation (15)

Note. The downstream normalization constant, C0, and the power-law index σ are extracted directly from the spectrum downstream. Other parameters are obtained by fitting the data, including the breaking points at

z = −z∞, to Equation (17), shown in Figure 3 (see text).
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separating w from the ò-scaling of κ0 is in that the uncertainty

in l now combines with the abovementioned uncertainty of the

shock geometry in the definition of the normalized distance ζ in

Equation (15). Both of these uncertainties will be absorbed in a

single fitting parameter Cζ given in Table 1. We will discuss

other aspects of the mapping z→ ζ when presenting the full fit

of the solution in Equation (17) to the data shown in Figure 1 in

the next subsection.
We plot the formula in Equation (18) against time and

compare the result with the data in Figure 2. For clarity, we
have selected three representative energies from the six shown
in Figure 1. Apart from a good agreement with the data, the
simplified expression in Equation (18) does not include the
uncertain model parameters Ψ and ψ. This expression thus
embodies the universality of the underlying flattening mech-
anism. The model parameters are lumped here in a single
variable, ζ, defined in Equation (15). They include a
combination of the wave turbulence level; its characteristic
scale, l, most vital for the particle scattering; the local field
angle ( )J znB ; the plasma density; the magnetic field strength;
and the spacecraft trajectory angle relative to the shock surface,
mentioned above. Some of these quantities are uncertain and
even fluctuate, but we combine them in a single constant Cζ in
Table 1 to describe this multivariable combination. For better
agreement with the data far upstream, considered below, we
have also included a small correction to the κ0∝ ò

3/2 scaling
by representing it as ò

3/2−μ, with μ= 0.04.
When comparing the model prediction with the data shown

in Figure 1, we note that they provide only a single-pass scan of
the particle intensity with no direct information about their
possible time variability. The DSA acceleration time, however,
is typically the shock-crossing time of its precursor filled with

the accelerated particles, t k~ Uacc sh
2 . Although this estimate

is strictly applicable to a linear acceleration regime with a
prescribed, flux-independent ( )k , it can be shown to also
apply to strongly nonlinear particle acceleration in shocks
modified by their pressure (Malkov & Drury 2001). The case
we consider belongs to neither of the above. However, the
acceleration time is much longer than the shock parameter
variation timescale, which can be inferred from the short-scale
variation of the plasma and particle data across the precursor.
As our model is stationary, the deviations of the real data from
the theoretical curve are expected. The agreement may be
partly improved by including the z dependence of ϑnB in the

definition of ζ. However, the nonmonotonic parts of the particle
intensity cannot be corrected within the steady-state model. We
will return to the observed deviation in Section 7.
Since Ψ, ψ= F0, we can further simplify the expression in

Equation (18) for larger −ζ without violating its applicability
condition, ∣( ) ∣ y z- Y 1. In this approximation, the
upstream spectrum ( )zF , ζ< 0 ceases to depend on ò explicitly.
The transition to this regime occurs over a narrow interval
adjacent to the shock, −1/F0 ζ< 0, where the range of 1/F0

is roughly ( )´ < < ´- -F2 10 1 3 106
0

5. To the left of
this interval, i.e., for ζ<−1/F0, the spectrum depends only on
ζ and can be approximated as

( )z» -F 1 19

up to the far upstream, where it gradually decreases to F∼ ψ or

F∼Ψ, whichever occurs closer to the shock. In this universal

1/ζ regime, the energy dependence may only be through the

normalized distance ζ, defined in Equation (15) and discussed

at some length above. As we have shown, for a nonresonant

particle scattering, the particle diffusivity must scale close to

 ( )k µ0
3 2 (Equation (4)). Therefore, ζ does not depend on

ò, and the asymptotic solution F≈−1/ζ is, indeed, per-

fectly flat.
Most of the spectrum is thus describable by a simple formula

in Equation (18), simplifying even further beyond a narrow
layer upstream of the shock surface. A salient feature of this
solution is that the uncertain model parameters ( )y and ( )Y
do not enter it. All essential aspects of this solution are
encapsulated in the single variable ζ. Yet it agrees with the
data, as shown in Figure 2. However, some deviations are
present. In Section 7, we will consider three probable causes:
time variability of the shock parameters and particle accelera-
tion, magnetic particle traps upstream, and the coordinate
dependence of the shock angle.

5.2. Far-upstream Zone

To extend the fit shown in Figure 2 to the outermost part of
the upstream plasma, we need to specify the parameters ψ and
Ψ of the full solution in Equation (17). We argue below that
these parameters are indeterminate within the given data set
and should be treated as free model parameters. Nevertheless,
they can be constrained within our model beyond the
conditions Ψ, ψ= F0, mentioned earlier.
First of all, they emerged as integration constants for a steady-

state solution of the acceleration problem. If the steady state were
absolute, we would be able to calculate the parameter Ψ using
Equation (13): ( ) ( ) ( )sY = - - +s F s 1 .0 On the other hand,
taking the (steady-state) DSA prediction at face value, we should
expect s= σ, meaning Ψ→ 0 for sufficiently large ò where the
injection from the thermal plasma core given by ( )Q p in
Equation (8) fades out, irrespective of the seed particles for
injection (Malkov & Drury 2001). Clearly, the Ψ= 0 condition
constitutes an exact balance between the convective and diffusive
particle fluxes in the shock precursor (see Equation (16)) resulting
from the steady-state assumption. As we argued earlier, it is
violated in a realistic time-dependent situation.
An indication of the time variability of the data provides an

independently measured shock compression, r, yielding a
steady-state DSA index s= (r+ 2)/2(r− 1) that does not
match the index σ, directly obtained from the downstream
spectrum. The shock compression ratio estimated in

Figure 2. Approximate solution in Equation (18) shown in three energy
channels indicated in the plot.
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Perri et al. (2023) in the range 2.4< r< 3.6 maps to the range
of s= 1.08−1.57, whereas the measured downstream spectrum
is outside of that range, σ= 1.03. As we mentioned, though,
the shock may be modified by accelerated particles, which is
visible in some observations, e.g., Terasawa (2011). Such a
modification would increase the total shock compression
between the far-upstream and downstream flow but decrease
the shock compression at the flow discontinuity (Malkov &
Drury 2001), often termed “subshock.” Nevertheless, the flow
modification would also violate the above relation between Ψ

and F0 because of a particle acceleration term, ∝du/dz, in the
shock precursor.

Finally, the above relation between Ψ and F0 is obtained by
considering the flux balance at the shock transition. As we have
seen, in the upstream region adjacent to the shock, the solution
is not sensitive to Ψ, and a directly measured F0 is sufficient to
consistently describe the spectrum in the near- and mid-
upstream areas. It then seems reasonable not to bind the
constant Ψ to F0 by the above relation, inferred from the
solution near the shock, especially because Ψ significantly
affects the solution on the opposite end of the flat spectrum,
which is far upstream.

Similar arguments apply to ψ, introduced in Equation (7).
The flux F varies by several orders of magnitude between the
shock and far-upstream region, and only in the latter does ψ
affect the result, while being negligible otherwise. Even the
sign of ψ can be positive or negative depending on the relation
between the background particle and wave energy density far
upstream, just like in the case of Ψ. Some simple physical
arguments are in order upon their signs.

Measured in the shock frame, the positive total particle flux
Ψ in Equation (16) means that the shock-accelerated particles

are transported away from it in the upstream direction, and their
flux is predominantly diffusive. It also means that the
accelerated particles are copiously injected at the shock instead
of being accelerated out of the preexisting background
population far upstream. The ψ> 0 condition, in turn, indicates
that the background turbulence energy density far upstream
dominates that of the energetic particles. The reverse arguments
also apply in both instances. It seems that the only firm
constraint that we can impose on these quantities is, indeed, Ψ,
ψ= F0.
That said, the sign of χ≡Ψ− ψ is crucial to the asymptotic

spectra far upstream. From Equation (17), we deduce that
F→−ψ for χ> 0 and F→−Ψ for χ< 0, when ∣ ∣z c  -¥.
We can thus formally satisfy the boundary condition

( ) ¥F F by choosing either the integration constant
ψ=−F∞ or Ψ=−F∞, depending on whether χ= Ψ− ψ is
positive or negative. These choices satisfy the boundary
condition at z=−∞, but approaching F∞ is then gradual.
We see from Figure 1, however, that ( )F z abruptly turns to an
energy-dependent constant ( )¥F at ( )= - ¥z z . The spec-
trum ceases to be flat beyond this point. This abrupt transition
requires the boundary condition ( )ô - =¥ ¥F z z F , with a
break in the z-derivative at z=−z∞, as mentioned earlier. So,
we have two input parameters, F∞, z∞, instead of one, F∞. By
extracting them for each particle energy from the data, we
determine the two unknown parameters, Ψ and ψ, entering the
full solution in Equation (17).
To summarize our spectrum fitting procedures, the normal-

ized coordinate ζ contains the combination  ( )k3 2
0 that we

argued to be ò-independent. This is an accurate but not exact
statement. We therefore introduce a weak power-law depend-
ence of this quantity, ∝ò

0.04, for a better agreement of the

Figure 3. Fits in three energy channels produced using Equation (17) with parameters listed in Table 1.
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breaking points, ( )¥z , in all energy channels. Likewise, we
specify the functions ( )Y and ( )y as power-law functions.
These quantities are defined by constant power-law indices (μ,
³, and ρ in Table 1). As we fit a continuum of profiles ( )F z,
using these three indices, the fine-tuning concerns do not apply.
The fits are shown in Figure 3, and the required parameters are
summarized in Table 1.

6. Conclusions

The following two modifications to the DSA theory suffice
to explain spectral flattening observed ahead of several
interplanetary shocks.

1. Inclusion of a dependence of particle diffusivity κ on the
particle flux F (nonlinear particle transport) that, in turn,
is directly related to the scattering wave intensity.

2. Switching from the traditional DSA resonant wave–
particle interaction for short-scale magnetic perturbations
that are also self-consistently generated by, but not
resonant with, accelerated particles.

In the resulting DSA solution, the nonresonant, nonlinear
particle diffusivity, κ, increases with energy as ∝ò

3/2,
simultaneously decreasing with the wave energy as

µ- - -E Fw
1 3 2 1. As a result, κ does not explicitly depends

on the particle energy almost everywhere in the shock
precursor. This independence results in a diffusive flux
∝F−1

∂F/∂z that being balanced with the convective flux,
uF, results in an energy-independent ( )F z upstream.

7. Discussion

The presented acceleration model reproduces a surprisingly
flat particle spectrum observed upstream of an interplanetary
shock, including its transitions to a regular diffusively
accelerated particle spectrum downstream and the inflowing
background spectrum far upstream. Meanwhile, some spatial
deviations of the flat part of the spectrum from the data remain.
In part, they can be explained by variations in the shock angle
entering the normalized coordinate ζ in Equation (15).
However, their nonmonotonic parts cannot be accounted for
within our steady-state model since the deviations are almost
certainly time-dependent. This can be seen from the sign
changes in the spatial gradient of the flux data upstream. If ∂F/
∂z< 0, both diffusive and convective fluxes are directed to the
shock and cannot cancel out, thus precluding a steady-state
solution in the shock frame. At the same time, nonmonotonic
deviations from the predicted profile may constitute bunches of
particles trapped in traveling magnetic disturbances. For
example, they may result from magnetic perturbations driven
by accelerated particles, subsequently steepening into shocklets
or shock trains upstream (see, e.g., Kennel et al. 1988; Malkov
& Diamond 2009 and references therein).

More broadly, magnetically trapped particles may originate
from intrinsic shock instabilities, such as shock reformation and
shock corrugations (Burgess et al. 2012; Caprioli & Spitkovsky
2014), that result in an impulsive release of accelerated
particles upstream. They then propagate in bunches away from
the shock. They may also be trapped in magnetic bubbles, self-
created or preexisting in the solar wind. Since the accelerated
particles near the shock upstream typically have an anisotropic
distribution, they may drive mirror and firehose instabilities,
resulting in magnetic bubbles that trap energetic particles.

Consistent descriptions of their dynamics require a significant
model extension, including a time-dependent shock description
beyond one dimension. At this point, some additional
DSA-unrelated acceleration of magnetically trapped particles
upstream, e.g., second-order Fermi or magnetic pumping
acceleration, cannot be ruled out.
The role of magnetic bubbles upstream and their interaction

with energetic particles have already been discussed in an
analysis of a 1978 interplanetary shock in Kennel et al. (1986).
These authors presented a detailed data comparison with the
Lee theory (Lee 1983), reaching a much closer agreement
between the two than we found in the 2005 shock considered in
the present paper. In particular, no spectrum flattening was
observed in the 1978 shock, which is in complete agreement
with Lee’s predictions. The difference between the two shocks
is that the 1978 shock has a significantly steeper downstream
spectrum in the range q= 4.20−4.25, while the 2005 shock has
q≈ 4.06, pointing to a considerably higher shock compression.
However, the compression ratio estimate of Perri et al. (2023),
r≈ 3, formally results in q≈ 4.5. The reason for this
disagreement is, at least in part, that the above estimate of
the shock compression has likely been obtained by analyzing
the flow density and speed immediately upstream and down-
stream of the discontinuity. By inspecting these flow
characteristics further upstream in Figure 1 of the above paper,
one may see that the shock is significantly modified, most
likely by accelerated particles penetrating upstream. The total
compression is close to 4, consistent with the particle spectral
index used in our paper.
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Appendix

Equation (6) can be derived as follows. Following Drury
(1983), we can write the wave energy flux as

( )= - +F u V E uPw A w w. In the absence of wave dissipation,
this flux divergence, ∂Fw/∂z, equates to the rate at which the
wave pressure Pw does work against the gradient of energetic
particles, ∂P/∂z, which is u∂Pw/∂z+ VA∂P/∂z (see
Equations (4.41) and (4.46) in the above reference). After
dividing both sides of this equality through VA, Equation (6)
follows.
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