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Planck dust polarization power spectra are consistent with strongly supersonic turbulence
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ABSTRACT

The polarization of the Cosmic Microwave Background (CMB) is rich in information but obscured

by foreground emission from the Milky Way’s interstellar medium (ISM). To uncover relationships

between the underlying turbulent ISM and the foreground power spectra, we simulated a suite of

driven, magnetized, turbulent models of the ISM, varying the fluid properties via the sonic Mach

number, MS and magnetic (Alfvén) Mach number,MA. We measure the power spectra of density (ρ),

velocity (v), magnetic field (H), total projected intensity (T ), parity-even polarization (E), and parity-

odd polarization (B). We find that the slopes of all six quantities increase with MS Most increase

with MA, while the magnetic field spectrum steepens with MA. By comparing spectral slopes of E

and B to those measured by Planck, we infer typical values of MS and MA for the ISM. As the

fluid velocity increases, MS > 4, the ratio of BB power to EE power increases to approach a constant

value near the Planck-observed value of ∼ 0.5, regardless of the magnetic field strength. We also

examine correlation-coefficients between projected quantities, and find that rTE ≈ 0.3, in agreement

with Planck, for appropriate combinations of MS and MA. Finally, we consider parity-violating

correlations rTB and rEB.

1. INTRODUCTION

Primordial gravitational waves, generated during in-

flation and imprinted on the surface of last scattering,

are one of the most exciting sources of polarization in the

Cosmic Microwave Background (CMB). Their discov-

ery would give revolutionary evidence for inflation and

its mechanism (Kamionkowski & Kovetz 2016). How-

ever, the brightest diffuse sources of polarization in the

microwave sky are thermal dust and synchrotron emis-

sion. These are also exciting signals, because they reveal

the turbulent magnetic field in the interstellar medium

(ISM) of our own Galaxy (Planck Collaboration et al.

2015; Kritsuk et al. 2018; Kim et al. 2019). In order to

see the potential inflation signal, we must first charac-

terize and mitigate the Galactic signal which is at least

ten times larger (Planck Collaboration et al. 2020).

Linearly polarized light can be described by the Stokes

Q,U parameters, but these quantities are coordinate de-

pendent. The coordinate-independent E,B parameters,

on the other hand, transform the Q,U signal into parity-

even E modes and parity-odd B modes. The transfor-

mation is nonlocal, and size of the kernel depends on the

band limit (Rotti & Huffenberger 2019). At the surface

of last scattering, cosmological scalar density perturba-

tions produce E, while gravitational waves (cosmological

tensor perturbations) are the only producer of primor-

dial B-mode polarization, peaking at degree scales and

larger. As the CMB photons travels from the surface of

last scattering along the line of sight, gravitational lens-

ing by large scale structure also generates B-modes from

the scalar E modes. All of these encode rich information

about the physics and cosmology of the Universe.

In the ISM, E and B (because they are nonlocal) de-

pend on the geometry of structures and their spatial

relationship to the magnetic field (which sets the polar-

ization directions). Gravitational, pressure, and mag-

netic forces can produce ISM structures with one long

and two short dimensions, so-called filaments, and such

filamentary structures are apparent in millimeter and HI

data (Clark et al. 2014; Planck Collaboration et al. 2016;

Clark & Hensley 2019) as well as ISM simulations (de

Avillez & Breitschwerdt 2005; Hennebelle 2013). A fila-

ment will produce predominantly E modes when paired

with a magnetic field parallel or perpendicular to the

long axis, and a filament will produce predominantly

B modes when paired with an oblique magnetic field

(Huffenberger et al. 2020). We may thus expect that a

sufficiently strong magnetic field (that aligns filaments

to its direction) will produce less B signal than E.

The Planck satellite measured E-mode and B-mode

power spectra at 353 GHz, where the signal is domi-

nated by dust emission in the ISM, and found approxi-

mate powerlaws with slopes of αEE = −2.42± 0.02 and

αBB = −2.54± 0.02 for a 71% sky area (Planck Collab-

oration et al. 2020). For the same sky area, the ratio

of amplitudes of B power to E power was 0.53 ± 0.01.

They also found that the scalar temperature T -mode
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and E-mode are correlated with correlation coefficient

rTE = 0.36, with some scatter but no clear trend with

sky region or with angular scale. Curiously, the T -modes

and B-modes are correlated with rTB = 0.05. This was

unexpected as the correlation of a parity-even T -mode

and a parity-odd B-mode should be zero on average in

systems with no helicity or parity violation, and may

indicate something about the structure of the magnetic

field in the solar neighborhood (Planck Collaboration

et al. 2020). Huffenberger et al. (2020) pointed out that

in a filamentary picture, a positive TB dust correlation

would imply a positive EB correlation. Such a signa-

ture is too small to detect with Planck data alone, but

is amenable to searches assisted with ISM tracers like

HI (Cukierman et al. 2023).

In addition to searches for inflation, the polariza-

tion of the CMB can be used to hunt for signatures

of other beyond-the-standard-model physics. Cosmic

birefringence is the rotation of the polarization of CMB

photons by hypothetical pseudoscalar fields. Possibili-

ties include axion-like particles that may be responsible

for dark matter (Komatsu 2022). Minami & Komatsu

(2020a) employed a strategy to measure the CMB’s

EB correlation, using the foreground EB correlation

to calibrate detector polarization angles. Based on the

CMB EB correlation, they report a rotation angle of

β = (0.35 ± 0.14)◦ due to cosmic birefringence, when

they assume that the foreground E and B polarization

produced by the ISM are uncorrelated. If instead the

sign of the foreground EB is assumed positive (as im-

plied in the filament picture above or for any other rea-

son), their result indeed gets stronger. (Minami & Ko-

matsu 2020b; Diego-Palazuelos et al. 2022, 2023, provide

refinements and robustness tests to this approach.)

Simulations of the ISM (Kritsuk et al. 2018; Kim et al.

2019) and theoretical considerations (Caldwell et al.

2017; Kandel et al. 2017) have shown that for certain

parameters, magnetohydrodynamic (MHD) turbulence

can reproduce the expected E- and B-mode power spec-

tra. That turbulence produces power-law polarization

spectra is unsurprising, as E and B are produced by a

combination of quantities that all have power law spec-

tra due to the turbulent cascade: density (Beresnyak

et al. 2005; Collins et al. 2012), velocity (Kolmogorov

1941; Goldreich & Sridhar 1995) and magnetic field

(Grete et al. 2023).

In this work, we characterize how the polarization

spectra depend on the MHD fluid parameters. We per-

form idealized simulations of MHD turbulence in order

to characterize the E and B spectra and their correla-

tions. We examine the power spectra of 3d fluid quan-

tities, density ρ, velocity v, and magnetic field H; as

well as 2d projected observable quantities, T , E, and B.

From these results, we infer averaged properties of the

ISM from the Planck measurements.

We organize our paper as follows. We describe the

methods for simulations and analysis in Section 2. We

present results, beginning with a short overview, in Sec-

tion 3. There we show power spectra and slopes for both

fluid (Section 3.1) and projected quantities (Section 3.2).

We present ratios of T , E, and B and thier correlation

coefficients (Section 3.3). Using the measured quantities

from Planck, we posit typical values for the ISM’s sonic

and Alfvén Mach numbers (Section 3.5). We briefly con-

trast these findings with projections parallel to the mean

magnetic field (Section 3.6). We discuss the relation be-

tween these findings and our filamentary model (Section

4). We conclude in Section 5.

2. METHODS

We perform a suite of idealized simulations of the in-

tersteller medium. From the 3d simulation boxes, we

compute temperature and polarization images, and then

compute spectra of 3d and 2d physical quantities. Ideal

MHD has three independant quantities: density, ρ, ve-

locity, v, and magnetic field, H. With the ansatz that

turbulence dictates the primary behavior in E- and B-

modes, we examine the variation in power spectra in all

six quantities of interest: the three fluid quantities, ρ,

v, and H; and the three projected quantities, T , E, and

B.

2.1. Simulations

The simulations utilize the open source code Enzo

(Wang & Abel 2009; Bryan et al. 2014) to solve the Eule-

rian equations of ideal magnetohydrodynamics (MHD).

We used the Dedner et al. (2002) divergence cleaning

scheme with a piecewise linear reconstruction and HLLD

Riemann solver (Mignone 2007). With an adiabatic in-

dex γ−1 = 10−3, we achieve a reasonable approximation

to an isothermal equation of state.

Ideal isothermal MHD is scale free. The dynamics

depend on only two parameters, and we choose the sonic

Mach number MS , and the Alfvén Mach number, MA:

MS = vrms/cs (1)

MA = vrms/vA (2)

vA = H/
√︁
4πρ (3)

where ρ is the mean density, vA is the Alfvén velocity,

cs is the speed of sound, and H is the mean magnetic

field strength. Stronger field means bigger vA and thus

smaller MA. In these simulations we drive turbulence

in periodic boxes, altering the sonic and Alfvén Mach
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Figure 1. Images of ln(T ) (top), E (middle), and B (bot-
tom). The mean magnetic field points up. The colorbar is a
symmetric logarithm. In each 3× 3 panel, simulations with
weaker magnetic fields (higher MA) are to the right and sim-
ulations with faster fluid flow (higher Ms) are to the bottom.
Nine of the 21 total simulations are shown, with the targeted
(Ms,MA) indicated in the box.
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Figure 2. Legend of sonic and Alfén Mach numbers, MS
and MA, for each simulation. As with all future plots, color
denotes MS , with blue-to-yellow indicating indicating in-
creasing sonic Mach numbers (and faster rms fluid velocity).
Marker size denotes MA (increasing size indicates increasing
MA, and weaker influence of the magnetic field),

numbers, and explore the resulting power spectra and

correlations.

The simulation boxes are periodic, use a 5123-zone

resolution, and start with uniform density. To generate

turbulence, we drive the fluid with a stochastic forcing

that adds a random acceleration pattern to the veloc-

ity field in a way that keeps the energy injection rate

constant (Mac Low & Klessen 2004; Federrath et al.

2010). The driving is applied for ten dynamical times,

tdyn = L0/MS , where L0 is the pattern size, half the

box size, and MS is the r.m.s. velocity. The first 5

tdyn are ignored, and used only to establish the fully

developed turbulence. The remaining 5 tdyn are used

for analysis. The force is distributed as a Gaussian

in each component, with power only on large spatial

scales, k/kmin ∈ [1, 2]. The forcing pattern is evolved in

time with an Ornstein-Uhlenbeck (OU) process (Feder-

rath et al. 2010). This means that the driving pattern

retains only 1/e of its correlation after tdyn. The in-

put power is split between compressible and solenoidal

modes such that the ratio of compressive to solenoidal

amplitude is 2/3 (ζ = 1/2 in Equation 6 of Federrath

et al. (2010)). It is anticipated in the inertial range for

compressible turbulence, the natural ratio is 2/3 (Krit-

suk et al. 2007). We have checked that the driving field’s

helicity (
∫︁
dV v · (∇× v)) is zero to machine precision,

so we do not expect the driving to introduce parity vio-

lation.
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In practice, the mean density and sound speed are

both set to unity, and the Mach number is controlled by

setting the energy injection rate, Ė ∝ MS
3/L.

Throughout the work we define MS and MA with

the 3D velocity dispersion, v2rms = ⟨v2x⟩+ ⟨v2y⟩+ ⟨v2z⟩. In
contrast to the 3D Mach numbers, the 1D Mach num-

ber (which enters the Maxwellian velocity distribution

(Rabatin & Collins 2023) and is more accessible from

the ground) is found by assuming isotropy and dividing

vrms by
√
3.

To probe the parameter space, we target nominal sonic

Mach numbers

MS = 0.5, 1, 2, 3, 4, 5, 6

and nominal Alfven Mach numbers

MA = 0.5, 1, 2

across the suite of 21 simulations. The actual MS and

MA realized by the simulations differ slightly from these

nominal values.

Figure 1 shows ln(T ), E, and B (defined precisely in

the following section). Each figure shows three target

sonic Mach numbers, (0.5, 3, 6) and Alfvén Mach num-

bers (0.5, 1, 2). The colorbar is a symmetric logarithm.

Structure changes can clearly be seen as MS and MA

increase. This is due to the fact that the dissipation

scale decreases as the mean kinetic energy increases.

Figure 2 shows a legend of the achieved MS and MA

for each simulation. Because it is challenging to pre-

dict the forcing to achieve particular Mach numbers, the

measured values of MS and MA differ slightly from the

nominal values listed above. This figure also serves as a

legend for the remaining figures in the work, with color

denoting sonic Mach number, with dark blue-to-yellow

corresponding to achieved MS , ranging from subsonic

(MS < 1) to supersonic (MS ∼ 7).

Marker size increases with MA, so larger markers

denote weaker magnetic field strength. In the power-

spectra plots, we will use linestyles to denote MA, with

dotted lines for 0.4 < MA < 0.7, dashed lines for

0.7 <MA < 1.2, and solid lines for 1.2 <MA < 2.2.

2.2. Projection to dust temperature and polarization

The polarization we are focusing on here comes from

elongated dust grains that rotate around the local mag-

netic field, with their long axis perpendicular to the

field direction. We make several simplifying assump-

tions: the dust-to-gas ratio is constant and uniform, the

dust grains perfectly align with the magnetic field, the

cloud is optically thin, the dust temperature is the same

as the gas temperature (which are both constant and

uniform), and there is only one dust species. The boxes

are scale-free and do not correspond to any particular

physical size.

We focus most of our attention on projections per-

pendicular to the mean magnetic field. This is because

observations oblique to the mean magnetic field are more

likely than along the mean magnetic field, as the solid

angle for to vectors to be nearly aligned is much smaller

than it is for them to be nearly perpendicular. Of course,

line-of-sight alignment may exist over some portion of

the sky, and the true picture is a mixture of angles. We

will start with the more observable case, and return to

discuss parallel projections in section 3.6.

From the assumption of optically thin dust, the T -

mode is simply proportional to the column density,

T =

∫︂
ρdz. (4)

To compute E and B, we first compute Stokes parame-

ters Q and U , which are closely related to the observable

quantities. These are

Q =

∫︂
ρ cos 2ψ cos2 γdz (5)

U =

∫︂
ρ sin 2ψ cos2 γdz, (6)

where ψ is the angle the field makes in the plane of the

sky relative to horizontal, and γ is the angle between the

magnetic field and the plane of the sky (Bohren & Huff-

man 1998; Fiege & Pudritz 2000). For projections along

the ẑ-axis line-of-sight, and choosing x̂ as the horizontal

direction, this gives

Q =

∫︂
ρ

H2
x −H2

y

H2
x +H2

y +H2
z

dz (7)

U =

∫︂
ρ

2HyHx

H2
x +H2

y +H2
z

dz. (8)

In the flat-sky approximation, the coordinate-invariant

quantities E and B are then found as

Ẽ + iB̃ =
(︂
Q̃+ iŨ

)︂
e−2iθk , (9)

where Ẽ denotes the Fourier transform of E, and

cos θk = kx/(k
2
x + k2y)

1/2 is the angle in Fourier space

(Kamionkowski & Kovetz 2016).

2.3. Power spectra

We compute the average power spectra of all quan-

tities by averaging over a shell or annulus in Fourier

space:

CXY
k =

1

∆Vk

∫︂
||k′|−k|<∆k

dDk′X̃(k′)Ỹ (k′) (10)
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where X̃ and Ỹ are Fourier transforms of fluid quantities

(ρ, v, and H, whence dimension D = 3) or projected

quantities (T , E, and B, whence D = 2). ∆Vk is the

volume of a shell at k, which has thickness matched to

the resolution of the Fourier grid, ∆k = kmin = 2π/L.

Because the box is scale-free, the wavenumbers k do not

correspond to any particular angular scale or multipole

on the sky.

For vector quantities the product XY is replaced with

the vector dot product, e.g.

Cvv
k = Cvxvx

k + C
vyvy
k + Cvzvz

k , (11)

and a similar expression for the magnetic field.

Quite often the turbulence literature employs the con-

tribution to the total power in a shell, which omits the

shell volume, ∆Vk, in Equation 10, while the cosmol-

ogy literature uses the average power in the shell for the

CMB and large-scale structure. The convention in the

turbulence literature is due to the relationship between

the power spectrum and the total energy in the system

(e.g. Pope 2000). The slope of total -power spectrum can

be recovered from the average-power spectra presented

here as αtotal = αXX + 2 in three-dimensions. This is

most apparent when examining the velocity spectrum:

the total power in the traditional Kolmogorov cascade

is αtotal = −5/3, while the average value is −11/3. We

use the average spectrum throughout to connect with

the Planck-measured CMB power spectra.

Each spectra can be broken into three regimes. At

large scales (k < kdrive), the driving of the turbulence

dominates these spectra, which depends on the details

of the simulator’s particular setup. At small scales

(k > kdiss), the spectra is dominated by numerical dissi-

pation. In between, in the so-called inertial range where

we are most interested in the behavior, the spectra are

set by the nonlinear dynamics of the system. Empiri-

cally, we use kdrive = 4kmin and kdiss = 25kmin, as this

range captures the nearly-powerlaw section of each of

the spectra (visible in Fig. ?? and Fig. ??). In this

range, we fit the spectra to the form

CXX
k = AXXk

αXX . (12)

To estimate uncertainties on the spectral slopes, we com-

puted αXX for every simulation timestep, also varying

kdrive ∈ [3, 4, 5]kmin and kdiss ∈ [25, 26, 27, 28]kmin, and

took the standard deviation of the collection.

3. RESULTS

Figure 3 gives an overview of the main result for fore-

ground polarization. The vertical axis shows αEE while

the horizontal shows ABB/AEE (the ratio of the fit am-

plitudes). Grey lines indicate the Planck-measured val-

ues. The color shows the sonic Mach number MS and
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Figure 3. A summary of the slope of E-mode vs. the
ratio of amplitudes, ABB/AEE. The grey lines denote the
approximate values from Planck Collaboration et al. (2020):
αEE = −2.42, ABB/AEE = 0.5. Color and marker size are
as described in Section 2.1

the size shows MA (as in Fig. 2). As discussed below,

as MS increases above 4, the ratio ABB/AEE increases

to sit in the range [0.4,0.7], compared to the Planck

value near 0.5, and αEE becomes shallower to a range

[−2.6,−2.2], compared to the Planck value of -2.42.

3.1. Fluid Power Spectra

Figures ?? displays the spectra for the fluid quanti-

ties, Cρρ
k (density, left), Cvv

k (velocity, center) and CHH
k

(magnetic field, right). Figure ?? shows the slopes of

those spectra, αρρ (left), αvv (center) and αHH (right).

The spectra are compensated by k11/3 to emphasize vari-

ations relative to the average Kolmogorov slope value,

which would be flat in this plot. The plot style is de-

scribed in Section 2.1; color (blue to yellow) denotes
increasing MS , while line style denotes MA. Figure ??

shows the slopes, αXX , with color denoting MS and

point size increasing with MA. We will discuss each in

turn.

Density—Beginning with density (first panels in Figures

?? and ??) we find that both slope and amplitude are

increasing functions of MS . The increase in amplitude

is to be expected, as the variance in density is linearly

proportional to the variance in velocity (Padoan et al.

1997), i.e.

σ2
ρ = b2MS

2, (13)

where b ∈ [1/3, 1] (Federrath et al. 2008). By the

Plancherel theorem the variance is equal to the area un-

der the power spectrum, so it is expected that the am-

plitude of the density power spectra will increase with
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sonic Mach number. The slope becomes shallower in an

almost linear way from αρρ ∼ −3.5 to αρρ ∼ −2.5 as

MS increases from 0.5 to 7. As MS increases, the typ-

ical shock velocity also increases, which gives rise to en-

hanced structure formation by way of fluid instabilities

such as the Richtmyer-Meshkov instability (Richtmyer

1960; Meshkov 1972). This enhanced power flattens the

spectrum. This behavior has been seen before (Beres-

nyak et al. 2005; Collins et al. 2012).

Neither slope, αρρ nor amplitude, Aρ vary with Alfvén

Mach number. This is not particularly surprising, as

the continuity equation which determines density only

contains density and velocity:

∂ρ

∂t
+∇ · vρ = 0, (14)

so the density is determined by velocity. Specifically,

we find that αρρ is determined by the r.m.s. velocity

alone. However, as we will discuss in the next section,

the velocity spectrum does not evolve with sonic Mach

number in the same manner as the density spectrum,

indicating that the shape of the density spectrum is not

a direct result of the shape of the velocity spectrum.

Velocity—The velocity field (second panels of Figures ??

and ??) can be seen to vary jointly with MA and MS .

In incompressible hydrodynamical turbulence, the ex-

pectation is that the slope has the (average) Kolmogorov

value of −11/3 ≈ −3.7. These simulations are not im-

compressible, but highly compressible and magnetized.

For supersonic hydrodynamical turbulence, one expects

a value of αvv = −4 or (αtotal = −2, Kritsuk et al.

2007.) For incompressible magnetized turbulence, the

spectral scaling has been debated, with some authors

expecting a value of αvv = −5/2 (αtotal=−3/2 Irosh-

nikov 1964; Boldyrev 2006)) and some expecting a value

of −11/3 (αtotal=−5/3 Beresnyak 2011). For a recent

overview, see 22. There is not a theory that combines

compressibility and magnetization that is appropriate

for the simulations presented here, and in our case we

see some resemblance to all of the above. The simu-

lation that most closely approaches the un-magnetized

incompressible assumption of the Kolmogorov cascade

has MS= 0.5 and MA= 2, which does have a slope

of −3.6. For low MS , the slope αvv steepens from

−3.6 to −3.9 as the field increases (dot size shrinks).

Once supersonic, the slope of the velocity does not vary

much with MS , but does steepen with increasing field

strength. For low field strength, the slope is around

around αvv = −3.5 (αtotal = −1.5). Also shown in

the figure are horizontal lines showing the fiducial val-

ues of αvv = −5/2 (αtotal = −3/2) and αvv = −11/3

(αtotal = −5/3).

Magnetic field—The final fluid quantity is magnetic field,

H. Spectra are plotted in the last panel of Figure ??,

and slopes are plotted in the last panel of Figure ??).

Here the magnetic slope, αHH is plotted against Alfvén

Mach number rather than sonic Mach number. It can

be seen that the slope of the magnetic field, αHH , does

not depend strongly on MS , as points with similar color

cluster around the same value, but does decrease nearly

linearly for decreasing magnetic field strength. For the

weakly magnetized runs, the slope is αHH = −3.75, and

it becomes shallower to −3.3 for the strongly magnetized

runs.

This behavior is likely the compressible analog of the

transition from weak turbulence, where magnetic fluctu-

ations are smaller than the mean, to strong turbulence,

where the fluctuations are large compared to the mean

magnetic field (see Schekochihin 2022, for an excellent

review). In incompressible simulations, the spectrum

is observed to steepen continually from αtotal = −3/2

to αtotal = −2 as the turbulence move from weak to

strong (Perez & Boldyrev 2008). This is similar to the

monotonic steepening in αHH as we increaseMA, which

seems to level off above MA ∼ 1.5. In addition to the

transition from weak to strong turbulence as MA in-

creases, in our simulations we are also transitioning to

shock dominated turbulence, which complicates the pic-

ture relative to the incompressible work.

3.2. Projected Intensity and Polarization Power

Spectra

Figures ?? and ?? show the spectra and slopes for

projected quantities, T , E and B. Color denotes MA

(blue-to-yellow denotes increasing MS) and line style

denotes MA (solid, dashed, and dotted denoting in-

creasing value) as described in Section 2.1. All pro-

jected spectra have been compensated so that slope of

α = −2.5 would appear flat and horizontal.

Intensity/Temperature—The T spectrum, CTT
k , can be

seen in the first panel of Figures ?? and its slope, αTT ,

in the first panel of Figure ??. The T spectrum has a

slope that is nearly identical to the ρ spectrum (though

they appear different due to the difference in compensa-

tion). This is expected as in this model, T is simply the

projection of ρ. By the slice-projection theorem, a quan-

tity q(x, y, z), its projection Q(x, y), and their Fourier

transforms q̂(kx, ky, kz) and Q̂(kx, ky) are related as

Q̂(kx, ky) = q̂(kx, ky, kz = 0). (15)

That is, the transform of the projection is the zero mode

of the transform along the projection axis. Thus one

can reasonably expect T and ρ to have the same aver-

age power spectra, provided the field is isotropic. Thus,
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T power spectral slopes and amplitudes should also de-

pend primarily on MS in the same linear fashion as

αρ. The match is not exact due to the fundamentally

anisotropic nature of our simulations’ mean magnetic

fields, but quite similar.

E-mode—The even-parity E spectrum, CEE
k , can be

seen in the second panel of Figures ?? and its slope,

αEE , in the second panel of Figure ??. The grey line

in Figure ?? shows the observed value of −2.42. It can

be seen that αEE depends on MS nearly linearly, and

MA somewhat. As the sonic Mach number increases, we

find that αEE get shallower from −3.5 for MS = 0.5 to

−2.3 for MS = 6. Increasing magnetic field (decreasing

MA) steepens the αEE slope. Simulations with MS ≥
4 are needed to reproduce the measured Planck αEE .

Simulations with gas velocities that are too slow yield

slopes that are too steep. The amplitude of the E power

increases for decreasing field when MS is low, but is

relatively immune to both MS and MA for supersonic

runs.

Interpreting αEE (and αBB , next section) is tricky,

since unlike the previous quantities, we lack even an ad-

jacent theory about its behavior in a turbulent medium.

It set by a combination of the geometry of density and

magnetic structures, convolved with a kernel (Rotti &

Huffenberger 2019). We revisit this interpretation in

Section 4.

B-mode—The odd-parity B spectrum, CBB
k , can be seen

in the right panel of Figure ??, and its slope, αBB , can

be seen in the right panel of Figure ??. The slope de-

pends on MS like αEE but has a stronger dependence

on MA, particularly when MA is small (strong field).

For the weakly magnetized runs, αBB ranges from −3.5

to −2.1.

Compared to the the other projected slopes, there is

a strong steepening of the slope αBB at all MS as MA

decreases. That is, stronger magnetic fields result in

steeper power spectra in the B mode. We may interpret

this reduction in power as a stiffening of the filamentary

structure, which cause the field and filament to more

likely align on small scales. We revisit this interpretation

in the discussion.

3.3. Power Amplitude Ratios

The ratio of B power to E power is interesting because

the observed value of ABB/AEE = 0.53 was unexpected.

We can also examine the ratio of of E and B relative

to total power, AEE/ATT and ABB/ATT, though our

model lacks a detailed treatment of the dust polariza-

tion fraction. This implies that these ratios cannot be

directly compared to observed values, though the trend

1 2 3 4 5 6 7

10 1

100

101

A E
E/A

TT

1 2 3 4 5 6 7

10 1

100

101

A B
B
/A

TT

1 2 3 4 5 6 7
Ms

10 1

100

101

A B
B
/A

EE

Figure 8. Ratios of amplitudes converge on (0.62, 0.34,
0.55) for E/T , B/T , and B/E, respectively. Colors are de-
scribed in Section 2.1. A value of 0.5 is seen as the grey line
in each row.

with MS and MA can be measured. The unknown po-

larization fraction cancels out in the ABB/AEE ratio, so

this can be directly compared to the Planck value.

Figure 8 shows the ratio of fit amplitudes, AEE/ATT,

ABB/ATT, and ABB/AEE versus the sonic Mach num-

ber in each of the three panels. The third panel also

shows the observed value as a grey line. The runs with

slower velocities show the most E modes, as the low

velocity causes the field to have larger impact on the

morphology, and more filamentary structures that align

magnetic field and density are observed. This can be

seen in the projections in Figure 1. For higher velocity

(MS ≥ 4), the amplitude ratios depend little on either

the fluid velocity or the magnetic field. For MS > 4,

the ratio tends toward ABB/AEE = 0.55 ± 0.07, near

to the observed ratio of Planck. Thus it may be that

that the ratio of B to E observed by Planck is a nat-

ural consequence of compressive turbulence, and that

ABB/AEE = 0.53 simply because the flow is hypersonic

and magnetized, which naturally gives this value.

The study by Caldwell et al. (2017) used a lineariza-

tion of the MHD equations to predict the amplitude

ratio but had trouble reproducing the observed value.

They postulate that the reason is the lack of nonlinear-

ity in their treatment. Here we tend to agree, as our

simulations become more nonlinear the observed slope

is recovered.

3.4. Cross-correlations

Figure 9 shows the correlation coefficient spectra,

rXY
k = CXY

k /
√︂
CXX

k × CY Y
k , (16)
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Figure 9. (Top) Correlation ratio rxy for TE, TB, and EB spectra. Vertical bars show the analysis window. (Bottom)
Average rXY in the analysis window versus sonic Mach number, MS , compared to Planck-measured values. In the top plots,
we use dotted lines for 0.4 < MA < 0.7 (smallest point size at bottom), dashed lines for 0.7 < MA < 1.2, and solid lines for
1.2 < MA < 2.2 (largest point size at bottom). See text for cautions about interpreting the ⟨rTB⟩ and ⟨rTE⟩.

for all pairs of T , E, and B. The top row shows the spec-

tra, with the fitting window denoted by vertical light-

grey lines. The bottom row shows ⟨rXY⟩, averaged over

the fit window and all frames, as a function of sonic

Mach number. Error bars are found by first averaging

rXY
k over k for each frame within the fit window, then

taking the variance over frames. Shown in horizontal

grey lines are the observed values of rTE = 0.355 and

rTB = 0.055 (Planck Collaboration et al. 2020).

For the two even-parity modes, T and E, we find sig-

nificant positive correlation in all cases but one. As the

velocity decreases and magnetic field increases, rTE in-

creases well above the value observed by Planck. The

general trend is of increasing correlation with increasing

field strength. For large sonic Mach numbers, correla-

tions are more modest and mostly consistent with the

observed Planck value of rTE = 0.35. For large MS , the

effect of the magnetic field is not as pronounced as it is

for lower MS . Earlier results, e.g. for αEE and the ra-

tio of E to B, show that the Planck data are consistent

with MS > 4, and this is also compatible with what we

see for ⟨rTE⟩. We do observe a scale dependence in rTE

(rising toward small scales) that is not seen by Planck,
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which may be a sign that our simplified simulations are

missing a key element of the ISM.

How do we draw conclusions from the ⟨rTE⟩ values,

compared to the Planck value of 0.35? The Planck

correlation looks most compatible with slow velocities

with moderate magnetic fields or fast velocities with

moderate-to-strong magnetic fields. Earlier we saw

that the B/E power ratio prefers fast velocities with

MS > 4, so the latter case seems to fit the bill. Other

combinations do not work: in our simulations, low MS
and low MA (low velocity and strong magnetic field)

would lead to a stronger correlation than what Planck

sees. Low MS and high MA (low velocity and weak

magnetic field) leads to too small of a correlation, or a

slight anticorrelation. We note that these simulations

are idealized, and more realistic simulations may con-

tain physical effects that reduce the filament alignment

to the magnetic field and thus see the TE correlations

reduced.

It is hard to assess the TB and EB correlations, which

we expect to be zero based on the physics in the simula-

tion. By sample variance, individual time snapshots can

have a small nonzero correlation in certain wavenumber

bands. In the cross-correlation spectra (Fig. 9), which

are averaged over 5tdyn, the deviations from zero cor-

relation are the same magnitude as the mode-to-mode

fluctuations in power, much smaller than the TT , EE,

BB, and TE correlations, which we measure robustly.

Still, for TB in the middle panel of the figure, some spec-

tra appear to be mostly above zero for these realizations.

The error bars we draw on the mean rTB do intersect

zero for most cases, but the fluctuations are smaller than

we would expect compared to the size of our error bars,

so maybe we have overestimated them. We note that

14 of the 21 cases have positive values, and this number

or greater has 9% cumulative probability in a binomial

distribution with equal weight on positive and negative.

At fast velocities (MS > 4), we find that 8 of 9 realiza-

tions are positive, which is 2% probability. Thus is not

completely clear what to conclude.

We also show rEB in the third panel of the figure.

These correlations are on the same order as rTB, and

similarly have 14 of 21 simulations slightly positive,

though consistent with zero according to our error pre-

scription. Above MS > 4, all 9 cases have positive cor-

relation (0.2% probability, but measured a posteriori).

These tendencies toward positive parity-violating cor-

relation values at high fluid velocity are somewhat puz-

zling because all of the MHD physics we include respects

parity. The simulations start with uniform density and

are driven with a non-helical acceleration pattern, and

the base solver is an unsplit solver with no inherent

Spectra a b c c/b

αρ -3.61 0.16 -0.00 -0.03

αv -3.86 0.02 0.14 6.48

αH -3.31 0.02 -0.28 -18.13

αTT -3.66 0.15 0.09 0.62

αEE -3.63 0.17 0.28 1.60

αBB -4.82 0.28 0.64 2.28

Table 1. Linear fits of the form q = a+ bMS + cMA.

asymmetry. A larger, more systematic, and more re-

solved ensemble of simulations will be necessary to de-

termine if we have inadvertently inserted some parity-

violating effect, if this is simply a statistical fluctuation,

or if there is a slight tendency for such MHD simulations

to produce positive parity violations.

3.5. Linear fits and importance of parameters

The nearly linear nature of the results in Figures ??

and ?? inspire us to fit the slopes of each of our quanti-

ties to a linear relation of the form

αq = aq + bqMS + cqMA (17)

where q stands for density, velocity, magnetic field, T ,

E, and B. These fit coefficients are found in Table 1.

Noting that b = ∂q/∂MS and c = ∂q/∂MA, we see

that b and c give the relative importance of sonic and

Alfvén Mach numbers on each quantity. The third col-

umn of Table 1 gives the ratio of c/b, which denotes the

relative impact of the two. Density, ρ, depends only on

sonic Mach number (bρ = 0) while the velocity spectrum

is more influenced by MA (cρ/bρ = 6.5). Sonic Mach

number determines αTT , while Alfvén Mach number de-

termines αBB .

From this linear process, we can derive an typical

MS and MA for the ISM. By simultaneously solving

the linear equations for αEE = −2.4 and αBB = −2.5,

we find an ideal MS = 4.7 and MA = 1.5 from the

slopes. This combination would produce an appropri-

ate B/E power ratio, but would probably underproduce

rTE, which would prefer a somewhat smaller MA ∼ 0.7

or so and a higher velocity MS ∼ 5–6 to compensate the

slope. Of course, the true values for MS and MA may

vary substantially from point to point in the sky, as the

ISM is a multiphase medium and the sound speed and

kinetic energy are determined by the phase. However

these give a typical value for reproducing the geometri-

cal structures in the ISM.

3.6. Parallel versus perpendicular projections

We focus primarily on the behavior of projections per-

pendicular to the mean magnetic field because it is a
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more physically appropriate configuration to compare

to the sky. To observe a signal comparable to project-

ing our boxes along the mean field would require the

field to be radially directed away from the earth, and to

be coherent over a large fraction of the optical depth of

the ISM. This is unlikely. However, the real signal will

be an admixture of orientations along the line of sight,

so we present the major differences here.

Figure 10 shows projections of theMS = 4 suite in the

x̂ direction, along the magnetic field (top row), and the ŷ

direction, perpendicular to the field (bottom row). Mag-

netic field strength increases to the left. The impact of

the field is most apparent for the MA = 0.5 simulations

with the strongest magnetic field. The mean magnetic

field is out of the page in the top row, and suppresses

motion across the line of sight, while the mean field is

vertical in the bottom row, and suppresses motion in the

horizontal direction.

Figure 11 shows αEE and αBB vs MS for parallel pro-

jections (top row) and perpendicular projections (bot-

tom row, same as Figure ??, reproduced for ease of com-

parison). For the weakly magnetized cases (large points)

the behavior is comparable between the two directions,

as expected. For the more strongly magnetized case,

increasing magnetic field has the opposite effect on the

slope between the two directions. For the x̂ projection,

increasing magnetic field makes αEE and αBB slightly

more shallow. For the parallel direction, increase mean

field causes αEE to become steeper, but αBB steepens

more dramatically.

Figure 12 shows the cross correlation, rTE , rTB and

rEB for the perpendicular projections. The TE correla-

tion increases with MS to a typical value of about 0.25,

slightly smaller than the value of 0.355 observed on the

sky. The correlations with B look consistent with zero

for the parallel projections.

4. DISCUSSION

Here we discuss our results in the context of our model

foregrounds as an ensemble of filaments. In Huffen-

berger et al. (2020), we model E and B with filaments

that have an aspect ratio ϵ ∈ [0, 1] threaded by mag-

netic fields at an angle, θLH . As ϵ increases, making

the filaments more round, the ratio of B to E increases

as a shorter, rounder filaments have proportionally less

E (see Figure 6 of Huffenberger et al. 2020). This also

explains the decrease in rTE as ϵ increases. These pre-

dictions from the filament model are consistent with our

findings with the turbulent boxes. As MS and MA in-

crease, the ability of the magnetic field to suppress in-

stability decreases, and shorter filaments are expected.

This can be seen in projections and in the power spec-

4, 0.5, y 4, 1, y 4, 2, y

4, 0.5, x 4, 1, x 4, 2, x

100

10 1

0

10 1

100

Figure 10. Projections of E for the sonic mach MS = 4
simulations, with targeted MA = 0.5, 1, 2. (Top row) projec-
tion along x̂, with the magnetic field coming out of the page
and (Bottom row) projection along ŷ, with the field pointing
up (as in Fig. 1). Field strength increases to the left.

tra of ρ. Commensurate, we find an increase in B/E

and a decrease in rTE with increasing MS . Again, the

shorter structures as a result of increased MS and MA

have effects on the polarization power spectra that are

in agreement, at least qualitatively, with the model of

Huffenberger et al. (2020). Clark et al. (2021) model the

parity violating correlation as a misalignment between

filamentary structure and magnetic field direction in a

similar filamentary framework, and compare to simula-

tions. In future, we will examine filamentary properties

of these cubes to further explore the predictive power of

Huffenberger et al. (2020) and Clark et al. (2021).

5. CONCLUSIONS

In this work, we examine the E−mode and B−mode

spectra from a suite of idealized, magnetized, and tur-

bulent simulations. We find that isothermal turbulence

alone is enough to reproduce the observed values of αEE

and αBB , as well as the ratio of amplitudes, ABB/AEE ,

for suitable values of sonic Mach number, MS , and

Alfvén Mach number, MA. We additionally find that

the observed correlation of T and E, rTE = 0.3, is

naturally reproduced by the turbulence at high MS
and an appropriate magnetic field strength. Parity-

violating correlations with B are spectrally flat and near

zero, certainly below 0.05, but the results are somewhat

murky. We suggest that a “typical” patch of the sky has

MS = 4.7, MA = 1.5, based on linear interpolation of

the E- and B-mode slopes, but rTE prefers lower MA

and higher MS .

The density spectrum is found to be tightly related

to MS , with slope αρ ∼ −3.6 + 0.16MS . This is

due to the fact that shock thickness decreases with MS ,

leading to smaller scale structure and faster growth of

instabilities such as Richmeyer-Meshkov and Rayleigh
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Figure 11. Amplitudes for CEE
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k along the magnetic field (x̂, top row) and across the field (ŷ, bottom row), as in
Fig. ??.

Taylor. The velocity spectra is relatively insensitive to

MS forMS > 2. Supersonic slope values cluster around

αv ∼ −3.5 for super-Alfvén values, slightly shallower

than the Kolmogorov value of −11/3. Magnetic spec-

tral slopes are relatively insensitive toMS , and decrease

with decreasing magnetic field.

The projected quantities, T , E and B, also depend

on MS and MA. In these perfectly optically thin

models, T is the integral of ρ along the line of sight,

and it is found that αT ∼ αρ with some small depen-

dence due to the magnetic field. E is found to de-

pend on both MS and MA, from αEE ∈ [−3.5,−2]

and αBB ∈ [−4.5,−2.2].

In future simulation studies, we need higher resolution

to increase our inertial range and improve our accuracy,

particularly on the slopes. We also need larger statis-

tical ensembles to quantify the sample variance in the

TB and EB correlations. These parity-violating corre-
lations are important for measurements of detector cali-

bration, gravitational lensing, and cosmic birefringence.
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