
Finding Missing Items Requires Strong Forms of1

Randomness2

Amit Chakrabarti Ñ �3

Department of Computer Science, Dartmouth College, Hanover, NH, USA4

Manuel Stoeckl Ñ �5

Department of Computer Science, Dartmouth College, Hanover, NH, USA6

Abstract7

Adversarially robust streaming algorithms are required to process a stream of elements and8

produce correct outputs, even when each stream element can be chosen as a function of earlier9

algorithm outputs. As with classic streaming algorithms, which must only be correct for the worst-10

case Ąxed stream, adversarially robust algorithms with access to randomness can use signiĄcantly11

less space than deterministic algorithms. We prove that for the Missing Item Finding problem in12

streaming, the space complexity also signiĄcantly depends on how adversarially robust algorithms13

are permitted to use randomness. (In contrast, the space complexity of classic streaming algorithms14

does not depend as strongly on the way randomness is used.)15

For Missing Item Finding on streams of length ℓ with elements in ¶1, . . . , n♢, and ≤ 1/poly(ℓ)16

error, we show that when ℓ = O(2
√

log n), Şrandom seedŤ adversarially robust algorithms, which17

only use randomness at initialization, require ℓΩ(1) bits of space, while Şrandom tapeŤ adversarially18

robust algorithms, which may make random decisions at any time, may use O(polylog(ℓ)) random19

bits. When ℓ is between nΩ(1) and O(
√

n), Şrandom tapeŤ adversarially robust algorithms need ℓΩ(1)
20

space, while Şrandom oracleŤ adversarially robust algorithms, which can read from a long random21

string for free, may use O(polylog(ℓ)) space. The space lower bound for the Şrandom seedŤ case22

follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming23

algorithms given in this paper.24

2012 ACM Subject ClassiĄcation Theory of computation → Sketching and sampling; Theory of com-25

putation → Lower bounds and information complexity; Theory of computation → Pseudorandomness26

and derandomization27

Keywords and phrases Data streaming, lower bounds, space complexity, adversarial robustness,28

derandomization, sketching, sampling,29

Digital Object IdentiĄer 10.4230/LIPIcs.CCC.2024.2830

Related Version Full version: https://arxiv.org/abs/2310.03634 [9]31

Extended in Chapter 3 of : https://digitalcommons.dartmouth.edu/dissertations/229/ [25]32

Funding Supported in part by the National Science Foundation under Award 2006589.33

1 Introduction34

Randomized streaming algorithms can achieve exponentially better space bounds than35

corresponding deterministic ones: this is a basic, well-known, easily proved fact that applies36

to a host of problems of practical interest. A prominent class of randomized streaming37

algorithms uses randomness in a very speciĄc way, namely to sketch the input stream by38

applying a random linear transformationŮgiven by a sketch matrix SŮto the input frequency39

vector. The primary goal of a streaming algorithm is to achieve sublinear space, so it is40

infeasible to store S explicitly. In some well-known cases, the most natural presentation of41

the algorithm is to explicitly describe the distribution of S, a classic case in point being42

frequency moment estimation [16]. This leads to an algorithm that is very space-efficient43

provided one doesnŠt charge the algorithm any space cost for storing S. Algorithms that44

© Amit Chakrabarti and Manuel Stoeckl;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 28; pp. 28:1Ű28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Ű Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.dartmouth.edu/~ac
https://orcid.org/0000-0003-3633-9180
https://mstoeckl.com/
https://orcid.org/0000-0001-8189-0516
https://doi.org/10.4230/LIPIcs.CCC.2024.28
https://arxiv.org/abs/2310.03634
https://digitalcommons.dartmouth.edu/dissertations/229/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Finding Missing Items Requires Strong Forms of Randomness

work this way can be thought of as accessing a Şrandom oracleŤ: despite their impracticality,45

they have theoretical value, because the standard ways of proving space lower bounds for46

randomized streaming algorithms in fact work in this model. For the speciĄc frequency-47

moment algorithms mentioned earlier, [16] goes on to design variants of his algorithms that48

use only a small (sublinear) number of random bits and apply a pseudorandom generator to49

suitably mimic the behavior of his random-oracle algorithms. Thus, at least in this case, a50

random oracle isnŠt necessary to achieve sublinear complexity. This raises a natural question:51

from a space complexity viewpoint, does it ever help to use a random oracle, as opposed to52

ŞordinaryŤ random bits that must be stored (and thus paid for) if they are to be reused?53

For most classic streaming problems, the answer is ŞNo,Ť but for unsatisfactory reasons:54

NewmanŠs Theorem [21] allows one to replace a long oracle-provided random string by a55

much shorter one (that is cheap to store), though the resulting algorithm is non-constructive.56

This brings us to the recent and ongoing line of work on adversarially robust streaming57

algorithms where we shall Ąnd that the answer to our question is a very interesting ŞYes.Ť58

For the basic and natural MissingItemFinding problem, deĄned below, we shall show that59

three different approaches to randomization result in distinct space-complexity behaviors.60

To explain this better, let us review adversarial robustness brieĆy.61

Some recent works have studied streaming algorithms in a setting where the input to the62

algorithm can be adaptively (and adversarially) chosen based on its past outputs. Existing63

(ŞclassicŤ) randomized streaming algorithms may fail in this adversarial setting when the64

input-generating adversary learns enough about the past random choices of the algorithm to65

identify future inputs on which the algorithm will likely fail. There are, heuristically, two66

ways for algorithm designers to protect against this: (a) prevent the adversary from learning67

the past random choices of the algorithm (in the extreme, by making a pseudo-deterministic68

algorithm), or (b) prevent the adversary from exploiting knowledge of past random decisions,69

by having the algorithmŠs future behavior depend on randomness that it has not yet revealed.70

Concretely, algorithms in this setting use techniques such as independent re-sampling [6],71

sketch switching using independent sub-instances of an underlying classic algorithm [5],72

rounding outputs to limit the number of computation paths [5], and differential privacy73

to safely aggregate classic algorithm sub-instances [15]. Mostly, these algorithms use at74

most as many random bits as their space bounds allow. However, some recently published75

adversarially robust streaming algorithms for vertex-coloring a graph (given by an edge76

stream) [8, 2], and one for the MissingItemFinding problem [24], assume access to a large77

amount of oracle randomness: they prevent the adversary from exploiting the random bits it78

learns by making each output depend on an unrevealed part of the oracle random string.79

It is still open whether these last two problems have efficient solutions that do not use this80

oracle randomness hammer. This suggests the following question:81

Are there problems for which space-efficient adversarially robust

streaming algorithms provably require access to oracle randomness?
82

In this paper, we prove that for certain parameter regimes, MissingItemFinding83

(henceforth, mif) is such a problem. In the problem mif(n, ℓ), the input is a stream ⟨e1, . . . , eℓ⟩84

of ℓ integers, not necessarily distinct, with each ei ∈ ¶1, . . . , n♢, where 1 ≤ ℓ ≤ n. The goal is85

as follows: having received the ith integer, output a number v in ¶1, . . . , n♢\¶e1, . . . , ei♢. We86

will be mostly interested in the setting ℓ = o(n), so the ŞtrivialŤ upper bound on the space87

complexity of mif(n, ℓ) is O(ℓ log n), achieved by the deterministic algorithm that simply88

stores the input stream as is.89

A. Chakrabarti and M. Stoeckl 28:3

1.1 Groundwork for Our Results90

To state our results about mif, we need to introduce some key terminology. Notice that91

mif is a tracking problem: an output is required after reading each input.Thus, we view92

streaming algorithms as generalizations of Ąnite state (Moore-type) machines. An algorithm93

A has a Ąnite set of states Σ (leading to a space cost of log2 ♣Σ♣), a Ąnite input set I, and a94

Ąnite output set O. It has a transition function T : Σ× I ×R → Σ indicating the state to95

switch to after receiving an input, plus an output function γ : Σ ×R → O indicating the96

output produced upon reaching a state. How the Ąnal parameter (in R) of T and γ is used97

depends on the type of randomness. We consider four cases, leading to four different models98

of streaming computation.99

Deterministic. The initial state of the algorithm is a Ąxed element of Σ, and T and γ100

are deterministic (they do not depend on the parameter in R).101

Random seed. The initial state is drawn from a distribution D over Σ, and T and γ are102

deterministic. This models the situation that all random bits used count towards the103

algorithmŠs space cost.104

Random tape. The initial state is drawn from a distribution D over Σ. The space R105

is a sample space; when the algorithm receives an input e ∈ I and is at state σ ∈ Σ, it106

chooses a random ρ ∈ R independent of all previous choices and moves to state T (e, σ, ρ).107

However, γ is deterministic.This models the situation that the algorithm can make random108

decisions at any time, but it cannot remember past random decisions without recording109

them (which would add to its space cost).110

Random oracle. The initial state is Ąxed; R is a sample space. A speciĄc R ∈ R is drawn111

at the start of the algorithm and stays the same over its lifetime. When the algorithm112

is at state σ and receives input e, its next state is T (e, σ, R). The output given at state113

σ is γ(σ, R). This models the situation that random bits are essentially ŞfreeŤ to the114

algorithm; it can read from a long random string which doesnŠt count toward its space115

cost and which remains consistent over its lifetime. A random oracle algorithm can be116

interpreted as choosing a random deterministic algorithm, indexed by R, from some117

family.118

These models form a rough hierarchy; they have been presented in (almost) increasing119

order of power. Every z-bit (2z-state) deterministic algorithm can be implemented in any120

of the random models using z bits of space; the same holds for any z-bit random seed121

algorithm. Every z-bit random tape algorithm has a corresponding (z + log ℓ)-bit random122

oracle algorithmŮthe added space cost is because for a random oracle algorithm to emulate123

a random tape algorithm, it must have a way to get ŞfreshŤ randomness on each turn.1124

Streaming algorithms are also classiĄed by the kind of correctness guarantee they provide.125

Recall that we focus on ŞtrackingŤ algorithms [5]; they present an output after reading each126

input item and this entire sequence of outputs must be correct. Here are three possible127

meanings of the statement Şalgorithm A is δ-errorŤ (we assume that A handles streams of128

length ℓ with elements in I and has outputs in O):129

Static setting. For all inputs τ ∈ Iℓ, running A on τ produces incorrect output with130

probability ≤ δ.131

1 An alternative, which lets one express z-bit random tape algorithms using a z-bit random oracle variant,
is to assume the random oracle algorithm has access to a clock or knows the position in the stream for
free; both are reasonable assumptions in practice.

CCC 2024

28:4 Finding Missing Items Requires Strong Forms of Randomness

Adversarial setting. For all (computationally unbounded) adaptive adversaries α (i.e.,132

for all functions α : O⋆ → I),2 running A against α will produce incorrect output with133

probability ≤ δ.134

Pseudo-deterministic setting. There exists a canonical output function f : I⋆ → O135

producing all correct outputs so that, for each τ ∈ Iℓ, A(τ) fails to output f(τ) with136

probability ≤ δ.137

Algorithms for the static setting are called ŞclassicŤ streaming algorithms; ones for138

the adversarial setting are called Şadversarially robustŤ streaming algorithms. All pseudo-139

deterministic algorithms are adversarially robust, and all adversarially robust algorithms are140

also classic.141

As a consequence of NewmanŠs theorem [21], any random oracle or random tape algorithm142

in the static setting with error δ can be emulated using a random seed algorithm with only ε143

increase in error and an additional O(log ℓ + log log ♣I♣+ log 1
εδ) bits of space. However, the144

resulting algorithm is non-constructive.145

1.2 Our Results146

As context for our results, we remind the reader that itŠs trivial to solve mif(n, ℓ) in O(ℓ log n)147

space deterministically (somewhat better deterministic bounds were obtained in [24]). Moving148

to randomized algorithms, [24] gave a space bound of O(log2 n) for ℓ ≤ n/2 in the static149

setting, and a bound of Õ(ℓ2/n + 1) 3 in the adversarial setting, using a random oracle. The150

immediate takeaway is that, given access to a deep pool of randomness (i.e., an oracle),151

mif becomes easy in the static setting for essentially the full range of stream lengths ℓ and152

remains easy even against an adversary for lengths ℓ ≤ √n.153

The main results of this paper consist of three new lower bounds and one new upper154

bound on the space complexity of mif(n, ℓ). Stating the bounds in their strongest forms155

leads to complicated expressions; therefore, we Ąrst present some easier-to-read takeaways156

from these bounds that carry important conceptual messages. In the lower bounds below,157

the error level should be thought of as δ = 1/n2.158

▶ Result 1. At ℓ =
√

n, adversarially robust random tape algorithms for mif(n, ℓ) require159

Ω(ℓ1/4) bits of space. More generally, for every constant α ∈ (0, 1), there is a constant160

β ∈ (0, 1) such that at ℓ = Ω(nα), the space requirement is Ω(ℓβ), in the adversarially robust161

random tape setting.162

This shows that mif remains hard, even for modest values of ℓ, if we must be robust while163

using only a random tape, i.e., if there is a cost to storing random bits we want to reuseŮa164

very reasonable requirement for a practical algorithm. The above result is an exponential165

separation between the random tape and random oracle models.166

The random seed model places an even greater restriction on an algorithm: besides167

counting towards storage cost, random bits are available only at initialization and not on the168

Ćy. Many actual randomized algorithms, including streaming ones, are structured this way,169

making it a natural model to study. We obtain the following result.170

▶ Result 2. Adversarially robust random seed algorithms for mif(n, ℓ) require Ω̃(
√

ℓ) bits of171

space.172

2 By the minimax theorem, it suffices to consider deterministic adversaries.
3 The notations Õ(·) and Ω̃(·) hide factors polylogarithmic in n and ℓ.

A. Chakrabarti and M. Stoeckl 28:5

Table 1 Bounds for the space complexity of mif(n, ℓ), from this and prior work. To keep

expressions simple, these bounds are evaluated at error level δ = 1/n2, when applicable. (†)

indicates that the precise results are stronger.

Setting Type Bound Reference

Static Random seed O((log n)2) if ℓ ≤ n/2 [24]

Adversarial Random oracle O((ℓ2

n + log n) log n) [24]

Ω(ℓ2

n) [24]

Adversarial Random tape O(ℓlogn ℓ(log ℓ)2 + log ℓ · log n) † Theorem 1

Ω(log ℓ
log n ℓ

15
32 logn ℓ) † Theorem 8

Adversarial Random seed O((ℓ2

n +
√

ℓ + log n) log n) [24]a)

Ω(ℓ2

n +
√

ℓ
(log n)3 + ℓ1/5) Theorem 10

Pseudo-

deterministic

Random oracle Ω(ℓ
(log(2n/ℓ))2 + (ℓ log n)

1/4
) Theorem 16

Static Deterministic Ω(ℓ
log(2n/ℓ) +

√
ℓ) [24]

O(ℓ log ℓ
log n +

√
ℓ log ℓ) [24]

a) The random seed algorithm for the adversarial setting is given in the arXiv version of [24].

Consider the two results above as ℓ decreases from
√

n to Θ(1). The bound in Result 2173

stays interesting even when ℓ = no(1), so long as ℓ ≥ (log n)C for a suitable constant C (in174

fact, the full version of the result is good for even smaller ℓ). In contrast, the bound in175

Result 1 peters out at much larger values of ℓ. There is a very good reason: mif starts to176

become Şeasy,Ť even under a random-tape restriction, once ℓ decreases to sub-polynomial in177

n. SpeciĄcally, we obtain the following upper bound.178

▶ Result 3. There is an adversarially robust random tape algorithm for mif(n, ℓ) that, in179

the regime ℓ = O(2
√

log n), uses O(log ℓ · log n) bits of space.180

Notice that at ℓ = Θ(2(log n)1/C

), where C ≥ 2 is a constant, the bound in Result 3181

is polylogarithmic in ℓ. Combined with the lower bound in Result 2, we have another182

exponential separation, between the random seed and random tape models.183

The proof of Result 2 uses a reduction, given in prior work [24], that converts a space184

lower bound in the pseudo-deterministic setting to a related bound in the random-seed setting.185

A pseudo-deterministic algorithm is allowed to use randomness (which, due to NewmanŠs186

theorem, might as well be of the oracle kind) but must, with high probability, map each input187

to a Ąxed output, just as a deterministic algorithm would. This strong property makes the188

algorithm adversarially robust, because the adversary has nothing to learn from observing189

its outputs. Thanks to the [24] reduction, the main action in the proof of Result 2 is the190

following new lower bound we give.191

▶ Result 4. Pseudo-deterministic random oracle algorithms for mif(n, ℓ) require Ω̃(ℓ) bits192

of space.193

These separations rule out the possibility of a way to convert an adversarially robust194

random oracle algorithm to use only a random seed or even a random tape, with only minor195

(e.g., a polylog(ℓ, n) factor) overhead. In contrast, as we noted earlier, such a conversion is196

routine in the static setting, due to NewmanŠs theorem [21]. The separation between random197

CCC 2024

28:6 Finding Missing Items Requires Strong Forms of Randomness

oracle and random tape settings shows that MissingItemFinding is a problem for which198

much lower space usage is possible if oneŠs adversaries are computationally bounded (in199

which case a pseudo-random generator can emulate a random oracle.)200

Table 1 shows more detailed versions of the above results as well as salient results from201

earlier work, summarizing the state of the art for the space complexity of mif(n, ℓ). The202

fully detailed versions of our results, showing the dependence of the bounds on the error203

probability, appear in later sections of the paper, as indicated in the table.204

1.3 Related Work205

We brieĆy survey related work. An inĆuential early work [14] considered adaptive adversaries206

for linear sketches. The adversarial setting was formally introduced by [5], who provided207

general methods (like sketch-switching) for designing adversarially robust algorithms given208

classic streaming algorithms, especially in cases where the problem is to approximate a209

real-valued quantity. For some tasks, like F0-estimation, they obtained slightly better upper210

bounds by using a random oracle, although later work [26] removed this need. [6] observed211

that in sampling-based streaming algorithms, increasing the sample size is often all that is212

needed to make an algorithm adversarially robust. [15] described how to use differential213

privacy techniques as a more efficient alternative to sketch-switching, and [4] used this as214

part of a more efficient adversarially robust algorithm for turnstile F2-estimation.215

Most of these papers focus on providing algorithms and general techniques, but there216

has been some work on proving adversarially robust lower bounds. [18] described a problem217

(of approximating a certain real-valued function) that requires exponentially more space in218

the adversarial setting than in the static setting. [8], in a brief comment, observed a similar219

separation for a simple problem along the lines of mif. They also proved lower bounds for220

adversarially robust coloring algorithms for graph edge-insertion streams. [24] considered the221

mif problem as deĄned here and, among upper and lower bounds in a number of models,222

described an adversarially robust algorithm for mif that requires a random oracle; they asked223

whether a random oracle is necessary for space-efficient algorithms.224

The white-box adversarial setting [1] is similar to the adversarial setting we study, with the225

adversary having the additional power of seeing the internal state of the algorithm, including226

(if used) the random oracle. [24] proved an Ω(ℓ/polylog(n)) lower bound for mif(n, ℓ) for227

random tape algorithms in this setting, suggesting that any more efficient algorithm for mif228

must conceal some part of its internal state. Pseudo-deterministic streaming algorithms were229

introduced by [12], who gave lower bounds for a few problems. [7, 13] gave lower bounds for230

pseudo-deterministic algorithms that approximately count the number of stream elements.231

The latter shows they require Ω(log m) space, where m is the stream length; in contrast, in232

the static setting, MorrisŠs counter algorithm4 uses only O(log log m) space.233

While it is not posed as a streaming task, the mirror game introduced by [11] is another234

problem with conjectured separation between the space needed for different types of ran-235

domness. In the mirror game, two players (Alice and Bob) alternately state numbers in the236

set ¶1, . . . , n♢, where n is even, without repeating any number, until one player mistakenly237

states a number said before (loss) or the set is completed (tie). [11] showed that if Alice238

has o(n) bits of memory and plays a deterministic strategy, Bob can always win. Later,239

[10, 20] showed that if Alice has access to a random oracle, she can tie-or-win w.h.p. using240

4 MorrisŠs is a Şrandom tapeŤ algorithm; Şrandom seedŤ algorithms for counting arenŠt better than
deterministic ones.

A. Chakrabarti and M. Stoeckl 28:7

only O(polylog(n)) space. A major open question here is how much space Alice needs when241

she does not have a random oracle. [19] did not resolve this, but showed that if Alice is242

Şopen-bookŤ (equivalently, that Bob is a white-box adversary and can see her state), then243

Alice needs Ω(n) bits of state to tie-or-win.244

Assuming access to a random oracle is a reasonable temporary measure when designing245

streaming algorithms in the static setting. As noted at the beginning of Section 1, [16]246

designed Lp-estimation algorithms using random linear sketch matrices, without regard to the247

amount of randomness used, and then described a way to apply NisanŠs PRG [22] to partially248

derandomize these algorithms and obtain efficient (random seed) streaming algorithms. In249

general, the use of PRGs for linear sketches has some space overhead, which later work (see250

[17] as a recent example) has been working to eliminate.251

It is important to distinguish the Şrandom oracleŤ type of streaming algorithm from the252

Şrandom oracle modelŤ in cryptography [3], in which one assumes that all agents have access253

to the random oracle. [1], when deĄning white-box adversaries, also assumed that they can254

see the same random oracle as the algorithm; and, for one task, obtained a more efficient255

algorithm against a computationally bounded white-box adversary, when both have access256

to a random oracle, than when neither do. Tight lower bounds are known in neither case.257

The power of different types of access to randomness has been studied in computational258

complexity. [23] showed that logspace Turing machines with a multiple-access random tape259

can (with zero error) decide languages that logspace Turing machines with a read-once260

random tape decide only with bounded two-sided error. This type of separation does not261

hold for time complexity classes.262

For a more detailed history and survey of problems related to MissingItemFinding, we263

direct the reader to [24].264

2 Organization of This Extended Abstract265

What follows is an extended abstract of our paper, which omits formal proofs of our results.266

Instead, we give a technical overview of each result, followed by selected details of its proof.267

The full paper contains all remaining details and formal proofs.268

2.1 Notation269

Throughout this paper, log x = log2 x, while ln x = loge x. The set N consists of all270

positive integers; [k] := ¶1, 2, . . . , k♢; and [a, b) is a half open interval of real numbers.271

For a condition or event E, the symbol 1E takes the value 1 if E occurs and 0 otherwise.272

The sequence (stream) obtained by concatenating sequences a and b, in that order, is273

denoted a ◦ b. For a set S of elements in a totally ordered universe, sort(S) denotes the274

sequence of elements of S in increasing order;
(

S
k

)
is the set of k-element subsets of S; and275

seqs(S, k) = ¶sort(Y) : Y ∈
(

S
k

)
♢. We sometimes extend set-theoretic notation to vectors276

and sequences; e.g., for y ∈ [n]t, write y ⊆ S to mean that ∀i ∈ [t] : yi ∈ S. For a set X,277

△[X] denotes the set of probability distributions over X, while A ∼ X indicates that A is278

chosen uniformly at random from X.279

2.2 Preliminary Remarks280

The proofs of Results 1, 3, and 4 are all signiĄcant generalizations of existing proofs from281

[24] which handled different (and more tractable) models. The proof of Result 2 consists282

of applying a reduction from [24] to the lower bound given by Result 4. As we explain our283

CCC 2024

28:8 Finding Missing Items Requires Strong Forms of Randomness

techniques, we will summarize the relevant ŞbasicŤ proofs from [24], which will clarify the284

enhancements needed to obtain our results.285

Space complexity lower bounds in streaming models are often proved via communication286

complexity. This meta-technique is unavailable to us, because the setup of communication287

complexity blurs the distinctions between random seed, random tape, and random oracle288

models and our results are all about these distinctions. Instead, to prove Result 1, we289

design a suitable strategy for the stream-generating adversary that exploits the algorithmŠs290

random-tape limitation by learning enough about its internal state. Our adversary uses a291

nontrivially recursive construction. To properly appreciate it, it is important to understand292

what streaming-algorithmic techniques the adversary must contend with. Therefore, we shall293

discuss our upper bound result Ąrst.294

3 Random Tape Upper Bound (Result 3)295

The adversarially robust random tape algorithm for mif(n, ℓ) can be seen as a generalization296

of the random oracle and random seed algorithms.297

The random oracle algorithm and its adversaries. The random oracle algorithm for298

mif(n, ℓ) from [24] has the following structure. It interprets its oracle random string as a299

uniformly random sequence L containing ℓ + 1 distinct elements in [n]. As it reads its input,300

it keeps track of which elements in L were in the input stream so far (were ŞcoveredŤ). It301

reports as its output the Ąrst uncovered element of L. Because L comes from the oracle, the302

space cost of the algorithm is just the cost of keeping track of the set J of covered positions in303

L. We will explain why that can be done using only O((ℓ2/n + 1) log ℓ) space, in expectation.304

An adversary for the algorithm only has two reasonable strategies for choosing the next305

input. It can ŞechoŤ back the current algorithm output to be the next input to the algorithm.306

It can also choose the next input to be a value from the set U of values that are neither an307

earlier input nor the current outputŮbut because L is chosen uniformly at random, one can308

show that the adversary can do no better than picking the next input uniformly at random309

from U . (The third strategy, of choosing an old input, has no effect on the algorithm.)310

When the algorithm is run against an adversary that chooses inputs using a mixture of311

the echo and random strategies, the set J will be structured as the union of a contiguous312

interval starting at 1 (corresponding to the positions in L covered by the echo strategy) and313

a sparse random set of expected size O(ℓ2/n) (corresponding to positions in L covered by314

the random strategy). Together, these parts of J can be encoded using O((ℓ2/n + 1) log ℓ)315

bits, in expectation.316

Delaying the echo strategy. If we implemented the above random oracle algorithm as a317

random seed algorithm, we would need Ω(ℓ) bits of space, just to store the random list L.318

But why does L need to have length ℓ + 1? This length is needed for the algorithm to be319

resilient to the echo strategy, which covers one new element of L on every step; if L were320

shorter, the echo strategy could entirely cover it, making the algorithm run out of possible321

values to output. The random seed algorithm for mif(n, ℓ) works by making the echo strategy322

less effective, ensuring that multiple inputs are needed for it to cover another element of L.323

It does this by partitioning [n] into Θ(ℓ) disjoint subsets (ŞblocksŤ) of size Θ(n/ℓ), and then324

taking L to be a random list of blocks (rather than a random list of elements of [n]). We325

will now say that a block is ŞcoveredŤ if any element of that block was an input. Instead of326

outputting the Ąrst uncovered element in L, the algorithm will run a deterministic algorithm327

A. Chakrabarti and M. Stoeckl 28:9

for mif inside the block corresponding to the Ąrst uncovered block of L, and report outputs328

from that; and will only move on to the next uncovered block when the nested algorithm329

stops. See Algorithm 1 for the details of this design. Because the analogue of the echo330

strategy now requires many more inputs to cover a block, we can make the list L shorter.331

This change will not make the random strategy much more effective.5 The minimum length332

of L is constrained by the O(n/ℓ) block sizes, which limit the number of outputs that the333

nested algorithm can make; as a result, one must have L = Ω(ℓ2/n). In the end, after334

balancing the length of the list with the cost of the nested algorithm, the optimal list length335

for the random seed algorithm will be O(ℓ2/n +
√

ℓ).336

Algorithm 1 Example: recursive construction for a random tape mif(n, ℓ) algorithm

Parameter: t ∈ [Ω(ℓ2/n), ℓ] is the number of parts into which the input stream is split

Initialization:

1: Let k = O(t), s = O(ℓ), and B1, . . . , Bs be a partition of [n] into s equal ŞblocksŤ

2: L← uniformly randomly chosen sequence of k distinct elements of [s]

3: J ← ∅, is a subset of [k] ▷ a set marking which blocks of L have been covered

4: c← 1 ▷ the current active block

5: A← instance of algorithm A solving mif(n/s, ⌈ℓ/t⌉)
Update(a ∈ [n]):

6: Let h be the block containing a, and x the rank of a in Bh

7: if h ∈ L then

8: Add j to J , where Lj = h ▷ Mark list element containing h as used

9: if h = Lc then

10: A.Update(x)

11: if A is out of space then ▷ This requires that A.Update() be called ≥ ⌈ℓ/t⌉ times

12: c← least integer which is > c and not in J ▷ This line may abort if J = [k]

13: A← new instance of algorithm A ▷ Using new random bits, if A is randomized

Output → [n]:

14: Let x ∈ [n/s] be the output of A

15: return xth entry of block Bc

Active

block

Inputs: black squares

Variables:

L=[1,2,3,4,5,6]

J={1,2,3,5}

c=3
(using alg

for MIF(5,3))

Parameters:

n=50, l=20

t=4,k=6,s=10

blocks not in L

previous active block

Current output: circle

Figure 1 A diagram illustrating the state of an instance of Algorithm 1 on an example input.

Positions on the horizontal axis correspond to integers in [n]; the set of values in the input stream

(¶1, 2, 4, 9, 12, 13, . . .♢) is marked with black squares; the current output value (15) with a circle.

Outside this example, L need not be contiguous or in sorted order.

5 The fact that [n] is split into Ω(ℓ) blocks is enough to mitigate the random strategy; with ℓ guesses, the
adversary is unlikely to guess more than a constant fraction of the elements in L.

CCC 2024

28:10 Finding Missing Items Requires Strong Forms of Randomness

The recursive random tape algorithm. The random seed algorithm for mif(n, ℓ) used the337

construction of Algorithm 1 to build on top of an ŞinnerŤ deterministic algorithm.6 To get338

an efficient random tape algorithm, we can recursively apply the construction of Algorithm 1339

d − 1 times, for d = O(min(log ℓ, log n/ log ℓ)); at the end of this recursion, we can use a340

simple deterministic algorithm for mif. The optimal lengths of the random lists used at each341

level of the recursion are determined by balancing the costs of the different recursion levels.342

We end up choosing list lengths that all bounded by a quantity which lies between O(ℓ1/d)343

and O(ℓ1/(d−1)).344

In the extreme case where d = Θ(log ℓ) and the required error level δ is constant, our345

recursive algorithm may have a stack of random lists, each of length 2, and every time a346

level of the algorithm completes (i.e., all blocks of a list have been used), it will make a new347

instance of that level. That is, some large uncovered block will be split into many smaller348

blocks, and the algorithm will randomly pick two of them for the new instanceŠs list. Because349

the lists are all short, the algorithm will not need to remember many random bits at a given350

time; in exchange, for this regime it needs a very large (n = ℓΩ(d)) number of possible outputs351

and will frequently need to sample new random lists.352

The Ąnal version of our algorithm is given in the full version of the paper. It looks somewhat353

different from the recursive construction in Algorithm 1, because we have unraveled the354

recursive framing to allow for a simpler error analysis that must only bound the probability355

of a single Şbad event.Ť The resulting space bound is:356

▶ Theorem 1. There is a family of adversarially robust random tape algorithms, where for357

mif(n, ℓ) the corresponding algorithm has ≤ δ error and uses358

O

⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(log ℓ)2 + min(ℓ, log 1

δ) log ℓ


359

bits of space, where d = max


2, min

⌈log ℓ⌉,

⌊
2 log(n/4)

log(16ℓ)

⌋
. At δ = 1/poly(n) this space360

bound is O(ℓlogn ℓ(log ℓ)2 + log ℓ log n).361

4 Random Tape Lower Bound (Result 1)362

The AVOID problem. At the core of many of the mif lower bounds is the SubsetAvoidance363

communication problem, introduced in [8]. Here we have two players, Alice and Bob, and364

a known universe [m]: Alice has a set A ⊆ [m] of size a, and should send a message (as365

short as possible) to Bob, who should use the message to output a set B ⊆ [m] of size b366

which is disjoint from A. Henceforth, weŠll call this problem avoid(m, a, b). [8] showed that367

both deterministic and constant-error randomized one-way protocols for this problem require368

Ω(ab/m) bits of communication. An adversarially robust z-space algorithm for mif(m, a + b)369

can be used as a subroutine to implement a z-bit one-way protocol for avoid(m, a, b), thereby370

proving z = Ω(ab/m). This immediately gives us an Ω(ℓ2/n) space lower bound for mif(n, ℓ),371

which, as we have seen, is near-optimal in the robust, random oracle setting.372

6 The construction uses randomness in two places: when initializing the random sequence L, and (possibly)
each time the inner algorithm is initialized. For the random seed model, every ŞinnerŤ initialization
would require a corresponding set of random bits, which are counted toward the space cost of the
algorithm. Using a deterministic inner algorithm avoids this cost.

A. Chakrabarti and M. Stoeckl 28:11

▶ Lemma 2 (Adversarially robust random oracle lower bound, from [24]). Any random oracle373

(or random seed) algorithm which solves mif(n, ℓ) in the adversarial setting with total error374

≤ δ requires Ω(ℓ2/n + log(1− δ)) bits of space.375

The random tape lower bound. To prove stronger lower bounds that exploit the random376

tape limitation of the algorithm, we need a more sophisticated use of avoid. Fix an377

adversarially robust, random tape, z-space algorithm A for mif(n, ℓ). Roughly speaking,378

while the random oracle argument used A to produce an avoid protocol at the particular379

scale a = b = ℓ, for the Ąxed universe [n], our random tape argument will ŞprobeŤ A in a380

recursive fashionŮreminiscent of the recursion in our random tape upper boundŮto identify381

a suitable scale and sub-universe at which an avoid protocol can be produced. This probing382

will itself invoke the avoid lower bound to say that if an avoid(m, a, b) protocol is built out of383

a z-space streaming algorithm where z ≪ a, then B must be small, with size b = O((z/a)m).384

We will focus on the regime where δ = O(1/n). This error level requires a measure of385

structure from the algorithm: it cannot just pick a random output each step, because that386

would risk colliding with an earlier input with ≥ 1/n probability. Our recursive argument387

works by writing z, the space usage of A, as a function of a space lower bound for mif(w, t),388

where w = Θ(zn/ℓ) and t = Θ(n/z). For small enough z, t2/w ≫ ℓ2/n, so by repeating389

this reduction step a few times we can increase the ratio of the stream length to the input390

domain size until we can apply the simple Ω(ℓ̂2/n̂) lower bound for mif(n̂, ℓ̂). With the right391

number of reduction steps, one obtains the lower bound formula of Theorem 8, of which392

Result 1 is a special case.393

The reduction. The reduction step argues that the mif(n, ℓ) algorithm A ŞcontainsŤ a394

z-space algorithm for mif(w, t), which, on being given any t = O(ℓ/z) items in a certain395

sub-universe W ⊆ [n] of size w = O(zn/ℓ), will repeatedly produce missing items from that396

sub-universe. That such a set W exists can be seen as a consequence of the lower bound for397

avoid: if A receives a random sorted subset S of ℓ/2 elements in [n], then because there398

are
(

n
ℓ/2

)
possible subsets, most of the 2z states of A will need to be ŞgoodŤ for Ω(2−z

(
n

ℓ/2

)
)399

different subsets. In particular, upon reaching a given state σ, for A to solve mif with error400

probability O(1/n), its outputs henceforthŮfor the next ℓ/2 items in the streamŮmust avoid401

most of the sets of inputs that could have led it to σ. We will prove by a counting argument402

that after the random sequence S is sent, each state σ has an associated set Hσ of possible403

ŞsafeŤ outputs which are unlikely to collide with the inputs from S, and that ♣Hσ♣ is typically404

O(zn/ℓ). Thus, for a typical state σ, starting A from σ causes its next ℓ/2 outputs to be405

inside Hσ, w.h.p.; in other words, A contains a Şsub-algorithmŤ solving mif(O(zn/ℓ), ℓ/2)406

on the set W = Hσ.407

However, even though there exists a set W on which A will concentrate its outputs, it408

may not be possible for an adversary to Ąnd it. In particular, had A been a random oracle409

algorithm, each setting of the random string might lead to a different value for W , making410

W practically unguessable. But A is in fact a random tape algorithm, so we can execute the411

following strategy.412

In our core lemma, Lemma 5, we design an adversary (Adversary 2) that can with Ω(1)413

probability identify a set W of size Θ(zn/ℓ) for which the next Θ(ℓ/z) outputs of A will414

be contained in W , with Ω(1) probability, no matter what inputs the adversary sends next.415

In other words, our adversary will identify a part of the stream and a sub-universe of [n]416

where the algorithm solves mif(Θ(zn/ℓ), Θ(ℓ/z)). The general strategy is to use an iterative417

search based on a win-win argument. First, the adversary will send a stream comprising a418

CCC 2024

28:12 Finding Missing Items Requires Strong Forms of Randomness

random subset S of size ℓ/2 to A, to ensure that henceforth its outputs are contained in419

some (unknown) set Hρ, where ρ is the (unknown) state reached by A just after processing420

S. Because A has ≤ 2z states, from the adversaryŠs perspective there are ≤ 2z possible421

candidates for Hρ. Then, the adversary conceptually divides the rest of the stream to be fed422

to A into O(z) phases, each consisting of t = O(ℓ/z) stream items. In each phase, one of the423

following things happens.424

1. There exists a Şsub-adversaryŤ (function to choose the t items constituting the phase, one425

by one) which will probably make A output an item that rules out a constant fraction of426

the candidate values for Hρ (output i rules out set J if i /∈ J). The adversary then runs427

this sub-adversary.428

2. No matter how the adversary picks the t inputs for this phase, there will be a set429

W (roughly, an ŞaverageŤ of the remaining candidate sets) that probably contains the430

corresponding t outputs of A.431

As the set of candidate sets can only shrink by a constant fraction O(z) times, the Ąrst432

case can only happen O(z) times, with high probability. Thus, eventually, the adversary433

will identify the set W that it seeks. Once it has done so, it will run the optimal adversary434

for mif(Θ(zn/ℓ), Θ(ℓ/z)). This essentially reduces the lower bound for mif(ℓ, n) to that for435

mif(Θ(zn/ℓ), Θ(ℓ/z)).436

4.1 Technical Details437

Types of error. One subtlety is that we will need to carefully account for the probability438

that A, over the next Θ(ℓ/z) stream items, produces outputs outside W . This will require us439

to distinguish between two types of ŞerrorsŤ for the algorithm over those next Θ(ℓ/z) items:440

an O(1) chance of producing an output outside W , and a smaller chance of making a mistake441

per the deĄnition of mif, i.e., outputting an item that was not missing (cf. DeĄnition 3).442

▶ DeĄnition 3. An algorithm A for mif(n, ℓ) can fail in either of two ways. It may make an443

incorrect output, or mistake, if outputs an element that was already in the input stream. It444

may also abort, by outputting a special value ⊥ (or some other value which is not a possible445

input for mif).446

This distinction is useful because, if we take an algorithm for mif(n, ℓ), conditioned on447

producing some initial transcript of outputs in response to an input sequence, we may obtain448

an algorithm for mif(♣W ♣, t) for some t ≤ ℓ and W ⊆ [n]; the probability that the algorithm449

ŞabortsŤ (produces an output outside of W) can be much larger than the probability that450

the algorithm makes an incorrect output (output in W that collides with an earlier input).451

In the following proofs the algorithm aborting will be bad for the adversary, and making a452

mistake will be good.453

For integers n, ℓ, z with 1 ≤ ℓ < n, and γ ∈ [0, 1], let Algs(n, ℓ, z, γ) be the set of all454

z-bit random tape algorithms for mif(n, ℓ) which on any adversary abort with probability455

≤ γ. DeĄne ∆(n, ℓ, γ, z) := min¶δ(A, n, ℓ) : A ∈ Algs(n, ℓ, z, γ)♢, where δ(A, n, ℓ) is the456

maximum probability, over all possible adversaries, that A makes an incorrect output. As a457

consequence of the deĄnition, ∆(n, ℓ, γ, z) is non-increasing in γ and z.458

Using this new notation, the Ω(ℓ2/n) lower bound for adversarially robust streaming459

algorithms from [24] (cf. Lemma 2) tells us:460

▶ Lemma 4. Random tape algorithms for mif(n, ℓ) that do not abort often have high error461

if they use too little space: concretely,462

∆(n, ℓ, γ, z) ≥ 1

4
1z≤ℓ2/(16n ln 2)1γ≤1/2 . (1)463

A. Chakrabarti and M. Stoeckl 28:13

Induction lemma. Our proof of Result 1 is inductive, with the above lemma being the base464

case. The induction step consists of a reduction, using an adaptive adversary described in465

Adversary 2 to prove a lower bound on the mistake probability. The next lemma formalizes466

the induction step.467

▶ Lemma 5. Let 1 ≤ ℓ < n and z be integers, and γ ∈ [0, 1
2]. Let k be an integer parameter468

for which z ≥ 2 log(32k). DeĄne, matching deĄnitions in Adversary 2,469

w = 2
⌊
32

zn

ℓ

⌋
and t =


ℓ

64zk


.470

If t < w, then there is a distribution µ ∈ △[0, 1] for which EG∼µG ≤ γ + 1
4k and471

∆(n, ℓ, γ, z) ≥ min


ℓ

27nk
,
1

2
− 1

4k


EG∼µ∆(w, t, G, z)


. (2)472

The adversary. The adversary (Adversary 2) used for Lemma 5 is rather complicated, and473

requires some additional deĄnitions.474

▶ DeĄnition 6. Say A is a random tape algorithm whose states are given by the set Σ, and475

Q is a subset of Σ, where each state in Q has an associated set Hσ. A sequence y in [n]t is476

said to be divisive for Q if ♣¶σ ∈ Q : y ⊆ Hσ♢♣ ≤ 1
2 ♣Q♣.477

Say Υ is a t-length deterministic adversary. (That is, a function which maps sequences478

in [n]⋆ of length between 0 and t− 1, inclusive, to values in [n].) For any state σ ∈ Σ of A,479

let G(σ, Υ) be the random variable in [n]t which gives the output if we run A, starting at480

state σ, against the adversary Υ. (If after processing a few inputs, the algorithm has output481

sequence v ∈ [n]⋆, its next input will be Υ(v).) We deĄne an adversary to be α-splitting for482

Q against a distribution D ∈ △[Σ] if, when we choose a random state S from D,483

Pr[G(S, Υ) is divisive for Q] ≥ α .484

When we run Adversary 2 against an algorithm A, let ρ be the state of A after v is sent.485

The proof of Lemma 5 is long and requires that we consider the probabilities of the following486

events:487

Brepeat occurs if A produces an output in [n] \Hρ488

Bbig occurs if the state ρ has ♣Hρ♣ > 1
2 w489

Bincomplete occurs if the adversary aborts without executing Line 18490

Babort occurs if A aborts before the adversary reaches Line 18491

Rabort occurs if A ŞabortsŤ (either for real, or by making an output outside W ′) while492

the adversary is executing Line 18493

Rerror occurs if A produces an incorrect output while the adversary is executing Line 18494

Calculations. By repeatedly applying Lemma 5, we obtain the following:495

▶ Lemma 7. Let 1 ≤ ℓ < n. For any integer k ≥ 1, say that z is an integer satisfying496

z ≤ 1
64k ℓ1/k. Then:497

∆(n, ℓ, 0, z) > min
 ℓ

210nk
,

1

2k+5
1z≤L


where L =

1

64k


ℓk+1

n

 2
k2+3k−2

. (3)498

Consequently, algorithms for MIF with ≤ min(ℓ
210nk , 2−(k+5)) error require > L bits of space.499

6 For any sequence v ∈ seqs([n], ⌈ℓ/2⌉), P (v)(σ) = Pr[the state of A just after receiving v is σ]

CCC 2024

28:14 Finding Missing Items Requires Strong Forms of Randomness

Adversary 2 An adversary for a random tape mif(n, ℓ) algorithm, with parameter k.

Let: w = 2
⌊
32 zn

ℓ

⌋
, hmax = 32zk, and t =

⌊
ℓ

2hmax

⌋

Adversary

1: v ← a uniformly random sequence in seqs([n], ⌈ℓ/2⌉).
2: send v to the algorithm

3: Let G be a distribution over functions of type seqs([n], ⌈ℓ/2⌉)→ Σ, so that when F ∼ G,

the distribution of F (v) equals the distribution of current algorithm states

4: Compute, for all σ ∈ Σ,

Hσ :=


i ∈ [n] : Pr

X∼seqs([n],⌈ℓ/2⌉),F ∼G
[i ∈ X ♣ F (X) = σ] ≤ ⌈ℓ/2⌉

4n



5: Let Q0 = ¶σ ∈ Σ : ♣Hσ♣ ≤ 1
2 w♢ ▷ Have a ≥ 1− 1/16k chance current alg. state is in Q0

6: for h in 1, . . . , hmax do

7: Let D be the distribution over alg. states conditioned on the transcript so far

8: if ∃ a 1/(8k)-splitting t-length deterministic. adversary Υ for Qh−1 given D then

9: run Υ against the algorithm, and let y ∈ [n]t be the output

10: Qh ← ¶σ ∈ Qh−1 : y ⊆ Hσ♢ ▷ Have a ≥ 1/(8k) chance that ♣Qh♣ ≤ 1
2 ♣Qh−1♣

11: if Qh = ∅ then abort

12: else

13: W ← ¶i ∈ [n] : ♣¶σ ∈ Qh−1 : i ∈ Hσ♢♣ ≥ 1
2 ♣Qh−1♣♢.

14: Let W ′ ←W plus w − ♣W ♣ padding elements

15: DeĄne sub-algorithm B to behave like the given algorithm, conditioned on the

exact transcript of inputs and outputs made so far

16: Let Ξ be an adversary maximizing the probability that B makes an incorrect

output. (This can be computed using brute-force search.)

17: ▷ If B produces an output outside of W ′, we interpret this as B having aborted,

not as having made a mistake

18: run adversary Ξ, sending t inputs in W ′

19: return

20: abort

Lemma 7 implies a lower bound on z for z-bit algorithms with < ℓ
210nk error probability.500

Choosing the value of k which maximizes the lower bound on z, and doing some additional501

calculations, gives the following theorem:502

▶ Theorem 8. Random tape δ-error adversarially robust algorithms for mif(n, ℓ) require503

Ω


max
k∈N

1

k


ℓk+1

n

 2
k2+3k−2


= Ω


log ℓ

log n
ℓ

15
32 logn ℓ)


504

bits of space, for δ ≤ 1
210n .505

▶ Remark. The adversary of Adversary 2 runs in doubly exponential time, and requires506

knowledge of the algorithm. The former condition cannot be improved by too much: if507

one-way functions exist, one could implement the random oracle algorithm for mif(n, ℓ) from508

[24] using a pseudo-random generator that fools all polynomial-time adversaries. One can509

also prove by minimax theorem that universal adversaries for (random tape or otherwise)510

A. Chakrabarti and M. Stoeckl 28:15

mif(n, ℓ) algorithms can not be used to prove any stronger lower bounds than the one for511

random oracle algorithms.512

5 Random Seed Lower Bound (Result 2)513

The adversary constructed above for our random tape lower bound can be seen as a signiĄcant514

generalization of the adversary used by [24] to prove a random seed lower bound conditioned515

on a (then conjectured) pseudo-deterministic lower bound. Indeed, [24]Šs adversary against516

a z-space algorithm A also proceeds in a number of phases, each of length t = Θ(ℓ/z). In517

each step, either (1) it can learn some new information about the initial state of A (the518

Şrandom seedŤ), by sending A a speciĄc stream of inputs in [n]t, looking at the resulting519

output, and ruling out the seed values that could not have produced the output; or (2) it520

cannot learn much information, because for any possible input stream in [n]t, A has an521

output that it produces with constant probability. Each time the adversary follows the522

case (1), a constant fraction of the ≤ 2z seed values are ruled out. Therefore, either within523

O(z) steps the adversary will exactly learn the seed, at which point it can perfectly predict524

AŠs behavior, which lands us in case (2); or A will not reveal much information about525

the seed in a given phase, which also puts us in case (2). Because case (2) means that A526

behaves pseudo-deterministically, A must use enough space to pseudo-deterministically solve527

mif(n, t).528

▶ Theorem 9 (from [24]). Let SPD

1/3(n, ℓ) give a space lower bound for a pseudo-deterministic529

algorithm for mif(n, ℓ) with error ≤ 1/3. Then an adversarially robust random seed algorithm530

with error δ ≤ 1
6 , if it uses z bits of space, must have z ≥ SPD

1/3(n,
⌊

ℓ
2z+2

⌋
).531

Thus, Result 2 follows as a corollary of Result 4, which we discuss next. More speciĄcally,532

Theorem 10 follows by combining Theorem 9 with the pseudo-deterministic lower bound,533

and also applying Lemma 2, which is stronger in the regime ℓ ≥ n2/3.534

▶ Theorem 10. Adversarially robust random seed algorithms for mif(n, ℓ) with error ≤ 1
6535

require space:536

Ω


ℓ2

n
+
√

ℓ/(log n)3 + ℓ1/5


.537

6 Pseudo-Deterministic Lower Bound (Result 4)538

This proof generalizes [24]Šs space lower bound for deterministic mif(n, ℓ) algorithms, which539

we brieĆy explain. Fix a deterministic mif(n, ℓ) algorithm A that uses z bits of space. For540

each stream τ with length ♣τ ♣ ≤ ℓ, deĄne Fτ to be the set of all possible outputs of A541

corresponding to length-ℓ streams that have τ as a preĄx. Let ρ be a stream such that542

♣τ ♣+ ♣ρ♣ ≤ ℓ. Then, by deĄnition, Fτ◦ρ ⊆ Fτ ; whereas, by the correctness of A, Fτ◦ρ ∩ ρ = ∅.543

Now consider the avoid problem over the universe Fτ , for a Ąxed τ : if Alice gets ρ ⊆ Fτ as544

an input, she could send Bob the state σ of A upon processing τ ◦ ρ, whereupon Bob could545

determine Fτ◦ρ (by repeatedly running AŠs state machine starting at σ), which would be a546

valid output.547

Let us restrict this scenario to suffixes ρ of some Ąxed length t; weŠll soon determine a548

useful value for t. By the above observations, were it the case that549

∃τ ∈ [n]≤ℓ−t ∀ρ ∈ [n]t : ♣Fτ◦ρ♣ ≥ 1
2 ♣Fτ ♣ , (4)550

CCC 2024

28:16 Finding Missing Items Requires Strong Forms of Randomness

we would have a z-bit protocol for avoid(♣Fτ ♣, t, 1
2 ♣Fτ ♣). By [8]Šs lower bound for avoid, we551

would have z ≥ Ct for a universal constant C. On the other hand, if the opposite were true,552

i.e.,553

∀τ ∈ [n]≤ℓ−t ∃ρ ∈ [n]t : ♣Fτ◦ρ♣ < 1
2 ♣Fτ ♣ , (5)554

then, starting from the empty stream ϵ, we could add a sequence of length-ℓ suffixes ρ1, . . . , ρd555

(where d ≤ ⌊ℓ/t⌋) such that ♣Fρ1◦···◦ρs
♣ < 2−d♣Fϵ♣ ≤ 2−dn. Since A must produce some output556

at time ℓ, this would be a contradiction for d ≥ log n. Thus, for a setting of t = Θ(ℓ/ log n),557

situation (4) must occur, implying a lower bound of z = Ω(ℓ/ log n).558

Relaxing Şall outputsŤ to Şcommon outputsŤ. Examining the above argument closely559

shows where it fails for pseudo-deterministic algorithms. In constructing an avoid protocol560

above, we needed the key property that Fτ can be determined from just the state of A upon561

processing τ . For pseudo-deterministic algorithms, if we simply deĄne F ′
τ to be Şthe set of all562

canonical outputs at time ℓ for continuations of τ ,Ť we cannot carry out the above proof plan563

because this F ′
τ cannot be computed reliably from a single state: given a random state σ564

associated to τ , on average a δ fraction of the outputs might be incorrect and have arbitrary565

values; even a single bad output could corrupt the union calculation!566

To work around this issue, we replace Fτ with a more elaborate recursive procedure567

FindCommonOutputs, (or fco for short) that computes the Şmost common outputsŤ at568

time ℓ for a certain distribution over continuations of τ . To explain this, let us imagine569

positions 1 through ℓ in the input stream as being divided into d contiguous Ştime intervals.Ť570

In the deterministic proof, these intervals were of length t each. Given a stream τ that571

occupies the Ąrst d− k of these intervals, Fτ can be thought of as the output of a procedure572

FindAllOutputs (or fao for short) where fao(A, τ, k) operates as follows: for each setting573

ρ of the (d− k + 1)th time interval, call fao(A, τ ◦ ρ, k − 1) and return the union of the sets574

so obtained. In the base case, fao(A, τ, 0) takes a stream τ ∈ [n]ℓ and returns the singleton575

set ¶A(τ)♢. The deterministic argument amounts to showing that, with interval lengths576

t = Θ(z), the set fao(A, τ, k) has cardinality ≥ 2k; since fao(A, ϵ, d) has cardinality ≤ n,577

this bounds d ≤ log n, which lower-bounds z.578

For our pseudo-deterministic setting, we use time intervals as above and we design579

an analogous procedure fco(B, C, τ, k) that operates on a function B : [n]ℓ → [n] (roughly580

corresponding to a mif algorithm), a matrix C of random thresholds,7 and a stream τ of length581

≤ ℓ that occupies the Ąrst d− k time intervals. The recursive structure of fco(B, C, τ, k) is582

similar to fao, but crucially, the sets computed by the recursive calls fco(B, C, τ ◦ ρ, k − 1)583

are used differently. Instead of simply returning their union, we use these sets to collect584

statistics about the outputs in [n] and return only those that are sufficiently common. The585

thresholds in C control the meaning of Şsufficiently common.Ť586

The function B provided to fco can be either the canonical output function Π of the587

given pseudo-deterministic algorithm B or a deterministic algorithm A ∼ B obtained by588

Ąxing the random coins of B. We will show that:589

With high probability over C and the randomness of B, fco will produce the same590

outputs on Π and B. In other words, fco is robust to noise (i.e., to algorithm errors).591

When applied to the canonical algorithm, the cardinalities of the sets returned by fco will592

grow exponentially with k. Equivalently, similar to ♣Fτ ♣ from the deterministic proof, the593

7 The use of random thresholds is a standard trick for robustly computing quantities in the presence of
noise.

A. Chakrabarti and M. Stoeckl 28:17

cardinality of fco(B, C, τ, k) will shrink exponentially as the length ♣τ ♣ grows. Ultimately,594

this is proven by implementing avoid using fco on the actual algorithm as a subroutine.595

Critically, this implementation uses the fact that the recursive calls to fco w.h.p. produce596

the same output on Π and B.597

The argument can be carried out with all but one of the d time intervals being of length598

≈ Θ(z). If z were too small, d would be large enough that for the empty stream preĄx599

we would have ♣fco(B, C, ϵ, d)♣ > n, which contradicts fco(. . .) ⊆ [n]; this lets us derive600

a lower bound on z.601

Error ampliĄcation and the case n ≫ ℓ. One technical issue that arises is that the602

correctness of fco requires BŠs error probability to be as small as 1/nΩ(log n). Fortunately,603

even if the original error probability was 1/3, we can reduce it to the required level since604

pseudo-deterministic algorithms allow efficient error reduction by independent repetition. A605

second technical point is that a z-space pseudo-deterministic algorithm can be shown to have606

only O(2z) possible outputs; so if n≫ ℓ, we can sometimes obtain a stronger lower bound607

by pretending that n is actually O(2z). This is formalized by a simple encoding argument.608

6.1 Technical Details609

Pseudocode. Pseudocode for fco is given in Procedure 3. The procedure is parameterized610

by the interval lengths td, . . . , t1, the set S of all possible canonical outputs, and a series of611

output sizes wd, . . . , w1, where wi = 2i−1(t1 + 1).612

Central lemma. For a series of error probabilities with 1 > εd ≫ εd−1 . . .≫ ε1 ≈ 1/nΩ(d),613

we prove, by induction, the following lemma. It asserts that the set of common outputs is614

likely the same for the canonical function Π as it is for a random draw A ∼ B. It also asserts615

two other key properties of fco. The lemma can be thought of as a Şproof of correctnessŤ of616

fco.617

▶ Lemma 11. Let k ∈ [d] and x ∈ [n]td+···+tk+1 . Then fco satisĄes the following properties.618

1. PrA∼B,C∼[1,2)d×N [fco(A, C, x, k) = fco(Π, C, x, k)] ≥ 1− εk.619

2. For all C ∈ [1, 2)d, the set fco(Π, C, x, k) is disjoint from x and a subset of S.620

3. For all A : [n]ℓ → [n] and C ∈ [1, 2)d, fco(A, C, x, k) outputs a set of size wk.621

Its proof is split over a number of helper lemmas:622

▶ Lemma 12. Lemma 11 holds for k = 1.623

▶ Lemma 13. Let x ∈ [n]td+···+tk+1 . When computing fco(Π, C, x, k), in the hth loop624

iteration, if ♣Qh−1♣ < wk, then ♣Ph \ Qh−1♣ ≥
⌈

1
4 wk−1

⌉
. Consequently, the procedure will625

return using Line 22, not Line 23.626

▶ Lemma 14. For k > 1, x ∈ [n]td+···+tk+1 , fco(Π, C, x, k) is disjoint from x and a subset627

of S; and for all B, C, x, k, fco(B, C, x, k) outputs a set of size wk.628

▶ Lemma 15. For k > 1, and all x ∈ [n]td+···+tk+1 ,629

Pr
A∼B,C

[fco(A, C, x, k) ̸= fco(Π, C, x, k)] ≤ εk .630

CCC 2024

28:18 Finding Missing Items Requires Strong Forms of Randomness

Procedure 3 The procedure to compute a set for Lemma 11

Let t1, . . . , td, w1, . . . , wd be integer parameters, and S the set of valid outputs

FindCommonOutputs(B, C, x, k) ▷ abbreviated as fco(B, C, x, k)

1: ▷ Inputs: function B : [n]ℓ → [n], matrix C ∈ [1, 2)d×N, stream preĄx x ∈ [n]tk+···+t1

2: ▷ Output: a subset of S of size wk

3: if k = 1 then

4: e0 ← B(x ◦ ⟨1, 1, . . . , 1⟩)
5: for i in 1, . . . , t1 do

6: ei ← B(x ◦ ⟨e0, . . . , ei−1, 1, . . . , 1⟩)
7: if e0, . . . , et1 are all distinct then

8: return ¶e0, e1, . . . , et1
♢ ▷ identify w1 distinct possible outputs

9: return arbitrary subset of S of size w1 (failure)

10: else

11: for each y ∈ seqs([n], tk) do

12: Ty ← FindCommonOutputs(B, C, x ◦ y, k − 1) ▷ note ♣Ty♣ = wk−1

13: Q0 ← T⟨1,2,...,tk⟩

14: for h in 1, 2, 3, 4 do

15: ▷ gather statistics and Ąnd common elements among the sets Ty

16: for each j ∈ S do

17: f
(h)
j ← ♣¶y ∈ seqs(Qh−1, tk) : j ∈ Ty♢♣ ▷ count frequencies

18: θ ← Ck,hwk−1/(16♣S♣) ▷ set random threshold

19: Ph ←
{

j ∈ S : f
(h)
j ≥ θ

(
♣Qh−1♣

tk

)}
▷ identify Şsufficiently commonŤ elements

20: Qh ← Qh−1 ∪ Ph

21: if ♣Qh♣ ≥ wk then

22: return the wk smallest elements in Qh

23: return arbitrary subset of S of size wk (failure)

Using the central lemma. A consequence of Lemma 11 is that fco(Π, C, d) will output a631

set of size wd; this gives a lower bound on n. Solving for a lower bound on z gives:632

▶ Theorem 16. Pseudo-deterministic δ-error random oracle algorithms for mif(n, ℓ) require633

Ω


min


ℓ

log 2n
ℓ

+
√

ℓ,
ℓ log 1

2δ

(log 2n
ℓ)2 log n

+


ℓ log

1

2δ

1/4


634

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly(n) and ℓ = Ω(log n), this is:635

Ω


ℓ

(log 2n
ℓ)2

+ (ℓ log n)
1/4


.636

▶ Remark. For δ ≤ 2−ℓ, Theorem 16 reproduces the deterministic algorithm space lower637

bound for mif(n, ℓ) from [24] within a constant factor.638

References639

1 Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff,640

and Samson Zhou. The white-box adversarial data stream model. In Proc. 41st ACM641

A. Chakrabarti and M. Stoeckl 28:19

Symposium on Principles of Database Systems, pages 15Ű27, 2022. doi:10.1145/3517804.642

3526228.643

2 Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Coloring in graph644

streams via deterministic and adversarially robust algorithms. In Proc. 42nd ACM Symposium645

on Principles of Database Systems, pages 141Ű153, 2023. doi:10.1145/3584372.3588681.646

3 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing647

efficient protocols. In Proc. 1st ACM Conference on Computer and Communications Security,648

pages 62Ű73, 1993. doi:10.1145/168588.168596.649

4 Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via650

dense-sparse trade-offs. In Symposium on Simplicity in Algorithms (SOSA), pages 214Ű227,651

2022. doi:10.1137/1.9781611977066.15.652

5 Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for653

adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of654

Database Systems, page 63Ű80, 2020. doi:10.1145/3375395.3387658.655

6 Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proc.656

39th ACM Symposium on Principles of Database Systems, pages 49Ű62. ACM, 2020. doi:657

10.1145/3375395.3387643.658

7 Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir. Lower bounds659

for pseudo-deterministic counting in a stream. arXiv preprint arXiv:2303.16287, 2023. URL:660

https://arxiv.org/abs/2303.16287, doi:10.48550/arXiv.2303.16287.661

8 Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for662

graph streams. In Proc. 13th Conference on Innovations in Theoretical Computer Science,663

pages 37:1Ű37:23, 2022. doi:10.4230/LIPIcs.ITCS.2022.37.664

9 Amit Chakrabarti and Manuel Stoeckl. Finding missing items requires strong forms of665

randomness. arXiv preprint arXiv:2310.03634, 2024. arXiv:2310.03634.666

10 Uriel Feige. A randomized strategy in the mirror game. arXiv preprint arXiv:1901.07809,667

2019. arXiv:1901.07809, doi:10.48550/arXiv.1901.07809.668

11 Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc.669

10th Conference on Innovations in Theoretical Computer Science, pages 36:1Ű36:14, 2018.670

doi:10.4230/LIPIcs.ITCS.2019.36.671

12 ShaĄ Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-672

Deterministic Streaming. In Proc. 20th Conference on Innovations in Theoretical Computer673

Science, volume 151, pages 79:1Ű79:25, 2020. doi:10.4230/LIPIcs.ITCS.2020.79.674

13 Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-675

deterministic approximate counting. arXiv preprint arXiv:2304.01438, 2023. doi:10.48550/676

arXiv.2304.01438.677

14 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs?678

In Proc. 45th Annual ACM Symposium on the Theory of Computing, pages 121Ű130, 2013.679

doi:10.1145/2488608.2488624.680

15 Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversar-681

ially robust streaming algorithms via differential privacy. In Advances in Neural Information682

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,683

NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/684

paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html.685

16 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream686

computation. J. ACM, 53(3):307Ű323, 2006. doi:10.1145/1147954.1147955.687

17 Rajesh Jayaram and David P Woodruff. Towards optimal moment estimation in streaming688

and distributed models. ACM Trans. Alg., 19(3):1Ű35, 2023. doi:10.1145/3596494.689

18 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming690

from oblivious streaming using the bounded storage model. In Advances in Cryptology -691

CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual692

CCC 2024

https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3584372.3588681
https://doi.org/10.1145/168588.168596
https://doi.org/10.1137/1.9781611977066.15
https://doi.org/10.1145/3375395.3387658
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.1145/3375395.3387643
https://arxiv.org/abs/2303.16287
https://doi.org/10.48550/arXiv.2303.16287
https://doi.org/10.4230/LIPIcs.ITCS.2022.37
https://arxiv.org/abs/2310.03634
https://arxiv.org/abs/1901.07809
https://doi.org/10.48550/arXiv.1901.07809
https://doi.org/10.4230/LIPIcs.ITCS.2019.36
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.48550/arXiv.2304.01438
https://doi.org/10.48550/arXiv.2304.01438
https://doi.org/10.48550/arXiv.2304.01438
https://doi.org/10.1145/2488608.2488624
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/3596494

28:20 Finding Missing Items Requires Strong Forms of Randomness

Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer693

Science, pages 94Ű121. Springer, 2021. doi:10.1007/978-3-030-84252-9_4.694

19 Roey Magen and Moni Naor. Mirror games against an open book player. In 11th International695

Conference on Fun with Algorithms (FUN 2022), volume 226, pages 20:1Ű20:12, 2022. doi:696

10.4230/LIPIcs.FUN.2022.20.697

20 Boaz Menuhin and Moni Naor. Keep that card in mind: Card guessing with limited memory.698

In Proc. 13th Conference on Innovations in Theoretical Computer Science, pages 107:1Ű107:28,699

2022. doi:10.4230/LIPIcs.ITCS.2022.107.700

21 Ilan Newman. Private vs. common random bits in communication complexity. Inform. Process.701

Lett., 39(2):67Ű71, 1991. doi:10.1016/0020-0190(91)90157-D.702

22 Noam Nisan. Pseudorandom generators for space-bounded computation. In Proc. 22nd Annual703

ACM Symposium on the Theory of Computing, pages 204Ű212, 1990. doi:10.1145/100216.704

100242.705

23 Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical Computer706

Science, 107(1):135Ű144, 1993. doi:10.1016/0304-3975(93)90258-U.707

24 Manuel Stoeckl. Streaming algorithms for the missing item Ąnding problem. In Proc. 34th708

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 793Ű818, 2023. Full version at709

arXiv:2211.05170v1. doi:10.1137/1.9781611977554.ch32.710

25 Manuel Stoeckl. On adaptivity and randomness for streaming algorithms. PhD thesis, Dart-711

mouth College, 2024. URL: https://digitalcommons.dartmouth.edu/dissertations/229/.712

26 David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding713

windows via difference estimators. In Proc. 62nd Annual IEEE Symposium on Foundations of714

Computer Science, pages 1183Ű1196, 2022. doi:10.1109/FOCS52979.2021.00116.715

https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.4230/LIPIcs.FUN.2022.20
https://doi.org/10.4230/LIPIcs.FUN.2022.20
https://doi.org/10.4230/LIPIcs.FUN.2022.20
https://doi.org/10.4230/LIPIcs.ITCS.2022.107
https://doi.org/10.1016/0020-0190(91)90157-D
https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/100216.100242
https://doi.org/10.1016/0304-3975(93)90258-U
https://doi.org/10.1137/1.9781611977554.ch32
https://digitalcommons.dartmouth.edu/dissertations/229/
https://doi.org/10.1109/FOCS52979.2021.00116

	1 Introduction
	1.1 Groundwork for Our Results
	1.2 Our Results
	1.3 Related Work

	2 Organization of This Extended Abstract
	2.1 Notation
	2.2 Preliminary Remarks

	3 Random Tape Upper Bound
	4 Random Tape Lower Bound
	4.1 Technical Details

	5 Random Seed Lower Bound
	6 Pseudo-Deterministic Lower Bound
	6.1 Technical Details

